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Abstract

This study focuses on estimation and inference in panel data models with

unobserved individual-speci�c heterogeneity in a high-dimensional context. The

framework accommodates scenarios where the number of regressors is comparable

to the sample size. Crucially, we model the individual-speci�c heterogeneity as �xed

e�ects, allowing it to correlate with observed time-varying variables in an unspeci�ed

manner and to be non-zero for all individuals.

Within this setup, we propose methods that provide uniformly valid inference

for coe�cients on a predetermined vector of endogenous variables in panel data

instrumental variables (IV) models with �xed e�ects and numerous instruments.

Central to the development of these methods is the application of machine learning

algorithms within a semiparametric regression framework, enabling estimation in a

grouped data structure where inter-group independence is assumed, and intragroup

dependence is unrestricted. Simulation results support the theoretical framework,

and we demonstrate the application of these methods in estimating the impact

of immigration by non-European Union (EU) citizens on the employment of EU

natives.

Keywords: panel data, machine learning, instrumental variables, high

dimensional-sparse regression, clustered standard errors

JEL Codes: C23; C45; C55; C36; C52; C12.
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Resumo

Este estudo foca na estimação e inferência em modelos de dados em painel

com heterogeneidade especí�ca não observada em um contexto de alta dimensão.

A framework abrange cenários em que o número de regressores é comparável ao

tamanho da amostra.

Crucialmente, modelamos a heterogeneidade especí�ca como efeitos �xos,

permitindo que esta se correlacione com variáveis observadas que variam no tempo

de maneira não especi�cada e sejam diferentes de zero para todos os indivíduos.

Dentro deste contexto, propomos métodos que fornecem inferência

uniformemente válida para os coe�cientes de um vetor pré-determinado de

variáveis endógenas em modelos de variáveis instrumentais (IV) com efeitos �xos e

muitos instrumentos. Central para o desenvolvimento destes métodos é a aplicação

de algoritmos de aprendizado de máquina dentro de uma framework de regressão

semiparamétrica, permitindo estimação em uma estrutura de dados agrupados onde

a independência entre grupos é assumida, e a dependência intragrupo é irrestrita.

Os resultados de simulações corroboram o framework teórico, e demonstramos a

aplicação desses métodos na estimação do impacto da imigração de cidadãos de

fora da União Europeia (UE) sobre o emprego de nativos da UE.

Palavras-chave: dados em painel, aprendizado de máquina, variáveis

instrumentais, regressão esparsa em alta dimensão, erros padrão agrupados JEL

Codes: C23; C45; C55; C36; C52; C12.
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Glossary

2SLS Two stage least squares.

CV Cross-validation.

DML Double Machine Learning.

EU European Union.

IV Instrumental Variables.

ML Machine Learning.

OLS Ordinary Least Squares.

RMSE Root Mean Square Error.
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1 Introduction

The intersection of econometrics and machine learning has been progressing

quickly, particularly in addressing causal inference questions within high-

dimensional datasets. While empirical economic research traditionally relies on

linear models and manual variable selection to mitigate biases from omitted

variables, the introduction of machine learning methods provides a complementary

approach by automating and improving these processes. This thesis explores the

application of Double Machine Learning (DML) estimators in high-dimensional

panel models, speci�cally focusing on labor market e�ects of immigration.

One of the primary objectives in empirical economics is to determine the causal

e�ect of speci�c variables on outcomes of interest. Traditional regression models

often struggle with high-dimensional data, where the number of potential covariates

can be comparable or even exceed the number of observations. This challenge is

particularly pronounced in observational studies where the inclusion of numerous

controls is necessary to avoid biased estimates. Machine learning methods, designed

to handle large datasets and complex interactions, present a viable solution by

automating the selection of relevant variables and regularizing estimates to prevent

over�tting. However, standard machine learning techniques prioritize predictive

accuracy over causal inference, potentially introducing biases when applied directly

to economic models.

Recent econometric literature has begun to bridge this gap by adapting machine

learning methods for causal inference. Notable contributions include the works of

Chernozhukov et al. (2018), Athey et al. (2018), which integrate machine learning

algorithms with econometric models to enhance the reliability and interpretability of

causal estimates. These approaches, particularly Double Machine Learning, leverage

the strengths of machine learning for variable selection and regularization while

maintaining the econometric focus on causal inference. Despite these advancements,

the empirical economics literature has yet to fully embrace these methods.

According to Wooldridge (2010), panel data is widely used in economics because

it not only allows for the analysis of dynamic relationships over time but also helps in

controlling for unobserved heterogeneity across individuals. This advantages make

it a powerful tool for studying complex economic phenomena that evolve across both

time and entities. High-dimensional panel data, which includes a large number of

time-varying covariates, pose additional challenges. Traditional methods, such as

the linear �xed e�ects model, may struggle with these datasets due to the potential

over�tting and multicollinearity issues that arise when the number of covariates is
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comparable to the number of observations. The introduction of approximate sparsity

and regularization techniques, as highlighted by Belloni et al. (2014a), provides a

framework for addressing these issues by focusing on a smaller subset of relevant

variables.

In high-dimensional settings, causal machine learning methods such as DML

o�er systematic approaches to model selection and inference. These methods

allow researchers to handle a large number of covariates, including nonlinear

transformations and interactions, ensuring that important confounders are not

omitted. By combining machine learning techniques with traditional econometric

models, DML provides a comprehensive tool for causal inference that is data-driven

and allows valid statistical inference (Chernozhukov et al. 2018).

To address the question of how immigration impacts labor market outcomes

in high-dimensional settings, this thesis applies the DML framework to examine

these e�ects in European Union countries, revisiting the study made by Angrist

& Kugler (2003). This application is signi�cant because immigration studies

often involve high-dimensional datasets, with numerous demographic, economic,

and social variables in�uencing both the extent of immigration and labor market

outcomes. Traditional econometric methods may fall short in capturing these

complex relationships, leading to biased or incomplete estimates. By employing

DML, this research aims to provide more accurate and reliable estimates of the

causal impact of immigration on labor market variables such as employment, wages,

and job displacement.

This thesis brings two main contributions. First, a Monte Carlo simulation

study is conducted for high-dimensional panel data with �xed e�ects and

endogeneity. This study follows the simulation framework of Belloni et al.

(2016) and Chernozhukov et al. (2015) but extends it by incorporating various

machine learning models�Random Forests, Boosting, and LASSO�within the

DML framework. This extension allows for a comparative analysis of these models'

performance in handling high-dimensionality and endogeneity, o�ering insights into

their applicability and e�ectiveness in econometric research.

Second, the thesis revisits the Angrist & Kugler (2003) study on the labor market

e�ects of immigration, expanding the model speci�cation by adding more variables

and estimating a DML model using the machine learning methods mentioned

above. This revision aims to capture a more comprehensive set of covariates and

interactions, leading to improvements for the accuracy and robustness of the causal

estimates. By doing so, the thesis not only validates the use of DML in a real-

world empirical context but also contributes to the empirical literature by providing

9
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alternative estimates and methodologies for assessing the impact of immigration on

labor market outcomes.

By integrating advanced machine learning techniques with traditional

econometric models, this thesis aims to contribute to the growing �eld of causal

inference in high-dimensional settings, o�ering new insights into the labor market

e�ects of immigration and demonstrating the value of DML in empirical economic

research. This research not only addresses the challenges of high-dimensional data

but also provides a novel application of DML to a pertinent policy issue, highlighting

the potential of machine learning methods to enhance econometric analysis and

policy decision-making.

The thesis is structured as follows: Chapter 2 reviews the relevant literature

on high-dimensional econometric models and machine learning methods for causal

inference. Chapter 3 details the methodological framework of Double Machine

Learning and its application to panel data. Chapter 4 presents the �ndings of

the Monte Carlo simulation analysis. Chapter 5 discusses the empirical analysis,

including data description, model speci�cations, results, and their implications for

policy and future research. Finally, Chapter 6 concludes with a summary of the key

contributions and potential avenues for further study.

2 Literature Review

2.1 Causal Inference and Machine Learning

Recent advancements in machine learning have signi�cantly in�uenced

econometric methods, particularly in addressing high-dimensionality problems in

causal inference. As Belloni et al. (2014a) mention, nowadays, high-dimensional

problems have been arising through a combination of two phenomena: 1) hundreds

or even thousands of individual characteristics are being collected by surveys and

from o�cial bureaucratic institutions all over the world and 2) researchers rarely

know the exact functional form with which the variables should be speci�ed in the

model. Researchers are then faced with a large set of potential variables formed by

di�erent ways of interacting and transforming the underlying variables.

One of the foundational works in semi/nonparametric regression was conducted

by Frisch & Waugh (1933). They demonstrated through the Frisch-Waugh-Lovell

theorem that a partially linear regression model can be decomposed, enabling

the use of ordinary least squares estimates on the residuals. This theorem

illustrates that after removing the e�ect of certain control variables, the relationship
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between the remaining variables can be accurately estimated using standard OLS

techniques. The theorem paved the way to more sophisticated methods to address

the problem of high-dimensionality by allowing semi/nonparametric regressions.

However, as outlined by Athey et al. (2018), the need of regularization methods

(or dimensionality reduction) without proper care can introduce bias to causal

inference estimates. For instance, Neyman (1979) introduced the orthogonality

conditions in low-dimensional settings to manage roughly estimated parametric

nuisance parameters, showing that the orthogonality condition could eliminate the

bias introduced from regularization. In the seminal work of Robinson (1988), new

methods for obtaining root n-consistent and asymptotically normal estimates for

low-dimensional components within traditional semiparametric frameworks were

demonstrated. However, as mentioned by Baiardi & Naghi (2021), kernel regressions

often break down in the presence of a large number of covariate candidates. One of

the �rst works to use orthogonality conditions with shrinkage methods to address

the problem of regularization bias with the uniform post-selection inference in high-

dimensionality was Belloni et al. (2011), using the LASSO model, as introduced by

Tibshirani (1996). In Belloni et al. (2014a), it was proposed an augmented variable

selection method to avoid this e�ect, starting the discussion of approximately sparse

regression models in high-dimensional data, where it is shown that valid post-

selection inference is generally available when estimation is based on orthogonal

estimating equations. Further on, Belloni et al. (2017) provided a framework

where any high-quality, machine learning methods (e.g., boosted trees, deep neural

networks, random forest, and their aggregated and hybrid versions) can be used to

learn the nonparametric/high-dimensional components.

In their 2022 work, Angrist & Frandsen (2022) identi�ed three key areas where

machine learning can enhance econometric research, particularly in labor economics.

Firstly, they suggest using ML for data-driven selection of ordinary least squares

control variables. The post-double selection lasso estimator introduced by Belloni

et al. (2014b) e�ectively addresses this issue by selecting the most relevant control

variables for OLS estimation. Secondly, ML can be employed for the choice of

instruments in IV estimation. This approach is motivated by the bias inherent in

two-stage least squares estimates (2SLS) in models with many instruments. Lastly,

ML can aid in selecting control variables in IV models, especially when there are

numerous potential control variables but only a few instruments available. These

applications of ML help improve the precision and reliability of causal inferences in

econometric analysis.

In their work, Chernozhukov et al. (2018) dealt with two common pitfalls
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of introducing ML models naively for causal inference tasks: over�tting and

regularization biases. Since ML algorithms have intrinsically regularization methods

embedded and could be prone to over�tting, the authors introduced sample-splitting

and also developed orthogonal moment functions to deal with both problems.

Accordingly to Clarke & Polselli (2024), this bias occurs because machine learning

algorithms typically minimize metrics like mean squared error, rather than directly

addressing bias reduction, leading to either regularization or overftting. In Mackey

et al. (2018), they describe DML as a two-stage process. In the �rst stage, nuisance

parameters are estimated using various statistical ML techniques on an initial

data sample. In the second stage, the low-dimensional parameters of interest are

estimated using the generalized method of moments (GMM). A key requirement is

that the moments in the second stage satisfy a Neyman orthogonality condition,

providing robustness to errors in estimating the nuisance parameters.

The literature of high-dimensional panel models is vast. Belloni et al. (2016)

allowed the assumption of clustered data structure, where data across groups are

independent and dependence within groups is unrestricted for static panel models.

Kock & Tang (2019) made contributions for high-dimensional dynamic panel models.

Some interesting applications of DML for high-dimensional panel models can also be

found at Klosin & Vilgalys (2023), where they applied machine learning algorithms

to model high-dimensional relationships in a climate study. Moreover, they showed

in a simulation study that, in applying the DML framework, the resulting modeling

approach has low bias even in nonlinear settings. Furthermore, Semenova et al.

(2022) also provided inference methods for high-dimensional dynamic panel settings

with DML. Their procedure was composed by orthogonalization, where they partial

out the controls and unit e�ects from the outcome and the base treatment and

take the cross-�tted residuals. In this step, they advise that any machine learning

method can be used (given that it learns the residuals well enough). The second step

uses a novel generic cross-�tting method designed for weakly dependent time series

and panel data. Additionaly, Clarke & Polselli (2024) consider causal estimation

for static panels with DML in order to approximate high-dimensional and non-

linear nuisance functions of the confounders, enabling to infer the e�ects of policy

interventions from panel data.

2.2 Labor market e�ects of immigration

Angrist & Kugler (2003) examine the impact of immigration on native

employment in Europe, focusing on how labor market institutions a�ect this

relationship. Their key �ndings include that labor market rigidities and high
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business entry costs tend to exacerbate the negative impact of immigration on native

employment. They also mention that while some institutions can play a protective

role, reduced labor market �exibility generally fails to shield natives from job losses

due to immigration and may even worsen these e�ects.

Recent research suggests that immigration can have positive e�ects on native

employment. Moreno-Galbis & Tritah (2016) found that the employment rate of

natives increases in occupations and sectors that receive more immigrants. This

e�ect is particularly pronounced for new immigrants and those from non-EU15

countries. The authors attribute this phenomenon to immigrants' lack of host-

country-speci�c assets, which weakens their bargaining position with employers

and consequently improves employment prospects for natives. Interestingly,

the employment creation e�ect is more robust in countries where there are

larger disparities in unemployment bene�t take-up rates between immigrants and

natives. To establish these �ndings, Moreno-Galbis & Tritah (2016) employed an

instrumental variable approach based on historical settlement patterns across host

countries and occupations by origin country, providing a robust methodological

foundation for their conclusions.

Furthermore, D'Amuri & Peri (2014) found that immigration led to occupational

upgrading for native workers, pushing them towards more complex (abstract and

communication-intensive) jobs as immigrants �lled manual-routine occupations.

This job upgrade was associated with a 0.7% increase in native wages for a doubling

of the immigrant share. The authors argue that this reallocation protected native

wages from immigrant competition and allowed natives to bene�t from the creation

of jobs complementary to immigrants' manual tasks. The complexity of jobs o�ered

to new native hires increased relative to the complexity of lost jobs (D'Amuri & Peri

2014). Also, according to the same authors, the reallocation process was stronger

in countries with more �exible labor laws and this e�ect was particularly prominent

for less-educated workers in �exible labor markets.

Moreover, in Ortega & Peri (2009) an instrument for migration �ows was

constructed that is exogenous to the economic conditions in the destination country.

It was found that there was no evidence of crowding-out of native workers and that

could even increase employment in receiving countries. Furthermore, the authors

mention that investment responded rapidly and vigorously to immigration, where

the capital adjusts to maintain the capital-labor ratio. They also highlight that the

quick adjustment of capital is key in determining the short-run e�ects of immigration

on wages.
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3 Methodology

3.1 Frisch-Waugh-Lovell theorem

The Frisch & Waugh (1933) and Lovell (1963) theorem is a fundamental result

in econometrics that provides another way to understand and compute the Ordinary

Least Squares estimators in a linear regression model, opening possibiities for

nonparametric regression as well.

Consider the linear regression model:

y = X1β1 +X2β2 + u

where:

� y is the n× 1 vector of the dependent variable,

� X1 is the n× k1 matrix of regressors of interest,

� X2 is the n× k2 matrix of additional regressors,

� β1 and β2 are the coe�cient vectors,

� u is the n× 1 vector of error terms.

The Frisch-Waugh-Lovell theorem states that the OLS estimate of β1 can be

obtained by:

1. Regressing y on X2 and saving the residuals M2y,

2. Regressing X1 on X2 and saving the residuals M2X1,

3. Regressing the residuals from step 1 on the residuals from step 2.

Here, M2 = I − X2(X
′
2X2)

−1X ′
2 is the projection matrix onto the orthogonal

complement of the column space of X2.

The resulting estimator for β1 is:

β̂1 = (X ′
1M2X1)

−1X ′
1M2y

The Frisch-Waugh-Lovell theorem is closely related to the DML approach. Both

involve the idea of partialing out the e�ects of confounders to obtain a more

accurate estimate of the parameter of interest. In the context of DML, machine

learning algorithms are used to estimate nuisance parameters, which are then used

to orthogonalize the main regression problem.
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3.2 Neyman Orthogonality and Moment Conditions

As already mentioned, the orthogonalization principle is fundamental to generate

unbiased estimates under the use of regularization methods. The orthogonalized or

double/debiased ML estimator θ̃0 solves

1

n

∑
i∈I

ψ(W ; θ0, η0) = 0, (1)

where η̂0 is the estimator of the nuisance parameter η0, ψ is an orthogonalized or

debiased �score� function and where W = (Y,D,X,Z). The score function satis�es

the property that the Gateaux derivative operator with respect to η vanishes when

evaluated at the true parameter values:

∂ηEψ(W ; θ0, η0)[η − η0] = 0. (2)

The proofs of the general results show that this term's vanishing is a key to

establishing good behavior of an estimator for θ0 (Chernozhukov et al. 2018). This

property is referred as �Neyman orthogonality� and to ψ as the Neyman orthogonal

score function.

3.3 Sample Splitting

In the Double Machine Learning framework, sample splitting serves as a

fundamental technique to enhance model robustness and mitigate over�tting.

Alongside employing orthogonal score functions for accurate identi�cation and

employing machine learning methods to estimate nuisance parameters, sample

splitting adds an additional layer of rigor. This approach helps in reducing potential

biases introduced by over�tting and ensures that the estimation of causal e�ects or

predictive parameters is both reliable and generalizable (Athey & Imbens 2019).

Sample splitting involves partitioning the data into distinct subsets to separate

the learning of nuisance functions from the estimation of causal e�ects. This

separation is crucial because it allows the model to avoid over�tting biases that might

arise if the same data were used for both tasks. Speci�cally, one portion of the data

is used to train the nuisance parameter models, while another, separate portion is

utilized for estimating the causal parameter. This division ensures that the samples

used for learning the nuisance functions are independent of those used for evaluating

the causal parameter, thereby improving the accuracy and generalizability of the

model (Friedman et al. 2001).
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Cross-�tting is an e�cient data-splitting technique that utilizes the entire dataset

by rotating the roles of training and holdout data across multiple iterations, as it

can be seen in �gure 1. This method maximizes data usage while preserving the

independence between training and testing phases. The steps for implementing

cross-�tting, as described by Chernozhukov et al. (2018), are outlined below:

1. Begin by randomly dividing the dataset into K folds. Each fold, denoted Ik,

contains approximately n = N
K

observations, where N is the total number of

observations. For each fold k, the complementary set Ick is de�ned as Ick =

{1, . . . , N} \ Ik.

2. For each fold k, train an ML estimator η̂0,k for the nuisance parameters using

the observations in the complementary set Ick. The objective is to estimate

the nuisance functions η0 based on data not used in the causal parameter

estimation.

3. For each fold k, use the trained nuisance model η̂0,k to estimate the causal

parameter θ̂0,k based on the observations in the fold Ik. The �nal estimator θ̂0

is obtained by averaging the estimates across all K folds:

θ̂0 =
1

K

K∑
k=1

θ̂0,k

This averaging ensures that the causal parameter estimation bene�ts from the

variability across di�erent folds, leading to a more robust �nal estimate.

Figure 1: The cross-validation method. Based on (Pedregosa et al. 2011).

3.4 Hyperparameter Tuning

Identifying the best set of hyperparameters is crucial for maximizing the

performance of machine learning models, particularly in the context of e�ect
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estimation. Hyperparameters are settings or con�gurations that de�ne the structure

and behavior of machine learning algorithms. Unlike model parameters, which are

learned during the training process (e.g., the coe�cients in a linear regression),

hyperparameters are set prior to training and guide the learning process itself. These

values control aspects such as model complexity, learning speed, and regularization,

in�uencing how well the algorithm generalizes to unseen data. Hyperparameter

optimization involves experimenting with various combinations of hyperparameter

values to �nd the most e�ective con�guration (Bergstra & Bengio 2012). This

process typically uses resampling techniques like cross-validation (CV) to assess

the algorithm's performance based on metrics such as the RMSE. This procedure

continues until a speci�ed stopping criterion, such as a maximum number of

evaluations, is met. The con�guration yielding the best performance (e.g., the lowest

RMSE) is then selected for training and testing the �nal model.

Failing to conduct hyperparameter tuning can considerably reduce the model's

performance. Hyperparameters play a critical role in de�ning the behavior and

capacity of a model. Examples include the learning rate and the number of

boosting rounds in gradient boosting algorithms like XGBoost, the maximum depth

of decision trees, and the minimum samples required to split a node in random

forests. Without proper tuning, the model may not be able to capture the underlying

patterns in the data e�ectively, leading to suboptimal results (Bach et al. 2024).

In the Double Machine Learning algorithm, hyperparameter tuning follows these

steps (Clarke & Polselli 2024):

1. In methods like K-fold cross-validation, the training sample for fold k (W c
k ) is

used. This sample is further divided using methods like K-fold CV to create

inner training and testing sets. Therefore, k-th CV fold acts as the test set

while the remainder serves as the training set.

2. Models are tuned using a grid search method, which is a hyperparameter

optimization algorithm. It evaluates the performance of base learners across

various combinations of hyperparameter values. The optimizer conducts a

random search over a prede�ned number of values for each hyperparameter

and halts once a predetermined number of evaluations is reached.

3. Each assessment during the tuning process identi�es the best set of

hyperparameters by evaluating across all k CV folds, focusing on minimizing

the RMSE. Upon completion of the tuning procedure (for instance, after j

evaluations), the optimal set of hyperparameters�determined by the lowest

RMSE�is selected from these j evaluations and then applied in the DML
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algorithm.

4. The best con�guration is applied to the learners of the nuisance parameters.

The model is trained on the complementary set for fold k (W c
k ) and tested on

Wk. Predictions for the nuisance functions m and l are stored.

For the present study, hyperparameter tuning was conducted with the following

parameters for each method:

Table I: Hyperparameter Tuning
Learner Hyperparameters Value of Parameter in Set Description

Lasso lambda {0.001, 0.01, 0.1, 1, 10} Penalty on the absolute values of the
coe�cients

Boosting n_estimators {50, 100, 200} Number of boosting rounds (trees) in
the model.

max_depth {10, 15, 20, 25} Maximum depth of each tree.
learning_rate {0.01, 0.05, 0.1} Step size shrinkage used in updating

the weights.

RF n_estimators {50, 100, 200} Number of trees in the forest.
max_features {50, 100, 200, 300} Number of features to consider when

looking for the best split.
max_depth {10, 15, 20, 25} Maximum depth of any tree in the

forest.
min_samples_leaf {1, 2, 4} Minimum number of samples required

to be at a leaf node.
ccp_alpha {0.0, 0.01, 0.05, 0.1} Complexity parameter used for

pruning. A higher value leads to more
pruning, reducing over�tting.

The selected hyperparameters for the simulation study and the empirical study

can be found at tables VI, VII, VIII, IX and X.

3.5 Double Machine Learning

Here we extend the partially linear regression model to allow for instrumental

variable (IV) identi�cation in a panel data setup, as de�ned by Chernozhukov et al.

(2018). Speci�cally, we consider the model illustrated at �gure 2:

Yit = θDit + g0(Xit) + Eit, E[Eit|Zit, Xit] = 0,

Dit = m0(Xit) + Vit, E[Vit|Xit] = 0,

Zit = ℓo(Xit) + Uit, E[Uit|Xit] = 0

(3)

where Zit is a vector of instrumental variables, Dit is a vector of endogenous

variables, and Xit is a vector of exogenous variables.
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Additionally, g0(Xit) = E[Yit | Xit] and m0(Xit) = E[Dit | Xit] and ℓ0(Xit) =

E[Zit | Xit]. As before, the parameter of interest is θ.

Figure 2: The causal graph representation for IV DML, based on (Shao et al.

2024).

To estimate θ and to perform inference on it, as outlined by Chernozhukov et al.

(2024), the partialling-out operator is applied in order to obtain a parameter θ

that is orthogonal to the nuisance components, g0(Xit), m0(Xit) and ℓo(Xit). The

partialling-out operator is de�ned by the same author as an operation where any

random vector V with respect to another random vector X as the residual that is

left after subtracting the best predictor of V given X: Ṽ = V − E[V | X]

Furthermore, it is possible to start with the following moment condition:

E[(Ỹit − θD̃it)Z̃it] = 0 (4)

where Ỹit = Yit − g0(Xit), D̃it = Dit −m0(Xit) and Z̃it = Zit − ℓ0(Xit).

Therefore, as shown by Clarke & Polselli (2024), it is possible to derive the score

function:

1

Nk

∑
i∈Wk

ψ⊥
k (Wi; θ, η̂k) = 0 (5)

ψ(W ; θ, η) := (Yit − θ(Dit −m0(Xit))− g0(Xit))(Zit − ℓ0(Xit)), η = (m, g, ℓ)

= −(Dit −m0(Xit))(Zit − ℓ0(Xit))θ + (Yit − g0(Xit))(Zit − ℓ0(Xit))

= ψa(W ; η)θ + ψb(W ; η)

(6)

where W = (Yit, Dit, Xit, Zit), η = (m0, g0, ℓ0) are square-integrable functions

mapping the support of X to R. Both scores satisfy the Neyman orthogonality

condition, making them robust to biases in the estimation of nuisance parameters,
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getting really close to the standard IV regression. Therefore, as demonstrated in

Bach et al. (2022), the �nal estimator for θ̂ is:

θ̂0 =
EN [ψb(W ; η)]

EN [ψa(W ; η)]
=

E[ỸitZ̃it]

E[D̃itZ̃it]
(7)

The �nal estimated target parameter θ̂ is the average over the k folds. As illustrated

by Klosin & Vilgalys (2023), to compute the asymptotic variance of the estimator,

we take into account the correlation of the average derivative within panel units.

The asymptotic variance, described by Clarke & Polselli (2024), is:

σ̂2
k = Ĵ−1

k

{
1

Nk

∑
i∈Wk

ψ⊥(Wit; θ, η̂k)ψ
⊥(Wit; θ, η̂k)

′

}
Ĵ−1
k (8)

where Ĵk = N−1
k

∑
i∈Wk

ψ̂a is the average derivative term for cluster k in N folds.

3.6 LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is a popular

regression analysis method that performs both variable selection and regularization

in order to enhance the prediction accuracy and interpretability of the statistical

model it produces. Introduced by Tibshirani (1996), LASSO is particularly useful

in scenarios where the number of predictors exceeds the number of observations or

where multicollinearity is present.

LASSO regression minimizes the usual sum of squared errors, with a bound on

the sum of the absolute values of the coe�cients (Tibshirani, 1996). The LASSO

estimate β̂ is de�ned by:

β̂ = argmin
β

 1

2n

n∑
i=1

(
yi −

p∑
j=0

xijβj

)2

+ λ

p∑
j=1

|βj|

 , (9)

where yi is the dependent variable, xij are the predictor variables, βj are the

coe�cients, n is the number of observations, p is the number of predictors, and

λ is a non-negative tuning parameter that controls the amount of shrinkage applied

to the coe�cients.

The key feature of LASSO is its ability to shrink some of the coe�cients to

exactly zero when the tuning parameter λ is su�ciently large. This property

e�ectively selects a simpler model that retains only the most important predictors,
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thus performing variable selection. The LASSO constraint is given by:

p∑
j=1

|βj| ≤ t, (10)

where t is a constant that determines the amount of regularization. As λ increases,

more coe�cients are shrunk to zero, leading to a more parsimonious model.

The DML framework often involves LASSO as a �rst-stage estimator for selecting

relevant covariates and regularizing the estimation process to handle the high-

dimensionality of the data (Chernozhukov et al. 2018).

3.7 Random Forests

Random Forest, introduced by Breiman (2001), is an ensemble learning technique

designed to reduce prediction error by mitigating over�tting and lowering variance

of decision trees. This is achieved by constructing a large number of de-correlated

decision trees and combining their predictions. For each of the B trees, a bootstrap

sample of the data is taken, and a decision tree Tb is built using recursive binary

splitting. To ensure the trees are de-correlated, a random subset of m variables is

chosen at each split from the total p predictor variables, where m ≤ p, and the best

split is selected based only on this subset. The �nal prediction is made by averaging

the results of all trees for regression tasks, and by majority voting for classi�cation

tasks.

In mathematical terms, for regression, the �nal prediction is computed as:

f̂RF(x) =
1

B

B∑
b=1

Tb(x),

whereas for classi�cation, the �nal prediction is determined by the majority vote

over the class predictions of all trees (Friedman et al. 2001).

Random Forest balances the bias-variance trade-o� by using a few

hyperparameters, like the maximum depth of any node of the �nal tree and the

minimal node size to be valid to split. Moreover, reducing the number of selected

variables m can decrease variance but may increase bias. The size of each tree is

controlled by the minimum size of the terminal nodes. Based on recommendations,

for regression, m is typically set to p
3
and the minimum node size to n = 5 (Breiman

2001). For classi�cation, m is often set to
√
p and n = 1. Random Forests can

outperform over�tted single trees and generally o�er comparable performance to

Boosting, though they are simpler to train and tune (Friedman et al. 2001).
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However, Random Forests may not perform as well as Boosting in scenarios

where there are few relevant variables amid many noisy ones. In such cases, the

random selection process might overlook important variables, leading to suboptimal

splits and decreased performance (Friedman et al. 2001).

3.8 Boosting

Boosting is an ensemble method that sequentially combines multiple decision

trees to enhance predictive performance by minimizing a speci�ed loss function. In

regression settings, it usually relies on the Gaussian (squared error) loss function,

whereas for classi�cation tasks, the AdaBoost exponential loss function is commonly

used (Friedman et al. 2001). The primary concept behind Boosting is to iteratively

use the residuals from the previous tree as input for the next, which incrementally

improves performance in areas where previous models were lacking.

To begin, an initial model t0 is created by minimizing the chosen loss function L,

that can be formally expressed as t̂(x) = argminρ

∑N
i=1 L(yi, ρ). For each subsequent

tree b = 1, . . . , B, pseudo-residuals are computed as the negative gradient of the loss

function, evaluated at the previous tree's predictions. Mathematically, the pseudo-

residuals are ri = − ∂
∂t(xi)

L(yi, t(xi)), where t(xi) = t̂b−1(xi) (Friedman et al. 2001).

Using these pseudo-residuals as the dependent variable, a regression tree with K

splits is built using a randomly selected subset of observations, known as a bagging

fraction p. Adjusting K allows control over the complexity of each tree, with smaller

values focusing learning on speci�c covariates with challenging split criteria. The

current model is then updated by t̂b(x) = t̂b−1(x)+λρk(x), with λ being a shrinkage

parameter that controls the learning rate (Friedman et al. 2001).

In practice, the training process involves creating a speci�ed number of trees,

using a certain number of splits per tree, a bagging fraction and a shrinkage

parameter. For prediction, the best model is selected using hyperparameter tuning

with CV to ensure robustness and prevent over�tting.

Moreover, Friedman et al. (2001) highlight that the advantages of Boosting

include its high predictive accuracy and �exibility in handling various loss functions.

It can e�ectively manage both regression and classi�cation tasks and is particularly

powerful in handling complex data structures. However, the author also mentions

that it also has limitations, such as being computationally intensive and requiring

careful tuning of parameters to avoid over�tting. Additionally, Boosting models

can be di�cult to interpret compared to simpler models. On the present work, we

use the XGBoost kind of Boosting method in the simulation study and also on the

empirical analysis.
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4 Simulation Study

4.1 Simulation Design

The simulation illustrates the performance of the Double Machine Learning IV

estimator in a simple instrumental variables model with �xed e�ects and many

controls and few instruments. We follow the data generation processes speci�ed by

the work of Belloni et al. (2016) and Chernozhukov et al. (2015). We combine both

processes by using the panel data setup of the former and the controls/instruments

setup of the latter. For our simulation, we generate data as n× T from the model

yit = ei + θdit + xitβ + εit,

dit = fi + xitγ + zitδ + uit,

zit = Πxit + ζit,

∣∣∣∣∣
εituit
ζit

 ∼ N

0,

 1 ρν 0

ρν 1 0

0 0 0.25Ipz


 .

where Ipzn is a pzn × pzn identity matrix.

The variable xit, which represents the exogenous controls, is a pxn-dimensional

vector for each individual i at time t. These controls a�ect both the endogenous

variable dit and the outcome yit. The coe�cients in β, describing the relationship

between xit and the outcome yit, are set to βj =
1
j2
. The controls xit are generated

with serial correlation and individual heterogeneity, re�ecting the panel data

structure. The individual heterogeneity ei is generated for i = 1, ..., n as correlated

normal random variables with E[ei] = 0, Var(ei) =
4
T
, and Corr(ei, ej) = .5|i−j| for

all i and j. We set ei = fi.

The endogenous variable dit is in�uenced by both the controls xit and the

instrumental variable zit, as speci�ed by Chernozhukov et al. (2015). Speci�cally,

dit is modeled as a linear function of the �xed e�ects fi, the controls xit, and

the instrument zit, with disturbances uit, which capture the unobserved shocks

to the endogenous variable equation. Similarly, εit represents the disturbance in

the outcome equation yit, and ζit accounts for the disturbances in the instrument

equation zit. The vector γ, linking the controls xit to the endogenous variable, is

speci�ed as γj = 1
j2
, and the vector δ, linking the instruments to the endogenous

variable, with entries δj =
1
j2
.

The instrument zit plays a crucial role in addressing the endogeneity of dit. It

provides exogenous variation for dit and is generated as a linear combination of

the controls xit. Speci�cally, zit = Πxit + ζit, where ζit is a normally distributed

error term independent of the controls and disturbances. The matrix Π follows the
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particular structure:

Πj = (−1)j−1

(
1√
s
1{j≤s} +

1

j2
1{j>s}

)
, s =

1

2
n1/3.

We generate disturbances according to:

εit = ρεεit−1 + ν1,it

uit = ρuuit−1 + ν2,it

with initial conditions for εit and uit being generated from their stationary

distribution. This formulation represents an autoregressive process for both

disturbances, where ρε and ρu denote the autoregressive parameters.

The exogenous variables conditional on the �xed e�ects are obtained from:

xi1j =
ei

1− ρx
+

√
1

1− ρ2x
φi1j

xitj = ei + ρxxi(t−1)j + φitj t > 1

where φitj are normal random variables with E[φitj] = 0, Var(φitj) = 1, and

Corr(φitj, φitk) = .5|j−k|, independent across i and t. In all simulations, we set

ρϵ = ρu = ρx = .8, and we set ρν = .5.

The disturbances ε and u, the �xed e�ects, the controls, and instruments are

generated at each simulation replication. The number of potential exogenous

controls (pxn) is set to n× (T −2), the number of instruments (pzn) to 10 and θ = 0.5.

Moreover, we consider di�erent sample sizes set to n = 15, 50, 100, 200, all with

T = 10. The study was reported based on 100 simulation replications.

4.2 Simulation Results

In this chapter, we analyze the performance of di�erent machine learning

algorithms employing the DML framework and traditional econometrics methods

applied to high-dimensional panel data. The performance is assessed using the bias,

RMSE, and clustered standard errors of the estimated coe�cients. Our analysis

compares four DML models�LASSO, Random Forests, Boosting (XGBoost), and

First Di�erences 2SLS�alongside the Pooled 2SLS estimator, across various panel

sizes (15, 50, 100, and 200 units) and T = 10. The results can be seen at table II

and �gure 3.

According to Friedman et al. (2001), bias measures the average deviation of
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the estimated coe�cient from the true value, indicating systematic error but not

accounting for the variability of the estimates. It shows whether the estimator

consistently overestimates or underestimates the true value, but does not provide

information about the spread or dispersion of these estimates.

In contrast, RMSE accounts for both bias and the variance of the estimates,

o�ering a more comprehensive assessment of the estimator's performance. By

considering the square root of the average squared di�erences between the estimated

and true values, RMSE captures the overall accuracy, re�ecting both systematic

errors and random variability. By squaring the di�erences, RMSE penalizes larger

errors more than smaller ones, making it sensitive to outliers (Friedman et al. 2001).

The author also mention that RMSE is always non-negative, with larger values

indicating greater total error and poorer performance, emphasizing both consistent

deviations and the dispersion of estimates.

In summary, while bias reveals the direction and magnitude of systematic

errors in the estimator, RMSE provides a fuller picture by incorporating both the

systematic bias and the estimator's variability.

The de�nition of Bias and RMSE are the following:

Bias =
1

R

R∑
r=1

(
θ̂r − θ

)
(11)

RMSE =

√√√√ 1

R

R∑
r=1

(
θ̂r − θ

)2
(12)

By analyzing the results that are presented at the table II, the Pooled 2SLS

estimator consistently performs the worst among the models tested. For smaller

panel sizes, the estimator shows a high bias and RMSE, which remain substantial

even as the panel size increases. Speci�cally, with a bias starting at 0.3598 and

RMSE of 0.3718 for 15 units, these values peak at 0.4083 and 0.4118 respectively

for 50 units, before slightly decreasing but remaining high at 0.3971 and 0.3988 for

200 units. However, the clustered standard errors were smaller comparing to the

DML applications across all panel sizes. These results indicate that Pooled 2SLS

struggles to provide accurate and reliable estimates in high-dimensional panel data

settings, regardless of the sample size.

The First Di�erences 2SLS model, while still underperforming compared to DML

methods, shows a slightly better performance than Pooled 2SLS. For smaller panels,

the bias and RMSE are lower than those of Pooled 2SLS, with values of 0.3012 and

0.3142 respectively for 15 units. However, the bias and RMSE increase as the
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panel size grows, peaking at 0.3444 and 0.3465 for 100 units, and slightly decreasing

to 0.3383 and 0.3390 for 200 units. Although First Di�erences 2SLS outperforms

Pooled 2SLS, its performance does not improve signi�cantly with larger panel sizes,

suggesting it is less e�ective for high-dimensional data.

Table II: Panel IV, p = n× (T − 2)

n = 15 n = 50 n = 100 n = 200

A. Bias

Pooled 2SLS 0.3598 0.4083 0.3924 0.3971

First Di�erences 2SLS 0.3012 0.3341 0.3444 0.3383

DML: Random Forests 0.1475 0.0656 0.0383 0.0361

DML: LASSO 0.1410 0.0501 0.0276 0.0183

DML: Boosting 0.1242 0.0624 0.0316 0.0293

B. RMSE

Pooled 2SLS 0.3718 0.4118 0.3949 0.3988

First Di�erences 2SLS 0.3142 0.3376 0.3465 0.3390

DML: Random Forests 0.1810 0.0872 0.0692 0.0531

DML: LASSO 0.2243 0.1228 0.0678 0.0517

DML: Boosting 0.2142 0.1026 0.0627 0.0482

C. Cluster s.e.

Pooled 2SLS 0.0645 0.0361 0.0264 0.0185

First Di�erences 2SLS 0.0609 0.0346 0.0254 0.0176

DML: Random Forests 0.1091 0.0691 0.0528 0.0376

DML: LASSO 0.1152 0.0724 0.0580 0.0401

DML: Boosting 0.1398 0.0801 0.0580 0.0394

Notes: Author's own elaboration. This table presents simulation

results for the IV model with high dimensional controls and �xed

e�ects. Estimators include DML estimators: Random Forests, LASSO,

Boosting, First Di�erences, and Pooled 2SLS. Bias, RMSE, and

statistical size for 5% level tests using clustered standard errors are

reported based on 100 simulation replications.

Among the DML models, the DML: LASSO model shows a clear trend of

improving performance as the panel size increases, re�ecting its suitability for high-

dimensional data. For smaller panels, the bias and RMSE are relatively high at

0.1410 and 0.2243 respectively for 15 units. As the panel size increases, the bias

and RMSE decrease substantially, reaching 0.0183 and 0.0517 for 200 units. The

clustered standard errors also decreases with larger panel sizes, indicating more

precise estimates. The improved performance can be attributed to the sparsity

assumption inherent in LASSO, which allows it to e�ciently handle high-dimensional

data by shrinking less important coe�cients to zero.
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The DML: Random Forests model also demonstrates improved performance with

larger panel sizes. For smaller panels, the model shows higher bias and RMSE at

0.1475 and 0.1810 respectively for 15 units. As the panel size increases, these values

decrease to 0.0361 and 0.0531 for 200 units. The clustered standard errors also

follows a decreasing trend, highlighting the model's robustness across di�erent panel

sizes. Although Random Forests is slightly less precise than LASSO at larger panel

sizes, it still provides reliable estimates.

The DML: Boosting model performs well across di�erent panel sizes, showing

improved accuracy with increasing panel sizes. For smaller panels, the bias and

RMSE are 0.1242 and 0.2142 respectively for 15 units, which are smaller than

those of both LASSO and Random Forests. As the panel size increases to 50 units,

Boosting maintains a competitive edge with a bias of 0.0624 and RMSE of 0.1026.

With 100 units, the bias and RMSE further reduce to 0.0316 and 0.0627, respectively,

and for 200 units, these values are 0.0293 and 0.0482. Boosting performs better than

Random Forests, particularly in panel sizes of 50 and 100 units, where it shows lower

bias. However, the RMSE is bigger than Random Forest's RMSE, indicating that

the Boosting algorithm generate estimates with more variance.

Figure 3: Simulation metrics for the di�erent estimators. Author's own

elaboration.

As we can see in �gure 3, in terms of smaller panel sizes, the DML models

generally outperform traditional methods like Pooled 2SLS and First Di�erences

2SLS. Among the DML models, Boosting shows the lowest bias for smaller panels,

followed by LASSO and Random Forests. Speci�cally, for 15 units, Boosting's bias

is 0.1242, which is better than Random Forests at 0.1475 and LASSO at 0.1410. For

RMSE, the Random Forest algorithm provided the best estimates for smaller panels

with an RMSE of 0.1810, compared to Boosting's 0.2142 and LASSO's 0.2243. These
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results indicate that even with smaller sample sizes, DML methods provide more

reliable estimates compared to traditional methods, with Random Forests o�ering

superior RMSE performance in smaller panels. More results can be found in �gures

6 and 7.

Comparing across all models, it is evident that DML methods�particularly

LASSO, Random Forests, and Boosting�signi�cantly outperform traditional

methods like First Di�erences 2SLS and Pooled 2SLS in terms of bias, RMSE,

but not regarding clustered standard errors: the traditional econometric approaches

returned smaller clustered standard errors among all panel sizes. Among the DML

methods, LASSO generally provides the most precise estimates, especially for larger

panel sizes, followed closely by Boosting and Random Forests; that can be due to

the linear and sparse structure of the data generation process that has been studied.

The substantial improvement in performance with increasing panel sizes highlights

the importance of adequate sample sizes when applying DML techniques to high-

dimensional panel data.

Overall, the results suggest that when dealing with high-dimensional panel data,

DML methods were reaching results closer to the true θ comparing to traditional

econometric approaches. The Random Forest applied with DML framework, in

particular, is highly e�ective in reducing estimation errors and providing more

reliable coe�cient estimates even in smaller sample sizes, and also improving as the

sample size increases. This highlights the advantage of leveraging machine learning

techniques in econometric analysis of complex datasets.

5 Empirical Analysis

5.1 Data

The data for this empirical analysis is sourced from the publicly available dataset

provided by Joshua Angrist at the MIT Archive. The original study by Angrist

& Kugler (2003) examines the e�ects of immigration on labor market outcomes

in European countries, considering the interaction between immigration and labor

market institutions.

The dataset comprises a panel of 15 European countries observed over the period

from 1983 to 1999. The authors examined various demographic groups, including

males and females, both above and below 40 years old, across di�erent countries. In

our study, we speci�cally examine the impact of immigration on the labor market

outcomes for males under 40 years old. This demographic is particularly relevant
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as it represents a signi�cant portion of the labor force that might be directly

a�ected by immigration. After processing the data and removing observations with

empty information, the sample size consists in a total of 167 observations, with 101

variables. The panel structure allows for the analysis of both cross-country and

over-time variations in the data.

The main groups of explanatory variables in the dataset are diverse. Country

demographics include variables such as population, immigrant population, and the

population of working age, which are essential for understanding the labor market

dynamics and the potential impact of immigration.

To account for temporal changes that might a�ect labor market outcomes, the

dataset includes year-speci�c trends for each country. Key macroeconomic indicators

included in the dataset are GDP, interest rates, and whether the country is a member

of the Schengen Area, which help control for the broader economic environment in

which labor markets operate.

Institutional variables are also critical for analyzing how labor market regulations

and policies in�uence the impact of immigration. These include measures of labor

standards, barriers to entrepreneurship, and replacement rates. The study uses

instruments such as the distance from former Yugoslavian cities (Sarajevo and

Pristina) to European capitals to address potential endogeneity in immigration �ows.

These distances serve as exogenous sources of variation in immigration patterns.

The dataset used in this study provides a comprehensive view of the labor market

conditions and institutional settings across European countries over a signi�cant

period. By including a wide range of variables, the analysis can investigate the

complex interactions between immigration, labor market outcomes, and institutional

factors.

5.2 Two Stage Least Squares Regression Model

In their paper, Angrist & Kugler (2003) propose two distinct regression models to

investigate the impact of non-EU immigrants on European countries. Their analysis

aims to determine not only the isolated e�ects of immigration on various economic

outcomes but also how institutional factors might exacerbate these e�ects. The

authors' approach provides insights into the interaction between immigration and

labor market rigidity.

The �rst model examines the direct impact of immigrants without considering

the interaction with institutional variables. The second model incorporates these

interactions to assess whether institutional factors, such as labor market rigidity,

amplify the e�ects of immigration.
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The �rst regression model, which does not include interactions with institutional

variables, is speci�ed as follows:

ln(yit) = µi + δt + θ ln(sit) + εit (13)

In this model:

� yit represents the employment rate for country i at time t.

� µi captures country-speci�c �xed e�ects, accounting for time-invariant

characteristics of each country that could in�uence the employment outcome.

� δt represents time �xed e�ects, which control for global shocks or time trends

that a�ect all countries equally.

� θ denotes the elasticity of a percentage change in native employment levels in

response to a one percent change in the immigrant share.

� sit is the size of the immigrant share in the working population on the

employment rate, where sit is the number of non-EU immigrants in country i at

time t. The coe�cient θ indicates how changes in the immigrant population as

a fraction of the working population in�uence the employment rate in country

i.

� εit is the error term, capturing unobserved factors a�ecting the outcome.

The second model extends the �rst by including interaction terms between the

share of immigrants and institutional variables, allowing for the assessment of how

these institutions in�uence the impact of immigration:

ln(yit) = µi + δt + (θ0 + θ1x̃i) ln(sit) + vit (14)

where:

� yit retains the same meaning as in the �rst model.

� µi and δt are similarly de�ned, controlling for country-speci�c and time e�ects,

respectively.

� The terms x̃i and sit captures the interaction between the size of the

immigrant population and institutional factors. Here, x̃i represents a vector

of institutional variables(e.g., a measure of labor market rigidity) speci�c to

country i.
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� θ0 is the baseline e�ect of immigration on the economic outcome, as

mentioned earlier.

� θ1 represents how the e�ect of immigration varies with the institutional

variable x̃i. This coe�cient assesses whether and how the interaction

between immigration and institutional factors ampli�es or moderates the

impact of immigration on the economic outcome.

� vit is the error term for this model, capturing any unobserved factors a�ecting

the economic outcome not included in the regression.

According to Angrist & Kugler (2003), OLS estimates may be biased upwards

by the endogeneity of the term sit, where immigrants choosing to locate where their

employment prospects are best, being a source of reverse causality. Furthermore,

omitted factors such as local economic conditions, policies, or historical migration

patterns may simultaneously in�uence both the immigrant share and the labor

market outcomes, leading to biased estimates in OLS regressions. The authors also

mention that the most important ommited variables are time-varying productivity

or labour demand shocks correlated with both immigrant shares and native

employment.

The choice of instruments was motivated by the sharp large increase in the

number of Yugoslavs among European immigrants in the early and late 1990s. The

authors suggest that distance from the Yugoslav con�ict should be a good predictor

of the foreign share in the 1990s. The �rst step of the IV strategy proposed by

Angrist & Kugler (2003) is:

ln(sit) = πi + γt + bitβ1 + nitβ2 + kitβ3 + ηit (15)

where:

� πi and γt are similarly de�ned as before, controlling for country-speci�c and

time e�ects, respectively.

� bit represents the distance from Sarajevo multiplied by a dummy variable for

the years 1991-1995 (Bosnia War years).

� nit represents the distance from Sarajevo multiplied by a dummy variable for

the years 1996-1997 (inter-war years).

� kit represents the distance from Pristina multiplied by a dummy variable for

the years 1998-1999 (Kosovo War years).
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The authors also mention that the essence of the IV strategy is to look for a

break in the time-series behavior of employment rates for countries relatively close

to Yugoslavia. The strategy is also inspired by the study of Card (1990) for the

impact of the Mariel Boatlift.

5.3 Double Machine Learning Regression Model

Following the equations speci�ed by Angrist & Kugler (2003), we allow the

construction of nuisance parameters to incorporte non-linearities and to deal with

the high-dimensionality of the model speci�cations (including more explanatory

variables in comparison to the original study). Since both yit and sit are expressed

in logarithmic form, the estimated coe�cients represent elasticities, meaning they

capture the percentage change in yit in response to a one-percent change in sit.

The equations can be shown below:

ln(yit) = θln(sit) + g0(xit) + εit,

ln(sit) = m0(xit) + vit,

zit = ℓ0(xit) + uit

The confounding exogenous factors xit a�ect the policy variable via the function

m0(xit), the dependent variable via the function g0(xit) and the instrumental variable

via the function ℓ0(xit), as speci�ed by Chernozhukov et al. (2018). Year dummies

are also part of xit, to take into account possible time �xed e�ects. Since the exact

form of these functions is unknown, high-dimensional and could be highly nonlinear,

we use machine learning techniques to learn the nuisance functions g0, m0 and ℓ0,

since they are well-suited to model their complexity.

In order to remove country �xed e�ects, we estimate the model with the �rst

di�erence method. Therefore, we have the following model:

∆ln(yit) = θ∆ln(sit) + g0(∆xit) + ∆εit,

∆ln(sit) = m0(∆xit) + ∆vit,

∆zit = ℓ0(∆xit) + ∆uit

Moreover, the �nal score function (also known as moment equation) can be
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derived from the residualized version of the regular IV moment condition:

E[(∆ ln(ỹit)− θ∆ ln(s̃it))∆z̃it] = 0

E[(∆ ln(yit)− g0(∆xit)− θ(∆ ln(sit)−m0(∆xit)))(∆zit − ℓ0(xit))] = 0

Where the Neyman orthogonal score is de�ned below and η = (m0, g0, ℓ0):

ψ(W ; θ, η) = (∆ ln(yit)− g0(∆xit)− θ(∆ ln(sit)−m0(∆xit)))(∆zit − ℓ0(∆xit)) (16)

Therefore, we can retrieve the �nal estimate:

θ̂k =

(
1

Nk

∑
i∈Wk

∆ ln(s̃it)∆z̃it

)−1
1

Nk

∑
i∈Wk

∆ ln(ỹit)∆z̃it (17)

Where:

∆ ln(ỹit) = ∆ ln(yit)− g0( ˆ∆xit)

∆ ln(s̃it) = ∆ ln(sit)−m0( ˆ∆xit)

∆z̃it = ∆zit − ℓ0( ˆ∆xit)

(18)

Moreover, θ̂k is the average over the k folds andWk is the k-th estimation sample.

5.4 Labor market e�ects of immigration in EU countries

The empirical investigation explores the impact of non-EU immigration on the

employment of EU natives using a Double Machine Learning (DML) approach.

This method is applied in the context of high-dimensional panel data models,

which accommodates a large number of regressors relative to the sample size and

incorporates unobserved individual-speci�c heterogeneity. The DML techniques

employed include LASSO, Random Forests, and Boosting, with results compared

against traditional econometric estimation methods from the original study. The

analysis is divided into two panels: without interactions with institutions (Panel A)

and with interactions with institutions (Panel B). The estimates can be seen at table

III. For the empirical analysis of the immigration, we follow the structural equation

form of equations 16, 17 and 18. As mentioned earlier, since our dependent and

endogenous variable are in logarithmic form, the estimated coe�cients represent

elasticities. Thus, they indicate the percentage change in native employment levels

in response to a one percent change in the immigrant share.
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Table III: E�ect estimates of the non-EU immigrants on employment of EU natives
(1) (2) (3) (4)

DML: LASSO DML: Random Forests DML: Boosting Original estimates

Panel A: Without interactions with institutions

Main e�ect 0.0173 0.0395** 0.0423*** -0.042

(0.0096) (0.0178) (0.0180) (0.031)

Observations 167 167 167 167

Raw covariates 98 98 98 68

Panel B: With interactions with institutions

Main e�ect 0.0028 0.0621*** 0.0697*** -0.102**

(0.0027) (0.0142) (0.0203) (0.044)

Barriers to entrepreneurship 0.0013 0.0019 -0.0048 -0.124***

(0.0035) (0.0031) (0.0038) (0.043)

Labor Standards 0.0018 0.0062** 0.0072** 0.029

(0.0032) (0.0027) (0.0032) (0.026)

Replacement Rate -0.0006 -0.0030 -0.0043 0.006

(0.0023) (0.0023) (0.0030) (0.018)

Observations 167 167 167 167

Raw covariates 101 101 101 71

Notes: Author's own elaboration. Column (4) reports the original paper estimates. Standard errors are reported in parentheses. Standard errors

adjusted for variability across splits using the median method are reported for the DML estimates. Standard errors adjusted for clustering at the

country level are reported in column 4.

In Panel A (that can also be seen in �gure 4), the main e�ect of non-EU

immigration on EU native employment is positive across all DML models, although

not statistically signi�cant in DML: LASSO. Speci�cally, the DML: LASSO model

estimates an elasticity of 0.0170% with a standard error of 0.0096, indicating a

positive but imprecise e�ect. Similarly, the DML: Boosting model provides a

coe�cient of 0.0423% with a standard error of 0.0180, which is signi�cant at 1%.

The DML: Random Forests model also stands out with a statistically signi�cant

positive e�ect estimate of 0.0395% (standard error of 0.0178).
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Figure 4: Panel A: Without interaction with institutions. Author's own

elaboration.

This suggests that, in the absence of institutional interactions, non-EU

immigration may have a modest positive impact on the employment of EU natives.

On the other hand, the original estimates report a negative main e�ect of -0.042%

(standard error of 0.031), which is not statistically signi�cant.

Panel B (that can also be seen in �gure 5) extends the analysis by incorporating

interactions with institutional variables such as barriers to entrepreneurship, labor

standards, and replacement rates. The main e�ect of non-EU immigration on

EU native employment becomes more pronounced on DML: Boosting and DML:

Random Forests. The DML: LASSO model estimates a coe�cient of 0.0028%

(standard error of 0.0027), which is not statistically signi�cant. The DML: Random

Forests model shows an even larger e�ect of 0.0621% with a standard error of

0.0142, signi�cant at the 1% level. The DML: Boosting model again provides

another positive estimate, with a coe�cient of 0.0697% and a standard error of

0.0203, signi�cant at the 1% level. These results suggest that when accounting for

institutional interactions, non-EU immigration has a signi�cantly but small positive

impact on EU native employment. The original estimates in this context indicate

a substantial negative e�ect of -0.102% (standard error of 0.044), signi�cant at the

5% level. This is also contrasted with our DML estimates, also on the sign of the

coe�cient.
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Figure 5: Panel B: With interaction with institutions. Author's own elaboration.

The interaction terms with institutional variables provide additional insights.

The e�ect of barriers to entrepreneurship is statistically insigni�cant across all DML

models, with coe�cients close to zero. This contrasts with the original estimate,

which suggests a signi�cant negative impact. This indicates that the regulatory

environment for starting and operating businesses does not signi�cantly in�uence

the employment impact of non-EU immigrants on EU natives when assessed using

DML techniques.

The labor standards variable shows a positive and signi�cant e�ect at 5% in

the DML: Random Forests and DML: Boosting. On the other hand, the e�ects

are positive but insigni�cant in DML: LASSO model and also at the original

estimates. This suggests that stricter labor standards might positively interact with

immigration to enhance native employment.

The replacement rate interaction is statistically insigni�cant at every DML model

and also at the original estimates, indicating that higher replacement rates may not

in�uence employment e�ects of immigration.

The RMSE results (that are shown on �gure 8 at the appendices) highlight

interesting di�erences in model performance for predicting both g0(x) and m0(x).

For g0(x), LASSO demonstrated the best performance, achieving the lowest RMSE

out-ot-sample, followed by Boosting, and then Random Forest, which had the

highest error. This suggests that g0(x) might be closer to a linear or sparsely linear

relationship, which LASSO, being a linear model with regularization, is well-suited

to capture. On the other hand, for m0(x), Random Forest yielded the lowest RMSE,

indicating that it better captured the underlying structure in the data, with Boosting

coming in second and LASSO producing the largest errors. This suggests that the
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relationship between the explanatory variables and immigrant allocation, m0(x),

may be more complex and non-linear in nature, which is why more �exible models

like Random Forest and Boosting perform better. These results indicate that while

g0(x)might be closer to a linear speci�cation, the process behindm0(x) could involve

more complicated interactions, better suited for highly non-linear models.

Overall, the application of DML estimators to the analysis of immigration

e�ects on labor markets provides distinct but complementary insights compared

to traditional methods. The DML: Boosting model consistently shows the

most signi�cant positive e�ects, particularly when accounting for institutional

interactions. These �ndings highlight the potential of machine learning techniques

in economic research, especially in handling high-dimensional non-linear data

and capturing complex relationships that traditional methods might miss. The

contrasting results with the original estimates may show the importance of testing

the new methodological advancements in accurately assessing policy impacts.
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6 Conclusion

This thesis examines the causal e�ects of immigration on labor market

outcomes, speci�cally focusing on employment rates using advanced machine

learning techniques within the DML framework. The research involved a Monte

Carlo simulation study and an empirical analysis, revisiting the work of Angrist &

Kugler (2003) and extending it to incorporate high-dimensional data.

The simulation results indicate that DML estimators, particularly those

leveraging Random Forests, Boosting, and LASSO, provide robust and reliable

estimates even in the presence of high-dimensional controls and endogeneity.

These methods outperform traditional econometric techniques in terms of handling

complex data structures. The simulation follows the data generation processes

speci�ed by Belloni et al. (2016) and Chernozhukov et al. (2015), combining these

approaches to test the performance of DML estimators for an IV panel data setup

with few instruments, �xed e�ects and many controls.

In the empirical analysis, the study revisits the labor market e�ects of

immigration on native employment rates across 15 European countries, as originally

investigated by Angrist & Kugler (2003). The �ndings from our empirical analysis

using DML techniques provide new insights into the complex relationship between

immigration and native employment in European countries. Our results generally

align with the more recent literature that suggests positive e�ects of immigration

on native employment, while also highlighting the importance of considering

institutional factors.

Our analysis shows a modest positive impact of non-EU immigration on EU

native employment, particularly when accounting for institutional interactions. This

aligns with the �ndings of Moreno-Galbis & Tritah (2016), who found that natives'

employment rates increase in occupations and sectors receiving more immigrants.

Our results, showing an increase in native employment rates by 0.4% up to 0.7% for

a 10 percent increase in the foreign share, support their conclusion that immigrants

can improve employment prospects for natives. The positive e�ect we observe is

consistent with the occupational upgrading mechanism described by D'Amuri & Peri

(2014). While we didn't directly measure job complexity, the positive employment

e�ect could be indicative of natives moving towards more complex jobs as immigrants

�ll manual-routine occupations. This aligns with their �nding of a 0.7% increase in

native wages for a doubling of the immigrant share.

Our results also resonate with Ortega & Peri (2009) �ndings of no evidence of

crowding-out of native workers. In fact, our analysis suggests that immigration could
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even increase employment in receiving countries, supporting their conclusions.

However, our �ndings regarding institutional interactions present a more nuanced

picture than some previous studies. While Angrist & Kugler (2003) found that

labor market rigidities and high business entry costs exacerbate negative impacts

of immigration, our results show less clear evidence for these e�ects. The

insigni�cant e�ect of barriers to entrepreneurship across all DML models suggests

that the regulatory environment for businesses may not signi�cantly in�uence the

employment impact of immigration, contrary to some previous �ndings. The mixed

results we found for the e�ects of labor standards on the immigration-employment

relationship highlight the complexity of these interactions. This complexity was also

noted by D'Amuri & Peri (2014), who found that the positive reallocation process

was stronger in more �exible labor markets.

In conclusion, our empirical analysis, using DML techniques, generally supports

the more optimistic view of immigration's impact on native employment found in

recent literature. However, it also underscores the need for further research to fully

understand the complex interactions between immigration, employment, and labor

market institutions. These �ndings contribute to the ongoing debate on immigration

policies and their economic impacts in European countries.

Future research could build on this work by exploring several avenues. First,

expanding the dataset to include more recent data and additional countries would

provide a broader context and potentially more generalizable results. Second,

integrating other advanced machine learning techniques, such as neural networks,

could further enhance the predictive power and robustness of the models. Third,

examining other labor market outcomes, such as wages, would provide a more

comprehensive understanding of the impact of immigration. Lastly, investigating

the role of di�erent types of immigration (e.g., skilled vs. unskilled) and their

speci�c e�ects on various labor market segments could o�er more targeted policy

recommendations. Lastly, incorporating dynamic panel models within the DML

framework could address potential issues related to time dynamics and unobserved

heterogeneity, providing an even deeper understanding of the labor market impacts

of immigration.
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A Appendices

A.1 Descriptive statistics

Table IV: Descriptive Statistics by Country

Employment Non-EU Immigrant Share EU Immigrant Share Total Population (000s)
Country Mean Std Mean Std Mean Std Mean Std

AT 0.8645 0.0090 0.0848 0.0024 0.0130 0.0016 4518.6143 18.8131
BE 0.8291 0.0136 0.0227 0.0024 0.0556 0.0033 5424.5679 107.6793
CH 0.9113 0.0138 0.0558 0.0023 0.1695 0.0063 4034.8794 10.6092
DE 0.8415 0.0110 0.0540 0.0058 0.0301 0.0030 40837.4922 5794.6924
DK 0.8540 0.0263 0.0122 0.0027 0.0085 0.0008 2842.1067 101.5041
ES 0.7095 0.0384 0.0038 0.0023 0.0025 0.0009 20183.9902 676.1739
FI 0.7590 0.0674 0.0087 0.0032 0.0015 0.0001 2825.3701 48.0095
FR 0.8253 0.0395 0.0365 0.0017 0.0278 0.0036 29456.0039 1101.7648
IE 0.7741 0.0291 0.0062 0.0018 0.0239 0.0026 1735.8468 129.6851
IT 0.7377 0.0221 0.0061 0.0019 0.0014 0.0007 31731.9102 447.8229
NL 0.8585 0.0304 0.0224 0.0022 0.0159 0.0014 8538.1602 432.6641
NO 0.8482 0.0284 0.0183 0.0011 0.0104 0.0008 2386.1411 31.4627
PT 0.8229 0.0360 0.0086 0.0021 0.0026 0.0009 5375.5083 77.1725
SE 0.7612 0.0168 0.0315 0.0062 0.0135 0.0050 4732.9248 16.6726
UK 0.8406 0.0215 0.0293 0.0079 0.0169 0.0010 30387.0996 1011.7522

Notes: This table presents descriptive statistics for employment, non-EU immigrant share, EU immigrant share,
and total population across di�erent countries.

Table V: Descriptive Statistics for Barriers to Entrepreneurship, Labor Standards,
and Replacement Rate

Barriers to Entrepreneurship Labor Standards Replacement Rate
Country Mean Std Mean Std Mean Std

AT 16 0 5 0 50 0
BE 17 0 4 0 60 0
CH 6 0 3 0 70 0
DE 15 0 6 0 63 0
DK 5 0 2 0 90 0
ES 19 0 7 0 70 0
FI 10 0 5 0 63 0
FR 14 0 6 0 57 0
IE 12 0 4 0 37 0
IT 20 0 7 0 20 0
NL 9 0 5 0 70 0
NO 11 0 5 0 65 0
PT 18 0 4 0 65 0
SE 13 0 7 0 80 0
UK 7 0 0 0 38 0

Notes: This table presents descriptive statistics for Barriers to Entrepreneurship, Labor
Standards, and Replacement Rate across di�erent countries.
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A.2 Hyperparameters con�guration

Table VI: Selected Hyperparameters for Models (Empirical Analysis)

Model Con�guration Hyperparameters

LASSO

g0(x) alpha: 0.0005

m0(x) alpha: 0.001

Boosting

g0(x) learning_rate: 0.1

max_depth: 3

n_estimators: 200

m0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 200

Random Forest

g0(x) ccp_alpha: 0.0

max_depth: 20

max_features: 50

min_samples_leaf: 1

n_estimators: 200

m0(x) ccp_alpha: 0.0

max_depth: 20

max_features: 20

min_samples_leaf: 1

n_estimators: 200

Notes: Author's own elaboration. This table presents the

selected hyperparameters for LASSO, Boosting, and Random

Forest models. Each con�guration is speci�ed alongside its

respective hyperparameters.
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Table VII: Selected Hyperparameters for Simulation Study (N = 15)

Model Con�guration Hyperparameters

LASSO

g0(x) alpha: 0.1

m0(x) alpha: 0.1

Boosting

g0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 50

m0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 50

Random Forest

g0(x) ccp_alpha: 0.01

max_depth: 3

max_features: 100

min_samples_leaf: 4

n_estimators: 50

m0(x) ccp_alpha: 0.01

max_depth: 5

max_features: 100

min_samples_leaf: 2

n_estimators: 200

Notes: Author's own elaboration. This table presents the

updated hyperparameters for LASSO, Boosting, and Random

Forest models. Each con�guration is speci�ed alongside its

respective hyperparameters.
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Table VIII: Selected Hyperparameters for Simulation Study (N = 50)

Model Con�guration Hyperparameters

LASSO

g0(x) alpha: 0.1

m0(x) alpha: 0.1

Boosting

g0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 100

m0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 100

Random Forest

g0(x) ccp_alpha: 0.01

max_depth: 5

max_features: 100

min_samples_leaf: 1

n_estimators: 200

m0(x) ccp_alpha: 0.01

max_depth: 5

max_features: 100

min_samples_leaf: 1

n_estimators: 200

Notes: Author's own elaboration. This table presents the

updated hyperparameters for LASSO, Boosting, and Random

Forest models. Each con�guration is speci�ed alongside its

respective hyperparameters.
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Table IX: Selected Hyperparameters for Simulation Study (N = 100)

Model Con�guration Hyperparameters

LASSO

g0(x) alpha: 0.1

m0(x) alpha: 0.1

Boosting

g0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 200

m0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 100

Random Forest

g0(x) ccp_alpha: 0.01

max_depth: 5

max_features: 100

min_samples_leaf: 1

n_estimators: 100

m0(x) ccp_alpha: 0.0

max_depth: 5

max_features: 100

min_samples_leaf: 1

n_estimators: 100

Notes: Author's own elaboration. This table presents the

updated hyperparameters for LASSO, Boosting, and Random

Forest models. Each con�guration is speci�ed alongside its

respective hyperparameters.
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Table X: Selected Hyperparameters for Simulation Study (N = 200)

Model Con�guration Hyperparameters

LASSO

g0(x) alpha: 0.1

m0(x) alpha: 0.05

Boosting

g0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 100

m0(x) learning_rate: 0.05

max_depth: 3

n_estimators: 100

Random Forest

g0(x) ccp_alpha: 0.0

max_depth: 5

max_features: 100

min_samples_leaf: 1

n_estimators: 50

m0(x) ccp_alpha: 0.01

max_depth: 5

max_features: 100

min_samples_leaf: 4

n_estimators: 100

Notes: Author's own elaboration. This table presents the

updated hyperparameters for LASSO, Boosting, and Random

Forest models. Each con�guration is speci�ed alongside its

respective hyperparameters.
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A.3 Simulation study model comparison

Figure 6: Simulation bias for di�erent panel speci�cations. Author's own

elaboration.
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Figure 7: Simulation distributions for di�erent panel speci�cations (N = 15, 50,

100, 200). Author's own elaboration.
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A.4 Empirical study model comparison

Figure 8: Notes: Author's own elaboration. RMSE results for the three di�erent

ML model speci�cations

A.5 Implementation

In this study, the analysis was conducted using Python as the primary

programming language. The implementation of machine learning models and causal

inference techniques was facilitated through various libraries, notably DoubleML

(Bach et al. 2022), scikit-learn (Pedregosa et al. 2011) for additional machine

learning functionalities and linearmodels (Sheppard et al. 2024) for econometric

models. These libraries provided a framework for model building, hyperparameter

tuning, and evaluation, enabling a comprehensive analysis of the labor market e�ects

of immigration.
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