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Abstract 

Inflation forecasting plays a critical role in macroeconomic analysis due to its impact 

on economic policies and decision-making, which in turn could lead to economic growth. 

This dissertation contributes to the field by creating and introducing the European Union 

Economic Data (EUED) dataset, a macroeconomic dataset built upon aggregating 

multiple Eurostat sources, tailored for the European context, specifically for the regions 

European Union of 27, Euro Area of 20 and Germany. This dissertation uses the newly 

built EUED dataset to explore the application of machine learning techniques to forecast 

inflation across the regions through the macroeconomic indicator Harmonized Index of 

Consumer Prices (HICP) for the component All-items. 

The findings demonstrate that machine learning models, in particular LASSO, 

consistently outperform the traditional benchmark Random Walk and Autoregressive 

model in terms of predictive accuracy, as it delivers the smallest predictions errors across 

the three metrics considered – root mean squared error, mean absolute error and median 

absolute deviation. Additionally, the results highlight that forecasting inflation measured 

in monthly rate of change yields the most reliable results across models when compared 

to when it is measured as an index or an annual rate of change. 
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1. Introduction 

Inflation can be defined as “the gradual loss of purchasing power, reflected in a broad 

rise in prices for goods and services” (McKinsey & Company, 2024). This means that 

with the same amount of money, it is not possible to buy the same amount of goods and 

services as before (European Central Bank, n.d.). 

The motivation for this study lies in the importance of forecasting inflation due to its 

uncertainty. Forecasting inflation is a critical task in macroeconomic analysis with far-

reaching implications for policy decisions, business strategies and consumers behavior 

(Gafurdjan, 2024). 

Accurate and timely inflation predictions are recommended to support central banks 

and governments adjust their policies in order to help them pursue price stability, which 

in turn creates an environment that is favorable for short and long term economic growth 

(Mandeya & Ho, 2021). 

A key inspiration for this work comes from the article "Forecasting Inflation in a 

Data-Rich Environment: The Benefits of Machine Learning Methods" from Medeiros et 

al. (2019). These authors utilize the Federal Reserve Economic Data (FRED) monthly 

datasets of United States (US) macroeconomic indicators to forecast the Consumer Price 

Index (CPI). They demonstrate that machine learning methods can outperform traditional 

econometric models in predicting inflation, highlighting the value of leveraging data-rich 

environments for more accurate forecasts. Therefore, this dissertation will not only 

continue but will also be grounded on their work. Thus, this study contributes to literature 

in three ways.  

First, while the previously mentioned paper focuses on forecasting US inflation 

through the Consumer Price Index (CPI), our analysis shifts the focus to the European 

context by forecasting the Harmonized Index of Consumer Price (HICP). The HICP is a 

more relevant measure for Europe because it gives a “comparable measure of inflation as 

they (prices) are calculated according to harmonized definitions” (European 

Union/Eurostat, 2018).  

Second, our approach involves the construction of a comprehensive and unified 

macroeconomic dataset for Europe by aggregating multiple data sources from Eurostat 
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(n.d.). This dataset serves as a foundation not only for this study, but also as a valuable 

resource for future research on European inflation and broader macroeconomic trends. 

Third, this study conducts a comparison of traditional econometric models and a 

variety of machine learning techniques in forecasting European inflation. By evaluating 

the predictive accuracy of these models, we aim to identify the most effective approach 

for predicting the HICP inflation indicator in a European context. We also want to assess 

the relative performance of traditional and machine learning methods. 

Building on these contributions, the results of this study provided insights into the 

predictive performance of various forecasting models across the three distinct regions – 

European Union of 27 (EU27), Euro Area of 20 (EA20) and Germany. Model 

performance was assessed using three evaluation metrics – root mean squared error 

(RMSE), mean absolute error (MAE) and median absolute deviation (MAD) – with lower 

metric values indicating that a given model has a higher ability to predict. Among the 

models considered, the LASSO model stood out as it consistently achieved lower 

prediction errors across regions and metrics considered, frequently ranking among the 

best three performing models. While Random Forest excelled at forecasting HICP all-

items component measure in monthly rate of change for the region Germany, its 

performance varied considerably across other regions and inflation measures, reducing 

its overall reliability. Notably, these findings differ from the results of Medeiros et al. 

(2019), who identified Random Forest as the best model for inflation forecasting in the 

US context. 

Additionally, this dissertation compared the average performance of models based on 

different measurement methods – index, monthly rate of change and annual rate of change 

– for the component all-item of the HICP inflation indicator. Results showed that using 

the monthly rate of change led to significantly better predictive accuracy, as it produced 

lower errors across all metrics, compared to the other measurements. The combination of 

LASSO and this measurement for the indicator component provided a robust and 

balanced approach to forecasting inflation in the European context. 

The dissertation is organized as follows. Chapter 2 presents the second contribution, 

the dataset created, as well as the process to make it ready for our analysis. Chapter 3 

exhibits the methodology used for the third contribution, the workflow in Python. Chapter 
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4 reviews the models used to predict inflation. Chapter 5 discusses the results. Chapter 6 

concludes the dissertation.   
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2. Data 

The dataset used in this study, which we named European Union Economic Data (can 

be access through ‘EUED’), is a contribution to the literature on inflation forecasting in 

the European context. The EUED is a monthly macroeconomic dataset designed for 

empirical analysis in data-rich environments. We built this dataset by aggregating 

multiple datasets retrieved from Eurostat’s “European and National Indicators for Short-

Term Analysis” database (can be access through ‘Eurostat’), which provides a wide range 

of economic indicators at the European level. 

Unlike the Federal Reserve Economic Data (can be access through ‘FRED’) dataset 

used by Medeiros et al. (2019), which is updated in real-time, the EUED dataset was 

manually compiled. While this introduces limitations in terms of real-time updates, it also 

provides a highly customized dataset. 

The EUED dataset covers the period from January 1980 to December 2023, providing 

528 observations and 744 variables for each of four regions: European Union of 27 

(EU27), Euro Area of 20 (EA20), Germany, and United Kingdom (UK). Each of the 744 

variables represents a unique combination of an indicator component, a specific 

adjustment level, and a measurement unit. In other words, each indicator component can 

appear across several forms of adjustment and units of measurements. These adjustments 

can be categorized and ordered by their degree of processing, with the highest degree 

being seasonally and calendar adjusted (SCA), followed by seasonally adjusted (SA), 

calendar adjusted (CA), not seasonally adjusted (NSA), and the lowest degree being not 

adjusted (NA), which can be represented as SCA > SA > CA > NSA > NA. 

Measurements, on the other hand, might be in a variety of units, including millions of 

euros, index values (year 2015=100), monthly change rates (𝑚𝑜𝑛𝑡ℎ𝑡/𝑚𝑜𝑛𝑡ℎ𝑡−1), annual 

change rates (𝑚𝑜𝑛𝑡ℎ𝑡/𝑚𝑜𝑛𝑡ℎ𝑡−12), balances (e.g., differences between positive and 

negative answers), thousands of persons, and rates (e.g., a population percentage). For 

example, the Unemployment indicator has components like total, males, females, under 

25 years total and over 25 years total,  with each indicator component measured in both 

rate and thousands of persons, where each combination is available in two degrees of 

adjustment, SA and NA. Similarly, Harmonized Index of Consumer Prices (HICP) 

indicator – the primary focus of this study – has components such as all-items, food and 

non-alcoholic beverages, energy and health, with each indicator component measured in 

https://github.com/VascoLeal/MFW_ForecastingInflation/blob/main/EUED_dataset/MFW_VascoCostaLeal_EUED_dataset.xlsx
https://ec.europa.eu/eurostat/web/euro-indicators/database
https://www.stlouisfed.org/research/economists/mccracken/fred-databases
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index, monthly rate and annual rate, where each combination is available in a single 

degree of adjustment, NA. The table below details some of these combinations along with 

the variable they represent in the EUED dataset. 

 

Table 1:Defining a variable in EUED dataset 

Indicator Component Measurement Adjustment Variable 

HICP 

All-items 

Index 

Not Adjusted 

HICP_All_idx_NA 

Monthly rate HICP_All_mor_NA 

Annual rate HICP_All_anr_NA 

Energy 

Index HICP_Energy_idx_NA 

Monthly rate HICP_Energy_mor_NA 

Annual rate HICP_Energy_anr_NA 

Unemployment 

Total 

Thousands of 

people 

Not Adjusted L_UT_1000_NA 

Seasonally 

Adjusted 
L_UT_1000_SA 

Rate 

Not Adjusted L_UT_rate_NA 

Seasonally 

Adjusted 
L_UT_ rate _SA 

Total - Over 

25 years 

Thousands of 

people 

Not Adjusted L_UT+25_1000_NA 

Seasonally 

Adjusted 
L_UT+25_1000_SA 

Rate 

Not Adjusted L_UT+25_rate_NA 

Seasonally 

Adjusted 
L_UT+25_ rate _SA 

 

To manage and process the data efficiently, we implemented a Medallion Architecture 

approach (Data Bricks, n.d.), which consists of three distinct layers: bronze, silver, and 

gold. This layered approach allows for data processing and storage at each step, where 

transformations are well-organized, easily accessible, and replicable, ensuring 

traceability and flexibility. It also ensures that at any point in the analysis, data from a 

specific processing step can be revisited, adjusted, or reanalyzed. This architecture was 

applied individually to each region to account for differences in data availability. 
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• Bronze Layer: Contains the original version of the data extracted from Eurostat, 

without any transformation. Holds the full dataset of 528 observations and 744 

variables across each of the four regions. This layer forms the foundation of the 

dataset in which all further transformations are applied, ensuring that the data can 

be revisited and analyzed in its most basic form. 

 

• Silver Layer: The data in this layer has undergone initial filtering and cleaning 

steps based on the foundation established in the bronze layer, with the aim of 

narrowing the study’s focus. These steps include limiting the timeframe, ensuring 

sufficient historical coverage while balancing data availability, to be from January 

2000 until December 2023, reducing the number of observations from 528 to 288 

for each region, and removing variables with missing values across all 

observations in that period. As a result of the cleaning, due to differences in data 

availability, the number of variables retained were different in each region. This 

refined silver layer dataset is more manageable and can be used as a starting point 

for future studies, allowing for flexibility to explore various strategies to address 

the remaining missing values. 

 

• Gold Layer: Holds the final dataset used in the forecasting models, emphasizing 

on the quality and completeness of the data, particularly for the key indicator, the 

HICP for the All-items component. Additional filtering and cleaning steps were 

applied on top of the silver layer dataset to achieve this. First, out of the original 

75 variables related to HICP (each defined as shown in Table 1.), we retained up 

to three variables representing the HICP All-items component in its three 

measurement units: index with the variable HICP_All_idx_NA, monthly rate with 

HICP_All_mor_NA, and annual rate with HICP_All_anr_NA. Second, to 

prioritize data completeness, variables with any missing values were removed. 

Third, when an indicator component was available in multiple adjustments forms, 

we retained the one with the highest degree of adjustment according to the 

hierarchy previously mentioned – SCA > SA > CA > NSA > NA. For example, 

the indicator component Unemployment Total, measured in thousands of people, 

is available in two adjustment forms – SA and NA – resulting in two variables – 

L_UT_1000_SA and L_UT_1000_NA, respectively – as shown in Table 1. In this 

case, we retain the SA variable, as it includes seasonal adjustments performed by 
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Eurostat. While it is possible to compute SA manually using NA, this process 

introduces additional steps and complexity, that could lead to potential errors from 

manual processing. Therefore, we decided to rely on Eurostat’s pre-computed 

adjustments. These steps were carefully sequenced to prevent unintended data 

loss. If a higher adjustment version contained any missing value, we retained the 

next best adjusted version with complete data, prioritizing data availability for the 

analysis. Reversing this order – selecting the highest adjustment first and then 

removing variables with missing values – could have led to the unintended 

exclusion of valuable data. This gold layer dataset served as the foundation for the 

forecasting analysis, balancing data quality, completeness and preprocessing 

efficiency. 

To illustrate the impact of these transformations, Table 2. provides an overview of the 

number of observations (obs) and variables (vars) for each region across the three layers, 

as well as the HICP variables available for analysis in the final dataset. 

 

Table 2. Medallion Architecture 

Layer 

Dataset 

Region 

Bronze 

Original 

Silver 

Filtered 

Gold 

Final 
HICP Variables 

EU27 
528 obs 

744 vars 

288 obs 

582 vars 

288 obs 

164 vars 

HICP_All_idx_NA 

HICP_All_mor_NA 

EA20 
528 obs 

744 vars 

288 obs 

597 vars 

288 obs 

177 vars 

HICP_All_idx_NA 

HICP_All_mor_NA 

Germany 
528 obs 

744 vars 

288 obs 

727 vars 

288 obs 

362 vars 

HICP_All_idx_NA 

HICP_All_mor_NA 

HICP_All_anr_NA 

UK 
528 obs 

744 vars 

288 obs 

449 vars 

288 obs 

6 vars 
None 
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As shown in the table above, the number of variables and observations varies across 

the bronze, silver, and gold layers for each region. Notably, the UK’s final dataset 

contains no valid HICP variables, in other words, all UK variables related to HICP (such 

as HICP_All_idx_NA) were removed during the Medallion Architecture framework due 

to missing values. Although the original UK dataset included 744 variables, this number 

was reduced to 6 in the final dataset and none of which related to the HICP All-items 

indicator component. Therefore, the UK region will be excluded from further analysis, as 

its final dataset lacks the primary indicator required for this study’s focus on forecasting 

inflation in the European context. Nevertheless, the UK data has been retained in the 

EUED dataset as it may provide insights for future studies.  
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3. Methodology 

This chapter outlines the methodology applied to forecast monthly inflation within 

the European context, detailing the workflow that enables a comparison of traditional 

econometric models and machine learning techniques, as mentioned in Chapter 1. 

Introduction. 

While the article from Medeiros et al. (2019) implemented their workflow in R, our 

workflow was developed in Python and includes steps for data splitting, data 

standardization, lagged variables, model selection, cross-validation for model tuning, 

recursive forecasting strategy, and model evaluation. It was designed to iterate across the 

three regions – EU27, EA20, and Germany –  final’s datasets obtained after applying the 

Medallion Architecture approach, discuss in Chapter 2. Data. This approach focuses 

primarily on the HICP indicator for the All-items component, which can be represented 

in three distinct measurement units. Each combination forms a unique target variable – 

HICP_All_idx_NA, HICP_All_idx_NA and HICP_All_idx_NA – as detailed in Table 2. 

Considering the following model 

𝜋𝑡+ℎ = 𝐺(𝒙𝑡) + 𝑢𝑡+ℎ , 𝑡 = 1, … , 𝑇 , ℎ = 1, . . . , 𝐻, 

where, in a given region and  inflation target variable, 𝜋𝑡+ℎ is the inflation, measured in 

a specific unit, in month 𝑡 + ℎ where ℎ is the periods ahead (ℎ-step-ahead forecast); 𝒙𝑡 =

(𝑥1𝑡, … , 𝑥𝑛𝑡)′ is a 𝑛-vector of covariates containing a large set of potential predictors 

(discussed in Section 3.1. Data Split), where lags of both 𝜋𝑡 and 𝒙𝑡 were added as later 

discussed in Section 3.3. Lagged Variables; the target function 𝐺(𝒙𝑡) can be a single 

model or an ensemble of different specifications and it is later referred to in Section 3.4. 

Model Selection; with 𝐺(∙) being the mapping between covariates and future inflation 

using a recursive forecast strategy (discussed in Section 3.6. Recursive Forecast strategy); 

and 𝑢𝑡 is a zero-mean random error. Where the one-step-ahead forecast is given by 

�̂�𝑡+1 = 𝐺(𝒙𝑡+1) 
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 3.1. Data Splitting 

For a specific target variable, the set of potential predictors are all the available 

variables in the final dataset, excluding the set of available target variables. For example, 

given the EU27 region, there are two available target variables (as described in Table 2.), 

HICP_All_idx_NA and HICP_All_mor_NA, so to forecast the inflation measured in 

index, the target variable is assigned to be HICP_All_idx_NA and the predictors are set 

to be the remaining 162 variables (164 all available variables – 2 available target 

variables) such as the Rate of Total Unemployment (with L_UT_rate_SA), the Index of 

the Total Turnover of Retail Sale of food, beverages and tobacco (with 

R_RSfbt_TT_idx_SCA) and the Index of Production in Construction (with 

C_C_Prod_idx_SCA). 

After defining the target variable 𝜋 and the predictors variables 𝒙, the data was split 

into four distinct datasets: training and testing sets for both the 𝜋 and 𝒙. The objective of 

these splits is to ensure that the models are trained on historical, in-sample, data and tested 

on the out-of-sample future values. With this in mind, we defined the testing dataset to 

be 12 months, from January 2023 to December 2023 and the training dataset to range 

from January 2000 to December 2022. Thus, using again the region EU27 and target 

variable HICP_All_idx_NA as an example, the data was split according to Table 3., for 

each combination of region and target variable. 

Table 3: Data Split for EU27 region and HICP_All_idx_NA variable 

Dataset 𝜋 training 𝜋 testing 𝒙 training 𝒙 testing 

Variable 
Target variable 

HICP_All_idx_NA 
 162 predictor variables 

Start date January 2000 January 2023 January 2000 January 2023 

End date December 2022 December 2023 December 2022 December 2023 

 

 

 3.2. Data Standardization 

Since the variables in the dataset are measured in a variety of units, as detailed in 

Chapter 2. Data – for instance some are in millions of euros while others are in rates of 

change or indexes – their scales differ, potentially biasing models towards variable with 
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larger magnitudes. To mitigate this issue, standardization was applied, ensuring that 

machine learning models could accurately compare variables (Brownlee, 2020). 

Standardization was performed by scaling each variable independently, subtracting its 

mean and dividing it by its standard deviation. This transformation shifts each variable’s 

distribution to have a mean of zero and a standard deviation of one. 

To avoid data leakage – when information from the testing set is shared with the 

training set, which can compromise the reliability of predictive models (Rosenblatt et al., 

2024) – the scaler was fitted only on the training data. The same mean and standard 

deviation obtained from the fitted scaler were then applied to standardize both the training 

and testing datasets. 

The scaling transformation applied is represented by 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑  =
(𝑋 −  𝜇)

𝜎
  , 

where 𝑋 is the original value; 𝜇 and 𝜎 are, respectively, the mean and standard deviation 

of the training data points for a given variable. 

 

 3.3. Lagged Variables 

With all variables standardized, we created lagged versions of each variable to capture 

temporal dynamics and improve the forecast’s predictive power, following the approach 

used by Medeiros et al. (2019). While they implemented four lagged versions, we 

extended this to twelve lagged versions for each variable. 

First, as mentioned before, each predictor 𝑥𝑛 represents a measurement from a 

component of a macroeconomic indicator that may influence inflation, but its past values 

may also be relevant for predicting current inflation. Hence, we included lagged versions 

of each predictor as additional variables in the set of potential predictors 𝒙. For example, 

if a variable 𝑥𝑛 represents the seasonally adjusted Unemployment Total measured in 

thousands of people for a given month 𝑡, its first lag 𝑥𝑛,𝑡−1 corresponds to the value of 

this variable in the previous month 𝑡 − 1. Similarly, the twelfth lag 𝑥𝑛,𝑡−12 corresponds 

to the value from twelve months earlier 𝑡 − 12. This ensured that both recent and long-

term past information was available as potential predictors. 
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Second, like predictors, past values of inflation 𝜋, specifically 𝜋𝑡−1, … , 𝜋𝑡−12, may 

also be useful to predict future inflation 𝜋𝑡+1. However, to prevent data leakage from 

future inflation values, these lagged versions were carefully incorporated into the 𝒙 

training dataset (described in Table 3.). In other words, at this stage, these lagged versions 

of inflation were derived exclusively from the 𝜋 training dataset (also described in Table 

3.) and added as new variables exclusively to the 𝒙 training dataset. For the 𝒙 testing 

dataset, the lagged inflation values were computed later in the workflow using the 

predicted inflation values rather than actual future observations, thus avoiding data 

leakage. Further details on this are provided in section 3.6. Recursive Forecasting 

strategy. 

Creating lagged variables introduced missing values at the beginning of the dataset, 

depending on the lag length. For instance, a lag of one month resulted in the first row 

having a missing value, while a lag of twelve months led to missing values in the first 

twelve rows. To address this, we removed rows with missing values from both 𝜋 and 𝒙 

training datasets, shifting the training period to start 12 months later, equal to the number 

of lagged versions considered. Consequently, instead of starting in January 2000 as 

described in Table 3., the training period was updated to begin in January 2001 and end 

in December 2022, ensuring no missing values remain in the final dataset. 

 

 3.4. Model Selection 

As mentioned, for a given region and inflation target variable, the target function is 

defined as 𝐺(𝒙𝑡). For this function, we considered a subset of the models used by 

Medeiros et al. (2019) in their work. Two benchmark models – Random Walk (RW) and 

Autoregressive (AR) – were selected as traditional econometric models for comparison 

against the machine learning models. In the work from Medeiros et al. (2019), AR 

outperformed RW. 

In addition, we included three shrinkage methods – Least Absolute Shrinkage and 

Selection Operator (LASSO), Ridge Regression (RR) and Elastic Net (ElNet). Medeiros 

et al. (2019) found that these shrinkage models generally provided higher accuracy 

compared to most other models in their study. So, we decided to include these three due 

to their distinct penalization approach. 
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Lastly, we incorporated two ensemble methods – Bootstrap Aggregating (Bagging) 

and Random Forest (RF). The RF model demonstrated superior performance in the 

Medeiros et al. (2019) study, by delivering the smallest errors across all their models, 

particularly for long horizons, though it showed some exceptions for a few short horizons. 

The Bagging model received less focus from Medeiros et al. (2019) because its results 

did not stand out, however, we included it to provide a linear ensemble method alongside 

the nonlinear method RF. 

The specifications and configurations of each model are discussed in Chapter 4. 

Models. 

 

 3.5. Cross-Validation for Model Tuning 

To parametrize the models before making out-of-sample predictions for inflation 𝜋𝑡, 

we applied a time series cross-validation method, known as walk-forward validation, on 

the in-sample (training) data. Our approach was motivated by Varoquaux et al. (2017), 

who highlighted that cross-validation is commonly used to select regularization 

parameters that maximize predictive power. They also noted that since this process can 

lead to overfitting – by overly tailored the model to the data – it is an essential procedure 

to refit the model on the available data and evaluate its accuracy on new, unseen data. 

Unlike cross-sectional data, time series data has a temporal dependency, requiring 

cross-validation methods that preserve the sequence of observations to avoid data 

leakage. This ensures that each training set contains only past information relative to each 

prediction point. 

In walk-forward validation, the training data is split into sequential time windows that 

expand iteratively, with each window adding a new observation to the training set and 

predicting the next time step. For this study, we used a two-fold walk-forward validation 

approach to simulate one-step-ahead predictions, represented as follows: 

- Fold 1: Train on data from January 2001 to October 2022, then predict inflation 

for November 2022. 

- Fold 2: Train on data from January 2001 to November 2022, then predict inflation 

for December 2022. 
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Given the scope of this study, this cross-validation approach was applied to tune the 

parameter of each model for all combinations of regions and target variables. This ensured 

that each model was optimized for its specific dataset characteristics. Specifically, we 

tuned five models – shrinkage and ensemble models – for three regions each with varying 

numbers of target variables (two regions include two target variables, and one region 

include three target variables). For each model, the objective was to find the parameters 

that minimize the metric Root Mean Squared Error (RMSE detailed in section 3.7. Model 

Evaluation) across the two defined training folds. Once optimal parameters were 

identified, they were used to fit the models on the full training dataset, as advice by 

Varoquaux et al. (2017). 

This process involved tuning a substantial number of parameters across the various 

models, regions, and target variables. For space considerations and to maintain clarity and 

readability, we did not include the specific parameter values in the dissertation. Instead, 

this section focuses on describing the process underlying the parameter tuning, ensuring 

transparency in the approach. 

 

 3.6. Recursive Forecasting strategy 

Recapping the workflow, for a given region, inflation target variable 𝜋, the gold layer 

dataset was split into four distinct datasets: 𝜋 and 𝒙 (set of potential covariates) each 

divided into training and testing sets. Next, each variable in these four datasets was 

independently standardized using the mean and standard deviation calculated from the 

training data points of the respective variable. Additionally, twelve lagged versions of 

each covariate 𝑥𝑛 were created and added to 𝒙. Similarly, twelve lagged versions of 𝜋 

were derived from the 𝜋 training dataset and added as new predictors to the 𝒙 training 

dataset. Once these preprocessing steps were completed, the models were built and tuned 

using cross-validation on the in-sample training data, as discussed in sections 3.4. and 

3.5.  

For forecasting, we implemented a recursive forecasting strategy, which contrasts 

with the direct forecasting approach described by Medeiros et al. (2019). This decision 

was motivated by the trade-off highlighted in Marcellibo et al. (2006), where iterated 

forecasts, such as those produced by a recursive approach, provide more efficient 

parameter estimates than the direct forecasts, however, they are susceptible to bias if the 
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one-step-ahead model is miss specified. Recognizing that ensuring correct model 

specification is inherently challenging, we designed our forecasting methodology 

workflow with particular attention to each step. 

Our approach involved fitting a one-step-ahead model and iteratively using that model 

to predict out-of-sample inflation values for the twelve months in the test period, covered 

by the two testing datasets – from January 2023 to December 2023. At each iteration, the 

predicted value for the current month was used as an input for predicting the subsequent 

month. Since the predicted values were used in place of observations, the errors made in 

earlier predictions could propagate through the subsequent forecasts. The recursive 

forecasting proceeded as follows: 

 

1. Initialize with the first out-of-sample inflation prediction �̂�𝑡+1, January 2023: 

- The covariates values for January 2023, denoted as 𝒙𝑡+1, were extracted from the 

𝒙 testing dataset. 

- As mentioned before, the lagged versions of 𝜋 were added iteratively to the 𝒙 

testing dataset. So, at this stage, in the set of predictors 𝒙𝑡+1 there are no defined 

lagged versions of 𝜋. Thus, they were generated from the 𝜋 training dataset, 

considering the values of 𝑦𝑡 , … , 𝑦𝑡−11. 

- These lagged versions were added to 𝒙𝑡+1. 

- The fitted model 𝐺(∙) was applied to 𝒙𝑡+1, yielding the forecasted inflation value 

for January 2023, �̂�𝑡+1 = 𝐺(𝒙𝑡+1). 

- The predicted value �̂�𝑡+1 was appended to the 𝜋 training dataset to be used as an 

input to predict inflation for the next month, February 2023. 

 

2. Iterative Forecasting for February 2023, �̂�𝑡+2: 

- The covariates values for February 2023, 𝒙𝑡+2, were extracted. 

- Lagged variables were generated using the values from �̂�𝑡+1, … , 𝑦𝑡−10, retrieved 

from the y training dataset. 

- These lagged versions were added to 𝒙𝑡+2. 

- The same fitted model 𝐺(∙) was applied to 𝒙𝑡+2, yielding �̂�𝑡+2 = 𝐺(𝒙𝑡+2). 

- The forecast �̂�𝑡+2 was appended to the y training dataset for the next iteration. 

 

3. Repetition for the remaining months: 
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- The above steps were repeated iteratively for each subsequent month, up to 

December 2023 – �̂�𝑡+12. 

 

This iterative process and approach to lagging ensured that future inflation values 

from the 𝜋 testing dataset were not used during forecasting. In other words, generating 

iteratively the lagged versions of the inflation target variable, data leakage from future 

inflation values was avoided. 

 

 

 3.7. Model Evaluation 

The workflow concludes by assessing the performance of the models for out-of-

sample predictions on the testing dataset. Three metrics were used for this evaluation: 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the Median 

Absolute Deviation (MAD). Following the approach of Medeiros et al. (2019), these 

metrics are defined as follows: 

𝑅𝑀𝑆𝐸𝑚,ℎ = √
1

𝑇 − 𝑇0 + 1
∑ �̂�𝑡,𝑚,ℎ

2  

𝑇

𝑡=𝑇0

 

𝑀𝐴𝐸𝑚,ℎ =
1

𝑇 − 𝑇0 + 1
∑ |�̂�𝑡,𝑚,ℎ|

𝑇

𝑡=𝑇0

 

𝑀𝐴𝐷𝑚,ℎ = 𝑚𝑒𝑑𝑖𝑎𝑛[|�̂�𝑡,𝑚,ℎ − 𝑚𝑒𝑑𝑖𝑎𝑛(�̂�𝑡,𝑚,ℎ)|] 

 

Where �̂�𝑡,𝑚,ℎ = 𝜋𝑡 − �̂�𝑡,𝑚,ℎ and �̂�𝑡,𝑚,ℎ is the inflation forecast for month 𝑡 made by 

model 𝑚. Since we are doing one-step-ahead forecasts, ℎ = 1. 

By adopting this approach, we aimed to provide a comprehensive evaluation of model 

performance. RMSE and MAE are standard metrics in the forecasting literature. MAD, 

as mentioned by Medeiros et al. (2019), is valuable for its robustness to outliers and 

asymmetries. Reporting all three measures ensures that the results are not skewed by a 

few large forecasting errors.  
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4. Models 

4.1. Benchmark 

4.1.1. Random Walk (RW) 

The underlying concept of a RW model is that, given the random and unpredictable 

nature of future movements, the current value provides the best estimate for the next time 

step. Therefore, the naïve forecasting approach, in which the forecast for every future 

period is set to the last observed value in the series, is based on the RW model (Hyndman 

& Athanasopoulos, 2021). 

The iterative forecasting process is an one-step-ahead forecast for the twelve months 

in the test period – from January 2023 to December 2023 – where 𝜋𝑡 is the last observed 

inflation value in the training data – for December 2022. So, the forecasts can be written 

as: 

�̂�𝑡+1 =  𝜋𝑡,  

�̂�𝑡+2 =  �̂�𝑡+1, 

… 

�̂�𝑡+12 =  �̂�𝑡+11 

 

4.1.2. Autoregressive (AR) 

In an AR model of order 𝑝, the target variable is forecasted by using its lagged values 

as predictors. This essentially turns the forecasting task into a multiple regression 

problem, where the number of predictors for the model corresponds to the order of 𝑝 

(Hyndman & Athanasopoulos, 2021). According to Marcellibo et al. (2006), the one-step-

ahead AR(𝑝) model for 𝜋𝑡 is 

𝜋𝑡+1 = 𝛼 + ∑ ∅𝑖

𝑝

𝑖=1

𝜋𝑡+1−𝑖 + 𝜀𝑡 
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where the parameters 𝛼, ∅1, … , ∅𝑝 for iterated AR forecast are estimated recursively by 

Ordinary Least Squares (OLS). Thus, by setting 𝑝 =  12, the forecasts can be constructed 

recursively as: 

�̂�𝑡+1 = 𝛼 +  𝜙1𝜋𝑡 +  𝜙2𝜋𝑡−1 + ⋯ +  𝜙12𝜋𝑡−11 

�̂�𝑡+2 = 𝛼 +  𝜙1�̂�𝑡+1 +  𝜙2𝜋𝑡 + ⋯ +  𝜙12𝜋𝑡−10 

… 

�̂�𝑡+12 = 𝛼 +  𝜙1�̂�𝑡+11 +  𝜙2�̂�𝑡+10 + ⋯ +  𝜙12𝜋𝑡 

 

 

4.2. Shrinkage Methods 

Shrinkage models are a type of linear models designed to mitigate overfitting by 

applying penalties to variables with lower predictive power by shrinking their 

coefficients. In other words, these models introduce additional constraints to reduce the 

influence of less relevant variables. To implement these methods, in addition to use the 

work from Medeiros et al. (2019) and the book from Hastie et al. (2009) as guidance, we 

took inspiration from the article by García-Nieto et al. (2021). 

Let 𝜋𝑡 represent the value of the inflation target variable at time 𝑡, 𝒙𝑡 =

(𝑥1𝑡, 𝑥2𝑡 , … , 𝑥𝑛𝑡 )
′ denote the 𝑛-vector of covariates, and 𝜷 = (𝛽0 , 𝛽1 , … , 𝛽𝑛 )

′ represent 

the vector of coefficients. A popular method to estimate 𝜷 is the Ordinary Least Squares 

(OLS), which minimizes the residual sum of squares (RSS), that can be written as: 

�̂�𝑅𝑆𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜷

∑ (𝜋𝑡 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑡

𝑛

𝑖=1

)

𝑇

𝑡=1

2

 

 

In shrinkage methods, the coefficients are instead estimated by minimizing a 

penalized residuals sum of squared (PRSS), 

�̂�𝑃𝑅𝑆𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜷

{∑ (𝜋𝑡 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑡

𝑛

𝑖=1

)

𝑇

𝑡=1

2

+ shrinkage penalty} 
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The shrinkage penalty is calculated based on the regularization (or penalty) parameter 

𝜆 and on the specific type of penalty term applied. The parameter 𝜆 controls the strength 

of regularization: larger values increase the amount of shrinkage, while 𝜆 = 0 means that 

the shrinkage penalty has no effect so the estimations for the coefficients would be 

produced by OLS. The type of penalty term depends on the specific shrinkage model 

applied. In this study, we focused on the methods mentioned on the section 3.4. Model 

Selection: Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator 

(LASSO) and Elastic Net (ElNet).  

 

4.2.1. Ridge regression (RR) 

Hoerl and Kennard (1970) introduced the Ridge model, which approaches the task of 

estimating the coefficients by minimizing PRSS: 

𝐿𝑟𝑖𝑑𝑔𝑒(𝛽) = ∑ (𝜋𝑡 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑡

𝑛

𝑖=1

)

𝑇

𝑡=1

2

+ 𝜆 ∑ 𝛽𝑖
2

𝑛

𝑖=1

 

 

As 𝜆 increases, RR shrinks the coefficients estimates, which significantly lowers the 

variance of predictions, at the expense of a slight increase in bias. This shrinkage reduces 

overfitting and aims to improve prediction accuracy by penalizing large regression 

coefficients. 

Even though RR shrinks all the coefficients toward zero, it does not perform variable 

selection because it will not set them to exactly zero for any size of 𝜆 ≠ ∞ and therefore 

it does not enhance the interpretability of the model. 

 

4.2.2. Least Absolute Shrinkage and Selection Operator (LASSO) 

Tibshirani (1996) introduced the LASSO (short for Least Absolute Shrinkage and 

Selection Order) model, which estimates the coefficients by minimizing: 

𝐿𝑙𝑎𝑠𝑠𝑜(𝛽) = ∑ (𝜋𝑡 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑡

𝑛

𝑖=1

)

𝑇

𝑡=1

2

+ 𝜆 ∑ |𝛽𝑖|

𝑛

𝑖=1
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Similarly to RR, LASSO also shrinks the coefficients estimates towards zero. 

However, unlike Ridge, LASSO’s shrinkage penalty can force some coefficient estimates 

to become exactly zero when 𝜆 is set to be sufficiently large. This leads to variable 

selection, making the resulting models generally easier to interpret compared to those 

produced by RR. 

 

4.2.3. Elastic Net (ElNet) 

Zou and Hastie (2005) introduced the Elastic Net model, which aims to minimize: 

𝐿𝐸𝑁𝑅(𝛽) =
1

2𝑇
∑ (𝜋𝑡 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑡

𝑛

𝑖=1

)

𝑇

𝑡=1

2

+ 𝜆 (
1 − 𝛼

2
∑ 𝛽𝑖

2

𝑛

𝑖=1

+ 𝛼 ∑ |𝛽𝑖|

𝑛

𝑖=1

) 

 

The ElNet model combines the shrinkage penalties from both RR and LASSO 

regressions. It is a convex combination of these two methods, controlled by a mixing 

parameter 𝛼, where 𝛼 = 0 corresponds to RR and 𝛼 = 1 corresponds to LASSO. This 

introduces two parameters to tune: 𝜆 and 𝛼. This model is particularly useful when the 

number of predictors (𝑛) is much bigger than the number of observations (𝑇).  

 

 

4.3. Ensemble Methods 

Ensemble methods are learning algorithms that combine the predictions of several 

base estimators built using a given learning algorithm to produce a stronger model, aiming 

to improve predictive accuracy over a single estimator. This dissertation relied on the 

work of Medeiros et al. (2019) as a foundational guide for developing the ensemble 

approach for implementing the models chosen and mentioned on the section 3.4. Model 

Selection: Bootstrap Aggregating (Bagging) and Random Forest (RF). 
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4.3.1. Bootstrap Aggregating (Bagging) 

Breiman (1996) introduced the Bagging (short for Bootstrap Aggregating) model, 

which, in this study’s case, involved the following steps: 

1. Bootstrap Sampling: 

- Let 𝐵 = {100, 150, 200, 250} be the number of bootstrap samples and 𝑏 =

1, … , 𝐵. 

- Were created 𝐵 bootstrapped datasets by randomly sampling variables from the 

set of potential predictors 𝒙. 

- Thus, each 𝑏 dataset contained a subset of the variables, sampled independently 

for each bootstrapped dataset.  

2. Training Base Models: 

- A Linear Regression model is trained on each 𝑏 dataset, using the selected 

variables and the inflation target variable 𝜋. 

3. Forecasting: 

- Each trained model is used to generate one-step-ahead predictions �̂�𝑡,𝑏. 

4. Aggregation: 

- The final prediction �̂�𝑡 is computed by averaging the predictions from all models 

across the 𝐵 bootstrapped datasets: 

�̂�𝑡 =  
1

𝐵
∑ �̂�𝑡,𝑏

𝐵

𝑏=1

 

 

4.3.2. Random Forest (RF) 

Breiman (2001) introduced the Random Forest model as an extension of regression 

decision trees. Regression trees are models that sequentially partition the predictor space 

into smaller regions. This partitioning is achieved through a recursive binary splitting 

process, with each split chosen to minimize the sum of squared errors between observed 

and predicted values. This process creates a tree structure, where each terminal node 

corresponds to a region. 

To illustrate this structure, consider the Figure 1 and the example retrieved from 

Medeiros at el. (2019), where the predictor space is defined by two variables, 𝑋1 and 𝑋2: 
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- Initial Split: The predictor space is partitioned into two regions based on the 

variable 𝑋1. Observations satisfying the condition 𝑋1 ≤ 𝑠1 are assigned to the 

region on the left, while those with 𝑋1 > 𝑠1, are assigned to the region on the right. 

- Second Split: Within the region on the left (𝑋1 ≤ 𝑠1), another split occurs based 

on 𝑋2. Observations are assigned to region 𝑅1 if 𝑋2 ≤ 𝑠2, and to region 𝑅2 if   

𝑋2 > 𝑠2. 

- Third Split: On the right side (𝑋1 > 𝑠1), observations are further split based on 

𝑋1. Observations are assigned to region 𝑅3 if 𝑋1 ≤ 𝑠3 and to another partition if 

𝑋1 > 𝑠3. 

- Final Split: The remaining observations where 𝑋1 > 𝑠3, are split based on 𝑋2. 

Observations are assigned to region 𝑅4 if 𝑋2 ≤ 𝑠4 and to region 𝑅5 if 𝑋2 > 𝑠4. 

 

 

Figure 1: Example of a regression tree. Reproduction of part of Figure 1. in Medeiros et al. 

(2019) and part of Figure 9.2. in Hastie, Tibshirami, and Friedman (2001) 

 

Random Forest builds upon the concept of regression decision trees and takes a step 

further by creating an ensemble of multiple trees like the one shown in Figure 1, where 

each tree is trained on a random subset of the data. This ensemble approach, constructed 

through the process of Bagging (as detailed in the sub-section above), aims to reduce 

variance and improve predictive accuracy. 

To implement Random Forest, we followed steps similar to those used for Bagging, 

which selected a random subset of the variables from the set of potential predictors 𝒙, in 
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addition of having the tree learning algorithm to sample from observations. The steps can 

be represented as:  

1. Bootstrap Sampling: 

- Similarly to the model Bagging, let 𝐵 = {100, 150, 200, 250} be the number of 

bootstrap samples and 𝑏 = 1, … , 𝐵. 

- Create 𝐵 bootstrapped datasets by randomly sampling variables, from the set of 

potential predictors 𝒙, and sampling observations. 

2. Regression Decision Tree: 

- For each 𝑏 dataset, train a regression tree, using the selected predictors and the 

inflation target variable 𝜋. Generate one-step-ahead predictions �̂�𝑡,𝑏. 

3. Aggregation: 

- As explained for Bagging, the final prediction �̂�𝑡 is calculated by averaging the 

predictions from all 𝐵 trees. 

 

Since this study involves time series data, temporal dependencies can be disrupted by 

standard bootstrap sampling of observations. Medeiros et al. (2019) addressed this by 

using a technique called block bootstrapping, which retains the temporal structure within 

blocks of data to preserve some of the temporal dependencies while creating the 

bootstrapped samples. However, in this dissertation, block bootstrapping was not 

implemented. Instead, the number of lagged versions of both the target variable 𝜋 and 

covariates 𝒙 we extended from 4 (as used in Medeiros et al. (2019)) to 12. This approach 

aims to capture time dependencies while still benefiting from the randomness of RF 

models. 
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5. Results and Discussion 

To evaluate model’s performance, three metrics were used as detailed in Section 3.7. 

Model Evaluation: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 

the Median Absolute Deviation (MAD). The results are presented in the following Tables 

4 to 10. Each table corresponds to a unique combination of region and target variable. 

Within each table, models are ranked based on RMSE, from lowest to highest. Recapping 

the target variables (defined as in Table 1) analyzed: 

 

• HICP_All_idx_NA:  

o Stands for the Harmonized Index of Consumer Prices (HICP), for the 

component All-items (All), measured as an index that considers the 

base year 2015=100 (idx), and in the not adjusted degree of adjustment 

(NA). It reflects aggregate price level changes over time. 

 

• HICP_All_mor_NA:  

o Denotes the monthly rate of change in HICP, capturing short-term 

inflation changes. 

 

• HICP_All_anr_NA:  

o Measures the annual rate of change in HICP, offering insights into 

long-term inflation changes. This variable is available only for 

Germany in this analysis. 
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Table 4: EU27 results for HICP_All_idx_NA 

Model RMSE MAE MAD 

LASSO 0.5648 0.4303 0.3131 

Elastic Net 0.5957 0.4499 0.3077 

Bagging 0.7487 0.6843 0.1803 

Autoregressive 0.9775 0.7394 0.4211 

Ridge 2.4092 2.111 1.0409 

Random Walk 3.4399 3.1958 0.665 

Random Forest 8.1125 7.707 1.9522 

 

Table 5: EU27 results for HICP_All_mor_NA 

Model RMSE MAE MAD 

Ridge 0.2797 0.268 0.1628 

LASSO 0.3646 0.2845 0.25 

Elastic Net 0.3646 0.2845 0.25 

Random Forest 0.3888 0.3343 0.2862 

Bagging 0.5278 0.4138 0.3989 

Random Walk 0.5986 0.5167 0.25 

Autoregressive 0.7704 0.6387 0.3766 

 

Table 6: EA20 results for HICP_All_idx_NA 

Model RMSE MAE MAD 

LASSO 0.3507 0.2536 0.1645 

Elastic Net 0.3609 0.2528 0.1481 

Autoregressive 0.7012 0.6202 0.4568 

Bagging 1.1715 1.0319 0.9235 

Random Walk 2.9113 2.6767 0.625 

Ridge 3.9341 3.4008 1.8294 

Random Forest 7.6716 7.2674 1.4799 
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Table 7: EA20 results for HICP_All_mor_NA 

Model RMSE MAE MAD 

Ridge 0.3769 0.3406 0.2792 

LASSO 0.4178 0.3383 0.3 

Elastic Net 0.4178 0.3383 0.3 

Random Forest 0.6382 0.5409 0.3903 

Autoregressive 0.7315 0.6111 0.3188 

Bagging 0.7558 0.6229 0.4311 

Random Walk 0.7561 0.6667 0.3 

 

Table 8: Germany results for HICP_All_idx_NA 

Model RMSE MAE MAD 

Elastic Net 1.6964 1.5572 0.4529 

LASSO 1.7734 1.6545 0.438 

Autoregressive 2.3657 2.1925 0.2936 

Random Walk 4.1069 3.8667 0.8 

Bagging 5.2201 4.8527 1.5129 

Ridge 5.4593 5.0542 1.5821 

Random Forest 8.1768 7.6587 1.8953 

 

Table 9: Germany results for HICP_All_mor_NA 

Model RMSE MAE MAD 

Random Forest 0.4313 0.3462 0.2975 

LASSO 0.5396 0.4572 0.4674 

Elastic Net 0.5419 0.4578 0.494 

Autoregressive 0.8552 0.6944 0.7354 

Ridge 0.892 0.7525 0.3873 

Ragging 1.0486 0.9278 0.3796 

Random Walk 1.5927 1.5167 0.2 
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Table 10: Germany results for HICP_All_anr_NA 

Model RMSE MAE MAD 

LASSO 1.6214 1.3837 0.6869 

Bagging 1.6547 1.2619 0.4085 

Random Forest 1.8216 1.1708 0.455 

Ridge 1.8322 1.4529 0.4784 

Autoregressive 2.4477 2.142 0.9863 

Random Walk 4.1297 3.4917 1.75 

Elastic Net 4.2378 3.4825 1.73 

 

The analysis in this study focuses on comparing models, target variables, and metric, 

excluding comparisons between regions. Following this train of thoughts, it was possible 

to retrieve a few insights from Tables 4 to 10. 

• HICP_All_idx_NA (index): 

Since a model is better in terms of performance than another if its value for a specific 

metric is lower, we can say that, for this target variable, the models LASSO and Elastic 

Net consistently outperformed other models across the three performance metrics because 

they showed results with the lowest metrics values. In contrast, the Random Forest model 

performed significantly worse than the rest. 

• HICP_All_mor_NA (monthly rate): 

For the aggregate regions EU27 and EA20, the Ridge model appeared as the best 

performing model, followed by LASSO and Elastic Net. For Germany, the Random 

Forest model outperformed all the other models. The worst model candidates in terms of 

overall performance on the three metrics were the two benchmarks (Random Walk and 

Autoregressive) and the Bagging. An exception occurred for the metric MAD in 

Germany, where the Random Walk model delivered the best result, the lowest metric 

value. 

• HICP_All_anr_NA (annual rate): 

For his variable, available exclusively for Germany, LASSO and Bagging models 

achieved the best results in terms of performance. On the other hand, Random Walk and 

Elastic Net were the worst performing models. 
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 Table 11 summarizes the frequency in which each model was ranked the best or worst 

in term of performance across metrics. While this table provided an overall view of model 

performance, it should not be used as the sole basis for selecting the best and worst model 

overall. For instance, the Ridge model was ranked the best performing model five times 

in total and only ranked the worst once, however when not at the top, it tended to rank 

closer to the bottom, as can be seen in Tables 4 to 10. 

Table 11: Summary statistics for metrics 

Model 
#Min. 

RMSE 

#Min. 

MAE 

#Min. 

MAD 

Count 

Min 

#Max. 

RMSE 

#Max. 

MAE 

#Max. 

MAD 

Count 

Max 

RW   1 1 2 3 1 6 

AR   1 1 1 1 1 3 

RR 2 1 2 5   1 1 

LASSO 3 1  4    0 

ElNet 1 3 1 5 1   1 

Bagging   2 2   2 2 

RF 1 2  3 3 3 2 8 

 

 

Finally, the Table 12 below highlighted that, on average, models achieved 

considerably better predictive accuracy (lower RMSE, MAE and MAD) when forecasting 

inflation measured in monthly rates of change through the variable HICP_All_mor_NA. 

Table 12: Average result metrics 

Region Target variable Avg. RMSE Avg. MAE Avg. MAD 

EU27 HICP_All_idx_NA 2.4069 2.1882 0.6972 

EU27 HICP_All_mor_NA 0.4706 0.3915 0.2821 

EA20 HICP_All_idx_NA 2.4430 2.2148 0.8039 

EA20 HICP_All_mor_NA 0.5849 0.4941 0.3313 

Germany HICP_All_idx_NA 4.1141 3.8337 0.9964 

Germany HICP_All_mor_NA 0.8430 0.7361 0.4230 

Germany HICP_All_anr_NA 2.5350 2.0551 0.9279 
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Based on the results presented in Tables 4 to 12 and by synthesized them, it was 

possible to draw some practical takeaways regarding the best performing model overall 

and target variable preference. Additionally, the findings were compared with the results 

obtained by Medeiros et al. (2019), with a focus on evaluating similarities and differences 

in outcomes across methodologies, regions, and periods. 

 

• Winning Model 

Across metrics, target variables and regions, the LASSO model consistently showed 

strong predictive accuracy. In addition, it was ranked four times as the best performing 

and never ranked as the worst (Table 11) and, even when the LASSO model was not the 

best performing, it tended to be ranked on the top three (Table 4 to 10).  

Ridge and Elastic Net models were also suitable candidates. Ridge for its robust 

performance in forecasting inflation on the aggregate regions EU27 and EA20 using the 

target variable HICP_All_mor_NA. Elastic Net for being toe-to-toe with LASSO. 

Although Random Forest outperformed the rest in the case for Germany with the 

target variable HICP_All_mor_NA, its inconsistent performance across other metrics, 

targets variables and regions limits its applicability to be the winning model. 

Thus, LASSO could be considered as the winning model for predicting inflation 

across various regions and measurements. 

 

• Wining Target Variable 

As shown in Table 12, forecasting inflation through the measurement monthly rate of 

change resulted in considerably lower RMSE, MAE and MAD average values, suggesting 

that models were able to predict inflation with better accuracy. Thus, the winning target 

variable is HICP_All_mor_NA. 

 

• Combination 

LASSO paired with HICP_All_mor_NA can be considered the most balanced 

approach for forecasting inflation in the European context, considering this dissertation’s 

specific regions, data (including time period), models and methodology. 
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Aside from analyzing the results in the context of this dissertation, we decided to 

compared them to the findings of Medeiros et al. (2019). While there are notable 

differences in scope, such as their focus on US data and different time periods, certain 

insights can be taken. 

In both studies, the shrinkage methods were able to produced more accurate forecast 

than the standard benchmarks. This highlighted the benefits of machine learning methods 

in a data rich environment for macroeconomic forecasting, in particular for inflation. 

Random Forest emerged as the winning model in Medeiros et al. (2019), delivering 

the smallest errors for most horizons. Its superiority was even more pronounced in 

scenarios with high inflation volatility and when considering long horizons, being slightly 

outperformed by shrinkage methods for short horizons. However, in this study, Random 

Forest showed less consistent performance, excelling only for Germany with the target 

variable HICP_All_mor_NA but was ranked the worst eight times in total across the three 

metrics. The discrepancy of these results may stem from differences in data availability 

on the datasets EUED and FRED, in time periods from 2000-2023 to 1990-2015 and in 

methodologies. For example, this study extended the number of lagged versions of all 

variables to twelve instead of considering block bootstrapping. In addition, Medeiros et 

al. (2019) found that shrinkage outperformed Random Forest for short horizons, but we 

applied a recursive one-step-ahead forecasting strategy, while they used a direct ℎ-steps-

ahead forecasting strategy. 
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6. Conclusion 

This dissertation’s main goal was to apply machine learning methods to forecast 

monthly inflation forecasting within the European context, focusing on EU27, EA20, and 

Germany. To achieve this, we built the EUED database, developed the forecasting 

workflow in Python, and applied well established predictive models. 

The findings from this dissertation demonstrate the potential of machine learning 

techniques for macroeconomic forecasting. Among the evaluated models, the LASSO 

model showed superior consistency in predictive accuracy across metrics, target variables 

and regions. Elastic Net and Ridge models also delivered robust performance, while 

Random Forest excelled only in an isolated case. Overall, the machined learning models 

outperformed the benchmark models Random Walk and Autoregressive, highlighting the 

benefits of machine learning methods in a data rich environment for macroeconomic 

forecasting. 

One key insight from this analysis is the importance of selecting the appropriate target 

variable. Forecasting inflation using the macroeconomic indicator Harmonized Index of 

Consumer Prices (HICP) for the All-items component produced considerably lower errors 

when the indicator component was measured as a monthly rate of change rather than as 

an index or an annual rate of change. 

Apart from the methodological contributions addressed in this work, the creation of 

the EUED dataset stands out as one of the most noteworthy and lasting achievements of 

this research. This dataset represents a valuable resource for future research in the field 

of macroeconomics as it consists in an aggregation of multiple datasets from 

macroeconomic Eurostat sources. Most efforts were invested in building this database 

and ensuring data quality through data engineering techniques, like the approach of 

Medallion Architecture, to make it ready to be the backbone used for forecasting models. 

This structured approach allows future researchers to implement customized data 

transformations according to their needs. 

Nevertheless, even though this study provides both the database and the Python 

workflow, certain limitations should be acknowledged. The database is not updated in 

real time, which restricts its utility for dynamic decision-making. A significant challenge 

involved the implementation of cross-validation due to its time complexity. While we 
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aimed to use a 12 time-window cross-validation setup to simulate the recursive strategy 

of 12 one-steps out-of-sample predictions, we discovered a coding error close to the 

deadline that required rerunning the entire process to get the corrected results. Given the 

long model training times, we had to adjust the cross-validation procedure to fit the 

schedule. 

Future studies could address these limitations in several ways. Incorporating real-time 

data updates from Eurostat into the EUED dataset would significantly enhance its utility 

for real time applications, as the dataset will otherwise become outdated over time for 

analysis that required timely decisions. Different preprocessing strategies could also be 

explored within the gold layer, such as testing alternative methods for handling the 

remaining missing values from the silver layer rather than removing the entire variables. 

Regarding the various adjustment forms, another preprocessing approach could involve 

retaining variables that represent the indicator components in their NA form and, when 

this form is not available, manually detrending and removing seasonal components from 

another available adjustment series could be considered rather than retaining the highest 

degree of adjustment with complete data, aiming to improve data comparability by having 

the same degree of adjustment across variables. Furthermore, exploring direct multi-step 

forecasting strategies and comparing them with the recursive approach used in this work 

would be an interesting starting point for future studies, as it could provide valuable 

insights into their respective strengths and limitations. Revisiting Random Forest model 

with block bootstrapping could improve this model robustness. Additionally, 

incorporating more computationally efficient cross-validation schemes could enhance 

overall model robustness and performance. 

This dissertation has demonstrated the efficacy of machine learning methods for 

inflation forecasting while providing a framework and a dataset that lay a solid foundation 

for future research. We hope that this work contributes to advancing the development of 

more accurate, scalable, and reliable macroeconomic forecasting models. 
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