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Abstract

Harvesting from natural resources, particularly fisheries, has played a central role in supporting human
society, both as a source of food and economic activity. Decisions related to harvesting are influenced not
only by biological and environmental conditions but also by economic incentives. Understanding how to
manage these resources sustainably is essential for balancing short-term gains with long-term viability.

Despite its importance, the fishing industry faces significant challenges. When fishing efforts exceed
ecological limits, fish stocks can collapse due to direct human impact. In contexts where access to fish-
ing grounds is open or poorly regulated, excessive effort can be applied simultaneously by many players,
placing unsustainable pressure on the resource.

To better manage this uncertainty and irreversibility of the investment, the decision to harvest can be
framed as a real option. This approach treats the opportunity to fish as a right, not an obligation, allowing
fishermen to delay harvesting until conditions are favourable.

In this work, we formulate the optimal harvesting policy as a stochastic control problem, leading to
a Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We solve the HJB equation numeri-
cally, allowing us to simulate and analyse optimal policies under various scenarios. The results contribute to
a better understanding of sustainable exploitation and highlight the economic value of flexibility in fisheries
management.

Keywords: Stochastic Differential Equations, Partial Differential Equations, Real Options, Harvesting Op-
tion, Hamilton-Jacobi-Bellman Equation, Crank-Nicolson Scheme, Numerical Methods.
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Resumo

A exploração de recursos naturais, particularmente a pesca, desempenha um papel central no apoio à
sociedade humana, tanto como fonte de alimento como de atividade económica. As decisões relacionadas
com a exploração da pesca são influenciadas não apenas por condições biológicas e ambientais, mas também
por incentivos económicos. Compreender como gerir estes recursos de forma sustentável é essencial para
equilibrar os lucros de curto prazo com a viabilidade a longo prazo.

Apesar da sua importância, a indústria da pesca enfrenta desafios significativos. Quando o esforço de
pesca excede os limites ecológicos, os stocks de peixe podem colapsar devido ao impacto direto da atividade
humana. Em contextos onde o acesso às zonas de pesca é livre ou mal regulamentado, pode verificar-se um
esforço excessivo por parte de muitos indivı́duos em simultâneo, criando uma pressão insustentável sobre o
recurso.

Para melhor gerir esta incerteza e a irreversibilidade do investimento, a decisão de explorar pode ser
enquadrada como uma opção real. Esta abordagem trata a oportunidade de pescar como um direito, e não
uma obrigação, permitindo aos pescadores adiar a exploração até que as condições sejam favoráveis.

Nesta trabalho, formulamos a estratégia ótima de exploração como um problema de controlo estocástico,
dando origem a uma equação diferencial parcial de Hamilton-Jacobi-Bellman (HJB). Resolvemos numeri-
camente a equação HJB, permitindo-nos simular e analisar polı́ticas ótimas sob diversos cenários. Os
resultados contribuem para uma melhor compreensão da sustentabilidade na pesca e evidenciam o valor
económico da flexibilidade na sua gestão.

Palavras-chave: Equações Diferenciais Estocásticas, Equações com Derivadas Parciais, Opções Reais,
Opção de Exploração, Equação de Hamilton-Jacobi-Bellman, Esquema de Crank-Nicolson, Métodos Numéricos.
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1 Introduction

For centuries, humans have relied on the ocean as a source of food, trade, and livelihood. It is often
assumed that the seas possess an inexhaustible supply of resources. Although this belief is widespread, it
carries significant risks. Overfishing, mismanagement, and lack of effective regulation can lead to the rapid
depletion of stocks, threatening both ecosystems and economic sustainability.

In the complex world of fishing, many factors such as fish population dynamics, market price volatility,
and harvesting costs affect the ability to predict outcomes and often lead to suboptimal decisions. For
example, in regions where fishing rights are widely available or poorly regulated, a large number of players
may choose to harvest simultaneously. This can result in an unsustainable race for resources, creating
pressure on fish stocks and threatening the long-term viability of the ecosystem.

Initial academic approaches to optimal resource use in fisheries used the Expected Net Present Value
(ENPV) rule to evaluate harvesting investments. This rule states that if the present value of expected future
cash flows exceeds the investment cost, then the project is profitable and worth pursuing.

However, this approach has its limitations. It does not incorporate the ability to capture uncertainty or
adapt to new information over time. Prices, costs, and biological variables are all subject to fluctuations
and non-flexible policies may fail under changing conditions. Furthermore, fishing decisions often involve
irreversible investments in vessels, gear, and fuel, which cannot be recovered once committed.

In [1], the harvesting opportunity was framed as a real option where an individual has the right, but not
the obligation, to exploit the fishery resource. In this framework, the decision to fish is only exercised if it
is economically viable. Their model considered a deterministic evolution of fish stocks and stochastic fish
prices.

This work was extended by [2], who introduced a model where both the fish stock and the price evolved
stochastically, with the population following a Gompertz model. This more realistic representation incor-
porated uncertainties in both the biological and economic dimensions.

Building on these foundational studies, this work proposes a different approach to the harvesting prob-
lem. Our main objective is to derive the optimal harvesting policy that maximizes the value of the opportu-
nity to exploit the fishery, i.e., harvesting using a real options model.

The remainder of this dissertation is structured as follows. In Chapter 2, we present the theoretical and
mathematical foundations required to conduct this work. In Chapter 3, we formulate the harvesting problem
and derive the associated Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) that governs
the value of the harvesting option. Next, in Chapter 4, we provide a detailed numerical solution of the HJB
equation using the Python programming language. In Chapter 5, we present and analyse the simulation
results, offering insights into the behaviour of the optimal policy under uncertainty. Finally, in Chapter 6,
we conclude the work, summarizing key findings and suggesting directions for future research.
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2 Recap on SDEs, Options and Stochastic Optimal Control

The study of population dynamics across different species has long been a subject of scientific interest.
These populations evolve in ways that are closely influenced by their specific environmental conditions. In
particular, assessing aquatic populations is considerably more challenging due to the vastness and inacces-
sibility of oceanic environments. To address these challenges, this chapter provides a brief overview of the
fundamental theoretical concepts required to formulate the optimal harvesting problem, including SDEs,
real options theory, optimal stochastic control, and numerical methods.

2.1 Stochastic Differential Equations

In simple terms, stochastic refers to something that involves uncertainty overtime, meaning its outcome
is not entirely predictable. Stochastic Processes are sequences of random variables used to describe the
evolution of a system over time.

In a more theoretical way, a stochastic process is a family of random variables {Xt, t ∈ T}, defined
within a probability space (Ω,F , P ), where T is the set on which the parameter t is defined. The process
is said to be discrete if T = N0, and continuous if T = [a, b] ⊂ R or T = R. In most cases where time is
involved, T is taken to be R+. The state space is defined as the set of values that the process Xt can take.

Since each random variable Xt = Xt(ω) depends on the outcome ω ∈ Ω, a stochastic process can be
viewed as a function of two variables: t ∈ T and ω ∈ Ω. It is a mapping that associates each pair (t, ω) to
the random variable Xt(ω). For each fixed ω ∈ Ω, the mapping t 7→ Xt(ω) describes a trajectory of the
process, as detailed in [3].

Consider a probability space (Ω,F , P ) and a stochastic process {Xt}t∈T . Following [3], a family of
sub-σ-algebras of F , denoted by {Ft}t∈T , is called a filtration if it satisfies the condition:

Fs ⊆ Ft, for all s ≤ t.

This property expresses the idea that, at each time instant t, we do not have access to the full information
contained in F but rather a progressively enlarging sequence of σ-algebras Ft. These represent the accu-
mulated information up to time t, incorporating both past and present data. A common choice of filtration
is the natural filtration of a stochastic process, defined as:

Ft = σ(Xs; 0 ≤ s ≤ t),

which is the smallest filtration to which Xt is adapted. The natural filtration contains all information
generated by the process up to time t.

A stochastic process {Xt}t∈T is said to be adapted to the filtration {Ft}t∈T if, for each t ∈ T , the
random variable Xt is Ft-measurable. This means that for every Borel set B, the preimage X−1

t (B)

belongs to Ft.
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As discussed in [4], a stochastic process {Xt}t∈T on the probability space (Ω,F , P ) is a martingale
with respect to the filtration {Ft}t∈T if it satisfies the following conditions:

1. The process Xt is adapted to the filtration Ft.

2. E[|Xt|] < ∞ for all t ∈ T .

3. For any s ≤ t, E[Xt | Fs] = Xs a.s.

A Markov Process is a type of stochastic process characterized by the ”memoryless” property, which
means that the future evolution of the process depends solely on its current state, and not on any previous
states or the path taken to reach the current state.

Let (Ω,F , P ) be a probability space, and let T = [0, N ] with 0 ≤ N ≤ +∞. As shown in [4], a
stochastic process {Xt}t∈T is a Markov process in continuous time if, for any s, t ∈ T with s ≤ t, and for
any Borel set B ∈ B, the following Markov property holds:

P (Xt ∈ B | Xu, 0 ≤ u ≤ s) = P (Xt ∈ B | Xs).

Equivalently, for any n = 1, 2, . . . ; t1 ≤ t2 ≤ . . . ≤ tn ≤ t; x1, . . . , xn ∈ R and for any Borel set B, we
have:

P (Xt ∈ B | Xt1 = x1, . . . , Xtn = xn) = P (Xt ∈ B | Xtn = xn).

The transition probability distributions, which are conditional distributions, can be defined through the
transition probabilities:

P (t, B | s, x) := P (Xt ∈ B | Xs = x),

for s ≤ t, as in [4]. This represents the probability that the process, starting at state x at time s, will
transition to a state within the set B at time t.

A homogeneous Markov process is a Markov process whose transition probabilities are time-invariant,
meaning that they depend only on the time difference rather than the absolute time. More precisely, the
transition probabilities satisfy:

P (t+ τ,B | s+ τ, x) = P (t, B | s, x),

which implies that the probability of transitioning from state x to a set of states B over a time interval
t − s remains the same regardless of when the interval starts. Equivalently, if we denote by Fs the natural
filtration, the Markov property for a homogeneous Markov process can be expressed as:

P (Xs+τ ∈ B | Fs) = P (Xτ ∈ B | X0),

for any τ ≥ 0 such that s, s+ τ ∈ T and for any Borel set B, as presented in [4].

A Markov process with a discrete state space is called a Markov chain. When both the state space and
the process are continuous, the Markov process is referred to as a diffusion process.

3



Let (Xt)t∈[0,N ] be a stochastic process. It is said to be a diffusion process, according to [4], if it is a
Markov process with almost surely (a.s.) continuous trajectories and satisfies the following properties for
s ∈ [0, N ] and x ∈ R:

(1) lim
h→0+

1

h
Ps,x [|Xs+h − x|> ϵ] = 0, ∀ϵ > 0

(2) lim
h→0+

Es,x

[
Xs+h − x

h

]
= a(s, x)

(3) lim
h→0+

Es,x

[
(Xs+h − x)2

h

]
= b(s, x),

where we write E [Xt | Xs = x] by Es,x [Xt].

The function a(s, x) is called the drift coefficient, while b(s, x) is the diffusion coefficient.

• The drift coefficient a(s, x) represents the rate of change of the expected value of the process at time
s given that Xs = x.

• The diffusion coefficient b(s, x) represents the rate of change of the variance of the process at time s

given that Xs = x.

From this definition, we obtain the following approximations for small increments h:

(1) Es,x [Xs+h −Xs] = a(s, x)h+ o(h)

(2) Vars,x [Xs+h −Xs] = b(s, x)h+ o(h)

This suggests the following approximation:

Xs+h −Xs ≈ a(s, x)h+
√
b(s, x)Z,

where Z ∼ N(0, h) is a normally distributed random variable with mean zero and variance h.

Taking the limit as h → 0+, we can rewrite this expression in differential form, leading to the general
formulation of a stochastic differential equation (SDE).

A Brownian Motion is a continuous stochastic process that models randomness, unpredictable move-
ments, often used to describe phenomena such as the motion of particles suspended in a fluid, or to simulate
randomness in diverse fields like finance, physics, and biology. Named after the botanist Robert Brown,
who first observed this motion in 1827, it is also referred to as the Standard Wiener Process, inspired by the
mathematician Norbert Wiener, who provided the first formal mathematical definition of the process.

As defined in [4], a stochastic process Bt = {Bt : t ≥ 0} is called a Brownian motion if it satisfies the
following conditions:

1. B0 = 0 a.s.

2. ∀ 0 ≤ t1 < · · · < tn, the increments Btn −Btn−1
, . . . , Bt2 −Bt1 are independent r.v.

3. For s < t, Bt −Bs ∼ N(0, t− s).

4. The process Bt has continuous trajectories.
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Stochastic differential equations (SDEs) extend ordinary differential equations (ODEs) by incorporating
a stochastic term. The deterministic part represents the system’s average behaviour, while the stochastic
component represents random fluctuations or noise affecting the system. When these random perturbations
are absent, the SDE is simplified to an ODE.

Under the standard definition, the Riemann-Stieltjes integral is defined as the limit of Riemann-Stieltjes
sums over all tagged partitions of [0, t], as the mesh of the partition tends to zero. However, this approach
fails when the integrator function is the Wiener process B(t). The reason is that B(t) almost surely has
unbounded variation, which prevents the usual Riemann-Stieltjes integral from being well-defined.

By [5], a continuous and adapted stochastic process {Xt, 0 ≤ t ≤ T} is called an Itô process if it admits
the representation:

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σs dBs,

where X0 ∈ R, and µ(·) and σ(·) are adapted processes. In differential notation, this is written as:

dXt = µt dt+ σt dBt.

Assuming that X is an Itô process and f(t, x) is of class C1,2, the process Yt = f(t,Xt) is given by
Itô’s formula:

Yt = f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)σsdBs +

∫ t

0

∂f

∂x
(s,Xs)µsds+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)σ

2
sds.

In differential notation, Itô’s formula can be expressed as:

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)(dXt)

2

=

(
∂f

∂t
(t,Xt) + µt

∂f

∂x
(t,Xt) +

1

2
σ2
t

∂2f

∂x2
(t,Xt)

)
dt+ σt

∂f

∂x
(t,Xt)dBt.

Finally, as mentioned in [4], a stochastic process Xt is said to be a solution of the SDE:dXt = µ(t,Xt)dt+ σ(t,Xt)dBt,

X0 = x0.
(1)

if the following conditions hold:

1. The process Xt is adapted to the filtration of the Wiener process and has continuous sample paths.

2. The expectation of the integral of the squared diffusion term remains finite, i.e.,

E

[∫ T

0

σ(s,Xs)
2ds

]
< ∞

3. The process Xt satisfies (1).

To guarantee the existence and uniqueness of the solution, the drift and diffusion coefficients must meet
the appropriate Lipschitz and growth conditions to avoid explosion (for more information please see [3]).
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2.2 Options

An option is a financial contract that gives the holder the right, but not the obligation, to perform a
specific transaction involving an underlying asset (as seen in [6], for instance).

Key features of an option include the maturity date, which is the final time the option can be exercised,
and the strike price, which is the fixed price at which the underlying asset can be bought or sold according
to the terms of the contract.

American options can be exercised at any time up to and including the expiration date, while European
options can only be exercised on the expiration date.

There are two main types of options:

• A call option gives the holder the right, but not the obligation, to buy the underlying asset at the strike
price on or before the expiration date.

• A put option gives the holder the right, but not the obligation, to sell the underlying asset at the strike
price on or before the expiration date.

Each option contract involves two parties: the holder, who takes the long position and holds the right to
exercise the option, and the writer, who takes the short position and has the obligation to fulfil the contract if
the option is exercised. The holder pays a premium to acquire the option. The writer receives this premium
but assumes the risk of potential losses. The profit or loss of the writer is the exact opposite of that of the
holder.

Let K denote the strike price and ST the price of the underlying asset at expiration. Then, the payoffs
for a long position in a European option are given by:

• For a call option:
max(ST −K, 0)

The option is exercised if ST > K. Otherwise, it expires worthless.

• For a put option:
max(K − ST , 0)

The option is exercised if ST < K. Otherwise, it expires with no value.

Options can also be classified as in the money, at the money or out of the money based on the relationship
between the underlying price S and the strike price K. A call option is in the money if S > K, at the money
when S = K, and out of the money if S < K.

6



2.3 Real Options

Having discussed financial options, we now turn to their real-world counterparts: real options. In this
work, we explore how real options theory can be applied to decision-making in the fisheries sector, where
uncertainty and the ability to delay or adjust actions are crucial. As shown in [7] and [6], unlike traditional
investment analysis, real options capture the value of flexibility, such as the choice to wait before harvesting.

Investment decisions in resource-based industries like fisheries are particularly challenging due to un-
certainty in fluctuating market prices and variability of biological stocks. Conventional methods such as the
ENPV, which typically assumes fixed plans and predictable returns, tend to fall short in such contexts.

Real options theory provides a more dynamic and realistic framework by treating investment decisions
as opportunities with embedded choices, much like financial options. Rather than requiring full commit-
ment upfront, it allows individuals to respond to new information over time. For instance, fishers frequently
face decisions that involve postponing harvests for better prices, reducing effort during low-yield periods,
or exiting the industry when operations become unprofitable. These adaptive behaviours represent forms of
strategic flexibility that traditional evaluation tools overlook.

This perspective reframes harvesting as an option-like decision, similar to holding a call option in fi-
nancial markets: the fisher has the right, but not the obligation, to harvest. The value of this option depends
on both biological and economic factors. By incorporating real options, we can better model these com-
plex decisions and evaluate policies that maximize long-term returns while acknowledging uncertainty,
irreversibility, and flexibility.

2.4 Stochastic Optimal Control

Optimal control theory provides a system for achieving efficiency in complex problems by identifying
optimal strategies. These problems typically consist of an objective function to be maximised or minimised,
control variables that influence the evolution of the system and the constraints that the system must satisfy.

A variety of methods exist for solving such optimisation problems. One approach is Dynamic Pro-
gramming (DP). Instead of directly analysing the optimal control u∗ and trajectory x∗, DP focuses on
maximising the objective function itself. This approach decomposes a large problem into a series of smaller
sub-problems.

Following [8], a process {ut}t∈T is progressively measurable if for any t ∈ T , the mapping (s, ω) 7→ us(ω)

is measurable on [0, t]× Ω equipped with the product σ-field B([0, t])⊗Ft.

Let U ⊂ Rk be a given subset. We denote by U the set of all progressively measurable processes
u = {ut, t < N} valued in U , as defined in [9]. The elements of U are called control processes.

We begin by considering the following ODE:ẋ(t) = f(x(t), α(t)) (t ≥ 0)

x(0) = x0

(2)

7



As in [10], the payoff functional is defined as:

P [α(·)] =
∫ T

0

L(x(t), α(t))dt+Φ(x(T )) (3)

where T > 0 is the terminal time, L : Rn × U → R is the running payoff and Φ : Rn → R is the terminal
payoff.

The goal is to find an optimal control α∗(·) such that P [α∗(·)] = max
α(·)∈U

P [α(·)], i.e. we aim to

maximise the objective function starting from time 0 and initial state x0.

As in [10], we define the Hamiltonian function:

H(x, p, a) := f(x, a) · p+ L(x, a), (x, p ∈ Rn, a ∈ U)

According to the Pontryagin Maximum Principle (see [10]), let α∗(·) be the optimal control for Eq. 2 and
3, and x∗(·) the corresponding trajectory. Then, there exists a function p∗ : [0, T ] → Rn such that:

• ẋ∗(t) = ∇pH(x∗(t), p∗(t), α∗(t)),

• ṗ∗(t) = −∇xH(x∗(t), p∗(t), α∗(t)),

• H(x∗(t), p∗(t), α∗(t)) = max
a∈U

H(x∗(t), p∗(t), a) (0 ≤ t ≤ T ),

• p∗(T ) = ∇Φ(x∗(T )).

Let the value function v be a C1 function. Then v satisfies the HJB equation

vt(x, t) + max
a∈U

{f(x, a) · ∇xv(x, t) + L(x, a)} = 0, (x ∈ Rn, 0 ≤ t ≤ T ),

with terminal condition v(x, T ) = Φ(x), as in [10].

In a random setting, the system’s evolution is described by a SDE of the form:dX(t) = f(X(t), A(t))dt+ σdB(t), (X ∈ Rn, A ∈ U , t ∈ [t0, T ])

X(t0) = x0

By [10], the expected payoff functional is given by Px,t [A(·)] = E

[∫ T

t

L(X(s), A(s))ds+Φ(X(T ))

]
.

Similarly to the deterministic case, the objective is to find the optimal control A∗(·) such that:

Px,t [A
∗(·)] = max

A(·)∈U
Px,t [A(·)]

Let v be the value function v(x, t) := sup
A(·)∈U

Px,t [A(·)]. Then, v satisfies the stochastic HJB PDE:

vt(x, t) +
σ2

2 ∆v(x, t) + max
a∈U

{f(x, a) · ∇xv(x, t) + L(x, a)} = 0

v(x, T ) = Φ(x)

The sketch proofs of the theorems and results discussed above can be found in [10].
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2.5 Numerical Topics

PDEs often cannot be solved analytically due to their complexity. In such cases, numerical methods
become essential tools for approximating solutions.

We can define the Taylor expansion as a way to approximate a function by a polynomial, given by:

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) +O(h4)

To assess how accurately a numerical method approximates the true solution, we rely on the ”Big-O” and
”little-o” theory, which describe the rate at which error terms decay.

As discussed in [11], let g(h) be a function with g → 0 as h → 0. Then:

• f ∈ O(g) if and only if

lim sup
h→0

∣∣∣∣f(h)g(h)

∣∣∣∣ < ∞

This means that f(h) decays to zero at least as fast as g(h).

• f ∈ o(g) if and only if

lim
h→0

∣∣∣∣f(h)g(h)

∣∣∣∣ = 0

This means that f(h) decays to zero faster than g(h).

It is common to write f = O(g) and f = o(g) instead of the set notation f ∈ O(g) and f ∈ o(g),
respectively. Note that if f(h) = o(g(h)), then necessarily f(h) = O(g(h)), although the converse may
not be true (as can be seen in [11]).

When a PDE or a SDE cannot be solved explicitly, we resort, for instance, to finite difference methods
for approximating derivatives.

If the function f is sufficiently smooth, we can approximate the first order, as outlined in [12], using the
following quotients:

• Forward Difference Quotient: f ′(x) ≈ f(x+ h)− f(x)

h
+O(h)

• Backward Difference Quotient: f ′(x) ≈ f(x)− f(x− h)

h
+O(h)

• Centred Difference Quotient: f ′(x) ≈ f(x+ h)− f(x− h)

2h
+O(h2)

The second order derivative can be approximated by:

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)

Higher order derivatives can also be approximated using extended finite difference formulas, as discussed
in [12].
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To solve PDEs numerically, we discretize both time and space. Let the temporal grid be defined as

t0 < t1 < · · · < tN = T, ∆tn = tn − tn−1, 1 ≤ n ≤ N,

and the spatial grid by:

x0 < x1 < · · · < xM , ∆xm = xm − xm−1, 1 ≤ m ≤ M.

A common reformulation of a PDE isolates the time derivative of a function U , yielding a semi-discrete
form

∂U

∂t
= (1− θ)fn + θfn+1.

Here, f represents the spatially discretized operator, and θ ∈ [0, 1] is a parameter that determines the
numerical scheme. As presented in [11], for different values of θ, we have the following schemes:

• Forward Euler Scheme (θ = 0): this scheme is a fully explicit method, where solution at the next
time step depends only on the current time step

Un+1 = Un +∆tfn

• Crank-Nicolson Scheme
(
θ = 1

2

)
: in this scheme, we take the average of the spatial operator between

the current and next time steps

Un+1 = Un +
∆t

2

(
fn + fn+1

)
This is widely used for parabolic PDEs (see [12]).

• Backward Euler Scheme (θ = 1): this scheme is a fully implicit method, where the future iterate is
computed using the spatial operator at that same future time step

Un+1 = Un +∆tfn+1

A graphical representation of the Crank-Nicolson scheme can be used to better understand how the values
of U∗

n,m are obtained at each grid point:

x

t

t0
. . .

tn−1 tn tn+1
. . .

tN

•

•• •

• •
U∗
n,m

xM

. . .

xm+1

xm

xm−1

. . .

x0

Figure 1: Crank-Nicolson Discretization Mesh Points
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3 The Harvesting Option

3.1 Stochastic Model

To study the behaviour of a harvested population over time, we can model its dynamics using the
following SDE:

dX(t) = f(X(t))dt−H(t)dt+ σxX(t)dB1(t), X(0) > 0

where:

• X(t) denotes the size of the fish population at time t, expressed as biomass or number of individuals,

• f(X(t)) represents the natural growth rate of the population,

• H(t) is the harvesting rate at time t,

• σx is the volatility of the population,

• B1(t) is a Standard Brownian Motion,

• and X(0) > 0 is the initial population size.

In practice, the harvesting function H(t) is influenced by the fishing capacity of the fleet, which may
depend on various factors such as the type and efficiency of the fishing equipment, the mesh size of the nets
and the number of vessels in operation. To reflect this, we define H(t) as:

H(t) = qE(t)X(t)

where q > 0 is the catchability coefficient, representing the proportion of the fish population harvested per
unit of effort per unit time, and E(t) denotes the fishing effort applied at time t (see [13] and [14]).

In this work, we will consider a stochastic optimal control problem to identify the optimal effort E(t)

that maximizes the expected profit from the fishery. The effort is subject to the constraint:

0 ≤ Emin ≤ E(t) ≤ Emax < ∞, ∀t

where Emin and Emax are, respectively, the minimum and maximum levels of effort. These boundaries
reflect the practical limits on the fishing activity: Emax account for the finite availability of resources such
as vessels, labour, and fuel, while Emin corresponds to a minimal level of fishing activity, typically zero.

We consider the price of fish subject to uncertainty, according to the SDE:

dp(t) = µpp(t)dt+ σpp(t)dB2(t), p(0) > 0,

where:

• p(t) is the fish price at time t

• µp is the constant expected growth rate of the fish price,

• σp captures the volatility of the price,
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• B2(t) is a Standard Brownian Motion

• and p(0) is the initial price of fish at time 0.

The profit at time t is defined as the difference between revenue from sales and the cost of harvesting:

Π(t) = P (t)− C(t) = p(t)qX(t)E(t)− (c1 + c2E(t))E(t), (4)

where P (t) is the revenue from selling the harvested fish, C(t) is the harvesting cost, assumed to be a
quadratic function in effort, and c1 ≥ 0 and c2 > 0 are constants.

Accordingly, the total expected profit at time t is given by:

E [Π(t)] = E [(p(t)qX(t)− c1 − c2E(t))E(t)] .

For the purpose of this study, an in line with previous works such as [15], [2] and [16], we model the
fishing population dynamics using the Gompertz growth model, described by the following SDE:

dX(t) = rX(t) ln

(
K

X(t)

)
dt− qE(t)X(t)dt+ σxX(t)dB1(t),

where r > 0 is the growth rate of the population, K > 0 is the environmental carrying capacity and the
other terms are previously defined.

3.2 The harvesting opportunity PDE

Now, we define J := J(t, p(t), X(t)) as the value of the opportunity to exploit the fishery, which
depends on the current time t, the price of fish p(t) and the fish population X(t). To determine how the
value J changes over a small interval of time, we apply the Itô Lemma to J(t, p(t), X(t)):

dJ =
∂J

∂t
dt+

∂J

∂X
dX +

∂J

∂p
dp+

1

2

∂2J

∂X2
(dX)2 +

1

2

∂2J

∂p2
(dp)2 +

∂2J

∂X∂p
dXdp

=
∂J

∂t
dt+

∂J

∂X

((
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
dt+ σxX(t)dB1(t)

)
+

∂J

∂p
(µpp(t)dt+ σpp(t)dB2(t)) +

1

2

∂2J

∂X2
σ2
xX

2(t)dt+
1

2

∂2J

∂p2
σ2
pp

2(t)dt

+
∂2J

∂X∂p
σxX(t)σpp(t)dB1(t)dB2(t)

Considering that the two Brownian increments are correlated, with a correlation coefficient −1 ≤ ρ ≤ 1,
where ρ ̸= 0, we can express dB1(t) as a linear combination of two independent Brownian increments,
dB2(t) and dB3(t), as follows:

dB1(t) = udB2(t) + vdB3(t)

where u and v are constants.
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The following properties of Brownian increments are assumed to hold:

• E [dBi(t)] = 0, i = 1, 2, 3,

• E
[
dBi(t)

2
]
= dt, i = 1, 2, 3,

• E [dB2(t)dB3(t)] = 0, as they are uncorrelated.

We now compute the correlation between dB1(t) and dB2(t). By definition:

ρ = Corr [dB1(t), dB2(t)] =
E [dB1(t)dB2(t)]− E [dB1(t)]E [dB2(t)]√

Var [dB1(t)]
√

Var [dB2(t)]
=

E [dB1(t)dB2(t)]

dt

Using the linear combination, we get:

E [dB1(t)dB2(t)] = E [(udB2(t) + vdB3(t))dB2(t)] = uE[dB2(t)
2] + vE[dB3(t)dB2(t)] = udt

=⇒ ρdt = udt

=⇒ ρ = u

Next, using the variance of dB1(t), we have:

E[dB1(t)
2] = E[(udB2(t) + vdB3(t))

2] = (u2 + v2)dt

=⇒ dt = (u2 + v2)dt

=⇒ 1 = u2 + v2

=⇒ v =
√

1− ρ2.

We then conclude that the Brownian increment dB1(t) can be expressed as:

dB1(t) = ρdB2(t) +
√
1− ρ2dB3(t)

Thus, we obtain the following expression:

dJ =
∂J

∂t
dt+

∂J

∂X

(
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
dt

+
∂J

∂X
σxX(t)

(
ρdB2(t) +

√
1− ρ2dB3(t)

)
+

∂J

∂p
(µpp(t)dt+ σpp(t)dB2(t)) +

1

2

∂2J

∂X2
σ2
xX

2(t)dt

+
1

2

∂2J

∂p2
σ2
pp

2(t)dt+
∂2J

∂X∂p
ρσxX(t)σpp(t)dt. (5)

In the case where the two Brownian increments, dB1(t) and dB2(t), are uncorrelated (ρ = 0), the
expression simplifies to:

dJ =
∂J

∂t
dt+

∂J

∂X

(
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
dt+

∂J

∂X
σxX(t)dB1(t)

+
∂J

∂p
(µpp(t)dt+ σpp(t)dB2(t)) +

1

2

∂2J

∂X2
σ2
xX

2(t)dt+
1

2

∂2J

∂p2
σ2
pp

2(t)dt, (6)
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3.3 Convenience Yield

Let Y (t, p(t)) be the convenience yield by holding one unit of fish. This concept, as discussed in [1]
and [7], represents the net benefit of physically possessing the commodity.

From a financial perspective, when an investor owns a stock, they receive dividends. However, holding a
derivative of that stock does not provide the same benefit. In a similar way, owning fish provides significant
advantages, such as the ability to sell quickly, respond to unexpected demand, or avoid shortages. These
advantages are not available if we hold the option to fish in the future.

In the case of the fishery, the decision is between harvesting and selling the fish now, or leaving them
in the sea expecting future price increases. Choosing to wait means giving up the immediate benefit of
having the fish available for sale. This benefit can be interpreted as an opportunity cost, which we represent
through the convenience yield.

Still, this interpretation needs to be adjusted to reflect a more realistic view of fish as a commodity.
Since fish are perishable and cannot be stored for long periods, the convenience yield here should not be
seen as a benefit from physical storage. Instead, we interpret it as the flexibility to harvest and sell the fish
instantly in response to market conditions.

Following [1], we assume that the convenience yield is proportional to the price of the fish:

Y (t, p(t)) = yp(t), where y is a constant.

3.4 The Spanning Asset

The fish industry faces several challenges due to the nature of the environment. Once harvested, fish
are highly perishable and cannot be stored for long periods, making inventory management difficult and
requiring careful balancing of stock levels. The market is also very fragmented, consists mainly of small-
scale and regional fisherman. Additionally, fish vary in species, size and form, each with its own pricing
dynamics. Together, these factors contribute to the absence of a futures market for fish.

Following the approach in [1], we assume that markets are sufficiently complete and there are no ar-
bitrage opportunities. This implies that the stochastic component of the fish price can be replicated by
a combination of existing traded assets. In line with [17], we also assume that trading in assets occurs
continuously over time, there are no transaction costs or taxes, and all assets are perfectly divisible.

Under these assumptions, it is possible to find a traded asset or portfolio whose price dynamics are
perfectly correlated with those of the fish price.

Let S(t) denote the price of the spanning asset. Its evolution is described by the SDE:

dS(t) = µsS(t)dt+ σsS(t)dB2(t), (7)

where µs is the expected return and σs is the volatility, both assumed to be known. Since this asset replicates
the same source of risk as the fish price, its stochastic component is driven by the same Brownian motion
B2(t).
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In our model, we assume that µs ≥ µp. To understand the implications of this condition, consider first
the alternative case where µs < µp. In this scenario, the fish price would be expected to grow at a faster rate
than the spanning asset. As a result, the value of waiting increases indefinitely, since delaying the harvest
offers higher future returns. Then, the optimal decision would always be to delay harvesting, and the option
would never be exercised. Therefore, such scenario is unrealistic.

Now consider the case where µs ≥ µp. While waiting still reflects the expectation that the price of fish
will increase, it also means giving up the returns that could be earned by investing in the spanning asset. In
this context, the harvesting option is exercised when the opportunity cost of waiting outweighs the expected
benefit of a higher future fish price. Therefore, this condition leads to a more realistic model in which the
option to harvest may be exercised at some point depending on various factors.

Following the CAPM, as discussed in [1], we denote by rp and rs the expected returns from the fish
price p(t) and the spanning asset S(t), respectively, and by λ the risk-free rate of return, assumed to be
known. The expected return from p(t) includes both its drift and the benefit from the convenience yield, so
we write:

rp = µp + y = λ+ θρpmσp, (8)

where θ = µm−λ
σm

is the market price of risk, and ρpm is the correlation between the return on the fish price
and the market portfolio.

The expected return from the spanning asset is given by:

rs = µs = λ+ θρsmσs, (9)

with ρsm being the correlation between the return on the spanning asset and the market portfolio.

Since S(t) replicates the stochastic behaviour of the fish price p(t), the two prices are perfectly cor-
related. As in [1], this implies that their correlations with the market portfolio must be equal, that is,
ρpm = ρsm. Moreover, as noted in [7], we can assume that the volatility of the spanning asset is equal
to that of the fish price, i.e., σs = σp. If this assumption does not hold, it is still possible to construct a
portfolio combining the risk-free asset with the spanning asset to match the volatility σp.

Using the equations 8 and 9, we obtain:

µp + y = µs. (10)

Since we previously assumed µs ≥ µp, it follows that y ≥ 0.

We also assume, following [7], that the price of fish is uncorrelated with the market portfolio. This is
justified by the reasons discussed at the beginning of this chapter. The local nature of fish markets leads to
supply and demand conditions that are specific to each region. So, under the CAPM, this implies that the
expected return rp is equal to the risk-free rate λ, which gives:

µp + y = λ. (11)

Finally, as in [1], we assume that the option to exploit the fishery is perpetual. That is, once developed,
the fishery operates indefinitely without costs associated with opening or closing.
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3.5 Portfolio Construction

To derive the PDE that describes the value of the harvesting option, we construct a portfolio by taking a
long position in the exploitation option and a short position of ν units in the spanning asset. We focus on the
case where ρ ̸= 0, the uncorrelated case follows similarly. The stochastic component driven by dB3(t) is
driven by biological uncertainty and cannot be hedged. On the other hand, the uncertainty driven by dB2(t)

can be hedged by using the portfolio. To eliminate this source of risk, we determine the number of units ν
by equating the coefficients of dB2(t) in the dynamics of the option value dJ and the spanning asset dS.
Thus,

σxX(t)ρ
∂J

∂X
+ σpp(t)

∂J

∂p
= νσsS(t).

Since we have assumed that σs = σp, this simplifies to

σx

σp
X(t)ρ

∂J

∂X
+ p(t)

∂J

∂p
= νS(t). (12)

Based on the approach in [7], we compute the expected return of the portfolio over a small time interval
dt. The expected return has three components: the expected change in the value of the harvesting option J ,
E [dJ ], the expected change from shorting ν units of the spanning asset S, E [−νdS], and the actual cash
flow generated from harvesting, given by 4.

Under the no-arbitrage assumption, a risk-free portfolio must grow at the risk-free rate λ. Therefore,
the expected return from the portfolio must equal λ(J − νS(t))dt. Combining these two expressions, we
get:

λ(J − νS(t))dt = E [dJ − νdS] + (p(t)qX(t)E(t)− (c1 + c2E(t))E(t))dt. (13)

Simplifying the expression, replacing dJ and dS from equations 5 and 7, and dividing both sides by dt,
we obtain:

λ(J − νS(t)) =
∂J

∂t
+

∂J

∂X

(
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
+

∂J

∂p
µpp(t) +

1

2

∂2J

∂X2
σ2
xX

2(t) +
1

2

∂2J

∂p2
σ2
pp

2(t)

+
∂2J

∂X∂p
ρσxX(t)σpp(t)− νµsS(t)

+ (p(t)qX(t)− c1 − c2E(t))E(t).

Rearranging terms and bringing all to one side, we have:

0 =
∂J

∂t
− λJ +

∂J

∂X

(
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
+

∂J

∂p
µpp(t)

+
1

2

∂2J

∂X2
σ2
xX

2(t) +
1

2

∂2J

∂p2
σ2
pp

2(t) +
∂2J

∂X∂p
ρσxX(t)σpp(t)

+ (λ− µs)νS(t) + (p(t)qX(t)− c1 − c2E(t))E(t).
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Using equations 10 and 11, we rewrite the equation as:

0 =
∂J

∂t
− λJ +

∂J

∂X

(
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
+ (λ− y)p(t)

∂J

∂p

+
1

2

∂2J

∂X2
σ2
xX

2(t) +
1

2

∂2J

∂p2
σ2
pp

2(t) +
∂2J

∂X∂p
ρσxX(t)σpp(t)

+ (p(t)qX(t)− c1 − c2E(t))E(t).

To determine the optimal harvesting strategy, we maximize the right-hand side of this equation with
respect to the control variable E(t). Hence, we need to solve:

0 = max
E(t)

[
∂J

∂t
− λJ +

∂J

∂X

(
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
+ (λ− y)p(t)

∂J

∂p

+
1

2

∂2J

∂X2
σ2
xX

2(t) +
1

2

∂2J

∂p2
σ2
pp

2(t) +
∂2J

∂X∂p
ρσxX(t)σpp(t)

+ (p(t)qX(t)− c1 − c2E(t))E(t)

]
.

Equivalently, this can be written in the form:

−∂J

∂t
= max

E(t)

[
− λJ +

∂J

∂X

(
rX(t) ln

(
K

X(t)

)
− qE(t)X(t)

)
+ (λ− y)p(t)

∂J

∂p

+
1

2

∂2J

∂X2
σ2
xX

2(t) +
1

2

∂2J

∂p2
σ2
pp

2(t) +
∂2J

∂X∂p
ρσxX(t)σpp(t)

+ (p(t)qX(t)− c1 − c2E(t))E(t)

]
, (14)

where the optimal effort level E(t) is constrained to belong within the range [Emin, Emax].

3.6 Optimal Effort

The next step is to determine the optimal harvesting effort that maximizes the value of the harvesting
option. To do this, we isolate the terms in 14 that depend explicitly on the control variable E(t), and define
the control problem:

C = max
E(t)

[
(p(t)qX(t)− c1 − c2E(t))E(t)− qE(t)X(t)

∂J∗(X(t), p(t), t)

∂X(t)

]
where J∗(X(t), p(t), t) denotes the value function under the optimal control policy.

Let E∗
C(t) be the optimal harvesting strategy in C. Then to calculate this E∗

C(t) we need to solve the
equation ∂C

∂E = 0:

∂C
∂E

= 0 ⇐⇒ p(t)qX(t)− c1 − 2c2E
∗
C(t)− qX(t)

∂J∗(X(t), p(t), t)

∂X(t)
= 0.

Solving for E∗
C(t), we obtain:

E∗
C(t) =

qX(t)

2c2

(
p(t)− ∂J∗(X(t), p(t), t)

∂X(t)

)
− c1

2c2
. (15)
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Replacing the optimal effort in 14 yields:

−∂J∗(X(t), p(t), t)

∂t
= −λJ∗(X(t), p(t), t) +

∂J∗(X(t), p(t), t)

∂X(t)

(
rX(t) ln

(
K

X(t)

)
− qE∗(t)X(t)

)
+ (λ− y)p(t)

∂J∗(X(t), p(t), t)

∂p(t)
+

1

2

∂2J∗(X(t), p(t), t)

∂X(t)2
σ2
xX

2(t)

+
1

2

∂2J∗(X(t), p(t), t)

∂p(t)2
σ2
pp

2(t) +
∂2J∗(X(t), p(t), t)

∂X(t)∂p(t)
ρσxX(t)σpp(t)

+ (p(t)qX(t)− c1 − c2E
∗(t))E∗(t), (16)

where

E∗(t) =


0, E∗

C(t) < Emin

qX(t)

2c2

(
p(t)− ∂J∗(X(t), p(t), t)

∂X(t)

)
− c1

2c2
, Emin ≤ E∗

C(t) ≤ Emax

Emax, E∗
C(t) > Emax

Eq. 16 is the HJB equation associated with the stochastic optimal control problem for harvesting. To
solve it, we impose the following boundary conditions:

1. E∗(Xmin, p(t), t) = 0, since the fishery is closed when the population reaches the minimum viable
level Xmin.

2. J∗(Xmin, p(t), t) = 0, given that the population is at its minimum viable point, eventually close to
extinction, the value of the harvesting option will be worthless.

3. J∗(X(T ), p(T ), T ) = 0, since at the final time T , the opportunity to delay harvesting no longer
exists.
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4 Computational Solution

The HJB equation derived in the previous section is a non-linear PDE involving a time variable, a
population variable and a price variable. Due to its complexity and the lack of an analytical solution, we
resort to numerical methods. In particular, we implement the Crank-Nicolson scheme combined with finite
differences approximations.

The problem is defined over the domain [0, T ] × R × R. However, to obtain a numerical solution, we
must discretize the domain by specifying minimum and maximum bounds for each variable. This results in
a domain of the form [t0, T ]× [x0, xm]× [p0, pl]. The discretized domain is shown in Figure 2.

Figure 2: Discretization of the Domain

Since the maximum sustainable population is denoted by K, there is a non-zero probability that the
population may exceed this level. To mitigate this, we choose xmax > K such that the probability of the
population surpassing xmax is negligible.

Now, we do the discretization of each variable as follows:

• Population grid: xi = x0 + i∆x; i = 0, 1, . . . ,m; ∆x =
xmax − x0

m
;

• Price grid: pk = p0 + k∆p; k = 0, 1, . . . , l; ∆p =
pmax − p0

l
;

• Time grid: tj = t0 + j∆t; j = 0, 1, . . . , n; ∆t =
T − t0

n
;
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Each point in the grid is represented by a triplet (xi, pk, tj), which forms a three-dimensional mesh
that resembles a cube. At each grid point, the value of the harvesting option and the optimal control are
represented by:

J∗
i,k,j = J∗(xi, pk, tj), E∗

i,k,j = E∗(xi, pk, tj),

for 0 ≤ i ≤ m, 0 ≤ k ≤ l and 0 ≤ j ≤ n.

Since the boundary condition is defined at the final time by the terminal condition J∗(X(T ), p(T ), T ) = 0,
the numerical scheme must be solved backwards in time, starting from t = T and proceeding step by step
until t = 0. We approximate the first-order time derivative using a forward difference scheme:

∂J∗
i,k,j

∂t
≈

J∗
i,k,j+1 − J∗

i,k,j

∆t
, 0 ≤ i ≤ m, 0 ≤ k ≤ l, 0 ≤ j ≤ n− 1.

To approximate the partial derivatives with respect to the population variable in the HJB equation 16,
we proceed as follows. For 1 ≤ i ≤ m−1, we use a centred difference scheme for the first-order derivative
and a three-point difference quotient for the second-order derivative:

∂J∗
i,k,j

∂x
≈

J∗
i+1,k,j − J∗

i−1,k,j

2∆x
,

∂2J∗
i,k,j

∂x2
≈

J∗
i+1,k,j − 2J∗

i,k,j + J∗
i−1,k,j

∆x2
.

At the boundary i = m, the centred differences are no longer applicable due to the absence of forward
values. Therefore, we use a backward difference scheme to approximate the first-order derivative and a
backward difference quotient applied twice to approximate the second-order derivative:

∂J∗
m,k,j

∂x
≈

J∗
m,k,j − J∗

m−1,k,j

∆x
,

∂2J∗
m,k,j

∂x2
≈

J∗
m,k,j − 2J∗

m−1,k,j + J∗
m−2,k,j

∆x2
.

The partial derivatives with respect to the price variable are approximated analogously.
For 1 ≤ k ≤ l − 1 and k = l, we use:

∂J∗
i,k,j

∂p
≈

J∗
i,k+1,j − J∗

i,k−1,j

2∆p
,

∂2J∗
i,k,j

∂p2
≈

J∗
i,k+1,j − 2J∗

i,k,j + J∗
i,k−1,j

∆p2
,

∂J∗
i,l,j

∂p
≈

J∗
i,l,j − J∗

i,l−1,j

∆p
,

∂2J∗
i,l,j

∂p2
≈

J∗
i,l,j − 2J∗

i,l−1,j + J∗
i,l−2,j

∆p2
.

At the lower price boundary, k = 0, we approximate the first-order derivative with a forward difference
quotient and the second-order derivative applying a forward difference scheme twice:

∂J∗
i,0,j

∂p
≈

J∗
i,1,j − J∗

i,0,j

∆p
,

∂2J∗
i,0,j

∂p2
≈

J∗
i,2,j − 2J∗

i,1,j + J∗
i,0,j

∆p2
.
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The cross-partial derivatives with respect to the population and price variables are computed using
backward differences at the upper boundaries, forward differences at the lower boundaries and centred
difference schemes for the remaining points:

∂J∗
i,k,j

∂x∂p
≈

J∗
i+1,k+1,j − J∗

i−1,k+1,j − J∗
i+1,k−1,j + J∗

i−1,k−1,j

4∆x∆p
, 1 ≤ i ≤ m− 1, 1 ≤ k ≤ l − 1,

∂J∗
m,k,j

∂x∂p
≈

J∗
m,k+1,j − J∗

m−1,k+1,j − J∗
m,k−1,j + J∗

m−1,k−1,j

2∆x∆p
, i = m, 1 ≤ k ≤ l − 1,

∂J∗
i,l,j

∂x∂p
≈

J∗
i+1,l,j − J∗

i−1,l,j − J∗
i+1,l−1,j + J∗

i−1,l−1,j

2∆x∆p
, 1 ≤ i ≤ m− 1, k = l,

∂J∗
m,l,j

∂x∂p
≈

J∗
m,l,j − J∗

m−1,l,j − J∗
m,l−1,j + J∗

m−1,l−1,j

∆x∆p
, i = m, k = l,

∂J∗
i,0,j

∂x∂p
≈

J∗
i+1,1,j − J∗

i−1,1,j − J∗
i+1,0,j + J∗

i−1,0,j

2∆x∆p
, 1 ≤ i ≤ m− 1, k = 0,

∂J∗
m,0,j

∂x∂p
≈

J∗
m,1,j − J∗

m−1,1,j − J∗
m,0,j + J∗

m−1,0,j

∆x∆p
, i = m, k = 0.

Using these approximations, we derive the discretized form of the equation 16. For 1 ≤ i ≤ m− 1 and
1 ≤ k ≤ l − 1, the scheme is given by:

−
J∗
i,k,j+1 − J∗

i,k,j

∆t
=

1

2

[
− λJ∗

i,k,j +
J∗
i+1,k,j − J∗

i−1,k,j

2∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,k,jXi

)
+

1

2

J∗
i+1,k,j − 2J∗

i,k,j + J∗
i−1,k,j

∆x2
σ2
xX

2
i

+
1

2

J∗
i,k+1,j − 2J∗

i,k,j + J∗
i,k−1,j

∆p2
σ2
pp

2
k

+
J∗
i+1,k+1,j − J∗

i−1,k+1,j − J∗
i+1,k−1,j + J∗

i−1,k−1,j

4∆x∆p
ρσxσpXipk

+ (λ− y)pk
J∗
i,k+1,j − J∗

i,k−1,j

2∆p

+
(
pkqXi − c1 − c2E

∗
i,k,j

)
E∗

i,k,j

]

+
1

2

[
− λJ∗

i,k,j+1 +
J∗
i+1,k,j+1 − J∗

i−1,k,j+1

2∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,k,j+1Xi

)
+

1

2

J∗
i+1,k,j+1 − 2J∗

i,k,j+1 + J∗
i−1,k,j+1

∆x2
σ2
xX

2
i

+
1

2

J∗
i,k+1,j+1 − 2J∗

i,k,j+1 + J∗
i,k−1,j+1

∆p2
σ2
pp

2
k

+
J∗
i+1,k+1,j+1 − J∗

i−1,k+1,j+1 − J∗
i+1,k−1,j+1 + J∗

i−1,k−1,j+1

4∆x∆p
ρσxσpXipk

+ (λ− y)pk
J∗
i,k+1,j+1 − J∗

i,k−1,j+1

2∆p

+
(
pkqXi − c1 − c2E

∗
i,k,j+1

)
E∗

i,k,j+1

]
.
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When i = m and 1 ≤ k ≤ l − 1:

−
J∗
m,k,j+1 − J∗

m,k,j

∆t
=

1

2

[
− λJ∗

m,k,j +
J∗
m,k,j − J∗

m−1,k,j

∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,k,jXm

)
+

1

2

J∗
m,k,j − 2J∗

m−1,k,j + J∗
m−2,k,j

∆x2
σ2
xX

2
m

+
1

2

J∗
m,k+1,j − 2J∗

m,k,j + J∗
m,k−1,j

∆p2
σ2
pp

2
k

+
J∗
m,k+1,j − J∗

m−1,k+1,j − J∗
m,k−1,j + J∗

m−1,k−1,j

2∆x∆p
ρσxσpXmpk

+ (λ− y)pk
J∗
m,k+1,j − J∗

m,k−1,j

2∆p
+

(
pkqXm − c1 − c2E

∗
m,k,j

)
E∗

m,k,j

]

+
1

2

[
− λJ∗

m,k,j+1 +
J∗
m,k,j+1 − J∗

m−1,k,j+1

∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,k,j+1Xm

)
+

1

2

J∗
m,k,j+1 − 2J∗

m−1,k,j+1 + J∗
m−2,k,j+1

∆x2
σ2
xX

2
m

+
1

2

J∗
m,k+1,j+1 − 2J∗

m,k,j+1 + J∗
m,k−1,j+1

∆p2
σ2
pp

2
k

+
J∗
m,k+1,j+1 − J∗

m−1,k+1,j+1 − J∗
m,k−1,j+1 + J∗

m−1,k−1,j+1

2∆x∆p
ρσxσpXmpk

+ (λ− y)pk
J∗
m,k+1,j+1 − J∗

m,k−1,j+1

2∆p
+
(
pkqXm − c1 − c2E

∗
m,k,j+1

)
E∗

m,k,j+1

]
.

When 1 ≤ i ≤ m− 1 and k = l:

−
J∗
i,l,j+1 − J∗

i,l,j

∆t
=

1

2

[
− λJ∗

i,l,j +
J∗
i+1,l,j − J∗

i−1,l,j

2∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,l,jXi

)
+

1

2

J∗
i+1,l,j − 2J∗

i,l,j + J∗
i−1,l,j

∆x2
σ2
xX

2
i

+
1

2

J∗
i,l,j − 2J∗

i,l−1,j + J∗
i,l−2,j

∆p2
σ2
pp

2
l

+
J∗
i+1,l,j − J∗

i−1,l,j − J∗
i+1,l−1,j + J∗

i−1,l−1,j

2∆x∆p
ρσxσpXipl

+ (λ− y)pl
J∗
i,l,j − J∗

i,l−1,j

∆p
+

(
plqXi − c1 − c2E

∗
i,l,j

)
E∗

i,l,j

]

+
1

2

[
− λJ∗

i,l,j+1 +
J∗
i+1,l,j+1 − J∗

i−1,l,j+1

2∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,l,j+1Xi

)
+

1

2

J∗
i+1,l,j+1 − 2J∗

i,l,j+1 + J∗
i−1,l,j+1

∆x2
σ2
xX

2
i

+
1

2

J∗
i,l,j+1 − 2J∗

i,l−1,j+1 + J∗
i,l−2,j+1

∆p2
σ2
pp

2
l

+
J∗
i+1,l,j+1 − J∗

i−1,l,j+1 − J∗
i+1,l−1,j+1 + J∗

i−1,l−1,j+1

2∆x∆p
ρσxσpXipl

+ (λ− y)pl
J∗
i,l,j+1 − J∗

i,l−1,j+1

∆p
+
(
plqXi − c1 − c2E

∗
i,l,j+1

)
E∗

i,l,j+1

]
.
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When i = m and k = l:

−
J∗
m,l,j+1 − J∗

m,l,j

∆t
=

1

2

[
− λJ∗

m,l,j +
J∗
m,l,j − J∗

m−1,l,j

∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,l,jXm

)
+

1

2

J∗
m,l,j − 2J∗

m−1,l,j + J∗
m−2,l,j

∆x2
σ2
xX

2
m

+
1

2

J∗
m,l,j − 2J∗

m,l−1,j + J∗
m,l−2,j

∆p2
σ2
pp

2
l

+
J∗
m,l,j − J∗

m−1,l,j − J∗
m,l−1,j + J∗

m−1,l−1,j

∆x∆p
ρσxσpXmpl

+ (λ− y)pl
J∗
m,l,j − J∗

m,l−1,j

∆p
+

(
plqXm − c1 − c2E

∗
m,l,j

)
E∗

m,l,j

]

+
1

2

[
− λJ∗

m,l,j+1 +
J∗
m,l,j+1 − J∗

m−1,l,j+1

∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,l,j+1Xm

)
+

1

2

J∗
m,l,j+1 − 2J∗

m−1,l,j+1 + J∗
m−2,l,j+1

∆x2
σ2
xX

2
m

+
1

2

J∗
m,l,j+1 − 2J∗

m,l−1,j+1 + J∗
m,l−2,j+1

∆p2
σ2
pp

2
l

+
J∗
m,l,j+1 − J∗

m−1,l,j+1 − J∗
m,l−1,j+1 + J∗

m−1,l−1,j+1

∆x∆p
ρσxσpXmpl

+ (λ− y)pl
J∗
m,l,j+1 − J∗

m,l−1,j+1

∆p
+
(
plqXm − c1 − c2E

∗
m,l,j+1

)
E∗

m,l,j+1

]
.

When 1 ≤ i ≤ m− 1 and k = 0:

−
J∗
i,0,j+1 − J∗

i,0,j

∆t
=

1

2

[
− λJ∗

i,0,j +
J∗
i+1,0,j − J∗

i−1,0,j

2∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,0,jXi

)
+

1

2

J∗
i+1,0,j − 2J∗

i,0,j + J∗
i−1,0,j

∆x2
σ2
xX

2
i

+
1

2

J∗
i,2,j − 2J∗

i,1,j + J∗
i,0,j

∆p2
σ2
pp

2
0

+
J∗
i+1,1,j − J∗

i−1,1,j − J∗
i+1,0,j + J∗

i−1,0,j

2∆x∆p
ρσxσpXip0

+ (λ− y)p0
J∗
i,1,j − J∗

i,0,j

∆p
+

(
p0qXi − c1 − c2E

∗
i,0,j

)
E∗

i,0,j

]

+
1

2

[
− λJ∗

i,0,j+1 +
J∗
i+1,0,j+1 − J∗

i−1,0,j+1

2∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,0,j+1Xi

)
+

1

2

J∗
i+1,0,j+1 − 2J∗

i,0,j+1 + J∗
i−1,0,j+1

∆x2
σ2
xX

2
i

+
1

2

J∗
i,2,j+1 − 2J∗

i,1,j+1 + J∗
i,0,j+1

∆p2
σ2
pp

2
0

+
J∗
i+1,1,j+1 − J∗

i−1,1,j+1 − J∗
i+1,0,j+1 + J∗

i−1,0,j+1

2∆x∆p
ρσxσpXip0

+ (λ− y)p0
J∗
i,1,j+1 − J∗

i,0,j+1

∆p
+

(
p0qXi − c1 − c2E

∗
i,0,j+1

)
E∗

i,0,j+1

]
.
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When i = m and k = 0:

−
J∗
m,0,j+1 − J∗

m,0,j

∆t
=

1

2

[
− λJ∗

m,0,j +
J∗
m,0,j − J∗

m−1,0,j

∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,0,jXm

)
+

1

2

J∗
m,0,j − 2J∗

m−1,0,j + J∗
m−2,0,j

∆x2
σ2
xX

2
m

+
1

2

J∗
m,2,j − 2J∗

m,1,j + J∗
m,0,j

∆p2
σ2
pp

2
0

+
J∗
m,1,j − J∗

m−1,1,j − J∗
m,0,j + J∗

m−1,0,j

∆x∆p
ρσxσpXmp0

+ (λ− y)p0
J∗
m,1,j − J∗

m,0,j

∆p
+

(
p0qXm − c1 − c2E

∗
m,0,j

)
E∗

m,0,j

]

+
1

2

[
− λJ∗

m,0,j+1 +
J∗
m,0,j+1 − J∗

m−1,0,j+1

∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,0,j+1Xm

)
+

1

2

J∗
m,0,j+1 − 2J∗

m−1,0,j+1 + J∗
m−2,0,j+1

∆x2
σ2
xX

2
m

+
1

2

J∗
m,2,j+1 − 2J∗

m,1,j+1 + J∗
m,0,j+1

∆p2
σ2
pp

2
0

+
J∗
m,1,j+1 − J∗

m−1,1,j+1 − J∗
m,0,j+1 + J∗

m−1,0,j+1

∆x∆p
ρσxσpXmp0

+ (λ− y)pl
J∗
m,1,j+1 − J∗

m,0,j+1

∆p
+

(
p0qXm − c1 − c2E

∗
m,0,j+1

)
E∗

m,0,j+1

]
.

Now, by rearranging the terms in the equations, we isolate the option value at each grid point corre-
sponding to time step j on the left-hand side and time step j+1 on the right-hand side. When 1 ≤ i ≤ m−1

and 1 ≤ k ≤ l − 1, the discretized equation becomes:(
1 +

∆t

2
λ+

∆t

2∆x2
σ2
xX

2
i +

∆t

2∆p2
σ2
pp

2
k

)
J∗
i,k,j

−
(

∆t

4∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,k,jXi

)
+

∆t

4∆x2
σ2
xX

2
i

)
J∗
i+1,k,j

+

(
∆t

4∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,k,jXi

)
− ∆t

4∆x2
σ2
xX

2
i

)
J∗
i−1,k,j

−
(

∆t

4∆p
(λ− y)pk +

∆t

4∆p2
σ2
pp

2
k

)
J∗
i,k+1,j +

(
∆t

4∆p
(λ− y)pk − ∆t

4∆p2
σ2
pp

2
k

)
J∗
i,k−1,j

−
(

∆t

8∆x∆p
ρσxXiσppk

)
J∗
i+1,k+1,j +

(
∆t

8∆x∆p
ρσxXiσppk

)
J∗
i−1,k+1,j

+

(
∆t

8∆x∆p
ρσxXiσppk

)
J∗
i+1,k−1,j −

(
∆t

8∆x∆p
ρσxXiσppk

)
J∗
i−1,k−1,j

−
(
∆t

2

(
pkqXi − c1 − c2E

∗
i,k,j

)
E∗

i,k,j

)
=

(
1− ∆t

2
λ− ∆t

2∆x2
σ2
xX

2
i − ∆t

2∆p2
σ2
pp

2
k

)
J∗
i,k,j+1

+

(
∆t

4∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,k,j+1Xi

)
+

∆t

4∆x2
σ2
xX

2
i

)
J∗
i+1,k,j+1

−
(

∆t

4∆x

(
rXi ln

(
K

Xi

)
− qE∗

i,k,j+1Xi

)
− ∆t

4∆x2
σ2
xX

2
i

)
J∗
i−1,k,j+1
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+

(
∆t

4∆p
(λ− y)pk +

∆t

4∆p2
σ2
pp

2
k

)
J∗
i,k+1,j+1 −

(
∆t

4∆p
(λ− y)pk − ∆t

4∆p2
σ2
pp

2
k

)
J∗
i,k−1,j+1

+

(
∆t

8∆x∆p
ρσxXiσppk

)
J∗
i+1,k+1,j+1 −

(
∆t

8∆x∆p
ρσxXiσppk

)
J∗
i−1,k+1,j+1

−
(

∆t

8∆x∆p
ρσxXiσppk

)
J∗
i+1,k−1,j+1 +

(
∆t

8∆x∆p
ρσxXiσppk

)
J∗
i−1,k−1,j+1

+

(
∆t

2

(
pkqXi − c1 − c2E

∗
i,k,j+1

)
E∗

i,k,j+1

)
.

When i = m and 1 ≤ k ≤ l − 1:(
1 +

∆t

2
λ− ∆t

2∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,k,jXm

)
− ∆t

4∆x2
σ2
xX

2
m +

∆t

2∆p2
σ2
pp

2
k

)
J∗
m,k,j

+

(
∆t

2∆x

(
rXm ln

(
K

Xm

)
− qE∗

m,k,jXm

)
+

∆t

2∆x2
σ2
xX

2
m

)
J∗
m−1,k,j

−
(

∆t

4∆x2
σ2
xX

2
m

)
J∗
m−2,k,j

−
(

∆t

4∆p
(λ− y)pk +
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The unconstrained harvesting effort is discretized as:

Ei,k,j =
qXi

2c2

(
pk −

J∗
i+1,k,j − J∗

i−1,k,j

2∆x

)
− c1

2c2
, 1 ≤ i ≤ m− 1, 0 ≤ k ≤ l, 0 ≤ j ≤ n,

Em,k,j =
qXm

2c2

(
pk −

J∗
m,k,j − J∗

m−1,k,j

∆x

)
− c1

2c2
, i = m, 0 ≤ k ≤ l, 0 ≤ j ≤ n.

This problem can be reformulated as a system of (m+ 1)× (l + 1) equations of the form:

AJ∗
− = BJ∗

+ + C

where:

• J∗
− =

[
J∗
0 | J∗

1 | · · · | J∗
n−1

]
,

• J∗
+ = [J∗

1 | J∗
2 | · · · | J∗

n] ,

• J∗
j =

[
J∗
0,0,j | · · · | J∗

i,k,j | · · · | J∗
m,l,j

]
, 0 ≤ i ≤ m, 0 ≤ k ≤ l, 0 ≤ j ≤ n.

By solving this system recursively backwards in time, we get the optimal option values at each point on
the grid. Finally, to determine the optimal solution at a specific population level X and time td, we perform
a polynomial interpolation by approximating the value of X using its neighbouring points in the partition
{x0, x1, . . . , xm}.
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5 Numerical Results and Interpretation

In this section, we will implement the discretization scheme described previously and conduct simula-
tions to analyse the behaviour of the fish population, the optimal harvesting effort and, consequently, the
value of the option to exploit the fishery.

As before, the value of the harvesting opportunity is denoted by J∗. When the option to fish reaches
time t, it is interpreted as the time that has passed since the option became exercisable, which means that
the fishing agent has T − t time remaining to exercise the harvesting option.

Obtaining reliable data on marine species is very challenging due to the complex nature of the aquatic
environment. To improve the approximation of our model, we gathered empirical data for the shrimp popu-
lation in Bangladesh, as reported in [18] and [15]. The parameters estimated in the article are implemented
in our simulations. All simulations are performed in the Python programming language. The baseline
parameter configuration is summarised in the following table:

Table 1: Values of the parameters used in the simulation

Parameter Value Units

Time horizon: T 10 year
Population sub-intervals: m 50

Price sub-intervals: l 50

Time sub-intervals: n 120

Number of simulations 1000

Wiener processes correlation: ρ 0

Population growth rate: r 1.331 year−1

Population carrying capacity: K 11400 tonnes
Initial population size: x 0.5K tonnes
Minimum population size: xmin 0.1K tonnes
Maximum population size: xmax 2K tonnes
Population volatility: σx 0.2 year−1/2

Catchability: q 9.77 · 10−5 SFU−1year−1

Maximum allowed effort: Emax 0.5r/q SFU
Minimum allowed effort: Emin 0 SFU

Discount rate: λ 0.05 year−1

Convenience yield: y 0.0475 year−1

Price volatility: σp 0.01 year−1/2

Initial price value: p0 8362.3 BDT · tonnes−1

Linear cost coefficient: c1 1156.8 BDT · SFU−1year−1

Quadratic cost coefficient: c2 0.01 BDT · SFU−2year−1

Here, BDT is an abbreviation for Bangladesh Taka, the national currency. The unit SFU (Standardised
Fishing Unit) represents a standardised measure of fishing effort, accounting for different types of vessel,
gear and fishing practices.
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Figure 3 shows 1000 simulated shrimp price trajectories.

Figure 3: Simulated Price Trajectories and Mean

Effort is a key component in this problem, since it represents the intensity of fishing activity, including
the number of vessels, workers, and the time spent fishing, among others. This variable also plays a central
role in determining how the shrimp population evolves over time. When the effort is too high, the population
may grow more slowly or even decline. On the other hand, when the effort is low, the population tends to
recover and increase faster. Therefore, it is essential to maintain levels of effort that ensure sustainability
and avoid the risk of population collapse.

Figure 4: Simulated Effort Trajectory and Mean

30



In Figure 4, two different trajectories are shown. The grey line represents a single trajectory from the
1000 simulations, while the black line shows the mean of all simulated trajectories.

We observe that the mean effort trajectory starts at its maximum level and decreases rapidly shortly
after. This behaviour is a consequence of setting a low initial population size, making it necessary to reduce
the effort to avoid a possible extinction. If a higher initial population had been chosen, then the mean effort
trajectory would have evolved differently.

Following the initial drop, we can see that the mean effort gradually increases and eventually stabilizes,
with minor variations, at the maximum sustainable level. Near the final time, the average effort shows
almost no variation and remains fixed at the maximum value. This is likely due to the time-limited nature
of the optimization problem, which imposes artificial constraints on the optimal solution. These constraints
include an early sharp decline in fishing activity to preserve the stock, followed by intensive exploitation in
the final years to maximise the return before the time runs out.

Focusing on the sample trajectory, we view that it generally follows the pattern of the mean trajectory.
However, since each sample path has its own unique random fluctuations, individual trajectories can differ
significantly.

Figure 5: Simulated Population Trajectory and Mean

Now, looking at Figure 5, we observe three plotted lines. The blue line indicates the initial population
level, set at K/2, the grey path represents a single sample trajectory from the 1000 simulations, and the
black trajectory shows the average of all simulated trajectories.

In this figure, we visualize how the shrimp population relates to the effort graph. Focusing first on the
mean population curve, we see that the population size begins its trajectory at the predefined value and
remains stable while the effort is initially high. As the mean effort approaches its minimum, the mean
population rises, reaching approximately 6000 tonnes. Finally, both mean effort and population stabilize as
the effort returns to its maximum. This pattern suggests that the adopted optimal effort strategy allows the
population to regenerate without being overexploited, ensuring the long-term sustainability of the fishery.
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It is worth noticing that a decrease in effort leads to an increase in population, which is consistent with
theoretical expectations, and appears to support the goal of achieving population stability. This relationship
is clearly reflected in both Figures.

Additionally, to reinforce these conclusions, we can examine the sample population trajectory. Notably,
periods of larger population growth tend to coincide with sudden drops in effort along the sample trajectory.

By observing Figure 6, we can draw conclusions about the behaviour of the harvesting option value and
how it changes in response to shifts in optimal effort and population size.

Figure 6: Simulated Harvesting Option Value Trajectory and Mean

Upon closer examination, we identify that the mean option value curve starts with an upward spike.
This initial increase is likely caused by the sudden drop in mean effort, which, as illustrated in Figures 4
and 5, leads to a subsequent rise in the average shrimp population. Consequently, a larger available stock
translates into higher potential revenues, resulting in an increased value of the harvesting option.

After this initial spike, the exploitation option enters a declining trajectory as both the mean population
size and harvesting effort stabilize, and as time progresses towards the expiration date. By the terminal time
of 10 years, the fishing option reaches the value of zero, which is consistent with the boundary condition
imposed. While this assumption simplifies the context of the model, it reduces the realism of the scenario,
as real-world fishing operations often extend over longer and more flexible time horizons.
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We cannot fully understand the results of this experiment without testing how sensitive the harvesting
option value is to certain parameters. The parameters we will vary are: the convenience yield y and the
initial population of shrimp x0.

Firstly, we will analyse the effect of changes in the convenience yield. The selected values are: 4.75%,
4%, and 3%.

Figure 7: Simulated Option Value Sensitivity to the Convenience Yield

In Figure 7, it is clearly illustrated that the harvesting option value increases as the convenience yield
decreases. This trend can be explained by the role of the convenience yield, which operates similarly to a
dividend. In financial markets, a dividend is a monetary reward paid to the owner of an asset, and it typically
leads to a drop in the asset’s price. Consequently, the higher the dividend, the larger the reduction in the
asset’s value. Since the holder of an option on that underlying asset does not receive the dividend itself, the
value of the option is negatively impacted by this price depreciation.

As discussed in Section 3.3, the convenience yield is not interpreted as the benefit of physical storage,
since fish, unlike grain or oil, cannot be practically stored for long periods. Instead, we view it as the benefit
of being able to harvest and sell fish immediately in response to market pressures. Thus, the value lies in
having the ability to react swiftly to favourable conditions, without delay.

Just like a dividend, a higher convenience yield increases the incentive to harvest immediately, as it
raises the return for acting quickly under attractive market circumstances. This diminishes the value of
waiting, making the harvesting option less advantageous. As a result, harvesting becomes more aggressive,
causing a faster decline in the shrimp population, further reducing the value of the option to harvest in the
future. This effect is clearly visible in Figure 7. The trajectories with higher convenience yields consistently
result in lower harvesting option curves compared to those with lower yields, converging to zero at the end.
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We now assess how changes in the initial shrimp stock, x0, affect the value of the harvesting option, J∗.
For this purpose, we consider the values 0.5K, 0.7K and 0.9K. As shown in Figure 8, the option value at
time t = 0 increases with the initial population size. This observation aligns with the conclusions drawn
from the previous analysis, since the option becomes more valuable when more shrimp are harvestable.

Figure 8: Simulated Option Value Sensitivity to the Initial Population Size

Interestingly, although the initial option values differ between the three cases, these differences are
relatively small. Moreover, the option values quickly converge to a common trajectory. This indicates that,
regardless of the initial stock quantity, the mean populations stabilize over time at the same level, leading
to equal option values in the long run.

This behaviour highlights a key feature of the model: the optimal harvesting strategy guides the average
population size towards a stable path, moving to approximately 6000 tonnes, independent of the initial
stock. Therefore, while the initial conditions influence the early option value, the long-term dynamics are
driven by the convergence of the population to this optimal equilibrium.
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6 Conclusions

In this work, we tackle the optimal harvesting problem by integrating stochastic fluctuations in both
fish population growth and price dynamics, each modelled by two distinct Brownian motions. To solve this
problem, we adopt a real options approach, treating the fishing activity as an option that grants the fisher
the right, but not the obligation, to harvest.

We constructed a portfolio consisting of a long position in the harvesting option and a short position
of ν units in a spanning asset. This formulation resulted in a non-linear PDE, which cannot be solved
analytically. Consequently, we applied numerical methods to approximate the solution, using the Crank-
Nicolson scheme.

Using the Gompertz model to describe the population dynamics, along with realistic data from a har-
vested shrimp population, we computed the optimal value of the harvesting option. Our results confirmed
the expected behaviour: the population size tends to increase as harvesting effort decreases and the option
value rises when shrimp stock is abundant.

We conducted sensitivity tests with respect to the convenience yield and the initial population. As
anticipated, the harvesting option value declines with an increase in the convenience yield, reflecting its
role similar to a dividend. Moreover, we found that the option value increases with the initial population
size, and that, regardless of the starting population, trajectories tend to converge to a common long-run
equilibrium.

The algorithm was implemented in the Python programming language. Readers interested in the code
may request it directly.

For future research, it would be highly valuable to extend the model by incorporating realistic, time-
varying interest rates and seasonal patterns in fisheries, as most are not accessible year-round. These en-
hancements would bring the model closer to real-world conditions and improve its practical applicability.
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