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ABSTRACT

The model by Wozabal et al. (2021) combines auction theory and real options theory
to represent renewable energy auctions, where the right to build subsidized renewable
projects is valued as a European put option. In their framework, bidders are heterogeneous
and hold private information on their initial costs and volatility signals. Two bidding
strategies are considered: a net present cost (NPC) approach, based on net present value,

and an option-based cost (OBC) approach, based on real option valuation.

This thesis builds on that model by introducing one key difference: investment op-
portunities are modeled as American put options. This extension captures the flexibility
of investment timing within a predefined maturity, providing a richer representation of
bidders’ strategic behavior in renewable energy auctions for Contracts for Differences
(CfDs). Using Least squares Monte Carlo (LSMC) method introduced by Longstaff &
Schwartz (2001), we evaluate investment projects as American put options, capturing the
option to defer under cost uncertainty to compute the OBC valuations. We show that
higher cost projects exhibit higher exercise thresholds and delayed exercise, while exer-
cise times tend to cluster near maturity. The model is applied to simulate outcomes of
the german onshore wind auction (ONWA17) and compared to real auction outcomes.
Incorporating American-style option valuation provides a more realistic understanding of
bidder behavior and highlights the value of early exercise flexibility in project realization

decisions.

KEYWORDS: Real Options; Investment under Uncertainty; Renewable Energy; Auc-

tions; Option pricing; Stochastic Dynamic Programming.
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A REAL OPTIONS APPROACH FOR RENEWABLE AUCTIONS

Daniel O. Gomes

1 INTRODUCTION

The accelerating transition from fossil fuels to renewable energy sources has become
a central objective in global environmental policy, in response to the urgent challenges of
climate change, biodiversity loss, environmental pollution, and resource scarcity (Green-
peace International2024). Renewable energy deployment requires not only technological
progress but also substantial financial investment, typically underpinned by supportive
public policy frameworks designed to reduce risks for private investors. The European
Union (EU), under its European Green Deal and legislated by the European Climate Law,
aims to achieve climate neutrality (net-zero greenhouse gas emissions) by 2050, with in-
terim targets of reducing emissions by at least 55% by 2030 and potentially 90% by 2040

European Parliament and Council of the European Union| (2021).

Within this framework, the EU has established a comprehensive regulatory structure,
most notably through its Renewable Energy Directive (RED), first introduced in 2009
and updated in 2018 (Directive 2018/2001/EU). The directive mandated that at least 32%
of EU energy consumption must come from renewable sources by 2030, with the latest
revision raising the binding target to 42.5%, alongside an indicative goal of 45%. Mem-
ber States have developed national implementation plans to meet these ambitions. For
example, Germany’s Renewable Energy Sources Act (EEG) sets an 80% renewable elec-
tricity target for 2030; Spain aims to achieve 74% renewable electricity by the same year;
Denmark targets a 70% reduction in greenhouse gas emissions compared to 1990 levels
by 2030. Although the United Kingdom is no longer part of the EU, it maintains coop-
erative relations under the Trade and Cooperation Agreement and pursues similar goals
through its Clean Power 2030 Action Plan, which targets 95% low-carbon electricity by
2030. These diverse national strategies reflect both the shared European commitment to

the energy transition and the recognition of climate risks.

To promote renewable investment effectively, many countries have increasingly adopted
competitive auctions combined with Contracts for Difference (CfDs) as the primary sub-
sidy mechanism. A CfD is a long-term contract between a generator and a public counter-
party, typically lasting fifteen years in which the generator is paid the difference between
a fixed “strike price” and a reference market price—typically the day-ahead market price,

though in principle a futures price could also be used—for each MWh of electricity pro-

1



DANIEL O. GOMES A REAL OPTIONS APPROACH FOR RENEWABLE AUCTIONS

duced. In these auctions, also known as renewable auctions, CfD contracts are compet-
itively allocated to generators that submit the lowest bid prices. Generators awarded a
CfD receive a fixed price per MWh, which reduces revenue volatility and mitigates in-
vestment risk. At the same time, the competitive nature of CfD auctions promotes price
discovery and allocative efficiency, lowering the overall subsidy burden compared to al-
ternative support schemes. Studies like del Rio| (2022), Fleck & Anatolitis (2022), |[Kreiss
et al.| (2017b), Matthaus (2020), Kreiss et al.| (2017a)), |Szabo| (2025), have extensively
analyzed auction design, pricing rules, penalties, and pre-qualification criteria, focusing
on project realization and cost efficiency. However, these studies often overlook project-
level valuation under uncertainty. Similarly, Fleck & Anatolitis (2023) provides a theoret-
ical assessment of the relationship between policy objectives and auction design, finding
that many countries applying renewable auctions pursue inconsistent strategies and offers
recommendations for aligning design with objectives. These contributions significantly
advance our understanding of multi-unit procurement auctions in renewable energy, but

they largely overlook project-level valuation under uncertainty.

Valuation of renewable energy investments can be enhanced by applying concepts
from financial and real options. Financial options are derivative contracts whose value
depends on an underlying asset, such as a stock, bond, or commodity. A call option
grants the holder the right, but not the obligation, to purchase the asset at a predetermined
strike price within a specified period, while a put option allows selling at the strike price.
European options can be exercised only at maturity, whereas American options can be
exercised at any time until maturity. The payoff for a put option at maturity 7" with strike
price K and underlying asset price Sy is max(K — Sp,0). Option contracts always
involve two counterparties: the buyer pays a premium upfront to acquire the right, while
the seller receives this premium in return for bearing the obligation to deliver if exercised.

The profit or loss of the writer is therefore the exact negative of the holder’s payoff.

Real options extend the financial option framework to investment decisions by treat-
ing the project’s expected cash flows as the underlying asset, the required investment
cost as the strike price, and the decision period as the option’s maturity. In contrast to
the net present value (NPV) approach, which assumes immediate and irreversible invest-
ment, real options explicitly incorporate managerial flexibility under uncertainty. This
flexibility may include deferring investment, expanding or contracting operations, sus-
pending activity temporarily, or abandoning the project altogether. In energy projects,
where uncertainty about regulatory conditions, technological progress, and market prices
is substantial, these options represent a significant source of value that NPV methods
fail to capture as shown in |Haahtela (2012), Dixit & Pindyck| (1994). By embedding

this flexibility in the valuation process, real options analysis provides a more realistic
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and forward-looking assessment of investment opportunities and is therefore considered
superior to static NPV methods in contexts characterized by long horizons and high un-
certainty Oliveira & Perkowski (2020), [Hagspiel et al.| (2021), Fernandes et al.| (2011),
Cesenal (2013)).

Despite the theoretical development of real options, most studies do not account for
auction-specific features, such as strike prices emerging from competitive bidding, grace
periods, or penalties that influence investment timing. One of the few exceptions is|Woza-
bal et al.|(2021]), who develop a model in which CfD contracts are valued as European put
options, distinguishing between option-based cost (OBC) and NPV-based cost (NPC) bid-
ders. This thesis extends that approach by modeling the OBC bidder’s investment oppor-
tunity as an American-style put option, allowing continuous exercise over the investment

window and capturing the flexibility to adapt to evolving market or policy conditions.

The main contributions of this work are fourfold. First, it introduces a real options
framework that integrates CfD strike prices within an American-style option structure.
Second, it applies the Least-Squares Monte Carlo (LSMC) method in this novel context.
Third, it provides a systematic comparison of valuation methods, contrasting European-
and American-style options. Finally, it conducts extensive sensitivity analyses using com-
parative statics to explore how investor preferences interact with auction outcomes, offer-

ing valuable insights for both investors and policymakers.

The remainder of the paper is organized as follows. Section [2] develops the auction
model, detailing the auction setup and bidder valuation approaches, contrasting the NPV-
based (NPC) framework with the option-based (OBC) American put option framework.
Section [3] develops the theoretical framework for valuing American-style options as an
optimal stopping problem and presents the Least-Squares Monte Carlo method as a nu-
merical solution, outlining its implementation and convergence properties. Section 4] ap-
plies the model to a real-world setting, presenting an auction simulation that analyzes
bidding behavior and auction equilibrium. Section [5] investigates bidder behavior un-
der variations in key parameters and compares simulation results between settings with
European-option bidders and American-option bidders. Section [f]discusses potential ex-

tensions to the model, and Section [/|concludes.

2 MODEL

In this thesis we use a Real Options Analysis approach to evaluate renewable energy
projects supported by Contracts for Differences (CfDs). Unlike the typical formulation
where the underlying is the value of the future cash flows, in this work the underlying

variable is the levelized cost of energy (LCOE) of the project. The strike price, in turn,
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corresponds to the guaranteed revenue per MWh under the CfD contact. This framing
reflects the central question faced by bidders: whether it is worthwhile to commit to the
project given uncertainty in costs. The option-like nature arises because the investor has
the right, but not the obligation, to proceed. If the realized cost of producing energy (L)
falls below the strike price guaranteed in the CfD (/'), then exercising the option yields
a positive payoff. If the costs remain above the strike, the option expires worthless, since
the project would not be undertaken. The option may be exercised at any time before the
contract deadline, reflecting the investor’s ability to decide strategically when to commit.
The optimal exercise occurs when the immediate gain from exercising the option (invest
in the project) exceeds the value of waiting for further cost uncertainty to resolve. This
interpretation differs from conventional real option models, where the project is seen as
an option to acquire an asset yielding uncertain revenues. In the CfD setting, the revenue
side is effectively fixed by policy, while uncertainty lies on the cost side. The real option

framework therefore captures the value of waiting to invest until costs evolve favorably.

2.1 Auction setup

This section outlines the auction environment in our analysis, drawing from and ex-
tending the framework of Wozabal et al.| (2021). The model captures key characteristics
of renewable energy auctions, including uncertainty in bidder participation, stochastic
project costs, and penalties for failing to start energy generation by a pre-determined dead-
line (maturity 7"). To assess the impact of investment flexibility on bidding strategies, we
introduce two bidder types. Net Present Cost (NPC) bidders evaluate their projects using a
traditional net present value approach, thereby ignoring the value of flexibility embedded
in the investment. In contrast, Option-Based Cost (OBC) bidders recognize the manage-
rial flexibility inherent in the investment decision. They treat the CfD contract as a real
option, valuing the right to invest or not under uncertain future costs. Our extension de-
parts from Wozabal et al.| (2021) by modeling OBC bidders’ valuation as an American
put option, whereas the original framework assumes a European put option. While the
authors argue that the early exercise feature has negligible impact, we explicitly account

for it to examine whether this holds in our setting.

Given that the investor holds both the right to invest and a contract with a fixed price
under the CfD, the primary source of uncertainty we model is the cost of the project. The
CID effectively mitigates volatility and risk on the revenue side, so price uncertainty in the
electricity market is not considered. Furthermore, since we do not allow for the possibility
of investing without a CfD, we assume that holding such a contract is always preferable
to being exposed to market risk. We also assume that the option value of participating

in the auction is always greater than the costs of meeting the eligibility requirements, or

4
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equivalently, that entering the auction is costless. In theory, this implies that for private
investors considering renewable energy projects, participating in an auction for a CfD
contract is always preferable to investing without support. This assumption is not overly
restrictive, since CfD policies are specifically designed to mitigate market risk and thereby

accelerate the deployment of clean energy technologies.

We consider N risk-neutral bidders. Each bidder + = 1,2,..., N may offer several
projects, indexed by h = 1,2, ..., H?, each with different generation capacity. The auc-
tioneer goal is to contract a fixed total capacity of C' € N megawatt (MW). Project sizes
are modeled in increments of ¢ kilowatt (kW), which defines the scale of the auction in
terms of contract units. Each project bid consists of a price per megawatt hour and the
associated project capacity. Bids consist of discrete price-quantity pairs, which together
from a step function representing the bidders supply offer. The auction can follow ei-
ther a uniform pricing rule, where all awarded projects are paid the clearing price, or a
discriminatory pricing rule, where each project is paid its own bid price. The auctioneer
receives the bids and selects the winning bidders, going from projects with the lowest bids
to highest bids until the procurement target is reached. In most renewable auctions, the
pre-qualification criterion is a deposit that becomes non-refundable if winning investors
choose not to proceed with the project. Assuming the absence of credit or deposit risk, we
interpret this deposit as a fee, effectively serving as a penalty for non-realization, i.e., for
not exercising the option to invest. In our analysis, we focus on uniform pricing, where all
awarded projects receive the same clearing price determined by the marginal bid required
to fulfill the auctioned capacity. Project costs are summarized by their Levelized Cost of
Electricity (LCOE), capturing all fixed and variable costs over the project’s life cycle. We
model LCOE dynamics using a geometric Brownian motion, reflecting uncertainty over

input costs and market conditions
AL = " L dt + o' L d B}", (1)

where L is the LCOE of the project h from bidder 7, 1" is its drift, o is the volatility and
dB" standard Brownian motion. While in reality cost processes may be correlated due
to common input markets or supply chains, we assume uncorrelated Brownian motions,
following Wozabal et al. (2021)). For a more detailed justification, see the discussion
in that paper. As argued there, this assumption does not materially affect the results,
since bidding behavior and realization probabilities are determined by marginal rather
than joint cost distributions. We later relax this assumption. Following the assumptions

used in [Wozabal et al.| (2021) frame the auction setup

Assumption 1. (Uncertain Participation). Each bidder has a strictly positive proba-
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bility of not participating in the auction. Participation decisions are independent across
bidders. This introduces strategic uncertainty and avoids degenerate equilibria by pre-
venting bidders from knowing the exact number of competitors ex-ante. Swinkels (2001},
Jackson & Kremer (2006)

Assumption 2. (Independent Private Values) We assume that at the time of bidding
(t = 0), each firm observes L and o° its firm-specific volatility. These signals are

assumed to be independent private values.

Assumption 3. (Competitive pressure) Bidders anticipate the presence of competi-
tors with similar private information, particularly when participation rates are high. This

assumption ensures a sufficiently competitive bidding environment.

We adopt a risk-neutral approach to estimate the fair value of the projects. The
transformation from the physical measure P to the risk-neutral measure Q is justified
by arbitrage-free pricing theory and complete market assumption. Under Q, the process

Li" must satisfy the condition that the discounted process e " Li" is a Q-martingale

Eg [e L) | F] = LY, forallt <T.

This requirement uniquely determines the drift of the process under QQ to be equal to
the risk-free rate r. Hence, the dynamics of Li" under the equivalent martingale measure

Q becomes

dL}" = rL"dt + o' L}" dB™, 2)

where B;@’ih is a standard Brownian motion under the risk-neutral measure Q, and 7 is the
constant risk-free interest rate. This ensures that the cost process is compatible with risk-
neutral valuation principles, and allows option-based investment decisions to be priced

using expected discounted payoffs under Q.
2.2 Bidder’s Real Option Valuations

This subsection details the valuation methods implemented for each bidder type under
risk-neutral framework. We consider two types of bidders that use one of the following
valuations: Net Present Value valuation, which treats projects as deterministic cash flows
without flexibility. American option-based valuation, which captures the possibility of

early exercise and is solved numerically via Least Squares Monte Carlo simulation.

Wozabal et al.| (2021) argues that typically renewable auctions have a sufficient num-

ber of bidders to be reasonable to assume that bidders are truthful. A bid is considered
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truthful if it equals the bidder’s reservation price that is, the price at which the bidder is
indifferent between accepting the contract or not. In this context, submitting such a bid is
referred to as truth-telling. We further assume that the decision to invest is instantaneous:

if the option is exercised energy production starts immediately.

NPC bidders evaluate the investment opportunity using a standard net present value
(NPV) approach which means they do not account for the value of flexibility or the option
to delay investment that is embedded in the awarded project. To allow for a consistent
comparison with OBC (option-based cost) bidders, we assume that NPV bidders develop
their projects at the contract maturity date, ¢ = 7" and that commit to exercise the contract
regardless of how project costs evolve. Hence, this valuation approach is equivalent to
viewing the awarded CfD as a forward contract on electricity revenues. NPC bidders
commit to invest at maturity T at the strike price that makes them indifferent between
investing or not, i.e., the strike that satisfies the conditions in the following equations.
Under a uniform pricing rule, this strike should be interpreted as the minimum acceptable
price, since the clearing price may turn out to be higher than the bidder’s submitted strike
price.

NPV(L}, K)=¢"" (K — L) (3)

Where K is the awarded price at auction. So the expected project valuation per MWh
corresponds to the discounted difference between the fixed remuneration price /K and the
expected levelized cost of energy (LCOE) at time 7'. Formally, the expected NPV is given
by

ES [NPV(LE, K)] = e (K —E[LY]) = e (K — 'L = Ke '™ — L' (4)

where Li" denotes the initial LCOE for each bidder and project. For Net Present Cost
(NPC) bidders, the valuation of the investment opportunity is straightforward. The bid
submitted by an NPC bidder corresponds to the strike price K that results to the net
present value of the project to zero, conditional on investment occurring at 7'. This results

in a simple valuation formula:
E® e (K - )] =0,
& e (Kt —EO[LY]) = 0,
e (K;If,g — eTTL6h> =0,
= K;’lfg =L

Now for OBC bidder’s, as mentioned, this bidder’s values their awarded project as a real
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option, explicitly accounting for the managerial flexibility embedded in the investment
decision. To capture the full flexibility, we model the project as an American-style put
option, which allows the bidder to decide at any time ¢ < 7" whether to invest. Exercising

the option corresponds to committing to the project when it is economically favorable.

Under the risk-neutral measure Q, the value of this option at time ¢, denoted V4, is:

V(t, LM = sup E2|e ) max (K — Li", —P) | L;’h]. )
€T}, 1)
where T is the set of admissible stopping times, L is the stochastic LCOE process de-
fined in (2)) and P the fee. Since this optimal stopping problem does not admit a closed-
form analytical solution for general stochastic processes, we rely on numerical approxi-
mation methods to estimate the option value. In particular, we employ the Longstaff—-Schwartz
Monte Carlo (LSMC) algorithm, which approximates the continuation value through re-

gression on simulated paths. So the payoff function is
Payoff, = max(K — Li" —P), (6)

which accounts for both the gain from investing when costs are favorable and the potential
cost associated with the fee. The continuation value at each step is then estimated via
regression on a chosen set of basis functions. In our implementation, we choose the first
four Laguerre polynomials as basis functions, which are commonly used in LSMC due
to their orthogonality and numerical stability. We consider only paths where the payoff
exceeds -P. Comparing this adapted payoff to the estimated continuation value determines

the optimal exercise decision for each path and time step.

The optimal bid K, g%c, am 18 the strike price such that the American option value equals

Zero:
* *7h . h —_—
KO%C,Am : %Q(KOéC,Am7T? Li",0,P,r) =0.

A detailed description of how we compute and solve the optimal stopping problem, as

well as the American-style option valuation, is provided in Section 3]
3 LEAST-SQUARES MONTE CARLO AND OPTIMAL STOPPING PROBLEM

The valuation of American-style options, which permit exercise at any time before
maturity, is essential for modeling managerial flexibility in renewable energy investments
under CfDs. This valuation problem is formulated as an optimal stopping problem, where
the investor seeks the optimal time to commit to a project based on the stochastic evolution

of project costs relative to the fixed strike price guaranteed by the CfD.

8
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This optimal stopping problem is governed by the Hamilton-Jacobi-Bellman (HJB)
variational inequality:
ov ov 1 0*V
max {ma:c(K ~L,—P)-V, v rLE + = 2L2m — H/} =0, (7)
where the first term corresponds to immediate exercise and the second to continuation.
The solution must satisfy the boundary condition V (T, L) = (K — L, —P).

Analytical solutions are generally intractable, especially in multi-factor or path-dependent
settings. The Least-Squares Monte Carlo (LSMC) method, introduced by Longstatf &
Schwartz| (2001)), provides a flexible numerical approach by approximating the continua-

tion value using regression on simulated paths.

Let N denote the number of discrete time steps and M the number of simulated paths.
Define the time grid {to,t1,...,txy = T} with t,, = nAt and At = T'/N. For each path
m =1,..., M, simulate the project cost { ;" }2"_ under Q. The payoff at each time is:

H"™ = maz(K — L™, —P). (8)

The value process { V™ }, which represents the value of the option at time step 7, is

computed backward using dynamic programming:

V= Hy ©)

Vihm = max <Hflh’m, Cn(LiZ’m)> , n=N-—1,...,0,
where é\jlhm(Liﬁm) is the estimated continuation value. The true continuation value at
time t,, can be written as the conditional expectation of the discounted future cash flows

(realized when following the optimal stopping rule from ¢,,,; onward):
Czh m(LZ,l m) _ EQ [ —rAt Yn—l—l { Lzh m} (10)

where Y,, 11 denotes the path of cash flows from ¢,,,; onward conditional on the option not
being exercised at or prior to ¢,, and on the option holder following the optimal stopping
strategy for all ¢, ¢, < t; < T'. The LSMC fitted continuation value én() is the projec-
tion of the true continuation value onto the span of the chosen basis functions {¢, 3-]:1

Explicitly,
Czhm Lzhm Za]qb] Lzhm (11)
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obtained by regressing the discounted future cash flows generated by the option
Yz‘i{n _ —rAtVzh ,m (12)

n

onto a set of basis functions {¢;}7_, for paths that follow Z,, = {m | H]" > —P}:
2
. zh m ih,m

min ( il Z ;i (Liw )) : (13)

mEIn

The stopping rule for each path and time step is:

7™ = min {tn | Hihm > @(L;ﬁvm)} , (14)

and the estimated option value is:

'Lhmi

zhm' (15)

M:

The procedure is summarized as:

1. Simulate M paths {L;"""} under Q, over the discrete time grid 0 = t; < t; <
<ty=T..

2. Set terminal condition V""" = Hy"™ for all m.
3. Forn = N — 1 down to 0:

(a) Regress Y,/'" onto {¢;(L{"™)}/_, for m € T,.
(b) Compute C?*(L}"™) and update V.

4. Compute Vm " as the average discounted payoff.

The convergence properties of the Least-Squares Monte Carlo (LSMC) method have
been extensively studied and are well established within the literature on numerical op-
timal stopping. The method can be understood as a layered approximation procedure
involving (i) discretization of the continuous-time stopping problem, (ii) approximation
of conditional expectations through regression onto a finite set of basis functions, and (iii)
estimation via Monte Carlo sampling. Each layer introduces an approximation error, but

under suitable conditions these errors can be controlled.

Rigorous results show that the LSMC estimator converges to the true option value

as the number of simulated paths increases, the set of basis functions is enriched, and

10
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the time discretization becomes smaller. In particular, Clément et al. (2002) provide a
detailed convergence analysis under fixed basis functions, while Stentoft (2004) extends

the results to settings where the number of basis functions grows with the sample size.

4 CASE STUDY

In this section, we apply the theoretical framework and modeling approaches devel-
oped to a practical example. Specifically, we analyze a renewable auction scenario where
different types of bidders submit projects with varying cost structures and risk profiles.
This case study shows how the valuation methods and auction mechanisms perform in a

realistic setting.

We simulate the outcomes of the German onshore wind energy auction held in August
2017. Following the auction settings in Wozabal et al.| (2021]), we consider: a benchmark
scenario with NPC and OBC bidders using European-style valuation, and a second setting
where OBC bidders adopt American-style valuation. This allows us to isolate and evaluate

the impact of early exercise flexibility on bidding strategies and auction results.

4.1 Auction simulation

To simulate auction outcomes, we require information on the auction’s regulatory
framework (such as pricing format, bid caps, and contract duration), bidder characteristics
(number of participants, project costs, and cost uncertainty), and a financial parameter (the

risk-free interest rate).

The ONWA17 auction procured 1000 MW of onshore wind capacity, with a bid
cap of €70/MWh. Two bidder categories were eligible: commercial entities and non-
commercial bidding groups (NCBGs). NCBGs benefitted from longer grace periods (4.5
vs. 2.5 years), lower financial pre-qualification thresholds (€15,000/MW vs. €30,000/MW),
and uniform pricing (award equal to the clearing price), whereas commercial bidders
faced discriminatory pricing (award equal to their submitted bid). Since NCBGs con-
stituted 81% of participants and 99% of awarded capacity, we focus our simulation on
this group, applying their parameters. Also, Wozabal et al. (2021)) calibrated the ratio of
NPC to OBC bidders using the real auction results, finding that the simulations matched
most closely with the real outcomes when 65% of bidders were OBC. Instead of perform-
ing a similar calibration, we directly adopt a 60/40 ratio of OBC to NPC bidders in our

simulations.

Financial pre-qualification requirements were converted into a per-MWh charge by

assuming a project lifetime of 25 years, an annual full-load hour figure of 2,721 hours,
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and discounting using a 1.17% risk-free rate (German 30-year bond yield in 2017). This
yields a pre-qualification cost equivalent to €0.2443/MWh.

The auction received 281 bids with project sizes ranging from 750 kW to 23.8 MW.
Our simulation replicates bid sizes through a two-stage process: first, we draw the capac-
ity bracket for each project based on empirical probabilities Bundesnetzagentur (2025);
second, we sample the exact capacity from a uniform distribution within that bracket. We
simulate 150 bidders, each submitting one to three projects with equal probability, which

results in an expected total of roughly 300 bids, close to the observed figure.

Levelized cost of energy (LCOE) values for German onshore wind in 2017 ranged
from €39.9 to €82.3/MWh, depending on location and site conditions. Consistent with
Wozabal et al.|(2021), we assign one volatility estimate per bidder rather than per project,

capturing firm-specific uncertainty in costs.

Overall, the parameters and setup build on the renewable auction literature and closely
follow the ONWA17 benchmark. Our main contribution lies in extending this framework

to analyze the role of American-style bidders.

An overview of all parameter values and distributions is provided in Table[[| Following

Parameter Value / Distribution

Auctioned capacity 1000 MW

Bid cap 70 €/ MWh

Project life time 25 years

Grace period 4.5 yrs (NCBGs); 2.5 yrs (commercial)

Financial pre-qualification 15,000 €/ MW (NCBGs); 30,000 €/ MW (commercial)
Pre-qualification payment 0.2443 €/MWh (converted, 25 yrs, 2721 full load hours, r=1.17%)
Pricing format Uniform (NCBGs)

Risk-free rate 1.17% (German 30-yr bond, 2017-2018)

Number of participants 150 bidders

Projects per bidder 1-3, equal probability

Share of bidder types 60% OBC, 40% NPC

Bid capacities 750 kW-23.8 MW

LCOE range 39.9-82.3 €/ MWh

Volatility o 0-15%, triangular distribution

Capital expenditure (Cc) [€/kW] Normal, 1500-2000 €/kW (mean 1750, SD 350)
WACC [%] 3.5% (constant)

Loan period 25 years

Fixed O&M Triangular, 12-48 €/kW (mode 30)

Variable O&M 0.005 €/kWh

Capacity factor [%] Normal, mean 31.06, SD 7 (range 28.53—41.10%)
Monte Carlo runs 200,000

TABLE I: Parameters used in the auction simulations.

Heck et al. (2016), the initial levelized cost of electricity (LCOE) for each project is
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computed in two steps. First, the annualized capital repayment P is derived from capital
expenditure C, using the annuity formula

(16)

P [ L)

(I+w)n—1

where w denotes the weighted average cost of capital (WACC) and n the project lifetime
in years. Second, total LCOE per MWh is calculated as
P+ O&Mp
LCOE = ————— + O&M 17

’760 - C; v {17
where O& M. are fixed operation and maintenance costs, O& My, variable operation and
maintenance costs, and C'y the capacity factor of the plant. This yields a distribution of
project-specific initial costs L¥, which are then used as the starting values in the stochastic

cost process.
5 RESULTS AND DISCUSSION

This section analyzes bidder behavior under variations in key parameters and com-
pares auction simulation results between settings with European-option bidders and American-
option bidders. In particular, it examines how bidder valuations vary with auction settings
and economic factors fee, maturity, and volatility. The comparison highlights the dif-
ferences in option valuation approaches and their implications for bidding strategies and
auction outcomes. The analysis is supported by numerical simulations and illustrated
through a case study on the ONWA17 auction.

5.1 Option values, exercise boundary and time distribution

To illustrate the effect of the fee parameter P on option values and exercise behavior,
three representative bidders were selected from the auction simulation. These bidders
were chosen directly from one auction simulation, and thus face the real option contract
under their own initial project costs and volatilities. All bidders face the same strike
price, given by the auction clearing price (K = 42.54), but differ in their underlying cost

dynamics:

e Bidder 1: Ly = 41.20, 0 = 0.13 (lowest accepted strike, winning project)
* Bidder 2: Ly = 48.87, 0 = 0.11 (intermediate winning bidder)

* Bidder 3: Ly = 56.88, o0 = 0.10 (marginal winning bidder, sets the clearing price)
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These bidders were taken from one simulation of the auction. This setup allows interpret-
ing the auction as allocating the same American put option (with strike K and fee P) to
heterogeneous projects, each with distinct initial costs and risk profiles. Understanding
option exercise behavior requires examining not only the value of the option over time,
but also when exercise occurs and how frequently bidders exercise under different fee

levels.

Figures [IH3] display, for each representative bidder, the estimated density of exercise
times (left panel) and the cumulative probability of exercise before expiry (right panel)

for varying fees P.

From Bidder 1 to Bidder 3, we observe a clear decrease in both the overall probability
of investing in the project and the frequency of early exercise. For example, Bidder 1
has several paths with optimal exercise between years 0 and 2, whereas Bidder 3 has
almost no paths for which early exercise is optimal. This behavior is largely explained by
the higher initial cost of Bidder 3. The same pattern is evident in the exercise boundary
plots since the exercise frontier is computed from the simulated paths, time intervals
with almost no exercisable paths make the boundary estimation unreliable or infeasible.
Therefore, we discard these intervals from the analysis, as they are difficult to estimate

and have limited relevance.

Figure [I] shows that Bidder 1’s exercise behavior is concentrated at the end of the
horizon, but not as extremely delayed as the other bidders. The mean exercise times
(2.82,2.80, 2.77 for P = 0.2443, 0.4886, 0.7329 respectively) are relatively earlier. The
fee parameter P has virtually no effect on the timing distribution: all density curves nearly
overlap. On the right panel, the cumulative probability of exercise increases modestly
with P: from 57.61% to 59.35%. Thus, Bidder 1 exhibits the highest overall propensity

to exercise among the three bidders.
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—— P_fee=0.2443 | mean=2.81 | exercised=57.61% | — Exercise Probability

P_fee=0.4886 | mean=2.82 | exercised=58.43%
—— P_fee=0.7329 | mean=2.77 | exercised=59.35%
59.25
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Exercise Time P fee

FIGURE 1: Bidder 1: distribution of exercise time (left) and probability of exercising
before 7' (right).

For Bidder 2 (Figure[2)), the exercise time distribution is shifted further toward the end
of the horizon, with mean exercise times around 3.5. The fee parameter P again does not
materially change the timing profile, but the overall exercise probability is much lower:
rising from 27.03% to 28.71% as P increases. This suggests that, compared to Bidder 1,
Bidder 2 is considerably more reluctant to exercise, despite showing the same positive

relationship between P and exercise likelihood.

—— P_fee=0.2443 | mean=3.56 | exercised=27.03% 2875 — Exercise Probability
P_fee=0.4886 | mean=3.54 | exercised=27.84%
—— P_fee=0.7329 | mean=3.53 | exercised=28.71%

28.50

28.25

28.00

o

Probability Density
Exercised (%)

27.75

27.50

27.25

27.00

FIGURE 2: Bidder 2: distribution of exercise time (left) and probability of exercising
before 7' (right).
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Finally, Bidder 3 (Figure [3) exhibits the most extreme behavior. The density of exer-
cise time shows a very sharp spike at maturity, with mean exercise times essentially at 7’
(3.96-3.99). This bidder almost always delays until the very last moment, and exercises
with very low frequency: only 6.97% at P = (.2443, increasing slightly to 7.78% at
P = 0.7329. Compared to the others, Bidder 3 displays both the lowest overall exercise

probability and the strongest preference for waiting.

—— P_fee=0.2443 | mean=3.99 | exerc
P_fee=0.4886 | mean=3.99 | exerc
—— P_fee=0.7329 | mean=3.96 | exerci

7.8 —— Exercise Probability

ercised (%)

Probability Density

FIGURE 3: Bidder 3: distribution of exercise time (left) and probability of exercising
before 7' (right).

Overall, these results highlight how the uniform auction mechanism implicitly allo-
cates heterogeneous option values: the same contract is worth more to bidders with lower
initial costs, while being closer to fairly priced for the marginal bidder. This valuation het-
erogeneity is directly reflected in the subsequent exercise behavior. Across all three bid-
ders, two consistent patterns emerge. First, the mean exercise time distribution decreases
slightly as the fee parameter P increases, indicating that higher fees induce somewhat
earlier exercise. Second, the fee also raises the cumulative probability of exercise before
expiry, although to different degrees across bidders. Bidder 1 exercises most often (about
58-59%), Bidder 2 less so (about 27-28%), and Bidder 3 very rarely (about 7%). This
heterogeneity reflects underlying differences in initial cost levels and risk, and highlights

how the same auction contract produces very different incentives across bidders.
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FIGURE 4: Cost path simulations and exercise probabilities of bidders using European
put option for comparison

On the left, we present three examples of simulated cost paths for each bidder that are
in the money at maturity (7'), using an European put Option valuation for comparison.
While on the right we show their corresponding exercise probabilities. We observe a
consistent pattern: as the fee P increases, the exercise probabilities also increase, but at a
decreasing rate. This indicates that bidders become less sensitive to changes in the fee as

it grows larger than American-type bidders.

Figures show the evolution of option values over time for each bidder under three
levels of the fee parameter P. In all cases, option values decline as maturity approaches,
reflecting the shrinking value of waiting. A higher P systematically reduces option values
at every point in time, capturing the effect of fees as a “penalty” for postponement. The
decline is sharper for Bidders 2 and 3, who begin with higher cost levels (Ly > K),

leaving their options closer to being out of the money.

— —— Fee (P) = 0.2443

44 N Fee (P) = 0.4886
—— Fee (P) =0.7329

Option Value
™~

FIGURE 5: Bidder 1 option values over time for three different fee levels.
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—— Fee (P) = 0.2443
Fee (P) = 0.4886
—— Fee (P) = 0.7329
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FIGURE 6: Bidder 2 option values over time for three different fee levels.
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FIGURE 7: Bidder 3 option values over time for three different fee levels.

Note that, as expected, in Figure [/| the option values for Bidder 3 are negative. This
bidder corresponds to the marginal bidder whose strike price satisfies the optimal bidding
condition, that is, the option value at ¢ = 0 equals zero (V = 0). For this reason, as time
progresses, the option value converges to the fee P. In contrast, Bidders 1 and 2 have
strike prices above their respective optimal bidding strategies, which results in positive
option values. Hence, while Bidders 1 and 2 exhibit positive option values throughout,
Bidder 3—being the marginal, optimally bidding participant—shows negative option val-

ues that converge toward the fee as time passes.

In addition to option values, Figures [HI0] report the estimated exercise boundary for
each bidder under varying fee levels. The comparative static is clear: higher P shifts the

exercise threshold upward at nearly all maturities, making earlier exercise more attractive.
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This pattern is consistent with interpreting P as a cost of waiting. At the very beginning
of the horizon, some irregularities appear in the estimated boundary, which are due to nu-
merical noise in the LSMC procedure (few paths exercise early, weakening the regression
fit). We therefore focus on the mid-to-late horizon, where the results are more reliable: as

maturity approaches, all boundaries converge upward toward the strike price.

—— P fee = 0.2443
P fee = 0.4886
421 — pfee=0.7329

W Y
@ =
L L

Exercise Boundary (S)
w
(=]

329

FIGURE 8: Bidder 1 exercise boundary for three different fee levels.

—— P_fee = 0.2443
P fee = 0.4886
42 { — P_fee =0.7329

Exercise Boundary (S)

T T T T T T
2.0 2.5 3.0 35 4.0 4.5
Time

FIGURE 9: Bidder 2 exercise boundary for three different fee levels.
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FIGURE 10: Bidder 3 exercise boundary for three different fee levels.

Figures compare exercise boundaries across maturities (1" = 3.5,4.5,5.5). As
maturity increases, the exercise frontier shifts downward, reflecting the larger value of
waiting when more time remains. Crucially, the frontier itself is determined by option pa-
rameters (volatility, discounting, strike, and exercise-related costs) and does not depend
on the initial cost level Lgy; Ly only determines a bidder’s position relative to that frontier.
In our simulations bidders differ both in L; and in volatility. Importantly, differences in
the exercise frontier across bidders arise from variation in volatility (and, where applica-
ble, discount rates or fees), not from the initial cost level L. Lower volatility raises the
put’s exercise frontier, meaning investors are willing to exercise at relatively higher cost
realizations, while higher volatility lowers the frontier because the option value of waiting
increases. Accordingly, the observed decline in early-exercise frequency from Bidder 1
to Bidder 3 reflects the effect of their volatility profiles: greater uncertainty delays invest-

ment, whereas lower uncertainty accelerates it.
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Exercise Boundary for Different Maturities (P_fee = 0.2443)
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FIGURE 11: Bidder 1 exercise boundary for different maturities.

Exercise Boundary for Different Maturities (P_fee = 0.2443)
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FIGURE 12: Bidder 2 exercise boundary for different maturities.
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FIGURE 13: Bidder 3 exercise boundary for different maturities.
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5.2 Varying Volatility

Figurepresents two key relationships: Bidding Strike Price (K *) vs. Volatility and
OBC American-style option value at fixed K vs. Volatility. The plots are constructed by
considering a representative bidder with an initial cost Ly. For the left panel, the optimal
bidding strike price K* is recalculated for each level of volatility, while for the right
panel, the bidding strike K** is fixed and the option value is evaluated across different

volatilities.

The left panel shows that as volatility increases, the optimal bidding strike price de-
creases, indicating that greater uncertainty leads bidders to lower their bids. The right
panel illustrates that the American option value at a fixed strike generally rises with
volatility, consistent with option theory, since higher volatility increases the likelihood

of favorable outcomes (the option ending in-the-money).

Bidding Strike Price (K*) vs Volatility LSMC Option Value at Fixed K={K} vs Volatility

0.3

0.2

(€/Mwh)

0.1

0.0
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Option Value

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.02 0.04 0.06 0.08 o0.10 0.12 0.14
Volatility (o) Volatility (o)

FIGURE 14: American option value varying volatility

Figure (15| shows the OBC American Option Value vs Ly at a K = 37.4828€/MWh
for three different volatility levels (o= 0, 0.075, 0.15). Demonstrates how the option value
changes with the initial underlying cost (L) and volatility. As expected, when volatility
is zero, the option value is — P unless the costs significantly go below the strike price.
As volatility increases, the option value becomes positive and increases as L, decreases,
reflecting the higher probability of the option being in-the-money. The higher the volatil-
ity, the greater the option value for a given L,, reinforcing the role of uncertainty in real
options valuation. These figures collectively provide an analysis of the model’s behavior

under varying market conditions.
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OBC American Option Value vs Lt (Fixed K = 37.4828 €/MWh)
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FIGURE 15: American option value vs Lt for different volatilities

Figure [[6] compares the OBC American Put option value with the European Put Op-
tion value across different strike prices /', with an initial LCOE of 55 €/MWh. The graph
show that the American option consistently holds a higher value than the European, par-
ticularly at higher strikes. This difference in value is attributed to the American option’s
flexibility, allowing for early exercise when optimal. The vertical dashed lines indicate
the optimal bidding strike prices (K *) for both valuation methods. The slightly lower K*
for the American option further supports the idea that the added flexibility leads to more
competitive bids.

Option Value vs Strike Price (So = 55 €/MWh)

—— LSMC American Put (Laguerre)
=== European Put (BS)

=+ K¥ LSMC = 40.96
----- K* Euro = 41.10

Option Value
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Strike Price K (€/MWh)

FIGURE 16: American option value vs Lt

These results collectively demonstrate the impact of incorporating American-style op-
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tions and real-world valuation into the analysis of renewable energy auctions. The differ-
ences observed in bidding functions and exercise behavior provide crucial insights for

understanding investor strategies and designing more effective auction mechanisms.

5.3 Auction Outcomes Comparison

Table [[I| compares the simulated auction outcomes against the real auction outcomes
for the German ONWA17. These results come from a different run of the simulation than
the one used in Sections and Here, the American auction refers to our model

using the American put, while the European auction uses the European put.

TABLE II: Simulated outcomes vs. Real Auction Outcomes (Germany, Onshore Wind,
August 2017)

Outcome European Auction American Auction ONWA17 (Real)
Maximal Awarded Price (€/MWh) 41.27 40.53 42.90
Weighted Avg. Award Price (€/MWh) 41.27 (uniform) 40.53 (uniform) 42.80%*
Minimal Bid (€/MWh) 27.67 27.54 35.00
Maximal Bid (€/MWh) 69.50 69.50 64.50

*The real auction average is slightly below the maximal awarded price because only 99%
of winning bidders were NCBGs, who benefit from the uniform price rule. The remaining

1% were commercial entities, as explained above.

The point of this comparison is not the closeness of the simulated results to the real
ONWA17 outcomes, but rather to highlight how accounting for investment flexibility al-
ters the results. At first glance, the differences between the European and American mod-
els may seem small. However, when viewed in terms of their impact on subsidy payments,

the effect becomes significant.

By itself, this comparison is not particularly informative. What matters is whether
variations in auction settings, such as changes in fees, lead to different outcomes under
European put versus American put valuation. This distinction is crucial, as it directly
affects the policy goals behind adjusting auction design. For example, ONWA17 auc-
tioned 1,000 MW with a clearing price of 42.9 €/ MWh (under the uniform price rule).
Assuming a mean capacity factor of 31.06%, 2,721 full load hours per year, and a 50%
realization rate, this corresponds to a subsidy burden of approximately €18.13 million
per year. If instead the auction clearing price were 40.53 €/MWh, as in the American op-
tion simulation, the subsidy burden would fall to about €17.10 million annually. Hence,

a seemingly small reduction of 2.44 €/MWh in the clearing price translates into nearly
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€1.03 million less in subsidies per year for just one auction round. Figure [17/|illustrates
the bidding function comparison between the NPC + OBC European-style model and the
NPC + OBC American-style model, highlighting the effect of early exercise flexibility on
bidding strategies.

Auction Bidding Functions Comparison

— NPV + European BS
—— NPV + LSMC Laguerre

~-- Awarded Capacity (European)
-~ Awarded Capacity (LSMC)

Bid Price (€/MWh)

o 500 1000 1500 2000 2500 3000 3500
Capacity (MW)

FIGURE 17: Auction bidding functions for ONWA17: NPC + OBC European vs. Ameri-
can model

6 EXTENSIONS

Here we relax some assumptions. First the no correlation assumption between projects
of the same bidder. Then we talk about the risk-neutral assumption and discuss about the

theory and approaches that exist that relax this assumption.

6.1 Correlated Project Costs

We relax the previous assumption of independent project costs and introduce correla-
tion between the costs of projects belonging to the same investor. Using the same fixed
random seed, we examine how this correlation affects auction outcomes and the result-
ing equilibrium bids. To do this, we specify a correlation matrix for each bidder’s set of
projects and apply a Cholesky decomposition Pourahmadi (2007). Independent standard
normal shocks are generated at each time step and transformed using Cholesky factor to
produce correlated shocks. These correlated shocks are then used in the stochastic process

governing project costs.
In the baseline model, project cost dynamics for project h of bidder : were modeled

as independent geometric Brownian motions (GBM).

dX™(t) = (r—%07,) dt + 04, dB™(t), h=1,...,n,;, (18)

25



DANIEL O. GOMES A REAL OPTIONS APPROACH FOR RENEWABLE AUCTIONS

where X(t) = In Ly (t) denotes the log-cost process and B; () are independent
Brownian motions. To relax the independence assumption, we introduce correlation
within the bidder’s portfolio. Let ; denote the n; X n; correlation matrix of bidder

1’s projects. We compute its Cholesky decomposition C; such that:

¥ = GO (19)

At each time step, we draw a vector of i.i.d. standard normals z; ~ hcalN(0,1) and

construct correlated shocks as:

g = Czy. (20)

The discretized log-cost dynamics for project j are then:

Xi,h(t + At) = Xz,h(t) + (,U - %O’ih) At + OihV At Et,h- (21)

Finally, the cost level can be recovered via:

Lin(t) = exp(Xin(t)) . (22)

Thus, correlation is introduced only between projects of the same bidder, while projects
of different bidders remain independent. Economically, this reflects the idea that multiple
projects of the same investor may share common risk drivers, such as financing condi-
tions, technological dependencies, or geographical factors. Figure [I§] presents the same
results as Figure but now accounting for correlation between projects of the same
bidder, which we set at p = 0.7 (70%). We observe a general increase in bidding prices.
However, to determine whether this increase is truly due to the introduction of correlation
or simply a result of simulation randomness, it would be necessary to repeat the simula-

tion multiple times and compute the average outcomes.

Auction Type Minimum Bid (€/MWh) Maximum Bid (€/MWh) Maximal Awarded Price (€/MWh)
NPC + European option 28.33 73.72 41.83
NPC + American option 27.51 73.23 40.87

TABLE III: Auction Results
Total runtime: 36,173.38 seconds
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Auction Bidding Functions Comparison
(Intersection at 1000 MW)
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FIGURE 18: Auction simulation results of the bidding function for ONWA17 with intra-
bidder project correlation fixed at p = 0.7 (70%).

7 CONCLUSION

This work has explored the application of real options theory to investment decisions
in renewable energy projects under Contracts for Difference. By framing the Levelized
Cost of Energy as the underlying variable and the guaranteed CfD strike price as the ex-
ercise price, the model naturally captures the managerial flexibility available to investors,
which is crucial for understanding bidding dynamics in renewable energy auctions where
cost uncertainty and the ability to delay investment are key drivers of strategy. Two types
of bidders were considered: Net Present Cost (NPC) bidders, who rely on a traditional
discounted cash flow approach without valuing flexibility, and Option-Based (OBC) bid-
ders, who explicitly recognize the value of flexibility. A key extension of this work
was to model OBC bidders using American-style put options, allowing for early exer-
cise in contrast to the more common European formulations. The Least-Squares Monte
Carlo (LSMC) method was employed to estimate both option values and optimal exer-
cise boundaries under uncertainty. The results highlight three central implications. First,
incorporating American-style flexibility systematically leads to lower bids, reflecting the
added value of deferral. Second, the uniform auction mechanism implicitly allocates het-
erogeneous option values: projects with lower initial costs benefit relatively more, while
the marginal bidder receives a contract closer to fair value. Third, exercise behavior ex-
hibits consistent patterns: all bidders tend to postpone investment until close to maturity,
but the penalty parameter (P) reduces the mean exercise time and increases the cumu-
lative probability of exercise, although to different degrees across bidder types. From a
policy perspective, these findings emphasize the importance of accounting for bidder het-
erogeneity in the design of CfDs. Because projects differ in initial costs, risk profiles, and

flexibility, a uniform CfD or changes in the economic environment (such as adjustments
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to the fee or market conditions) will not generate uniform responses. Instead, each bidder
may react differently, resulting in varied investment incentives and behaviors across the
set of awarded projects. For regulators, acknowledging the option-like nature of CfDs
helps explain observed behaviors such as aggressive bidding, delayed investments, and
heterogeneous strategies among winners. Real options analysis thus bridges financial val-
uation and policy design, offering insights into how auction rules, penalty schemes, and
contract maturities shape investment timing and project viability in renewable energy. In
this model, we assume that the duration of the CfD contract coincides with the project
lifetime of 25 years. This assumption is not entirely realistic, since most CfDs typically
have a maturity of around fifteen years. A natural extension would be to incorporate pol-
icy uncertainty, whereby the investor accounts for the possibility that the CfD may expire
before the end of the project lifetime. In such a case, the project would be exposed to
market prices after contract expiration, introducing an additional source of uncertainty
through the selling price. This can be represented either by assigning a cumulative proba-
bility distribution to early contract termination or by explicitly modeling shorter contract
durations relative to the project lifetime. A suitable framework for capturing this type of

risk is to use regime-switching models, as in|Hagspiel et al. (2021)).

Several avenues remain open for future research. For instance, the assumption that
it is always preferable to enter an investment with a CfD could be relaxed by introduc-
ing participation costs. In this case, the investor’s problem could be modeled as hold-
ing a compound where V,,tion.crp 18 the value of the real option under a CfD contract,
Cluction represents the cost of entering the auction, and p,,;, denotes the probability of
winning a CfD. Recognizing that investors may always retain the possibility of entering
the energy market directly, even if they do not win a CfD contract. Then the investor’s
decision problem is framed as a compound option with multiple branches: by not par-
ticipating, the investor preserves the option to invest directly in the market, with value
Vioption, Markets DY participating, the investor incurs a cost Clycrion, and faces a probabilistic
outcome. With probability p,,, the investor gains access to the CfD-backed option with
value Viption,crp; With probability 1 — py,, the investor falls back to the market option
Voption,Market- Heuristically, the investor’s payoff from participating in the auction can be
seen as the maximum between two possibilities: either winning the CfD and gaining the
associated option value net of the auction cost, or not winning and retaining the value of

investing directly in the market. This can be written as

max (pwzn : V;)ption,CfD + (]— - pwzn) : V;)ption,Mark;et - Cauctiona ‘/option,Market>7

highlighting the idea that participation preserves the option to invest while accounting for
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the probabilistic outcome of winning a CfD. Considering also the option to enter the en-
ergy market directly and the option to enter a CfD if awarded in auction depends on two
stochastic processes: L;, representing the project’s cost evolution, and S;, representing
the market electricity price. In this case, the market option payoff becomes contingent on
the joint dynamics of these two variables, for example max (.S, — L., 0), where 7 denotes
the optimal investment time. Incorporating this structure transforms the participation de-
cision into a compound, multi-dimensional real option, as the investor must weigh the
probabilistic outcome of winning a CfD against the stochastic value of entering the mar-
ket.

The Least-Squares Monte Carlo (LSMC) method is well suited to handle such an
extension, as it can simultaneously simulate joint paths for (L, S;) and estimate continu-
ation values across multiple underlying variables, allowing the optimal exercise strategy
and option value to be approximated even in this higher-dimensional setting. This nested
structure can be interpreted as a generalization of compound options, consistent with the
“options on options” framework of |Geske|(1979), but tailored to the context of renewable
energy auctions. Future extensions could also examine the role of risk aversion, correlated
project risks between bidder’s, secondary CfD markets, and consider the construction time

of the project.

In sum, by integrating real options theory with auction analysis, this study provides in-
sights into how uncertainty and flexibility may shape renewable energy investment strate-
gies, offering a perspective that could be useful for researchers and for informing the
design of auction mechanisms and regulatory frameworks in support of the energy transi-

tion.
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