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Anything’s possible, you gotta dream like you never seen obstacles. 
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GLOSSARY 

- HRP – Hierarchical Risk Parity 

- AIC – Akaike Information Criterion 

- BIC – Bayesian Information Criterion 

- CAPM – Capital Asset Pricing Model 

- ARCH – Autoregressive Conditional Heteroskedasticity 

- GARCH – Generalized Autoregressive Conditional Heteroskedasticity 

- TGARCH – Threshold GARCH 

- EGARCH – Exponential GARCH 

- APARCH – Asymmetric Power ARCH 

- VaR – Value at Risk 

- CVaR – Credit Value at Risk 
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ABSTRACT 

In a world shaped by economic instability, geopolitical conflicts, and volatile interest 

rates, many investors are gravitating towards more passive investment strategies in search 

of stability. This thesis explores a compelling question: Can innovative portfolio methods 

such as the Hierarchical Risk Parity (HRP) beat conventional models in this time of 

unpredictability while providing a secure refuge for passive investors? 

Through a detailed analysis of three distinct portfolios, covering the period from 

January 1, 2014, to January 1, 2024 — a decade marked by both economic crisis and 

recoveries — this research investigates whether the HRP model, with its automated, risk-

parity-driven structure, provides a superior solution compared to more conventional 

approaches like the All-Weather portfolio and the 60/40 one. Advanced libraries such as 

arch, pandas, numpy, scikit-learn and Yfinance were used along with Python to achieve 

a meticulous and meticulous numerical analysis.  

Key performance metrics including returns and maximum drawdown were used to 

evaluate the portfolios at first. Further, more complex statistical analyses were performed, 

including VaR and CVaR testing, stress testing, quantile regression, the Fama-French 

five-factor model, CAPM, and ARCH-GARCH models. The findings revealed that the 

HRP portfolio not only exceeded expectations but also demonstrated superior resilience 

and risk management, outperforming the other two portfolios across various market 

conditions.  

These results lead to a fascinating insight: Innovating portfolio strategies with an 

emphasis on risk parity might present a new path for passive investors seeking better 

outcomes. 

JEL Codes: G01;G11;G15;G17;C15;C21;C22;C38;C61 

KEYWORDS: Portfolio Analysis, HRP, 60/40, All-Weather, Arch & Garch 
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RESUMO 

Em um mundo moldado pela instabilidade econômica, conflitos geopolíticos e taxas 

de juros voláteis, muitos investidores estão se voltando para estratégias de investimento 

mais passivas em busca de estabilidade. Esta tese explora uma questão instigante: 

Métodos de portfólio inovadores, como o Hierarchical Risk Parity (HRP), podem superar 

os modelos convencionais neste momento de imprevisibilidade, oferecendo um refúgio 

seguro para investidores passivos? 

Através de uma análise detalhada de três portfólios distintos, cobrindo o período de 

1º de janeiro de 2014 a 1º de janeiro de 2024 — uma década marcada tanto por crises 

econômicas quanto por recuperações — esta pesquisa investiga se o modelo HRP, com 

sua estrutura automatizada e orientada pela paridade de risco, oferece uma solução 

superior em comparação com abordagens mais convencionais. Bibliotecas avançadas 

como arch, pandas, numpy, scikit-learn e yfinance foram utilizadas juntamente com 

Python para alcançar uma análise meticulosa e numérica. 

Métricas-chave de desempenho, incluindo retornos e drawdown máximo, foram 

inicialmente usadas para avaliar os portfólios. Além disso, análises estatísticas mais 

complexas foram realizadas, incluindo testes de VaR e CVaR, testes de estresse, regressão 

quantílica, o modelo de cinco fatores de Fama-French, CAPM e modelos Arch-Garch. Os 

resultados revelaram que o portfólio HRP não apenas superou as expectativas, mas 

também demonstrou uma resiliência e gestão de risco superiores, superando os outros 

dois portfólios em diversas condições de mercado. 

Esses resultados levam a um insight fascinante: Inovar nas estratégias de portfólio, 

com ênfase na paridade de risco, pode representar um novo caminho para investidores 

passivos que buscam melhores resultados. 

 

PALAVRAS-CHAVE: Portfolio Analysis, HRP, 60/40, All-Weather, Arch & Garch 
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1. INTRODUCTION 

In the world of passive investing, finding techniques that offer the best possible 

balance between risk and return has grown in significance. The 60/40 portfolio, which 

consists of 60% equities and 40% bonds, has been the standard for decades among 

investors who want to balance risk mitigation with capital gain. However, the ongoing 

viability of this conventional strategy has come under scrutiny due to extraordinary shifts 

in financial markets, such as the aftermath of the global financial crisis and the COVID-

19 epidemic. López de Prado's (2016) Hierarchical Risk Parity (HRP) portfolio and Ray 

Dalio's All-Weather portfolio are two of the most noteworthy innovations, offering 

alternative strategies designed to address the limitations of traditional approaches and 

enhance diversification and risk management. 

This thesis investigates three distinct portfolio strategies 60/40, HRP, and All-

Weather and evaluates their performance over the last decade, from 2014 to 2024. Based 

on a passive investing framework, the research aims to determine which of these 

approaches provides the optimum balance between risk and return. This study was 

motivated by the identification of a substantial gap in the literature: although individual 

studies have looked at these portfolios in isolation, a comprehensive and comparative 

examination utilizing sophisticated econometric models and stress-testing techniques is 

still lacking. This paper uses a comprehensive method that combines contemporary 

statistical tools with classic financial measures in an effort to close that gap.  

The study moves in a systematic yet interrelated manner. It starts with an overview of 

the fundamental theories and body of research, delving into the development of passive 

investing over time and the theoretical frameworks supporting each portfolio strategy. 

This lays the groundwork for a thorough explanation of the methodology, which involves 

applying the ARCH-GARCH, Fama-French Five-Factor, and Capital Asset Pricing 

Model (CAPM) models to assess how sensitive these portfolios are to different economic 

conditions. A key component of the investigation is the construction and analysis of the 

portfolios using Python-based simulations. The creation of the investment portfolios was 

inspired by the work of Luca Donghi (2022), whose ideas provided a foundation for their 

structure. This research, however, extends his approach by incorporating advanced 

statistical analyses to gain a deeper understanding of how these portfolios behave in 
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various market conditions. 

The findings section is at the heart of this thesis, where the portfolios are put 

through rigorous testing like as stress testing, volatility analysis, and quantile 

regression. These evaluations offer insightful information on how each portfolio 

performs both in times of market stability and in more extreme circumstances, such 

inflationary surges or recessions. The results show whether cutting-edge strategies 

like HRP, which rely on sophisticated clustering techniques and machine learning 

algorithms, can beat more conventional models like the All-Weather and 60/40 

portfolios in terms of robustness and returns. 

This thesis provides an analytical and useful narrative by combining historical 

study, economic modeling, and real-world applications. In addition to addressing the 

main research question, "Is the Hierarchical Risk Parity portfolio the best option for 

passive investors?" it aims to thoroughly analyze which investment strategy among 

the three portfolios offers the most effective balance between risk and return for 

passive investors in today's volatile financial landscape. The ultimate goal of this work 

is to make a significant contribution to the current discussion on portfolio optimization 

by providing a thorough analysis of risk-return strategies in an increasingly unstable 

investing environment. The structure of this thesis is as follows: Section 2 provides a 

literature review, outlining the fundamental principles of portfolio management. 

Section 3 describes the models used in this analysis and their relevance to passive 

investing. Section 4 explains the methodology and data employed, while Section 5 

presents the results. Finally, Section 6 concludes the analysis. 

 

2. LITERATURE REVIEW 

2.1. Markowitz Theory 

In 1952, Harry Markowitz changed the world of finance with his Portfolio Theory 

introducing the concept of risk into the calculation of expected returns. This 

innovation allowed investors to adjust portfolios to create optimal risk and return 

trade-offs. At its heart is that so called efficient frontier, which illustrates the portfolios 

that offer the greatest return for a given level of risk or the smallest risk for a given 

return (Elton & Gruber, 1997). Markowitz started from the assumption that investors 
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act rationally, with full access to all market information, and do not have to worry about 

fees or transaction costs (Sharpe, 1964). In addition, the theory assumes that all investors 

operate on a single time horizon (Tobin, 1958). These assumptions may seem like 

oversimplifications, but it was these assumptions on which Markowitz theory founded 

modern portfolio management, incorporating a basic principle of diversification. 

A portfolio’s efficiency is determined by minimizing the variance of its returns, 

represented by: 

 
𝜎𝑝

2 =  ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛

𝐽=1

𝑛

𝑖=1

 
                             (1) 

Here,  𝑤𝑗  and 𝑤𝑖 represent the weights of assets 𝑖 and 𝑗 in the portfolio, respectively, 

and 𝜎𝑖𝑗 is the covariance between the returns of assets 𝑖 and 𝑗. The portfolio variance 𝜎𝑝
2 

is calculated by summing over all pairs of assets, incorporating both the individual asset 

variances and covariances. 

 

2.2 Mathematical foundations of MPT 

In Markowitz’s Portfolio Theory, the first step is to calculate the expected return of a 

portfolio, denoted as µ𝑝, which represents the weighted average of the expected returns 

of its individual securities. For a portfolio with multiple assets, this is expressed as:  

 µ𝑝 =  ∑  𝑤𝑖µ𝑖

𝑖=1

                                  (2) 

where 𝑤𝑖 is the proportion of the 𝑖-th security in the portfolio, and µ𝑖 is its expected 

return. 

After calculating the expected return, the risk must be quantified, which can be done 

by measuring variance and standard deviation. This variance measures the dispersion of 

returns from their expected mean, i.e., potential risk. For a single asset, variance is 

calculated as: 

 
𝑆2 =

1

𝑛 − 1
∑(𝑅𝑖 − �̅�)2

𝑛

𝑖=1

 
                                 (3) 
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where 𝑅𝑖  is the return in the 𝑖-th period, and �̅� is the average return across 𝑛 

periods. 

Another measure of risk is the standard deviation, which is the square root of the 

variance. The higher the variance, the higher the risk associated with the asset. The 

formula is: 

 

𝜎𝑝 =  √∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑟𝑖 , 𝑟𝑗 )

𝑛

𝑗=1

𝑛

𝑖=1

 

                                (4) 

Where 𝜎𝑝represents the portfolio's standard deviation (total risk), 𝑤𝑖and 𝑤𝑗are the 

weights of assets 𝑖 and 𝑗 in the portfolio, and 𝐶𝑜𝑣(𝑟𝑖 , 𝑟𝑗 )is the covariance between the 

returns of assets 𝑖 and 𝑗. 

This metric is incredibly useful because it makes it easy to compare the risk of 

different investments since it quantifies volatility in the same units as returns. (Gruber, 

2003) 

Strategic allocation of capital across different assets relies on risk measures such 

as variance and standard deviation by the investors. This enables them to understand 

the potential price fluctuations of each asset and, in turn, build portfolios that match 

their desired risk and reward profile in accordance with their investment goals and 

risk tolerance (Sharpe, 1966). A primary foundation for modern portfolio 

management are these risk metrics that help investors to optimize their decision 

making. A second measure of importance is covariance, which is vital for portfolio 

diversification to measure the extent to which returns move in opposite directions for 

two assets (Elton & Gruber, 1997). The covariance analysis allows investors to form 

portfolios that give a maximum expected return at a minimum amount of risk by 

constructing portfolios consisting of assets that have low correlations with each other 

(Fama & French, 1992). Covariance is a key factor in strategies like the 60/40 

portfolio, Hierarchical Risk Parity, and Ray Dalio’s All-Weather model, which all 

seek to optimize risk and return through diversification, whether by balancing equities 

and bonds, clustering assets based on correlations, or diversifying across asset classes 

to perform in various economic environments. Investors can reduce risk during 

volatile periods by relying on the fact that stocks and bonds have low covariance 
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(Asness, 2000) in the traditional 60/40 portfolio. Lopez de Prado (2016) has developed 

the HRP strategy that creates clusters of assets on variance to maximize diversification to 

minimize risk. Likewise, Dalio’s All-Weather model uses covariance to balance asset 

classes in such a way that enables them to perform relatively consistently across varying 

economic cycles and resist big draws from market instability (Dalio, 2017). 

 𝐶𝑜𝑣𝑖𝑗 =  𝐸[𝑅𝑖𝑅𝑗 ] − 𝐸[𝑅𝑖]𝐸[𝑅𝑗 ]                       (5) 

where 𝐸[𝑅𝑖𝑅𝑗 ] is the expected value of cross product of the returns between assets 𝑖 

and 𝑗 and 𝐸[𝑅𝑖]𝐸[𝑅𝑗] are the expected returns of assets 𝑖 and 𝑗.  

Correlation is another critical measure of diversification and quantifies the strength 

and direction of the linear relationship between two assets. The correlation coefficient is 

given by: 

 
𝜌𝑖,𝑗 =

𝐶𝑜𝑣𝑖𝑗

𝜎𝑖𝜎𝑗
 

                                (6) 

where 𝜎𝑖 and 𝜎𝑗 are the standard deviations of assets  𝑖 and 𝑗, respectively correlation 

values range from -1, indicating perfect negative relations, to +1, indicating a perfect 

positive relation. Managing correlation is crucial in portfolio construction, as it helps 

reduce overall risk, especially in diversified strategies like HRP and Ray Dalio’s All-

Weather portfolio (Dalio, 2017). 

 

2.3 Passive investing: beyond returns, an advanced analysis of volatility and efficiency 

In portfolio management, predicting and managing volatility is crucial for optimizing 

asset allocation and mitigating risk. Accurate models for forecasting volatility are critical, 

given the fundamental role volatility plays in determining portfolio risk. The full 

importance of this becomes evident with the ability of the ARCH (Autoregressive 

Conditional Heteroskedasticity) model, introduced by Engle (1982), to capture volatility 

clustering and provide more accurate risk estimates over time. Similarly, the Generalized 

ARCH (GARCH) model introduced by Bollerslev (1986) allows for both past residuals 

and past volatility to inform future volatility predictions, significantly improving the 

forecasting accuracy for both active and passive investors. 
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The time-varying nature of volatility, governed through these models, allows us to 

depict and predict periods of high and low market fluctuations. These models help 

portfolio managers anticipate periods of increased risk, offering better decision-

making frameworks for portfolio rebalancing during volatile times (Poon & Granger, 

2003). 

The ARCH model was developed to account for the fact that volatility is often not 

constant over time, but instead exhibits clustering, periods of high volatility are likely 

to be followed by further high volatility, and similarly for low volatility (Engle, 1982). 

Engle's (1982) work demonstrated that incorporating conditional heteroskedasticity 

significantly improves the accuracy of risk estimates in portfolio management, 

particularly in active trading strategies, where frequent short-term volatility 

adjustments are most relevant. 

The ARCH model can be expressed mathematically as: 

 

𝜎𝑡
2 =  𝛼0 +  ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

 

(7)    

In this equation, 𝜎𝑡
2 represents the conditional variance at time 𝑡, which is the key 

quantity we are trying to predict. The parameter 𝛼0 is a constant that represents the 

long-term average level of volatility (often referred to as the unconditional variance). 

The terms 𝛼𝑖 are coefficients that measure the influence of past squared residuals 

(errors) from previous periods on the current variance. These residuals, represented 

by 𝜀𝑡−𝑖
2 , are squared values of the deviations from the expected return at time 𝑡 − 𝑖, 

capturing how shocks to the system propagate through time. 

The GARCH model builds on the ARCH model by incorporating both past 

squared residuals and past conditional variance into the forecast of future volatility: 

 

𝜎𝑡
2 =  𝛼0 +  ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

(8) 

In this formulation, 𝜎𝑡
2 is the conditional variance at time 𝑡, like the ARCH model. 

The parameter 𝛼0 is again a constant representing the long-term average variance. The 

coefficient 𝛼𝑖 captures the impact of past squared residuals (or shocks) on the current 



 

7 

 

period’s variance, with larger shocks increasing the variance for future periods. The term 

𝛽𝑗 represents the persistence of volatility over time by measuring the contribution of the 

past conditional variance 𝜎𝑡−𝑗
2  to the current period’s variance. The GARCH model thus 

extends ARCH by acknowledging that not only do past shocks affect current volatility, 

but past volatility itself also plays a significant role, capturing the tendency for volatility 

to persist over time (Bollerslev, 1986). 

This innovation allowed GARCH models to better capture the persistence of 

volatility, a feature essential for portfolio managers aiming to adjust their strategies based 

on expected market fluctuations (Bollerslev, 1986). For instance, during periods of high 

volatility, portfolio managers may shift their allocations to more stable or inversely 

correlated assets to reduce overall portfolio risk (Michaud & Michaud, 2008). This is 

especially useful for risk-parity strategies, such as the Hierarchical Risk Parity (HRP) 

approach (López de Prado, 2016), where asset allocation is done by balancing risk. 

GARCH models are also valuable in the context of passive investing, where long-

term market exposure requires careful consideration of market volatility over extended 

periods. According to Swensen (2009), passive investing reduces costs and avoids the 

pitfalls of active management but still necessitates volatility management. GARCH 

models help passive investors anticipate or mitigate risks during periods of high volatility, 

especially since index-tracking funds are more exposed to market swings. Volatility 

forecasts allow for informed portfolio rebalancing to keep the risk-return ratio aligned 

with optimal levels, even during challenging market conditions. 

Further, empirical studies (Linton & Perron, 2003; Andersen et al., 2006) indicate that 

GARCH models significantly improve the forecasting of time-varying risk, which is 

crucial for risk-adjusted performance analysis and constructing portfolios capable of 

withstanding volatile market conditions. These models also enable portfolio managers to 

assess potential drawdowns during periods when tail risks are higher than usual. 

Additionally, ARCH and GARCH models are extensively used for stress-testing 

passive portfolios, particularly those that replicate broad market indices, such as 

Exchange Traded Funds (ETFs). These models simulate various economic scenarios, 

offering an improved view of how passive portfolios might behave under extreme market 

conditions (McAleer, 2005). Since passive funds cannot rely on active trading to mitigate 
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downturns, understanding and preparing for periods of high volatility is key to 

protecting long-term returns (Bali & Engle, 2010). 

Another powerful technique complementing volatility forecasting is quantile 

regression (Koenker & Bassett, 1978), which provides a granular understanding of 

how portfolios performs accross different quantiles of the return distribution. The 

quantile regression model can be represented as: 

 𝑄𝑦(𝜏/X) = 𝑋𝛽𝜏 (9) 

Where 𝑄𝑦(𝜏/X) is the conditional quantile of the dependent variable 𝑦, given the 

matrix of explanatory variables 𝑋. In this expression, 𝑋 is an 𝑛 𝑥 𝑘 matrix of 

explanatory variables, and 𝛽𝜏 is a 𝑘 𝑥 1 vector of coefficients corresponding to the 

quantile 𝜏. This method is especially valuable for passive investors seeking to 

understand how their portfolios might behave during extreme market conditions, such 

as severe downturns or extraordinary gains. By combining GARCH models with 

quantile regression, investors can gain a more comprehensive understanding of the 

distribution of risk, which is vital for both risk management and portfolio optimization 

(Bali et al., 2008). 

In conclusion, the integration of ARCH and GARCH models into portfolio 

management has proven essential for forecasting volatility and managing risk, 

particularly in passive investment strategies. These models enable investors to adjust 

their portfolios in response to expected market variations, safeguarding long-term 

returns against short-term fluctuations. As financial markets continue to evolve, these 

advanced volatility models will remain a cornerstone of both active and passive 

portfolio management (Engle, 2001). 

 

3. MODELS DESCRIPTION 

3.1 CAPM and Fama and French five factor model 

Capital Asset Pricing Model (Sharpe, 1964) suggests that the expected return on a 

security or on a portfolio is a function of its exposure to market-wide, systematic risk, 

and not total risk which consists of both systematic and unsystematic components.  
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The formula is given by:  

 𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽𝑖(𝐸(𝑅𝑚) − 𝑅𝑓 )                      (10) 

Where 𝐸(𝑅𝑖) is the expected return on the security, 𝑅𝑓  is the risk-free rate, 𝛽𝑖 is the 

asset’s beta, and 𝐸(𝑅𝑚) − 𝑅𝑓  represents the market risk premium.  

The market beta (β) quantifies how much an asset’s returns vary when compared with 

the market. The beta value can be defined as a measure of systematic risk inherent in the 

asset that is unable to diversify away and it is denoting the relative variability of a 

security’s or the value of a portfolio of security, as compared to a benchmark, or the 

market as a whole, wherein a beta of 1 indicates that a 1% change in the market generates 

proportional change in the asset value. 

This model, an extension of Markowitz’s portfolio theory, simplifies decision making 

concerning betting by considering only systematic risk measured by beta. The 

assumptions include homogeneous expectations (investors expect the same returns and 

risks) and the ability to borrow or lend an unlimited amount at the risk-free rate. The 

CAPM is considered a foundational tool and although it has been extensively analysed 

and critiqued due to its simplistic assumptions and failure to relate to real market 

behaviour. Since then, the CAPM has been further developed, as with the Fama and 

French (1993) multi-factor models that have added additional risk factors to explain asset 

returns. 

The Fama-French regression model used for this analysis is expressed as: 

 𝑅𝑝,𝑡
− 𝑅𝑓,𝑡 =  𝛼 + 𝛽1(𝑀𝑘𝑡𝑡 − 𝑅𝑓,𝑡) +  𝛽2(𝑆𝑀𝐵𝑡) +  𝛽3(𝐻𝑀𝐿𝑡)

+  𝛽4(𝑅𝑀𝑊𝑡) +  𝛽5(𝐶𝑀𝐴𝑡) + 𝜀𝑡 

(11) 

Here, 𝛼 represents the regression intercept, or the portfolio's alpha, while 𝛽1 reflects 

the portfolio's sensitivity to the market risk premium, (𝑀𝑘𝑡 − 𝑅𝑓,𝑡). The factor 𝑆𝑀𝐵𝑡 

(Small Minus Big) represents the return spread between small-cap and large-cap stocks, 

capturing size risk. The 𝐻𝑀𝐿𝑡 (High Minus Low) factor measures the return spread 

between value stocks (with high book-to-market ratios) and growth stocks (with low 

book-to-market ratios), thus capturing value risk. The 𝑅𝑀𝑊𝑡 (Robust Minus Weak) factor 

represents the return spread between firms with high profitability and those with low 

profitability, capturing profitability risk. Finally, the 𝐶𝑀𝐴𝑡 (Conservative Minus 
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Aggressive) factor captures the return spread between firms that follow conservative 

investment policies and those with aggressive investment patterns. The term 𝜀 represents 

the error term in the regression model. 

 

3.2 60/40 Strategy 

The 60/40 investment strategy comes out of Harry Markowitz’s Modern Portfolio 

Theory (MPT) of what are known as Markowitz portfolios and allocates 60% of a 

portfolio to equities for growth and 40% to fixed income (bonds) as a hedge against 

volatility. This allocation aims to strike the right balance between risk and return, with 

the bond component keeping portfolio value steady during market slumps, especially 

when interest rates are cut by central banks to give the economy a much-needed boost 

(Robinson & Langley, 2017). The 60/40 approach soon gained popularity as a sensible 

application of MPT, especially during periods of economic expansion and low interest 

rates. This strategy became popular with investors during the late 20th century 

because bonds provided stability in equity market declines (Bogle, 1999). 

However, market changes in recent times have brought into question whether the 

60/40 allocation remains appropriate. With low bond yields remaining in effect post-

pandemic, bond performance worsens on weaker equity days. Negative returns from 

10-year U.S. Treasury bonds during market drops have led some to question the 

traditional performance of the 60/40 portfolio. Besides, the evolution of behavioural 

finance, which illustrates psychological biases in investment decisions, has further 

complicated this strategy compared to its original simplicity (Louraoui, 2020). 

The diversification of the 60/40 portfolio is one of its main strengths. The strategy 

reduces risk by dividing investments into both stocks and bonds and aligns with newer 

portfolio theories that show how diversifying across different types of assets 

outperforms concentration in a single sector. This structure shields portfolios against 

systemic risks that cannot be mitigated through diversification. Equities typically 

perform poorly when bonds perform well, as bonds tend to do better during economic 

downturns (Asness, Frazzini, & Pedersen, 2012). 

Historically, equities have outperformed, which has led to a preference for a 60/40 

split over other allocations like 50/50 or 40/60. The greater potential returns make 
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rational investors allocate more to equities, as these returns are considered sufficient 

compensation for the greater associated risk. When pricing stocks relative to safer 

assets like bonds, equities have generally provided superior long-term returns (Siegel, 

2008). However, like equities, bonds are also subject to market volatility, though such 

periods are typically less severe and shorter-lived. Thus, a 60/40 allocation strikes a 

balance between higher returns and moderate risk, representing the core tenets of 

diversification and risk management that underpin Modern Portfolio Theory. (Liew & 

Ajakh, 2020) 

 

3.3 Risk Parity Approach 

The Hierarchical Risk Parity (HRP) was introduced by López de Prado in 2016 (López 

de Prado, 2016). HRP utilizes asset correlations to maintain minimum risk in a portfolio 

by using concepts of minimum variance, risk diversification, and risk hierarchy. Unlike 

traditional methods, HRP aims at minimizing return variability in contrast to future return 

prediction, portfolio management in such conditions becomes more stable. By employing 

hierarchical clustering, assets are grouped based on their correlations, creating a more 

diversified portfolio and reducing overall risk. Risk parity is applied within clusters to 

allocate capital proportionally to each asset's risk contribution, minimizing volatility 

(López de Prado, 2018). HRP distributes risk more evenly than does the 60/40 strategy, 

thereby limiting concentration risk and mitigates estimation errors common to Modern 

Portfolio Theory (MPT) and adapts well to market changes. However, its reliance on 

historical data may limit adaptability to sudden market shifts, like geopolitical or climate 

crises, and its complexity requires continuous monitoring, which may be challenging for 

some investors. (Palit & Prybutok, 2023) Despite this, HRP offers better risk 

management, especially for tail risks, by balancing risk across assets and reducing 

volatility during market crises. 

HRP provides an improvement over traditional risk parity techniques in risk 

management as machine learning technologies help HRP better represent the 

relationships between the assets and subsequently avoid the adverse effects of 

concentrating risk in a few assets, particularly during times of turbulence (López de 

Prado, 2018). For instance, HRP outperforms standard methods such as conventional 
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variance in treating tail risks and more generally accounts for dispersed 

interdependencies between assets during market crises (Palit & Prybutok, 2023). 

Fourthly, HRP clustering leads to a more balanced risk contribution than typical 

strategies, which fail to consider such hierarchical relationships, thus magnifying 

portfolio vulnerability in periods of stress. 

Figure I HRP vs 60/40 

 

 

The image above illustrates asset allocation as well as risk contribution for the 

traditional 60/40 strategy versus a risk parity strategy. The 60/40 portfolio has 60% 

capital allocated to equities and 40% to bonds, but more than 89.4% of the risk comes 

from equities only (as depicted). The difference is that the risk parity strategy allocates 

the risk equally into both equities and bonds, although the actual asset allocation is 

73.53% bonds to 26.47% equities. The employment of this balanced approach reduces 

the concentration risk (Kazemi 2012). 

 

3.4 All-Weather Strategy 

In 1996, Ray Dalio developed an investment strategy called the All-Weather 

Portfolio, a strategy that seeks to produce relatively stable returns with lower risks 

under a variety of market scenarios. The portfolio is based on the idea that the 

economy follows four main cycles: growth or inflation values in the process of rising 
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or falling. The idea behind this strategy is to share risk between many different asset 

classes to protect against economic changes by taking advantage of long-term and 

medium-term bonds, gold, equities and commodities. 

 

      Figure II All-Weather idea 

 

 

One crucial aspect of the All-Weather Portfolio is that it can be treated as passive 

investment strategy, since little intervention is needed from the investor's side once the 

right asset allocation is determined (Dalio, 2011). In contrast to active investment 

strategies such as those that attempt to outperform the market by trading very frequently 

and trying to predict the future, All-Weather makes a strong effort to hold to a balanced 

portfolio that self corrects to different economic settings (Dalio, 2017). This passive 

strategy limits transaction costs and minimizes market timing risk for investors by 

concentrating on steady, long run investment (Anadu, Kruttli, McCabe, & Osambela, 

2020). Keeping investors emotionally stable during market uncertainties is one key of this 

strategy. But this approach also diminishes the likelihood of impulsive decisions 

prompted by short term events and induces more disciplined investment behavior 

(Quantified Trading, 2024). However, the portfolio has some limitations in extreme 

scenarios where real interest rates tend to zero or negative, or inflation is high, as the 

assets may not perform well then. In the face of global financial crisis of 2007 or the 

COVID 19 pandemic of 2020, the portfolio has proved resilient, retaining stability and 

enabling the investors to sail through the market during the rough times.  
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3.5 Arch-Garch models 

In portfolio management, predicting and managing volatility is crucial for 

optimizing asset allocation and mitigating risk. The ARCH model, introduced by 

Engle (1982), and the GARCH model, proposed by Bollerslev (1986), are widely used 

to address the issue of conditional heteroskedasticity, capturing time-varying 

volatility in financial markets (equations 7 and 8). These models allow portfolio 

managers to anticipate periods of heightened market risk and make informed decisions 

in asset allocation and risk management. Beyond the standard GARCH framework, 

more advanced models such as GJR-GARCH, EGARCH, and APARCH have been 

developed to account for market asymmetries and the leverage effect, where negative 

shocks have a larger impact on volatility than positive shocks. These models improve 

the accuracy of volatility forecasts, making them indispensable tools for managing 

portfolio risk during volatile market conditions (Glosten et al., 1993; Nelson, 1991; 

Ding et al., 1993). The GJR-GARCH model, introduced by Glosten, Jagannathan, and 

Runkle (1993), incorporates an asymmetry term that captures the leverage effect, 

offering a more accurate volatility estimate, especially during periods of negative 

market performance. The GJR-GARCH (p, q) model is formulated as: 

 

𝜎𝑡
2 =  𝛼0 +  ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

+ ∑ 𝛾𝑖𝜀𝑡−𝑖
2 𝐼{𝜀𝑡−𝑖<0}

𝑞

𝑖=1

 

(12) 

In this model, 𝛾𝑖 captures the asymmetric response of volatility to negative shocks, 

with the indicator function 𝐼{𝜀𝑡−𝑖<0} taking the value of 1 when the shock is negative, 

reflecting the leverage effect. 

The EGARCH model, introduced by Nelson (1991), models volatility asymmetry 

in logarithmic form, ensuring that volatility predictions remain non-negative without 

imposing non-negativity constraints on the model parameters. The EGARCH (p, q) 

model is expressed as: 
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log(𝜎𝑡
2) =  𝛼0 + ∑ 𝛼𝑖

𝜀𝑡−𝑖

𝜎𝑡−𝑖

𝑞

𝑖=1

+ ∑ 𝛽𝑗log (𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

+ ∑ 𝛾𝑖 (
|𝜀𝑡−1|

𝜎𝑡−𝑖
− 𝐸

|𝜀𝑡−1|

𝜎𝑡−𝑖
)

𝑞

𝑖=1

 

(13) 

This model captures asymmetry through 𝛾𝑖, which represents the differential impact 

of negative and positive shocks on future volatility. 

The APARCH model, developed by Ding, Granger, and Engle (1993), generalizes 

GARCH by introducing a power parameter 𝛿 that governs the form of the volatility 

process, adjusting for the magnitude and direction of market movements. The APARCH 

(p, q) model is formulated as: 

 

𝜎𝑡
𝛿 =  𝛼𝑜 + ∑ 𝛼𝑖(

𝑞

𝑖=1

|𝜀𝑡−1| − 𝛾𝑖𝜀𝑡−𝑖)
𝛿 +  ∑ 𝛽𝑗log 𝜎𝑡−𝑗

𝛿

𝑝

𝑗=1

 

(14) 

Here, 𝛿 adjusts the power of the conditional standard deviation, while 𝛾𝑖captures the 

asymmetric effect of shocks. 

The use of these advanced GARCH models enhances the ability of portfolio managers 

to capture and forecast market volatility, improving decision-making in risk management 

(Abdul Aziz, Vrontos, & Hasim, 2018). Studies have shown that asymmetric GARCH 

models, such as GJR-GARCH and EGARCH, provide more accurate volatility estimates 

compare to the standard models such as GARCH, proving to be essential tools for 

financial analysts in managing portfolio risk (Ugurlu et al., 2014; Predescu & Stancu, 

2011). Another study on Turkish financial markets (Ugurlu et al., 2014) demonstrated 

that EGARCH and GJR-GARCH provided better volatility forecasts during periods of 

financial instability, offering valuable tools for risk mitigation.  

In summary, ARCH, GARCH, and their advanced variants, such as GJR-GARCH, 

EGARCH, and APARCH, play a pivotal role in modern portfolio management by 

offering enhanced tools for volatility forecasting. These models not only provide insights 

into current market conditions but also help portfolio managers mitigate risk in the face 

of uncertain and volatile market environments. 
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4. DATA AND METHODOLOGY 

The All-Weather Portfolio is famous for its balanced allocation and is expected to 

perform well during economy dry periods or storms. Especially in the light of recent 

market volatility, this study assesses its behaviour in various economic environments. 

Inspired by an article on Medium by Luca Donghi (2022), the idea and methodology 

to compare the All-Weather Portfolio with the Hierarchical Risk Parity (HRP) 

portfolio and the 60/40 model were based on that article. Nevertheless, this analysis 

adjusts the asset allocations and extends the study by including other performance and 

risk metrics. 

In the time horizon from January 1st, 2014 to January 1st, 2024, relevant 

Exchange‐Traded Funds (ETFs) were available, and key events like inflation, interest 

rate increases and COVID, happened during this time which makes this time horizon 

especially interesting and relevant. Such a timeframe forms a sound basis for assessing 

portfolio performance in different economic environment. 

The All-Weather Portfolio includes an allocation of 30% to stocks, 5% to 

corporate bonds, 5% to inflation-linked bonds, 30% to long-term government bonds, 

15% to short-term bonds, and 15% to gold. ETFs were chosen to represent each asset 

class within the portfolio, ensuring sufficient historical data for modelling purposes. 

The ETFs selected for the portfolio were IEF, representing U.S. Treasury bonds with 

maturities between 7 and 10 years; GLD, tracking the price of gold; DBC, offering 

exposure to a broad range of commodities; TLT, providing exposure to long-term U.S. 

Treasury bonds with maturities of 20 years or more; VTI, tracking the performance of 

the overall U.S. stock market; TIP, offering exposure to U.S. Treasury inflation-

protected securities (TIPS); and LQD, representing investment-grade corporate 

bonds. 

One of the key features of the portfolio design is the low correlation between the 

ETFs, which enhances diversification and reduces overall portfolio risk, particularly 

valuable for a young, passive investor. A risk-free rate of 2.93%, represented by the 

yield on 10-year U.S. Treasury bonds, was used for portfolio evaluation. This rate 

aligns with the typical long-term investment horizon and is critical for calculating 
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risk-adjusted return metrics such as the Sharpe Ratio, which measures portfolio 

performance relative to a risk-free asset. 

All data processing and analysis for the three portfolios were conducted using Python, 

employing various libraries such as Yahoo Finance for data retrieval and packages like 

arch, matplotlib, numpy, and pandas to ensure accurate data handling, modelling, and 

visualization. Historical market data were downloaded directly using Python code, which 

streamlined the evaluation process and enabled a comprehensive comparison of the 

portfolios. 

The number of daily observations obtained through the code is more than 2,500, as 

shown in the image below: 

Figure III Dataset Statistics 

 

Daily returns for each asset were downloaded and cumulative returns were obtained, 

before constructing the investment portfolios. Then, the data was split into a training set 

and a test set, split at 40% and 60%. This split may seem strange initially, given that the 

test set usually makes up 20-30%, however this split was chosen to evaluate the model in 

operation over a longer test period. As discussed by James et al. (2013), a larger test set 

can help to reduce overfitting and improve the model's ability to generalize to new data, 

particularly in financial time series where diverse market conditions are common. This 

method will ensure that the model is performing in short run as well as robust and reliable 

in the long run. 

The first portfolio analyzed is the 60/40 model, a traditional strategy that allocates 

60% to stocks and 40% to bonds. For the equity portion, the VTI ETF was selected, 

representing a broad range of U.S. stocks across all market capitalizations. The bond 
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component was represented by TLT, which focuses on long-term U.S. government 

bonds with maturities of 20 years or more. This allocation aligns with the use of the 

U.S. Treasury bond risk-free rate, ensuring consistency with the portfolio's economic 

environment. 

The second portfolio, the All-Weather portfolio, follows risk parity and variance 

optimization principles. Inspired by Luca Donghi's study, this portfolio seeks to 

balance risk across different economic cycles using mean-variance optimization, 

ensuring each asset contributes proportionally to total risk. The portfolio is structured 

around four economic cycles: Rising Growth, Falling Growth, Rising Inflation, and 

Falling Inflation. Relevant assets are allocated to each cycle—commodities (DBC), 

U.S. stocks (VTI), gold (GLD), corporate bonds (LQD), and government bonds (TLT, 

IEF, TIP) to optimize performance under specific conditions. Using the riskfolio-lib 

library, expected return statistics and covariance matrices were calculated to estimate 

risk and return distribution, and equal weight (25%) was assigned to each economic 

scenario, following Bridgewater Associates’ balanced approach. 

The final portfolio, HRP, was constructed using hierarchical clustering, enriched 

by world GDP and inflation indicators. The annual correlations between assets and 

economic variables were calculated to identify diversification opportunities and risk 

reduction. Using agglomerative hierarchical clustering with Euclidean distance and 

Ward’s linkage, assets were grouped into clusters based on their correlations. The 

process, starting from individual asset clusters and progressively merging the closest 

ones, ensures optimal risk diversification by minimizing variance within each cluster.  

Figure IV HRP three 
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After combining the time series of returns of each asset within each cluster and 

calculating their standard deviation, the volatility of the clusters has been determined. In 

this step, asset weights were assigned inversely proportional to their volatility within each 

cluster, thus ensuring a balanced distribution of capital across clusters. 

The process is recursive, iterating through top-level clusters, recalculating volatility 

and reassigning weights to balance risk and reduce dependency on potentially unstable 

covariance matrices.  

 

4.1 Performance Metrics 

For all the investment portfolios daily returns were computed using adjusted closing 

prices daily. The daily returns for each portfolio were calculated as the weighted average 

of the individual assets returns 𝑟𝑝,𝑡, where each return was weighted by the proportion of 

the total investment in the portfolio.  

 
𝑟𝑝,𝑡 =  ∑ 𝑤𝑖𝑟𝑖 ,𝑡

𝑛

𝑖=1

 
                                    (15) 

In this context, 𝑤𝑖 stands for the weight of the i-th asset in the portfolio, while 𝑟𝑖 ,𝑡 

corresponds to the daily return of the i-th asset at time 𝑡. 

The annualized return, also known as the Compound Annual Growth Rate (CAGR), 

was calculated to standardize the portfolio returns over a 10-year time frame. The CAGR 

provides a geometric average return per year, offering a smooth rate of growth that 

accounts for compounding over the period. 

 
      𝐶𝐴𝐺𝑅 = (

𝑉𝑇

𝑉0
)

252

𝑇 −1  
                                    (16) 

In terms of portfolio value, 𝑉𝑇 denotes the value at the end of the period, with 𝑉𝑂 

representing the initial value. 𝑇 refers to the total number of trading days considered. 

The annualized volatility represents the standard deviation of the daily returns, which 

is annualized using the square root of time rule to reflect the risk over the course of a year. 

This method adjusts the daily volatility to account for the longer time horizon, giving a 

clearer picture of the portfolio's risk on an annual basis. 
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 𝜎𝐴𝑁𝑁𝑈𝐴𝐿 =  √252 ∗ 𝑤𝑇∑𝑤 (17) 

Where 𝑤 represents the vector of asset weights in the portfolio, ∑ is the covariance matrix 

of asset returns, and 252 is the number of trading days in a year. 

The Maximum Drawdown (MDD) measures the extent of the lowest point that the 

portfolio has reached from the initial investment and points to the lowest low. It 

emphasizes the greatest percentage decrease from the greatest value to the lowest level 

followed by a rise; it gives a clear picture of the portfolio’s poor performance during a 

given period.  

 
𝑀𝐷𝐷 = min

𝑡
(

𝑉𝑡

max
𝑠≤𝑡

𝑉𝑠
− 1) 

                                    (18) 

As for the maximum portfolio value, 𝑉𝑡 indicates the portfolio's value at time 𝑇, 

while  max
𝑠≤𝑡

𝑉𝑠 identifies the maximum value reached by the portfolio before time 𝑇,. 

Sharpe ratio is the measure of excess return of the portfolio over the risk-free rate 

of return divided by the portfolio’s standard deviation. It measures the extra return 

that is earned per unit of risk assumed and offers a common method of ranking 

investment portfolios.  

 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑟𝑝−𝑟𝑓

𝜎𝑝
 

                                    (19) 

 

Here, 𝑟𝑝 represents the average return of the portfolio, with 𝑟𝑓 being the risk-free 

rate. Additionally,  𝜎𝑝 is used to denote the standard deviation of the portfolio's return. 

The Value at Risk (VaR) was calculated at a 95% confidence level using the 

quantile method. The formula used is as follows: 

 𝑉𝑎𝑅95% =  −𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(1 − 𝛼) ∗ 100                       (20) 

Where α refers to the confidence level, and −𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(1 − 𝛼) reflects 

the quantile at the corresponding confidence interval, typically the 5th percentile. 

The negative sign indicates a focus on potential losses, thus quantifying the 

downside risk. 
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4.2 Statistical Analysis 

4.2.1 CAPM 

After evaluating the performance metrics and comparing the various portfolios, a 

more quantitative and statistical analysis was conducted. The first analysis involved the 

calculation of the Capital Asset Pricing Model (CAPM), which estimates the expected 

return for each portfolio based on the associated risk. The code for implementing the 

CAPM was adapted from an open-source implementation available on GitHub, provided 

by Harsh Parikh. In this process, after downloading the returns for each portfolio, the 

S&P 500 was used as a benchmark. Once the returns were adjusted to a monthly basis, 

the percentage variance on monthly prices was calculated to obtain both the portfolio and 

market returns. The beta of each portfolio was then calculated using the appropriate 

formula as you can see below: 

 
𝛽 =

𝐶𝑜𝑣(𝑟𝑚, 𝑟𝑝)

𝑉𝑎𝑟(𝑟𝑚)
 

(21) 

Where 𝐶𝑜𝑣(𝑟𝑚, 𝑟𝑝) is the covariance between the portfolio returns and market return 

and 𝑉𝑎𝑟(𝑟𝑚) is the variance of markets return. 

 

4.2.2 Monte Carlo Analysis 

The primary objective of this analysis was to simulate future scenarios based on 

historical asset returns and the covariance matrix of their daily returns. This approach 

provided a clearer view of potential portfolio behaviour in future periods. The code 

utilized for this analysis was inspired by Abdalla A. Mahgoub’s (2020) article on 

Medium, "Measuring Portfolio Risk Using Monte Carlo Simulation in Python (Part 1)" 

and was adapted to analyse three different portfolios. A total of 100 Monte Carlo 

simulations were run over a 100-day time horizon. Each simulation generated paths of 

correlated daily returns for the assets considered, using the Cholesky decomposition of 

the covariance matrix. This method ensured that the daily returns respected the historical 

correlations between assets, thereby producing more realistic results. For the simulation, 

the initial amount invested in the portfolio was set at $10,000, reflecting the intention to 



 

22 

 

analyze the portfolio from the perspective of a passive management approach for a 

young investor. Additionally, two key risk metrics, Conditional Value at Risk (CVaR) 

and Value at Risk (VaR) were calculated based on the results of the Monte Carlo 

simulations. These metrics were derived from the distributions of the final values of 

the simulated portfolios and provided insights into the potential downside risks. 

4.2.3 Fama and French 5 factors model 

One of the most widely used methodologies in portfolio analysis is the Fama-

French Five-Factor Model. This model extends the traditional Capital Asset Pricing 

Model (CAPM) by incorporating additional factors to better explain portfolio returns. 

In this analysis, logarithmic returns were employed, as logarithmic returns are additive 

and are commonly used in statistical and econometric models. This approach helps to 

normalize the data more effectively than simple returns. The Fama-French factor 

dataset utilized for this study was obtained from the Ken French Data Library at the 

Tuck School of Business, Dartmouth College. Following this, an Ordinary Least 

Squares (OLS) regression was performed to determine the influence of the Fama-

French factors on portfolio returns. To calculate excess returns, the risk-free rate was 

subtracted from the portfolio returns, allowing for the evaluation of the additional 

variance explained by the Fama-French factors (equation 11) beyond what is captured 

by CAPM (equation 10). It is important to note that the original Fama-French dataset 

uses a short-term risk-free rate based on the one-month Treasury bill. However, for 

this analysis, the risk-free rate was replaced with the 10-year U.S. Treasury yield. This 

adjustment was made to maintain consistency with the long-term nature of the study, 

which spans from 2014 to 2024 and focuses on passive investment portfolios. The 10-

year yield was deemed more relevant as it better reflects the opportunity costs 

associated with long-term investments. 

4.2.4 VaR & CVaR 

To evaluate the risk of the analyzed portfolios, a model was developed to calculate 

both Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). VaR was 

computed using the portfolio's daily returns, derived from the historical price data of 

the assets. The VaR was then calculated as the percentile corresponding to the 
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confidence level, specifically the 5th percentile, providing a clear measure of potential 

downside risk.  CVaR, which measures the average loss occurring beyond the VaR 

threshold, was determined by averaging the returns that exceeded the VaR, capturing the 

worst-case returns and offering a more comprehensive view of potential portfolio losses 

(Rockafellar & Uryasev, 2000). To ensure the reliability of the VaR model, a backtesting 

process was implemented, comparing the actual number of VaR breaches with the 

expected number. A breach occurs when the portfolio's actual return falls below the 

predicted VaR, and the Violation Ratio was used to gauge the model's accuracy in 

predicting risk. To further enhance the model's precision, a GARCH (1,1) model was 

incorporated, accounting for volatility clustering and improving the forecasting of 

conditional VaR, making the risk estimates more responsive to fluctuating market 

conditions. 

4.2.5 Stress Test Scenarios 

The analysis utilized a methodology based on synthetic data for macroeconomic 

variables covering the period from 2014 to 2024. The use of synthetic data was chosen to 

ensure complete control over the variables, maintaining time consistency and eliminating 

the possibility of missing data or anomalies that could affect the results (Breuer et al., 

2009).  We defined several macroeconomic stress scenarios such as high inflation, 

deflation and financial crises, linked to specific percentage shocks on key variables to 

simulate market stresses. Standard performance and risk metrics including Sharpe Ratio, 

VaR and CVaR were then applied to analyze the impact of these shocks to the HRP, All-

Weather and 60/40 portfolios. The application of synthetic data enabled accurate 

modeling of hypothetical scenarios, isolating the direct effects of macroeconomic 

variables on the portfolios and allowing for an in-depth theoretical analysis. This 

approach also facilitated the exploration of the sensitivity of portfolios to different levels 

of stress, providing a clearer understanding of how macroeconomic shocks could 

influence financial performance (Glasserman et al., 2015). 
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Table I Stress Test  

 

4.2.6 Quantile Regression 

A quantile regression analysis was performed for each portfolio to examine the 

impact of macroeconomic variables not only on the mean returns but also on specific 

points of the return distribution, particularly focusing on extreme outcomes (Koenker 

& Bassett, 1978). In this case, data on macroeconomic indicators was downloaded 

using the FREDAPI and Yahoo Finance libraries. The datasets were synchronized and 

standardized to ensure consistency across the analysis. Unlike linear regression, which 

focuses on the conditional mean of the dependent variable, quantile regression allows 

for an exploration of how independent variables affect different quantiles of the return 

distribution. In this analysis, attention was given to the lower (10th percentile) and 

upper (90th percentile) parts of the return distribution to investigate the influence of 

macroeconomic factors on more extreme outcomes. This approach provided a deeper 

understanding of how these variables affect both downside and upside risk in the 

portfolios.  

 

4.2.7 Arch-Garch Models 

The analysis was structured in phases to maintain a logical approach and address 

the different aspects of the study in a focused manner. The objective was to evaluate 

the volatility and risk of the portfolios. To ensure greater precision, logarithmic 

returns were used, and portfolio returns were scaled by 100% to stabilize ARCH and 

Earthquake High Inflation Deflation Financial Crisis Global Recession

GDP (0.01) (0.05) (0.02) (0.04) (0.03)

Interest Rates 0 0.02 (0.015) (0.02) (0.01)

CPI 0.005 0.06 (0.01) (0.05) (0.005)

Un. Rate 0.005 0.01 0.02 0.06 0.03

Oil Prices 0.02 0.15 (0.1) (0.3) (0.15)

Exchange Rates 0 0.03 0.02 0.08 0.02

Industrial Production (0.015) (0.01) (0.05) (0.12) (0.08)

Housing mkt (0.05) (0.08) (0.1) (0.15) (0.05)

Consumer Confidence Index (0.02) (0.05) (0.15) (0.35) (0.25)

Governament Spending 0.08 0 0.12 0.2 0.15
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GARCH models, improving numerical stability. The distribution of portfolio returns was 

analyzed using skewness, kurtosis, and the Shapiro-Wilk normality test, to better 

understand the characteristics of the returns. To confirm the presence of ARCH effects, 

the Engle test was conducted, which highlighted the need to apply GARCH models to 

model conditional volatility. 

Subsequently, several distributions were evaluated, including the normal, Student's t, 

skewed Student's t, and the Generalized Error Distribution (GED), a model useful for 

capturing significant deviations from normality. The GED is particularly suitable for 

modeling distributions with heavy or light tails due to its flexibility in controlling the 

shape of the distribution through a specific shape parameter, making it ideal for analyzing 

financial data with atypical distributions. The selection of the optimal model was based 

on the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), 

which penalize model complexity and help identify the most appropriate model.  

To capture the impact of external economic events, dummy variables were introduced. 

The Dummy_COVID variable took the value 1 between January 1, 2020, and December 

31, 2021, to represent the impact of the pandemic, while the Dummy_Inflation variable 

took the value 1 between January 1, 2022, and December 31, 2022, to indicate the period 

of high inflation. Lagged versions of these variables were included to capture any delayed 

effects, and a GARCH (1,1) model with the best-fitting distribution was subsequently 

estimated, including the dummy variables as exogenous factors in both the mean and 

variance equations. 

Finally, advanced models such as EGARCH, GJR-GARCH, and APARCH were 

analyzed, designed to capture asymmetric volatility dynamics or other specific variations. 

By comparing the AIC and BIC values, the model that best fit the portfolio in analysis 

was identified, ensuring an effective balance between accuracy and simplicity. An 

empirical Value-at-Risk (VaR) analysis was conducted during the COVID-19 period, as 

this approach is better suited for cases where an exact distribution is not known, 

effectively accounting for non-normality and heavy tails in the data. The Hit Ratio was 

used to assess the accuracy of the VaR model by measuring how often the model correctly 

predicted risk threshold breaches. The Hit Ratio is calculated as the ratio of the number 
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of times losses exceed the predicted VaR to the total number of observations, 

providing a measure of the effectiveness of the forecasts. 

5. RESULTS 

The first analysis was to create generic portfolios and assessing the performance 

to determine how the portfolios behave under different market conditions. In the 

following image, we can see the weights assigned to each asset for each portfolio. 

 

Figure V Weights Comparison 

 

The All-Weather portfolio aims for maximum diversification by allocating higher 

weights to bonds, particularly during inflation and deflation, while the HRP portfolio 

allocates more to positively correlated assets like DBC and VTI, balancing risk with 

diversification. The 60/40 portfolio follows a traditional 60% equities and 40% bonds 

allocation, balancing growth with risk protection 

The correlation between asset prices and macroeconomic indicators (Appendix 

VI) shows that DBC and VTI have positive correlations, utilized in HRP, while IEF’s 

negative correlation with VTI supports All-Weather’s strategy. Gold, with its low 

correlation, serves as a reliable diversifier across portfolios. 

Performance comparisons revealed that the 60/40 portfolio had the highest return 

at 49.91% but also experienced the largest maximum drawdown (MDD) of -27.87%, 

with 12.97% annualized volatility. The All-Weather portfolio provided stability, with 

a lower return of 23.57% but reduced volatility (7.32%) and MDD (-18.32%), 

0
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reflecting its focus on risk mitigation across economic cycles. The HRP portfolio 

achieved a return of 42.67%, a Sharpe Ratio of 0.45, and the lowest MDD (-16.47%), 

demonstrating a balanced approach to risk and return. 

Table II Performance Metrics 

 

 

5.1 Systemic risk analysis: CAPM and Five-factor Fama-French model 

The Capital Asset Pricing Model (CAPM) and the Fama-French five-factor model are 

combined to give a complete systemic risk view across the portfolios. Beta of CAPM 

means the portfolio’s sensitivity to market movements. The strategy behind the All-

Weather portfolio, with a beta of 0.28, low market risk exposure, is defensive and 

diversified. With a beta of 0.65, the 60/40 portfolio has greater market risk exposure in 

line with the portfolio’s equity-heavy structure. HRP portfolio shows a beta of 0.39, to 

strike a balance between the risk reduction and market participation. 

Table III CAPM and FFM results 

 

The Fama French model extends risk beyond market risk into variables such as size, 

value and profitability. The MKT-Rf (market minus risk-free rate) coefficient over the 

HRP portfolio is positive and significant, consistent with market risk; SMB (small minus 

big) and RMW (profitability) factors are also positive, indicating exposure to small-cap 

stocks and firms with high profitability respectively. The MKT-Rf factor is significant in 

Metrics 60/40 All-Weather HRP
Portf. Return % 49.91 23.57 42.67
MDD & (27.87) (18.32) (16.47)
CAGR % 6.99 3.78 6.39
Sharpe Ratio 0.36 0.2 0.45
Ann. Volatiliy % 12.97 7.32 9.07
Daily VaR % (1.29) (0.72) (0.86)

Portfolios Beta MKT-Rf SMB HML RMW CMA

AW 0.28
0.40 

(0.002)

0.13   

(0.121)

(0.24) 

(0.003)

0.21 

(0.051)

0.10 

(0.378)

HRP 0.39
0.62 

(0.000)

0.25 

(0.030)

(0.30) 

(0.007)

0.26 

(0.090)

(0.10) 

(0.531)

60/40 0.65
0.53 

(0.000)

0.22 

(0.015)

(0.03) 

(0.651)

0.21 

(0.080)

(0.01) 

(0.928)
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the All-Weather portfolio, though it is lower than in the HRP portfolio, as this 

characterizes the defensive portfolio and the negative HML (high minus low) factor is 

consistent with the conservative diversification found in this portfolio. In the case of 

the 60/40 portfolio it has the highest MKT-Rf factor, showing its high sensitivity to 

market movements, accompanied by negative HML and high SMB factors, the latter 

meaning that small stocks tend to outperform when combined with large stocks, and 

this was what happened between 2014 and 2024. 

 

5.2 Statistical Risk Assessment of Portfolios: Integrated Analysis with Monte Carlo, 

VaR and CvaR 

Additionally, the All-Weather, HRP, and 60/40 portfolios were evaluated using 

the Monte Carlo simulation with the traditional Value at Risk (VaR) and Conditional 

Value at Risk (CVaR) metrics. Monte Carlo simulations give insight into possible 

future outcomes, whereas VaR and CVaR are quantitative measures of possible losses 

based on past data. Results for both methods provide a consistent view on portfolio 

risk management. 

With the 60/40 portfolio being equity heavy, we see it has higher volatility as it 

has a VaR of $753.58 and CVaR of $907.04 in the Monte Carlo simulation. This is 

consistent with its historical annualized VaR (Appendix V) of -15.75% and suggests 

that it is more sensitive to market variations than it is to riskier growth opportunities.  

All-Weather portfolio showed great stability with a VaR of $681.78 and a CVaR 

of $885.29 which is close to its historical annualized VaR of -12.26%. It is designed 

to handle systemic risks and works in any market conditions. 

Monte Carlo simulation results showed that the HRP portfolio effectively balanced 

risk and return with a VaR of $668.75, CVaR of $ 801.02 and an annualized VaR of 

-11%. This shows a well thought out compromise between the reduction of risk and 

the pursuit of earnings. 

By combining Monte Carlo results with historical VaR and CVaR data, the 60/40 

portfolio sees the highest volatility and growth potential, the All-Weather portfolio 

offers stability, and the HRP portfolio provides a trade-off between risk and return. 
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Figure VI Monte Carlo and VaR Comparison 

 

 

5.3 Integrated analysis of Stress Test and Quantile Regression 

A dual methodology, which involved stress tests under extreme economic scenarios 

but also quantile regression, was used to analyse the performance of the 60/40, HRP, and 

All-Weather portfolios. With this approach, portfolio performance and sensitivity to 

economic shock was uncovered, including a detailed view of resilience during volatile 

and crisis periods. 

In stress tests, the 60/40 portfolio showed vulnerability to high inflation and other 

shocks, with a high Max Drawdown of -32.17% and a Sharpe Ratio of 0.47. While it 

performs well during periods of growth, particularly in the upper quantiles where GDP 

boosts returns, it suffers significantly in the lower quantiles, demonstrating sensitivity to 

macroeconomic shocks. This reflects its reliance on equity-heavy strategies, making it 

susceptible to severe market downturns. 

The HRP portfolio, with its risk-parity strategy, managed risks more effectively. Its 

Max Drawdown was lower -17.47%, and its standard deviation of 7.06% was lower, 

suggesting it had better loss management under stress. The result is reinforced by quantile 

regression which indicates a weak sensitivity of HRP to shocks in the lower quantiles 

likely resulting from asset diversification protection. While not as responsive to growth 

in middle to upper quantiles as 60/40, it offers stable returns with lower risk and is 

appropriate for capital protection in moments of uncertainty. 
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In terms of resilience, the All-Weather portfolio was very resilient, its capital was 

preserved, thanks to its broad diversification. It had relatively low Max Drawdown of 

-18.93%, showed good performance between quantiles indicating consistency in 

returns across both lower and upper quantiles, and was capable to adjust according to 

the different types of economic conditions, especially in the situation of managing 

inflation and commodity related variables. It’s, therefore, a good option for long term 

investors on capital preservation. Stress test results, when combined with quantile 

regression, show the diversified portfolios have different resilience. A major 

weakness of the 60/40 portfolio is its sensitivity to economic shocks, particularly 

while the portfolio performs well during growth periods. The stability and capital 

preservation over the long term mean that the All-Weather portfolio is the most 

reliable for conservative, long term investors and the balanced risk management 

makes the HRP portfolio a better solution than traditional asset allocation. 

Table IV Stress Test results 

 

5.4 Arch-Garch results 

The first analysis carried out was to understand the distribution of the portfolio 

returns, which showed a non-normal distribution confirmed by the Shapiro-Wilk Test 

with a statistic of 0.9427 and an extremely low p-value of 3.4581e-30. Subsequently, 

the Engle's ARCH Test was applied, with a statistic of 464.51 and a p-value of 

1.6734e-93, indicating the presence of significant ARCH effects in the portfolio 

returns and confirming the need to use GARCH models. To determine the best-fitting 

All- Weather Earthquake High Inflat. Deflation Fin. Crisis Global Rec.

Exp. Return % 2.36 3.41 1.72 1.39 1.7

MDD% (12.98) (18.93) (9.47) (7.6) (9.36)

Sharpe Ratio 0.011 0.14 (0.15) (0.3) (0.16)

Stand. Dev. % 5.26 7.85 3.78 3.02 3.74

HRP Earthquake High Inflat. Deflation Fin. Crisis Global Rec.

Exp. Return % 2.91 4.26 2.12 1.7 2.09

MDD% (11.92) (17.47) (8.66) (6.95) (8.56)

Sharpe Ratio 0.13 0.28 (0.05) 0.022 (0.0597)

Stand. Dev. % 4.73 7.06 3.4 2.71 3.36

60/40 Earthquake High Inflat. Deflation Fin. Crisis Global Rec.

Exp. Return % 7.33 7.39 2.66 3.04 4.47

MDD% (31.97) (32.17) (12.81) (14.51) (20.7)

Sharpe Ratio 0.47 0.47 0.1 0.17 0.33

Stand. Dev. % 10.67 10.75 3.86 4.42 6.5
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distribution for the portfolio returns, various return distributions were analysed, including 

normal, t-student, skew-t, and GED, to ensure the model accurately captured the 

portfolio's dynamics. As shown in Appendix 3, the skew-t distribution provided the best 

fit, effectively capturing the heavy tails and skewness common in financial returns, as 

confirmed by the lowest AIC and BIC values compared to other distributions. 

The analysis then continued with the GARCH(1,1) model. For the 60/40 portfolio, the 

model revealed a quick response of volatility to shocks, with an alpha coefficient of 

0.0788 and a beta coefficient of 0.9071, indicating strong volatility persistence typical of 

financial time series, and confirming the presence of clustering, as shown below. 

Table V 60/40 GARCH(1,1) results 

 

Subsequently, the GARCH model was extended by introducing dummy variables to 

capture the effects of external economic events such as the Covid-19 pandemic and 

inflation. The Covid dummy initially increased returns, which then quickly diminished, 

while the inflation dummy had a consistent negative impact, aligning with the theory that 

inflation erodes real returns by reducing purchasing power. The results of this analysis 

are presented in Appendix VIII, demonstrating the model’s effectiveness in adapting to 

external shocks. 

Next, GJR-GARCH, EGARCH, and APARCH models were examined. The GJR-

GARCH and EGARCH models proved effective in capturing the leverage effect, where 

negative shocks amplify volatility more than positive ones, explaining the increased risk 

during market downturns. The APARCH model, as detailed in Appendix IX, showed high 

flexibility in modelling volatility with power dynamics; the delta coefficient (1.8095) 

highlighted the sensitivity of volatility to market movements, confirming the model’s 

ability to accurately capture variations in the return distribution. 

GARCH (1,1)     
Model Parameter Coefficient (coef) p-value (P>|t|) 

Mean Model (mu) 0.042 0.00001163 

Omega 0.00521 0.00487 

Alpha[1] 0.0788 1.045E-07 

Beta[1] 0.9071 0 

Eta 10.3704 1.014E-07 

Lambda (0.1721) 3.288E-09 
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Finally, an analysis of the empirical VaR was conducted during the Covid period, 

confirming elevated risks and validating the accuracy of the VaR model through the 

Kupiec test, demonstrating that the model effectively captures risk levels, although some 

extreme events may have been underestimated, as indicated in Appendix II. 

The initial analysis of the All Weather portfolio revealed a non-normal distribution 

of returns, as confirmed by the Shapiro-Wilk Test with a test statistic of 0.9484 and a 

p-value of 7.2290e-2. The Engle's ARCH Test then showed a test statistic of 609.66 

and an extremely low p-value of 1.5018e-124, indicating significant ARCH effects 

and thus confirming the use of GARCH models to model conditional volatility. 

Several return distributions were evaluated, including normal, t-student, skew-t, 

and GED, to determine which model best fit the portfolio’s returns. The GARCH(1,1) 

model with a skew-t distribution provided the best fit, with an alpha coefficient of 

0.0636 and a beta coefficient of 0.9195, indicating strong volatility persistence typical 

of clustering, and achieving the lowest AIC and BIC values. This suggests that skewed 

distributions better capture the behavior of the portfolio's returns, especially when 

modeling volatility over time. 

Table VI All-Weather GARCH(1,1) results 

 

Dummy variables for Covid and inflation were included, and the results are 

presented in Appendix VIII. During the Covid period, the dummy variable showed an 

initial increase in returns, followed by a rapid attenuation, while the inflation dummy 

had a consistently negative impact. 

Regarding advanced models, GJR-GARCH, EGARCH, and APARCH all 

demonstrated a significant capability to capture asymmetric volatility dynamics. The 

GJR-GARCH model exhibited a leverage effect through a positive gamma coefficient 

(0.0499), while the EGARCH model showed a similar sensitivity, confirming that 

GARCH (1,1)     
Model Parameter Coefficient (coef) p-value (P>|t|) 

Mean Model (mu) 0.0162 5.09E-02 

Omega 3.93E-03 3.08E-02 

Alpha[1] 0.0636 2.71E-04 

Beta[1] 0.9195 0 

Eta 7.2486 2.50E-13 

Lambda (0.0958) 6.05E-04 
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negative shocks amplify volatility more than positive ones. The APARCH model, as 

indicated in Appendix X, introduced a delta parameter (2.9981) that indicates 

significant asymmetry and non-linearity in the portfolio returns. This result suggests that 

the All-Weather portfolio’s returns react more strongly to market shocks, with volatility 

responding differently depending on the intensity and direction of the shocks. 

Finally, an empirical VaR analysis was conducted during the Covid period, 

demonstrating the All-Weather portfolio's vulnerability in the presence of high volatility. 

The accuracy of the VaR model was validated through the Kupiec test, confirming that 

the model effectively captures risks, although some extreme events may have been 

underestimated, as detailed in Appendix II.  

The initial analysis of the HRP portfolio revealed a non-normal distribution of returns, 

confirmed by the Shapiro-Wilk Test with a test statistic of 0.9484 and a p-value of 

7.2301e-29. The Engle's ARCH Test further confirmed the presence of significant ARCH 

effects, with a test statistic of 417.27 and an extremely low p-value of 1.9760e-83, 

justifying the use of GARCH models to model conditional volatility. 

Several return distributions were evaluated, including the normal, t-student, skew-t, 

and GED, to determine which model best fit the portfolio returns. As shown in Appendix 

III, the GARCH(1,1) model with a skew-t distribution provided the best fit, with an alpha 

coefficient of 0.060 and a beta coefficient of 0.9317, highlighting significant volatility 

persistence typical of clustering. The relatively low omega value (0.00235) suggests that 

in the absence of market shocks, the baseline volatility remains contained. 

Table VII HRP GARCH(1,1) results 

 

Dummy variables for COVID and inflation were included, as evidenced in Appendix 

VIII. The COVID dummy variable showed a significant initial increase in returns, 

GARCH (1,1)     
Model Parameter Coefficient (coef) p-value (P>|t|) 

Mean Model (mu) 0.0152 3.92E-02 

Omega 2.35E-0,3 1.11E-02 

Alpha[1] 0.0559 3.11E-06 

Beta[1] 0.9317 0 

Eta 9.1867 1.36E-10 

Lambda (0.084) 5.02E-03 
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followed by an attenuation, while the inflation dummy had a consistent negative 

impact, aligning with theoretical expectations. 

Regarding the advanced models, the GJR-GARCH, EGARCH, and APARCH 

were applied to study the leverage effect and the asymmetry in the response of 

volatility to positive and negative shocks (appendix XI). The GJR-GARCH model 

displayed an insignificant leverage effect, with a positive gamma of 0.0035 and a p-

value of 0.784, suggesting that the HRP portfolio's volatility response to market 

shocks is similar regardless of the shock's direction. The EGARCH model confirmed 

high volatility persistence with a beta coefficient of 0.9897 but did not detect a 

significant leverage effect. Lastly, the APARCH model introduced a significant delta 

parameter of 2.376, indicating a degree of asymmetry and nonlinearity in the returns. 

This result suggests that the HRP portfolio's volatility adapts variably depending on 

the intensity of shocks, effectively capturing irregular fluctuations compared to other 

models. 

The empirical VaR analysis during the COVID period confirmed the model's 

ability to forecast risk in unstable market conditions. However, the Kupiec test 

highlighted a potential underestimation of extreme events, with a p-value of 0.0724 

for the 1% VaR and 0.4361 for the 5% VaR, suggesting that some extreme risks may 

have been overlooked, as detailed in Appendix II.  

In conclusion, the HRP model stands out as the superior choice for long-term 

investing due to its effective risk management and adaptability. Compared to the 

60/40 and All-Weather portfolios, HRP better mitigates volatility and absorbs market 

shocks, as evidenced by lower volatility persistence in the GARCH models. Its ability 

to dynamically adjust risk based on asset correlations ensures better protection during 

turbulent times, making it more resilient in the face of market crises. This makes HRP 

the preferable strategy for long-term investors seeking both stability and growth. 

6. CONCLUSION 

Three different portfolios, 60/40 - All-Weather - Hierarchical Risk Parity (HRP), 

were examined in this study using a passive investment framework in an effort to 

determine which approach provides the best return and risk balance for passive 

investors working in unpredictable economic conditions.  Using advanced statistical 
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and econometric models, the study evaluated the robustness of each portfolio under both 

normal market conditions and stress scenarios. The results constantly showed that when 

it comes to managing risk and return, the HRP portfolio performs better than its peers. In 

almost every analysis, it showed reduced volatility and a smaller maximum drawdown, 

demonstrating its ability to provide better resilience during times of market instability. 

HRP offers a complicated yet dependable mechanism that makes it a great place for young 

investors with a long-term perspective to start building their portfolios. 

The All-Weather portfolio is still a good choice, but it works best for people who are 

extremely risk averse and value defensiveness over striking a balance between risk and 

return. Diversification among cyclical and countercyclical assets contributes to its 

intrinsic stability, which guarantees protection in a range of market scenarios. However, 

investors looking for long-term capital growth find it less tempting because of the reduced 

returns associated with this defense-focused approach. 

Similar to this, the 60/40 portfolio, which has long been considered a standard for 

passive investment, had significant weaknesses during times of high inflation and 

recession, underscoring its inability to adjust to the demands of the modern market.  

Although the HRP portfolio's dependence on sophisticated machine learning 

algorithms is beneficial in providing better risk management, it also emphasizes the 

necessity of having sufficient technical expertise. This suggests that young investors may 

need to have a firm grasp of machine learning methods and how they are used in financial 

settings in order to embrace HRP. Furthermore, if semiannual rebalancing is necessary to 

preserve portfolio efficiency, investors must have the necessary technical know-how to 

carry out such modifications successfully, guaranteeing that the strategy stays in line with 

their investment goals. By extending the time horizon beyond the 10-year period 

examined in this study, future research could further improve our understanding of HRP 

and capture a wider range of market situations and economic cycles. The flexibility and 

resilience of HRP may also be better understood by broadening the asset universe to 

include alternative investments like cryptocurrency, real estate, or emerging markets. 

Furthermore, incorporating transaction cost studies and investigating real-time 

rebalancing techniques would offer a more thorough understanding of this strategy's 

viability in practice. 
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For youthful, long-term passive investors trying to strike a balance between capital 

growth and efficient risk avoidance, the HRP portfolio stands out as a creative and 

forward-thinking option. Its proven capacity to adjust to a variety of market conditions 

makes it a useful tool for navigating an increasingly complicated and turbulent global 

economy, even though its application calls substantial technical competence. 

However, because it serves as a protective tactic for risk-averse people, the All-

Weather portfolio is still a good option for people who value security and consistency, 

albeit at the price of reduced returns. This study emphasizes how crucial it is to adopt 

diversified and technologically sophisticated investing techniques in order to 

guarantee long-term success and durability in passive portfolio management. 
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APPENDICES 

APPENDIX I Monte Carlo Analysis 
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APPENDIX II Empyrical VaR with GARCH model 

 

60/40 

 

 

 

 

 

HRP 

 

 

 

 

 

All-Weather 

 

 

 

 

 

APPENDIX III AIC and BIC Comparison 

60/40 

 

Model AIC BIC 

GARCH(1,1) Normal 4115.10 4138.42 

GARCH(1,1) t-Student 4065.52 4094.67 

GARCH(1,1) Skew-t 4032.76 4067.74 

GARCH(1,1) GED 4077.88 4107.03 
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All Weather 

 

HRP 

 

 

 

APPENDIX IV Cumulative Returns 

 

 

 

 

 

 

Model AIC BIC 

GARCH(1,1) Normal 3041.82 3065.14 

GARCH(1,1) t-Student 2948.11 2977.26 

GARCH(1,1) Skew-t 2938.46 2973.44 

GARCH(1,1) GED 2962.89 2992.04 

 

 Model AIC BIC 

GARCH(1,1) Normal 2560.6 2583.92 

GARCH(1,1) t-Student 2507.21 2536.36 

GARCH(1,1) Skew-t 2500.88 2535.86 

GARCH(1,1) GED 2521.62 2550.77 
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APPENDIX V VaR & CVaR Comparison 

 

 

 

 

APPENDIX VI Correlation Matrix 

 

 

Portfolios VaR(Annual.)% CVaR(Annual.)%
60/40 (15.75) (23.79)
HRP (11.00) (16.00)

All-Weather (12.26) (18.27)

Variables I II III IV V VI VII VIII IX 

GDP 1         

CPI 0.6         

DBC 0.78 0.8        

GLD (0.15) (0.12) (0.076)       

IEF (0.54) (0.66) (0.65) 0.51      

LQD (0.24) (0.6) (0.39) 0.52 0.87     

TIP (0.017) (0.23) (0.02) 0.63 0.73 0.82    

TLT (0.54) (0.61) (0.61) 0.46 0.96 0.84 0.7   

VTI 0,.1 (0.018) 0.39 0.013 0.028 0.43 0.49 0.023 1 

  GDP CPI DBC GLD IEF LQD TIP TLT VTI 
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APPENDIX VII Quantile regression for Q0.1 and Q0.9 

 

 

 

60/40 Q0.1 Coeff Std. Error 60/40 Q0.9 Coeff Std. Error 
Intercept (1.0941)*** 0.032 Intercept 1.0104*** 0.032 
GDP (0.072) 0.057 GDP 0.1957*** 0.057 
Interest Rates (0.0832)** 0.032 Interest Rates 0.0146 0.032 
CPI (0.1923)*** 0.041 CPI 0.0908*** 0.041 
Unem. Rate  (0.3451)*** 0.043 Unem. Rate 0.0946** 0.043 
Oil Prices (0.0075) 0.061 Oil Prices -0.0509 0.061 
Exchange Rates 0.1058*** 0.040 Exchange Rates 0.0803** 0.040 
Ind. Production 0.0816 0.057 Ind. Production (0.2791)*** 0.057 
Housing Mkt Inde. (0.0443) 0.037 Housing Mkt Inde. 1.77E-05 0.037 
Cons. Confidence (0.0204) 0.039 Cons. Confidence 0.1192*** 0.039 
Gov. Spending 0.002 0.042 Gov. Spending 0.1519*** 0.042 
VIX (0.4164)*** 0.032 VIX (0.2362)*** 0.032 
***p<0.01 **p<0.05 *p<0.1       

 

HRP Q0.1 Coeff Std. Error HRP Q0.9 Coeff Std. Error 
Intercept (1.1324)*** 0.032 Intercept 1.0596*** 0.029 
GDP (0.1041)** 0.053 GDP 0.0768 0.049 
Interest Rates (0.0860)*** 0.030 Interest Rates 0.0241 0.029 
CPI (0.1550)*** 0.042 CPI 0.0798** 0.037 
Unem. Rate (0.3422)*** 0.045 Unem. Rate 0.0720** 0.035 
Oil Prices 0.0496 0.055 Oil Prices 0.0578* 0.056 
Exchange Rates 0.2429*** 0.038 Exchange Rates 0.1928** 0.037 
Ind. Production 0.1199* 0.065 Ind. Production (0.1795)* 0.059 
Housing Mkt Inde. (0.0434)** 0.036 Housing Mkt Inde. 0.0338** 0.035 
Cons. Confidence (0.0472)** 0.038 Cons. Confidence 0.1104** 0.036 
Gov. Spending (0.0219) 0.042 Gov. Spending 0.0465** 0.040 
VIX (0.1220)*** 0.035 VIX (0.0073)** 0.034 
***p<0.01 **p<0.05 *p<0.1       

 

AW Q0.1 Coeff Std. Error AW Q0.9 Coeff Std. Error 
Intercept (0.9794)*** 0.031 Intercept 0.9150*** 0.025 
GDP (0.1650)*** 0.056 GDP 0.1574*** 0.044 
Interest Rates (0.1193)*** 0.023 Interest Rates 0.0265 0.047 
CPI (0.0810)* 0.041 CPI 0.1360*** 0.032 
Unem. Rate (0.3043)*** 0.048 Unem. Rate 0.2186*** 0.033 
Oil Prices 0.5091*** 0.059 Oil Prices 0.5321*** 0.049 
Exchange Rates 0.2043*** 0.038 Exchange Rates 0.1521*** 0.033 
Ind. Production 0.1472** 0.061 Ind. Production (0.1962)** 0.060 
Housing Mkt Inde. (0.0307) 0.035 Housing Mkt Inde. 0.0375 0.031 
Cons. Confidence (0.0621)* 0.036 Cons. Confidence 0.0805*** 0.031 
Gov. Spending (0.0615) 0.043 Gov. Spending 0.0776** 0.035 
VIX (0.2803)*** 0.034 VIX (0.2008)*** 0.034 
***p<0.01 **p<0.05 *p<0.1       
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APPENDIX VIII Dummy Variables Comparison 

 

 

 

 

 

 

 

 

 

60/40
Dummy Coeff p-value(P>|t|)
Const 0.0401 9.54E-02
COVID 0.8459 0
COVID_lag1 (0.9579) 1.76E-05
COVID_lag5 0.1452 0.501
INFLATION (0.7398) 3.11E-43
INFLATION_lag1 1.33E-03 0.997
INFLATION_lag5 0.6131 5.03E-02

AW
Dummy Coeff p-value(P>|t|)
Const 8.87E-03 0.319
COVID 0.5571 3.73E-08
COVID_lag1 (0.6489) 2.0E-03
COVID_lag5 0.1468 0.443
INFLATION (0.1355) 0.497
INFLATION_lag1 (0.1880) 0.548
INFLATION_lag5 0.2963 0.236

HRP
Dummy Coeff p-value(P>|t|)
Const 0.0129 0.107
COVID 0.5526 1.42E-271
COVID_lag1 (0.5810) 4.89E-03
COVID_lag5 0.0553 0.785
INFLATION (0.5998) 5.99E-108
INFLATION_lag1 0.2047 0.384
INFLATION_lag5 0.3367 0.153
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APPENDIX IX 60/40 GARCH Models Comparison 

 

 

 

 

 

 

 

60/40 GRJ-GARCH

AIC 4026.53
BIC 4067.34
Model Parameter Coeff p-value(P>|t|)

mu 0.0367 1.72E-04

Omega 5.86E-03 1.80E-03

Alpha[1] 0.0466 8.44E-04

Gamma[1] 0.0472 4.99E-03

Beta[1] 0.9108 0

eta 10.6183 2.59E-07

lamba (0.1741) 2.93E-09

60/40 EGARCH

AIC 4029.66
BIC 4070.47
Model Parameter Coeff p-value(P>|t|)

mu 0.0343 4.33E-04

Omega (0.0169 1.09E-02

Alpha[1] 0.1414 1.73E-09

Gamma[1] (0.0398) 9.64E-04

Beta[1] 0.9836 0

eta 10.4284 1.52E-07

lamba (0.1745) 2.33E-09

60/40 APARCH

AIC 4034.43
BIC 4075.24
Model Parameter Coeff p-value(P>|t|)

mu 0.0419 1.22E-05

Omega 5.68E-03 4.92E-03

Alpha[1] 0.0819 3.97E-08

Gamma[1] 0.9096 0

Beta[1] 1.8095 7.48E-10

eta 10.3813 1.041E-07

lamba (0.1719) 3.484E-09
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APPENDIX X AW GARCH Models Comparison 

 

 

 

 

AW GRJ-GARCH

AIC 2929.84
BIC 2970.65
Model Parameter Coeff p-value(P>|t|)

mu 0.0128 0.119

Omega 4.11E-03 2.46E-02

Alpha[1] 0.0321 2.46E-02

Gamma[1] 0.0499 6.94E-03

Beta[1] 0.9237 0

eta 7.4119 1.45E-12

lamba (0.0977) 4.27E-04

AW EGARCH

AIC 2950.33
BIC 2985.31
Model Parameter Coeff p-value(P>|t|)

mu 0.0160 4.86E-02

Omega (0.0227) 8.70E-02

Alpha[1] 0.1534 4.01E-05

Beta[1] 0.9823 0

eta 7.1911 2.22E-13

lamba (0.0974) 3.67E-04

AW APARCH

AIC 2937.32
BIC 2978.13
Model Parameter Coeff p-value(P>|t|)

mu 0.0163 5.02E-02

Omega 1.76E-03 0.105

Alpha[1] 0.0403 1.34E-02

Beta[1] 0.9157 0

delta 2.9981 2.38E-06

eta 7.1769 1.24E-13

lamba (0.0954) 6.98E-04
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APPENDIX XI HRP GARCH Models Comparison 

 

 

 

 

HRP GRJ-GARCH

AIC 2502.81

BIC 2543.62

Model Parameter Coeff p-value(P>|t|)

mu 0.0149 4.49E-02

Omega 2.38E-03 1.215E-02

Alpha[1] 0.0538 3.86E-05

Gamma[1] 3.51E-03 0.784

Beta[1] 0.9318 0

eta 9.2126 1.67E-10

lamba (0.0839) 5.18E-03

HRP EGARCH

AIC 2503.32

BIC 2538.30

Model Parameter Coeff p-value(P>|t|)

mu 0.0152 3.76E-02

Omega (0.0156) 7.29E-02

Alpha[1] 0.1198 2.18E-05

Beta[1] 9.0885 0

eta (0.0858) 9.50E-11

lamba (0.0839) 3.98E-03

HRP APARCH

AIC 2502.59

BIC 2543.40

Model Parameter Coeff p-value(P>|t|)

mu 0.0152 3.87E-02

Omega 2.74E-04 1.70E-02

Alpha[1] 0.0590 4.88E-07

Beta[1] 0.9343 0

Delta 1.7603 6.37E-04
eta 9.2058 1.45E-10

lamba (0.0842) 4.86E-03
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