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ABSTRACT 

The European Union Emissions Trading System is a platform that allows investors to 

buy or sell carbon emission allowances. Its goal is to help achieve decarbonization 

through the establishment of annual emissions caps with which companies must comply. 

This dissertation investigates the impact that various uncertainties indexes, namely 

the global economic policy uncertainty, the climate policy uncertainty and the 

geopolitical risk, have on the volatility of the carbon futures returns in the EU ETS. 

To assess that impact, the statistical model GARCH-MIDAS was employed. This 

specific model allows to associate high frequency variables, such as financial returns, 

with low frequency variables, such as macroeconomic variables. 

The results show that both global economic policy uncertainty and geopolitical risk 

have a positive correlation with the long-term volatility of the European carbon futures 

returns whereas climate policy uncertainty displays a negative correlation. 

This study can shed some light on the dynamics of carbon markets, helping policy 

makers and investors take better decisions regarding this peculiar market. 

 

 

KEYWORDS: Volatility; EU ETS; Economic Policy Uncertainty; Climate Policy 

Uncertainty; Geopolitical Risk; GARCH-MIDAS 
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GLOSSARY 

 

AIC – Akaike Information Criterion 

CPU – Climate Policy Uncertainty 

CO
2 – Carbon Dioxide 

ETS – Emissions Trading System 

EU – European Union 

EUA – European Union Allowance 
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GDP – Gross Domestic Product 

GEPU – Global Economic Policy Uncertainty 

GHG – Greenhouse Gas 

GPR – Geopolitical Risk 

ICE – Intercontinental Exchange 

MFW – Master’s Final Work 

MIDAS – Mixed Data Sampling 

VIF – Variance Inflation Factor 

 

 

 

 

  

 

 

 



 

iv 

 

TABLE OF CONTENTS 

Abstract ........................................................................................................................ i 

Acknowledgements .................................................................................................... ii 

Glossary ..................................................................................................................... iii 

Table of Contents....................................................................................................... iv 

List of Figures ............................................................................................................. v 

List of Tables ............................................................................................................. vi 

1. Introduction ............................................................................................................ 1 

2. Literature Review ................................................................................................... 2 

2.1. Carbon markets and the EU ETS ..................................................................... 2 

2.2. Global Economic Policy Uncertainty .............................................................. 5 

2.3. Climate Policy Uncertainty ............................................................................. 6 

2.4. Geopolitical Risk ............................................................................................. 7 

3. Sample and Methodology ....................................................................................... 8 

3.1. Sample Construction........................................................................................ 8 

3.2. Methodology .................................................................................................... 9 

4.1 Descriptive Statistics ...................................................................................... 12 

4.2. Results from GARCH-MIDAS-GEPU model ............................................... 14 

4.3. Results from GARCH-MIDAS-CPU model ................................................. 16 

4.4. Results from GARCH-MIDAS-GPR model ................................................. 18 

4.5. Results from GARCH-MIDAS-Combined model ........................................ 19 

4.6. Discussion of the Results ............................................................................... 21 

5. Conclusion ............................................................................................................ 22 

References ................................................................................................................ 23 

Appendices ............................................................................................................... 26 

AI Disclaimer ........................................................................................................... 27 

 

 

 

 

 

 



 

v 

 

LIST OF FIGURES 

 

FIGURE 1 – CARBON FUTURES PRICES IN EU ETS. SOURCE: ICE .................................... 13 

FIGURE 2 – GLOBAL ECONOMIC POLICY UNCERTAINTY INDEX ......................................... 15 

FIGURE 3 – CLIMATE POLICY UNCERTAINTY INDEX ......................................................... 17 

FIGURE 4 – GEOPOLITICAL RISK INDEX ............................................................................ 19 

FIGURE A.5 – CORRELATION MATRIX ............................................................................. 26 

 

 

 



 

vi 

 

LIST OF TABLES 

 

TABLE 1 – DESCRIPTIVE STATISTICS ............................................................................... 13 

TABLE 2 – ESTIMATED RESULTS OF GARCH-MIDAS-GEPU MODEL ........................... 15 

TABLE 3 – ESTIMATED RESULTS OF GARCH-MIDAS-CPU MODEL .............................. 17 

TABLE 4 – ESTIMATED RESULTS OF GARCH-MIDAS-GPR MODEL .............................. 18 

TABLE 5 – ESTIMATED RESULTS OF GARCH-MIDAS-COMBINED MODEL .................... 20 

TABLE A.6 – VARIANCE INFLATION FACTOR (VIF) ......................................................... 26 



1 

 

1. INTRODUCTION 

 

Carbon markets have been gaining increasing attention over the last couple of decades 

as global warming progresses. As a collective effort to combat climate change, numerous 

international agreements have been defined. The first of its kind was the Kyoto Protocol, 

set in 1997. Since then, the European Union took the lead and established the European 

Union emissions trading system in 2005 (European Commission, N.D.). The creation of 

the EU ETS was a revolutionary achievement, not only allowing governments to set 

annual emissions caps on greenhouse gases but also giving companies the option to trade 

emission allowances according to their needs. 

Understanding the behaviour of these unique financial instruments became therefore 

critical, especially for policymakers and investors. As such, it is worth exploring how 

macroeconomic variables impact the volatility on carbon markets. Forecasting volatility 

reliably has always been essential for the success of portfolio managers and hedging 

strategies. Thus, the central research question of this master’s final work is: To what 

extent do different macroeconomic uncertainty indexes, specifically the global economic 

policy uncertainty, the climate policy uncertainty and the geopolitical risk, impact the 

volatility of carbon futures markets? 

While previous studies have examined the volatility dynamics of carbon markets, few 

have explored the relationship between long-term macroeconomic uncertainty/risk and 

short-term price movements in carbon futures. To tackle this type of research, the 

statistical GARCH-MIDAS model is usually implemented.  

This model, proposed by Engle et al. (2013), captures the combined effect of long-

term low-frequency macroeconomic data on short-term high-frequency financial data. 

The GARCH part of the model tries to explain short-term variations on carbon futures 

prices due to temporary changes on the demand/supply forces whereas the MIDAS 

element explores the long-term impact of macroeconomic uncertainty on carbon futures 

volatility.  

This research will attempt to contribute to the existing literature by applying a 

GARCH-MIDAS model to the carbon futures returns while using three different 
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explanatory macroeconomic variables. This is unique for two reasons: firstly, the data 

used for the carbon returns are generally the carbon spot returns; secondly, two of the 

three explanatory variables used (CPU and GPR) have rarely been employed in studies 

due to how recent they are. 

Dai et al. (2022) have explored the relationship between economic policy uncertainty 

(both European economic policy uncertainty and global economic policy uncertainty) and 

the volatility of European carbon spot returns. The results of that study show that the 

volatility of European carbon spot returns can be better forecasted by global economic 

policy uncertainty and that there is a positive correlation between GEPU and the volatility 

of European carbon spot returns.  

This MFW strives to build upon that study by not only including two extra 

explanatory variables (CPU and GPR) in the GARCH-MIDAS model, but also using 

European carbon futures returns for the short-term high-frequency financial data instead.  

The remainder of this MFW is organized as follows. Chapter 2 summarizes a detailed 

review of all the existing literature that is relevant for this study. Chapter 3 describes the 

data and methodology used. Chapter 4 presents the empirical results and analyses the 

implications of the GARCH-MIDAS model estimations. Finally, Chapter 5 concludes the 

MFW. 

 

 

2. LITERATURE REVIEW 

 

2.1. Carbon markets and the EU ETS 

In an attempt to contain climate change and even reverse its effects, governments all 

around the world decided to cooperate and come up with measures that would reduce 

GHGs emissions (particularly carbon dioxide). After numerous agreements over the 

years, carbon markets were created as a mechanism to help put in practice those 

reductions (Raphael Calel, 2013).  
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Companies that are required to reduce GHGs emissions can buy or sell carbon credits 

or allowances in this type of financial markets, according to their own needs. One carbon 

credit unit (or allowance) represents a grant to emit a metric ton of CO₂ or an equivalent 

GHG (Kenton, 2024).  

By allowing demand and supply forces to set a price on carbon emissions, companies 

are encouraged to reduce their carbon footprint. Way et al. (2022) argue that companies 

should take the initiative to research and implement more environmentally friendly 

practices and thus make the transition from fossil fuels to renewable energies. As a result, 

they will save a lot of money in the future, since they do not have to buy carbon credits 

anymore.  

There are two main types of carbon markets: compliance markets and voluntary 

markets. 

Compliance carbon markets are regulated at a national or international level. The most 

outstanding example is the EU ETS, which was established in 2005, and still is to this 

day the world’s largest carbon market. The EU ETS operates on a cap-and-trade principle, 

where governments will every year decide on the limit of emissions allowed (European 

Commission, N.D.).  

Companies that are obliged to participate in the EU ETS (for instance, companies in 

energy-intensive industry sectors, aviation and maritime transportation) receive or buy 

carbon allowances. If those companies emit less than their total annual allowance, they 

can sell the excess credits. If, on the other hand, they exceed their cap, they must purchase 

additional allowances, which creates a financial incentive to reduce emissions (European 

Commission, N.D.).   

The EU ETS has evolved through four distinct phases and major reforms were 

introduced at the end of each stage in order to improve its effectiveness. Phase I, spanning 

from 2005 to 2008, served as a first trial. In this phase there was an over-allocation of 

allowances that resulted in a major drop of carbon prices (European Commission, N.D.).  

In phase II (2008–2012) there was better alignment with the goals that were defined 

in the Kyoto Protocol, resulting in an introduction of a tighter cap and also allowing 

companies to use international carbon credits for compliance. However, the global 
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financial crisis of 2008 led to an oversupply of allowances, causing prices to collapse 

once again (European Commission, N.D.).  

In phase III (2013–2020), major structural reforms were put in place, such as the 

implementation of a single EU-wide cap and the introduction of auctions as the primary 

method for distributing allowances. Moreover, the Market Stability Reserve was created 

in order to address oversupply (European Commission, N.D.). 

 Finally, phase IV, which is still underway, started in 2021 and is expected to last until 

2030. This current phase matches the EU ambitious climate goals under the European 

Green Deal (which targets climate neutrality by 2050). This phase includes further cap 

reductions and a proposed Carbon Border Adjustment Mechanism to prevent carbon 

leakage from non-EU countries (carbon leakage is the concept where organizations would 

transfer their production operations to other countries with less severe emission 

constraints). 

The price of carbon allowances in compliance markets are influenced by numerous 

variables: regulatory changes, technological innovations, GDP and external shocks (such 

as energy price fluctuations).  

Ellerman et al. (2010) have studied these variables in the context of trying to 

understand the effectiveness of the EU ETS in reducing GHGs emissions. They 

confirmed that the EU ETS had a significant impact in reducing GHGs emissions, 

especially since the beginning of Phase II. They argued that the major reason for this 

success was the gradual tightening of the cap on emissions allowed.  

Over time, the EU ETS has become a model for other regions and many of its 

characteristics were taken into account during the implementation of similar markets in 

California, China and New Zealand (Hintermann et al., 2016). 

To assure the stability of the EU ETS and swift decarbonization, maintenance of low 

volatility levels would be ideal. The topic of volatility in the EU ETS has been 

investigated across multiple studies in order to fully grasp the dynamics that drive this 

peculiar market.  
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In one of these studies, Guo et al. (2020) proved the existence of high volatility 

clustering in the EU ETS, meaning that large changes in prices tend to be followed by 

large changes, and small changes in prices are followed by small changes. 

Also, Feng et al. (2011) argue that current carbon prices do not totally reflect past 

carbon price information, meaning that carbon markets are not a weak-form efficient 

market (weak form efficiency states that prices reflect all current information). 

In addition to compliance markets, voluntary carbon markets allow companies to 

purchase carbon offsets to neutralize their emissions (Dawes et al., 2023). Carbon offsets 

are typically generated by projects that reduce or capture GHGs emissions (such as 

reforestation or renewable energy initiatives).  

In contrast to compliance markets, participation in voluntary markets is not 

mandatory. However, with the recent boom of ESG practices, participation in these 

voluntary markets has increased in popularity (Kossoy et al., 2015). Wang et al. (2019) 

interestingly argued that compliance transactions affect long-term carbon price trends 

whereas non-compliance transactions (the ones that occur in voluntary carbon markets) 

mainly lead to short-term carbon price fluctuations.  

 

2.2. Global Economic Policy Uncertainty 

Although the preceding literature studies the carbon price dynamics from a micro 

perspective, to fully understand what drives the volatility of the European carbon market 

it is important to also look at the macro component. Economic uncertainty significantly 

influences the performance and stability of financial markets, including the European 

carbon market.  

Bredin and Muckley (2011) have analysed the volatility on the EU ETS and found 

out that economic recessions lead to increased volatility in carbon prices. Economic 

downturns reduce industrial activity and consequently GHG emissions are also reduced. 

This has an impact on the demand for emission allowances, increasing the volatility of 

carbon markets. 

 The economic policy uncertainty index, designed by Baker et al. (2016), works as a 

good proxy to understand the state of the economy in terms of GDP and unemployment 
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expectations. It is derived from a collection of newspapers and it is regularly updated on 

their website (http://www.policyuncertainty.com/).  

Their findings suggest that periods of high economic policy uncertainty correspond 

to increased volatility in the European carbon market since companies and investors have 

difficulty in forecasting future regulatory and economic conditions. 

As it was mentioned above, Dai et al. (2022) investigated the correlation between 

economic policy uncertainty (both European and global economic policy uncertainty) and 

the volatility of the European carbon market, by making use of the economic policy 

uncertainty index. The results of this study concluded that both European and global 

economic policy uncertainty have a positive correlation with the long-term volatility of 

European carbon spot return, with the global uncertainty having a bigger impact.  

 

2.3. Climate Policy Uncertainty 

To further expand on this last study and since carbon markets were developed to fight 

climate change, it would be relevant to also include a climate policy uncertainty index. 

Climate policy uncertainty perfectly captures the ambiguity around future regulatory 

changes or governmental policies regarding climate goals.  

Su et al. (2024) study how companies tend to adjust their investment behaviours in 

response to uncertainties regarding climate regulation. They argue that companies tend to 

delay major investment decisions when there is a lack of clarity on future environmental 

policies, which in turn affects market sentiment and volatility.  

In their perspective, governments should strive to reduce climate policy uncertainty 

and appropriately manage market expectations to minimise the impact of CPU on carbon 

prices. Like the economic policy uncertainty index, a climate policy uncertainty index 

was developed by Gavriilidis, K. (2021).  

 

 

 

http://www.policyuncertainty.com/
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2.4. Geopolitical Risk 

The geopolitical risk index is also included, to account for the external shocks that 

drive carbon prices.  

Zheng et al. (2023) examined how geopolitical risk affected different types of 

financial markets: stock markets, foreign exchange markets, bond markets and even 

commodity markets. However, little research has been conducted regarding the direct 

relationship between geopolitical risk and carbon markets. 

Ferrari et al. (2024) investigated the connection between oil markets and geopolitical 

risk.  They state that a rise in geopolitical risk can result in economic slowdown, due to 

trade wars or conflicts. That contraction often leads to lower demand for energy, including 

oil. Moreover, conflicts in regions such as the Middle East, which exports large quantities 

of oil to other countries, can disrupt oil production and create supply constraints. This 

effect leads to an increase in oil prices.  

The effects described on the above paragraph are relevant when connecting with the 

study performed by Tan et al. (2020). They found an indirect relationship on how 

geopolitical risk impacting the oil market can transfer to the carbon markets. In that study, 

they argue that carbon markets are deeply connected with other energy markets, 

particularly with the crude oil market, resulting in volatility spillovers between markets. 

In practical terms, sudden sharp changes in oil prices will have a substantial impact on 

carbon prices. 

Similarly to GEPU and CPU indexes, Caldara and Iacoviello (2018) constructed the 

geopolitical risk index based on newspaper articles covering geopolitical tensions all over 

the globe. 

 

This paper has the intention of fulfilling the present gap identified on the literature in 

order to address the research question: “To what extent do different macroeconomic 

uncertainty indexes, specifically the GEPU, the CPU and the GPR, impact the volatility 

of carbon futures markets? 
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3. SAMPLE AND METHODOLOGY 

 

3.1. Sample Construction 

This study utilizes daily data on carbon futures prices and monthly data for the 

macroeconomic uncertainty indices (GEPU, CPU and GPR), spanning a 10-year period 

from the 1st of January 2013 to 31st of December 2022. According to Stock et al. (1999), 

a 10-year period allows to draw significant conclusions, and it is especially relevant when 

conducting economic studies, as it allows for different business cycles to occur. 

This study covers both phase III (2013-2020) and the beginning of phase IV (2021-

2030) of the EU ETS development. Important to mention that phase III was a highly 

relevant period, as significant reforms were made. It is also often seen as the portion of 

historical data that better represents the current state of carbon markets, so it is the best 

in terms of quality of data. Additionally, during this time frame, at least three important 

events happened with implications at an economic, climatic and geopolitical standpoints: 

firstly, the 2015 Paris agreement; secondly, the COVID-19 Pandemic that began in 2020 

and finally the Russian invasion of Ukraine in 2022 that is still ongoing. 

The carbon futures data was retrieved from the (https://www.investing.com/) website. 

Regarding the futures contract specifications, the name of the product is EUA futures, 

with a contract size of 1 lot of 1000 emissions allowances (each emission allowance 

grants the right to emit one tonne of carbon dioxide or the same amount of other GHG). 

This product is traded in the ICE exchange and the currency is in euros. To prepare this 

data, in order to get it ready to implement it in the statistical model, the last step was to 

calculate the daily logarithmic returns, through the formula:  

(1)                                                                      

 

where  represents the price of the carbon futures on day . 

The data for all the macroeconomic uncertainty indices (GEPU, CPU and GPR) was 

retrieved from the policy uncertainty website (https://www.policyuncertainty.com/).  

https://www.policyuncertainty.com/
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3.2. Methodology 

To appropriately model and predict carbon market volatility using GEPU, CPU and 

GPR as our explanatory variables, the GARCH-MIDAS model is employed. This 

statistical model is relatively modern and only over the last few years has been used to 

explore volatility dynamics. Due to that, the body of literature exploring its applications 

and possible refinements is not that vast. Nonetheless, this model, first proposed by Engle 

et al. (2013), allows to combine the short-term volatility dynamics captured by GARCH 

models with the impact caused by macroeconomic variables on the long-term volatility 

component.  

GARCH models, introduced by Tim Bollerslev (1986), built on the ARCH models 

(Engle, 1982) and helped to more accurately predict the volatility of returns on financial 

assets. However, the GARCH models require the use of the same type of high-frequency 

data (usually daily), that is typical of stock returns, when using a variable to study the 

volatility. Thus, it does not allow the usage of low-frequency (monthly data), such as 

macroeconomic uncertainty indexes, to study the volatility of high-frequency price 

returns. 

To overcome this issue, Ghysels et al. (2004) proposed mixed data sampling 

regression models. MIDAS regression models involve time series data with varying 

frequencies, eliminating the previous restriction of same frequency data. 

Finally, Engle et al. (2013) manage to connect the two models, after laying the 

foundation on a previous paper (Engle and Rangel, 2008). In their findings, GARCH-

MIDAS model performs better than any other of the previous models in predicting long-

term volatility of the stock market. 

In this MFW, the GARCH-MIDAS model was employed to study the impact of 

GEPU, CPU and GPR on the volatility of the European carbon futures market. Three 

GARCH-MIDAS models were constructed to assess the individual impact of each of the 

three uncertainties plus a combined model with all the variables.  

The carbon futures return on day  in month  obeys the following process: 

(2) 
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(3) 

 

where  is the expected carbon futures return on day  in month . Following Dai et 

al. (2022) and Wei et al. (2017),  is set as a constant, since the average daily return of 

the carbon futures is fairly small. Also,  is the number of trading in month  and 

is the information set up to day  of month .  

Any GARCH-MIDAS model is divided into two main parts: a short-term volatility 

component (GARCH) and a long-term volatility portion (MIDAS). 

For every model, the short-term volatility component follows a standard GARCH 

(1,1) process: 

 

(4) 

 

where  (alpha) captures how much past squared errors influence current volatility and  

represents the persistence of volatility over time (volatility clustering). Also, 

(appearing in the tables as omega), represents the short-term intercept or 

baseline volatility level. 

On the other hand, the long-term volatility component , obtained via MIDAS 

regression, is different for each model, depending on which uncertainty or combination 

of uncertainties we are analysing. 

In this section, there was a departure from standard GARCH-MIDAS model, which 

typically incorporates a lag segment. For the GEPU model, the standard long-term 

volatility term would be expressed as: 

(5) 

 

where  is the number of lagged periods that contribute to the long-term volatility 

component. However, in this study, it was opted to remove the lags, allowing to 
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understand the immediate impact of the macroeconomic uncertainties on the volatility of 

European carbon futures returns. 

 Therefore, we get the following equations for the individual models: 

(6) 

(7) 

(8) 

where  (constant) is the long-term intercept and  (theta) is the slope, which represents 

the effect that each of the uncertainty’s indices (GEPU, CPU and GPR) has on the long-

term volatility of carbon futures returns. Intuitively, the corresponding long-term 

volatility component for the combined model is expressed as follows: 

(9) 

Finally, the total conditional variance is defined as: 

(10) 

It is important to point out that prior to the GARCH estimation, the logarithmic returns 

of the carbon futures were rescaled by multiplying them by 10, in order to enhance model 

convergence. Even though this procedure changes the magnitude of the coefficients 

estimated, it does not alter the volatility dynamics that the model is trying to study. That 

is, the relative relationships captured by the model (such as volatility clustering or the 

impact of each uncertainty) remain consistent, only their absolute magnitude changes. 

Also, the decision to not incorporate a lagged structure on the GARCH-MIDAS 

model, which is the standard methodology, has to do with the fact that nowadays the 

spread of information is almost instantaneous.  

Even though typical macroeconomic variables, such as GDP, inflation, interest rates 

and unemployment, have this lagged effect or delayed impact on financial markets 

(Gibson, 1970), the uncertainty indexes are just a collection of newspapers that contain 

certain terms alluding to risk.  

Noticeably, the moment the newspaper or article comes out, that information is 

instantaneous and available to everyone that reads it. That can cause rapid and abrupt 
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changes on market sentiment, with such fast and sophisticated algorithms making trading 

decisions nowadays. 

Therefore, as the goal is to link these uncertainty indexes with volatility in the carbon 

futures market to study its relationship, the decision to not include the lags is logical. It 

also allows for future studies comparison with GARCH-MIDAS models that include the 

lagged structure. 

 

 

 

4. Empirical Results 

 

4.1 Descriptive Statistics 

Table 1 presents the descriptive statistics of the variables employed within the 

GARCH-MIDAS models. As it is possible to observe, the average of the logarithmic 

returns of the carbon futures is quite small. For that reason, the scaling by a factor of 10 

was indeed required.  

Also, important to point out that all macroeconomic indices (GEPU, CPU and GPR) 

display significant variability, expressed by the large standard deviation and range values. 

This suggests that they might significantly impact the long-term volatility of carbon future 

returns.  

A portrayal of the sample data regarding these four variables is depicted in Figures 1-

4. 
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TABLE 1 – DESCRIPTIVE STATISTICS 

 

 

 

 

Figure 1 – Carbon futures prices in EU ETS. Source: ICE 
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Mean 0,0010 197,6697 153,5957 100,2531 

Median 0,0014 180,0516 138,3029 92,5960 

Standard Deviation 0,0325 76,7634 74,6028 32,3364 

Kurtosis 16,8249 -0,5081 0,2370 17,8747 

Skewness -1,0506 0,5719 0,7603 3,3134 

Minimum -0,4347 86,6765 38,0921 58,4208 

Maximum 0,2405 431,6134 411,2888 318,9549 

Count 2581 2581 2581 2581 
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4.2. Results from GARCH-MIDAS-GEPU model 

The GARCH-MIDAS-GEPU model captures the effect of global economic policy 

uncertainty on the volatility of European carbon futures returns. As it is possible to 

observe in Table 2, all the coefficients are significant at least at 5% level (except omega, 

which is significant at 10% level), proving the model is valid.  

Examining the alpha (0.1155), the value implies that about 11.55% of the current 

volatility is caused by the immediate effect of past squared shocks from the previous 

period. In essence, a significant market movement in any direction causes an increase in 

volatility for the following period.  

For the beta (0.8759), the high value indicates a substantial level of volatility 

clustering, coherent with the results from the study performed by Guo et al. (2020). These 

clusters of volatility are illustrated in Figure 1. Noticeably, in the first couple of years 

there is low volatility, followed by moderate levels and then in the beginning of 2020 the 

volatility rises considerably, forming another large cluster in the last few years. As a side 

note, neither alpha nor beta estimations are affected by the scaling of the logarithmic 

returns. 

Analysing the θ of this model, which in this case is GEPU, the value is positive, 

implying a positive effect on the long-term volatility of the carbon futures market in the 

EU. This is consistent with the findings of Dai et al. (2022). 

For the following models, only the MIDAS regression component is discussed, since 

the coefficients estimated by the GARCH component remain the same in all models. 
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TABLE 2 – ESTIMATED RESULTS OF GARCH-MIDAS-GEPU MODEL 

 

Note: ***, **, * indicate significance level at 1%, 5% and 10%, respectively. 

 

 

 

 

 

 

 

 

 Figure 2 – Global economic policy uncertainty index 
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 Value Std. t stat. P>|t| 

μ 0.0154*** 0.0050 3.1026 0.0019 

alpha 0.1155*** 0.0273 4.2351 0.0000 

beta 0.8759*** 0.0288 30.3631 0.0000 

omega 0.0016* 0.0009 1.8826 0.0598 

constant 0.2879*** 0.0077 37.3331 0.0000 

GEPU 0.0001** 0.0000 2.2093 0.0272 

AIC -2756    
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4.3. Results from GARCH-MIDAS-CPU model 

The GARCH-MIDAS-CPU model connects the long-term volatility of the European 

carbon futures returns with the climate policy uncertainty index. Observing the values 

from Table 3, all the estimated coefficients are significant at 1% level (except omega). 

The coefficient of the CPU variable is a negative number, indicating that a high degree 

of climate policy uncertainty results in a negative impact in the long-term volatility of the 

carbon futures returns. In essence, an increase in CPU will result in less volatility in the 

carbon futures returns. There are a few possible reasons for this to happen.  

First, high CPU could mean that the government has not disclosed its next steps 

regarding EU ETS regulations and reforms. Because of that, traders and speculators have 

less information on the direction that the price of futures contracts will take in the 

following months and therefore decide to reduce trading activity.  

Second, the opposite could also be true. During periods of high stability (low CPU), 

the market becomes more speculative and risk-seeking behaviour takes place. Traders 

believe that they have all the information needed to determine in which direction the 

market will go next because the authorities have been transparent about the next measures 

they will take. This is consistent with the findings of Su et al. (2024). 

Comparing the AIC (a metric used to assess model goodness of fit, with lower AIC 

indicating better model fit) of the GARCH-MIDAS-GEPU model (-2756) with this 

GARCH-MIDAS-CPU (-2760), it is observed that the GARCH-MIDAS-CPU model 

holds the stronger explanatory ability in describing the long-term volatility of the 

European carbon futures market. 
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TABLE 3 – ESTIMATED RESULTS OF GARCH-MIDAS-CPU MODEL 

 Value Std. t stat. P>|t| 

μ 0.0154*** 0.0050 3.1026 0.0019 

alpha 0.1155*** 0.0273 4.2351 0.0000 

beta 0.8759*** 0.0288 30.3631 0.0000 

omega 0.0016* 0.0009 1.8826 0.0598 

constant 0.3212*** 0.0064 50.2951 0.0000 

CPU -0.0001*** 0.0000 -3.0160 0.0026 

AIC -2760    

Note: ***, **, * indicate significance level at 1%, 5% and 10%, respectively. 

 

 

 

Figure 3 – Climate policy uncertainty index 
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4.4. Results from GARCH-MIDAS-GPR model 

The GARCH-MIDAS-GPR model tries to assess if geopolitical risk impacts the long-

term volatility of European carbon futures returns. Once again, looking at the values from 

Table 4, all the estimated coefficients besides omega are significant at least at 5% level. 

The estimation of the theta in this model (GPR) is positive, indicating that an increase 

in geopolitical risk results in an increase in volatility of the carbon futures market in the 

EU ETS. This result is in line with the findings of Ferrari et al. (2024) and Tan et al. 

(2020). 

When looking at comparative metrics, the GARCH-MIDAS-GPR model has a 

slightly higher AIC (-2755) than the previous two models (-2760 and -2756), meaning a 

slightly lower explanatory ability. 

 

 

TABLE 4 – ESTIMATED RESULTS OF GARCH-MIDAS-GPR MODEL 

 Value Std. t stat. P>|t| 

μ  0.0154*** 0.0050 3.1026 0.0019 

alpha 0.1155*** 0.0273 4.2351 0.0000 

beta 0.8759*** 0.0288 30.3631 0.0000 

omega 0.0016* 0.0009 1.8826 0.0598 

constant 0.2862*** 0.0091 31.4575 0.0000 

GPR 0.0002** 0.0001 2.0398 0.0415 

AIC -2755    

Note: ***, **, * indicate significance level at 1%, 5% and 10%, respectively. 
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Figure 4 – Geopolitical risk index 

 

 

4.5. Results from GARCH-MIDAS-Combined model 

Finally, the GARCH-MIDAS-Combined model was employed to analyse the 

collective impact of the three macroeconomic variables on the long-term volatility of the 

carbon futures in the EU ETS. Its goal was to assess if by combining all three uncertainties 

in one specific model it would be possible to reach a better fit compared to the models 

with individual explanatory variables.  

Looking at Table 5, all estimated coefficients are statistically significant at least at 5% 

level (excluding omega).  

Also, all the estimated coefficients of the three explanatory variables (GEPU, CPU 

and GPR) kept the same sign they had in each of the individual models, respectively. This 

represents robustness and reinforces the model’s validity. 

The increase in the estimated coefficients of the variables GEPU and CPU in the 

combined model when compared to the individual models (0.0003 vs 0.0001 for GEPU) 

and (-0.0003 vs -0.0001 for CPU) could be due to the influence of multicollinearity. To 

assess this, the VIF of each of the explanatory variables was computed (1.92 for GEPU, 
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1.93 for CPU, 1.01 for GPR), revealing VIFs well below 5 and disregarding 

multicollinearity as an issue.  

Regarding the explanatory power of the model, the AIC value of -2798, which is 

substantially lower than any of the other three models (-2755, -2760, -2756), indicates 

that the GARCH-MIDAS-Combined model is the one that performs better in explaining 

the volatility of the European carbon futures market. 

 

 

 

TABLE 5 – ESTIMATED RESULTS OF GARCH-MIDAS-COMBINED MODEL 

 Value Std. t stat. P>|t| 

μ  0.0154*** 0.0050 3.1026 0.0019 

alpha 0.1155*** 0.0273 4.2351 0.0000 

beta 0.8759*** 0.0288 30.3631 0.0000 

omega 0.0016* 0.0009 1.8826 0.0598 

constant 0.2747*** 0.0112 24.5110 0.0000 

GEPU 0.0003*** 0.0000 6.0307 0.0000 

CPU -0.0003*** 0.0001 -6.5211 0.0000 

GPR 0.0002** 0.0001 2.4579 0.0140 

AIC -2798    

Note: ***, **, * indicate significance level at 1%, 5% and 10%, respectively. 
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4.6. Discussion of the Results 

The results from the GARCH-MIDAS models show that the estimated short-term 

volatility of the European carbon futures market has high volatility clustering, which is 

consistent with Guo et al. (2020) findings. 

Furthermore, all three macroeconomic uncertainty indexes are statistically significant 

and correlate with the long-term volatility of the carbon futures returns on the EU ETS. 

GEPU and GPR appear to cause a positive impact on the long-term volatility whereas 

the CPU displays a negative correlation. 

Therefore, the results of this study can provide valuable insights to policymakers, 

investors and companies obliged to participate in the EU ETS compliance market. For 

instance, these companies can predict market volatility in the EU ETS by looking at the 

uncertainty indexes and can hedge their position by purchasing futures contracts of EUAs. 

The persistence of high uncertainty is especially undesirable in carbon markets. Su et 

al. (2024) and Adediran et al. (2023) claim that global uncertainty postpones investment 

decisions, thus delaying decarbonization and the transition to clean and renewable energy 

alternatives. 

Accordingly, governments and international entities should strive to be transparent 

and mitigate uncertainty in order to reach carbon neutrality goals.  
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5. CONCLUSION 

This study examines the impact of uncertainty indexes on the volatility of the carbon 

futures returns in the EU ETS. By including GEPU, CPU and GPR to study the volatility 

dynamics, the GARCH-MIDAS methodology helps in assessing both short-term and 

long-term volatility impacts and their source.  

The results from the GARCH-MIDAS models provided several insights. First, all 

three uncertainty indexes significantly affect long-term volatility of European carbon 

futures returns.  

An increase in GEPU results in a rise in the long-term volatility (positive coefficient 

in both individual and combined GARCH-MIDAS model), which is coherent with Dai et 

al. (2022).  

A rise in CPU negatively impacts the long-term volatility (negative coefficient in both 

individual and combined GARCH-MIDAS model), proving Su et al. (2024) assumptions 

to be accurate. 

A surge in GPR leads to an increase in the long-term volatility of the carbon futures 

returns (positive coefficient in both individual and combined GARCH-MIDAS model), 

which is aligned with Ferrari et al. (2024) and Tan et al. (2020) findings. 

Second, the premise by Guo et al. (2020) that the EU ETS has high levels of volatility 

clustering also proved to be valid, as it is possible to infer by the high beta value. 

Lastly, the GARCH-MIDAS-Combined model proved to have the greatest 

explanatory power for the long-term volatility of carbon futures returns. 

Nonetheless, there are certain limitations regarding this study. First and foremost, the 

lack of additional analysis and robustness tests. Such analysis could include an in-sample 

vs out-of-sample testing or even loss functions (such as the root mean squared error). 

Secondly, this study was limited to only three uncertainty indexes. The inclusion of 

additional variables or another mixing sample would prove to be relevant. 
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Figure A.5 – Correlation Matrix 

 

 

 

TABLE A.6 – VARIANCE INFLATION FACTOR (VIF) 

Variable VIF 

GEPU 1.92 

CPU 1.93 

GPR 1.01 
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