

Mestrado em

MÉTODOS QUANTITATIVOS PARA A DECISÃO ECONÓMICA E EMPRESARIAL

Trabalho Final de Mestrado

RELATÓRIO DE ESTÁGIO

MODELOS MATEMÁTICOS PARA O PROBLEMA DA INSPEÇÃO DE LINHAS ELÉTRICAS

INÊS ALEXANDRA MARTINS PEREIRA

Orientação:

PROF^a DOUTORA RAQUEL MONTEIRO DE NOBRE COSTA BERNARDINO ENGENHEIRO ANDRÉ FILIPE JESUS COSTA NUNES COELHO

Documento especialmente elaborado para a obtenção do grau de mestre

JUNHO - 2025

Agradecimentos

Gostaria, primeiramente, de agradecer à minha orientadora, a Professora Raquel Bernardino, pelo apoio, incentivo e orientação constante durante toda a realização deste TFM. A sua disponibilidade e conhecimento foram fundamentais para o desenvolvimento deste trabalho.

Agradeço também ao meu orientador na EDP Labelec, o engenheiro André Coelho, pelas valiosas contribuições e pelo conhecimento técnico, que enriqueceram significativamente esta pesquisa.

Agradecer também à minha família e amigos pelo apoio, compreensão e motivação em todos os momentos, o que tornou, sem dúvida, esta jornada mais leve e especial.

A todos, os que de alguma forma deixaram a sua marca no meu percurso, deixo o meu agradecimento.

Resumo

Na EDP Labelec tem existido uma crescente utilização de drones na inspeção de ativos energéticos, nomeadamente linhas elétricas. Contudo, atualmente não existe um processo sistematizado para o planeamento das rotas usadas nas inspeções.

Neste contexto, o presente trabalho aborda o Problema da Inspeção de Linhas Elétricas com Drones (PILED), modelado como um Problema de Roteamento nos Arcos (ARP), onde se pretende planear rotas de voo que garantam a cobertura completa das linhas elétricas a inspecionar, respeitando as restrições operacionais dos drones, como a autonomia e o alcance máximo, e assegurando a coordenação com o percurso do veículo terrestre de apoio.

A proposta consiste na formulação do PILED num modelo de Programação Linear Inteira Mista (PLIM), no qual é introduzida uma variação da função objetivo que considera, além dos tempos de deslocação, o tempo necessário para a preparação e recolha do drone em cada ponto de paragem, de forma a ajustar o modelo cada vez mais à realidade operacional da EDP Labelec.

A construção e a validação do modelo foram realizadas com base em dados reais fornecidos pela EDP Labelec, focando, este estudo, numa linha elétrica da zona de Mafra. Estes dados foram tratados com uma ferramenta de informação geográfica, o QGIS, com posterior implementação do modelo em Python, e resolução utilizando o solver Gurobi. Para além da linha completa, o modelo foi testado em múltiplas instâncias de diferentes dimensões, obtidas pela divisão da linha completa, permitindo analisar o desempenho da abordagem em instâncias de várias dimensões.

Os resultados demonstram a capacidade do modelo gerar soluções admissíveis de forma eficiente, com potencial aplicabilidade prática, e abrem caminho para futuros desenvolvimentos, como a utilização de algoritmos heurísticos.

Palavras-chave: Problemas de Roteamento nos Arcos, Inspeção de Linhas elétricas, Drones, Programação Linear Inteira Mista

Abstract

At EDP Labelec, there has been a growing use of drones for the inspection of energy assets, particularly power lines. However, there is currently no systematic process for planning the routes used in these inspections.

In this context, the present work addresses the Problem of Electric Lines Inspection with Drones (PILED), modeled as an Arc Routing Problem (ARP), where the goal is to plan flight routes that ensure complete coverage of the power lines to be inspected, while complying with the drones operational constraints, such as autonomy and maximum range, and ensuring coordination with the path of the support ground vehicle.

The proposed approach consists of formulating the PILED as a Mixed-Integer Linear Programming (MILP) model, in which a variation of the objective function is introduced. This variation accounts not only for travel times, but also for the time required to prepare and retrieve the drone at each stop, in order to adapt the model to EDP Labelec's operational reality.

The construction and validation of the model were based on real data provided by EDP Labelec, with this study focusing on a power line in the Mafra region. These data were processed using a geographic information system tool, QGIS, followed by the model's implementation in Python and its resolution using the Gurobi solver. In addition to the complete line, the model was tested on multiple instances of different sizes, obtained by segmenting the full line, allowing for performance analysis of the approach on instances of varying dimensions.

The results demonstrate the model's ability to efficiently generate feasible solutions, with potential practical applicability, and pave the way for future developments, such as the use of heuristic algorithms.

Keywords: Arc Routing Problems, Power Line Inspection, Drones, Mixed Integer Linear Programming

Conteúdo

1	ntrodução	1
2	Revisão da Literatura	3
3	Definição do Problema 3.1 Evolução da Inspeção de Linhas Elétricas na EDP Labelec	7 7 8
4	1.1 Formulação do Problema	12 12 12 13 14
5	5.1 Recolha e Processamento de Dados 5.2 Resultados	16 16 21 22 22 24 26
6	Conclusão	30
\mathbf{A}	Pontos de Paragem das Instâncias	34
В	Análise de Resultados Obtidos com a FO1	35
\mathbf{C}	Análise de Resultados Obtidos com a FO2	39

Lista de Figuras

3.1	Exemplo de uma instancia do PILED					
5.1	Mapa de linhas elétricas a inspecionar com drones em 2025					
5.2	Linha elétrica $C2068$ - Mafra					
5.3	Representação dos pontos de paragem na linha C2068 - Mafra					
5.4	Verificação da cobertura utilizando Buffer's					
5.5	Ficheiro de dados com informação dos segmentos					
5.6	Ficheiro de dados com informação dos pontos de paragem					
5.7	Polígono utilizado para obter a Instância 2					
5.8	Representação da distância entre um ponto de paragem j e um ponto i na					
	linha elétrica					
5.9	Representação da Solução Ótima (SO) para a Instância 1					
5.10 Representação da Solução Admissível (SA) para a Instância 2 utilizando a						
	FO2					
В.1	Representação da SA para a Instância 2					
B.2	Representação da SO para a Instância 3					
В.3	Representação da SO para a Instância 4					
B.4	Representação da SA para a Linha Completa					
C.1	Representação da SO para a Instância 1 - FO2					
C.2	Representação da SO para a Instância 3 - FO2					
C.3	Representação da SA para a Instância 4 - FO2					
	Representação da SA para a Linha Completa - FO2					
$\sim{\rm T}$						

Lista de Tabelas

3.1	Resumo dos conjuntos e parâmetros utilizados para a definição do modelo	10
5.1	Instâncias a usar na experiência computacional	21
5.2	Valores dos parâmetros usados na experiência computacional do PILED .	22
5.3	Resultados obtidos para a FO1	24
5.4	Resultados obtidos para a FO2	27
5.5	Tabela resumo dos resultados obtidos com a FO1 e FO2	29

Siglas

ALNS Adaptive Large Neighborhood Search. 4, 30

ARP Arc Routing Problems. 3–5

BVLOS Beyond Visual Line of Sight. 30

DT-ARP Drone-Truck Arc Routing Problem. 3, 4

FO2 Função Objetivo 2. iv-vi, 14, 15, 26-30, 39-42

LCK-DRPP Length Constrained K-Drones Rural Postman Problem. 5

LiDAR Light Detection and Ranging. 7, 8

M-FSTSP Multiple Flying Sidekicks Traveling Salesman Problem. 4

MM-MT-dLARP Min Max Multi-Trip drone Location Arc Routing Problem. 3–5

PILED Problema da Inspeção de Linhas Elétricas com Drones. ii–vi, 2, 4, 5, 7–13, 18, 22, 30

PLIM Programação Linear Inteira Mista. iv, 2–4, 7, 9, 12, 13, 19–21, 30

RPP Rural Postman Problem. 5

SA Solução Admissível. v, 24, 25, 27, 28, 35, 36, 38, 41, 42

SIG Sistemas de Informação Geográfica. 16

SO Solução Ótima. v, 24–27, 29, 36, 37, 39–41

TFM Trabalho Final de Mestrado. 2, 30

VND Variable Neighborhood Descent. 3

Capítulo 1

Introdução

Nos dias de hoje, a crescente procura por soluções tecnológicas e eficientes tem impulsionado transformações em setores estratégicos, como o da energia. A inspeção de linhas elétricas, essencial para garantir a fiabilidade do fornecimento energético, enfrenta desafios significativos, tais como a grande extensão das infraestruturas, dificuldades de acesso, restrições operacionais e elevados requisitos de segurança.

O desenvolvimento recente e a massificação de utilização dos veículos aéreos não tripulados, aliados à miniaturização de sensores precisos e fiáveis, têm contribuído para uma maior utilização destes dispositivos na inspeção de ativos elétricos, particularmente na monitorização e manutenção de linhas de energia.

Neste contexto, a utilização de drones surge como uma abordagem inovadora, permitindo realizar inspeções de forma mais eficiente, segura e sustentável. Graças à integração desta tecnologia avançada, estas aeronaves não tripuladas possibilitam a deteção precoce de falhas, reduzindo custos operacionais e minimizando riscos de segurança para os técnicos responsáveis pela inspeção das infraestruturas elétricas.

A inspeção de linhas elétricas com drones permite otimizar todo o processo de planeamento e execução das rotas de inspeção. Para tal, é fundamental explorar metodologias que permitam determinar as melhores rotas de inspeção, tendo em conta fatores como os locais que podem ser usados como pontos de paragem para operar o drone, limitações dos drones (autonomia, alcance e velocidade), com o objetivo de inspecionar todas as linhas elétricas que requerem inspeção, ou seja, da cobertura total das linhas, minimizando o tempo total de inspeção.

A EDP Labelec, integrada no Grupo EDP, é um centro de excelência técnica, reconhecido pela sua experiência e competência nas áreas de engenharia, manutenção preventiva e inovação. Distinguida por várias certificações e acreditações, a EDP Labelec destaca-se pela qualidade dos seus serviços e pela capacidade de responder eficazmente às necessidades dos seus clientes, tanto a nível nacional como internacional [EDP Labelec, 2024].

Com foco na sustentabilidade e na inovação tecnológica, a EDP Labelec investe na eficiência energética e no desenvolvimento de soluções para as energias renováveis, alinhando-se com a estratégia do Grupo EDP de liderar a transição energética e construir um futuro mais sustentável [EDP - Energias de Portugal, 2024].

A sua atuação organiza-se em quatro áreas principais: testes e ensaios, garantindo a qualidade de equipamentos elétricos; soluções ambientais, promovendo práticas sustentáveis; qualificação e inspeções, assegurando a segurança e a eficiência de sistemas; e consultoria energética, oferecendo soluções personalizadas para otimizar o desempenho energético [EDP Labelec, 2024].

Na área de testes e ensaios podemos encontrar o departamento de inspeção de ativos que tem um papel essencial, oferecendo serviços especializados como termografia terrestre e aérea, para equipamentos elétricos de centrais, subestações, linhas aéreas de média, alta e muito alta tensão, isolamentos térmicos e estruturas. Este departamento é responsável pela inspeção anual de mais de 23.000 quilómetros de linhas elétricas de transmissão e distribuição, além de inspecionar mais de 600 instalações elétricas, com mais de 50% dessas inspeções a serem realizadas com recurso a drones nos últimos dois anos [Coelho and Martins, 2025].

Neste contexto, a otimização das rotas realizadas nas inspeções de linhas elétricas surge como um desafio crucial. Este estudo visa, precisamente, o desenvolvimento de modelos matemáticos capazes de resolverem questões fundamentais para a melhoria da eficiência das inspeções com drones, como: "Qual a rota mais eficiente para realizar a inspeção?" ou "Como minimizar o tempo total de inspeção?". Estas respostas ajudam a tomada de decisão e contribuem para a eficácia das operações.

Assim, este Trabalho Final de Mestrado (TFM) tem como objetivo resolver o Problema da Inspeção de Linhas Elétricas com Drones (PILED), que consiste na formulação de um modelo matemático e a sua validação por meio de testes computacionais permitindo o desenvolvimento de soluções práticas que podem trazer melhorias à forma como as inspeções de linhas elétricas são realizadas.

O Capítulo 2 apresenta uma revisão da literatura relevante, abordando os principais conceitos, técnicas e abordagens relacionadas com a inspeção de linhas elétricas com drones. O Capítulo 3 define o problema em estudo, incluindo a evolução das práticas de inspeção, a metodologia atualmente implementada e a definição do problema de otimização da inspeção com recurso a drones, o PILED. O Capítulo 4 descreve a metodologia adotada, com destaque para a formulação matemática do PILED em PLIM. O Capítulo 5 apresenta os dados utilizados e os resultados obtidos, analisando o desempenho e a aplicabilidade da abordagem proposta. Por fim, o Capítulo 6 conclui o trabalho e sugere possíveis direções para investigações futuras.

Capítulo 2

Revisão da Literatura

A inspeção de infraestruturas lineares, como linhas elétricas, tem vindo a ser facilitada pelo uso de veículos aéreos não tripulados (drones), que oferecem uma solução eficiente e segura para alcançar zonas de difícil acesso. Este tipo de operação envolve a definição de rotas que permitem a inspeção garantindo a cobertura total das linhas elétricas, respeitando restrições operacionais dos drones, como o alcance, autonomia e a necessidade de regresso a pontos de apoio logístico. Tais problemas inserem-se na classe dos problemas de roteamento em redes, com destaque para os problemas de roteamento nos arcos (Arc Routing Problems (ARP)).

Embora muita da literatura sobre roteamento esteja centrada em problemas de roteamento de veículos com serviço nos nodos (*Node Routing Problems*), os ARP são mais apropriados para contextos em que o serviço a executar está associado aos próprios segmentos (ou arcos) da rede, como é o caso da inspeção de linhas elétricas, que requer a cobertura de cada secção da linha e não apenas de um ponto específico.

Neste sentido, têm surgido recentemente ARP que integram drones e veículos terrestres de apoio, refletindo aplicações reais. Um desses problemas é o Min Max Multi-Trip drone Location Arc Routing Problem (MM-MT-dLARP), proposto por Corberán et al. [2025]. Este problema combina decisões de roteamento com decisões estratégicas de localização, uma vez que os drones são transportados por carrinhas até pontos de lançamento selecionados a partir de um conjunto de pontos possíveis. Cada drone realiza múltiplos voos, sendo necessário regressar à carrinha entre cada rota, de forma a trocar de bateria, com o objetivo de minimizar o tempo máximo de operação.

A resolução do problema envolve uma formulação de PLIM que é resolvida com um algoritmo de branch-and-cut. Para instâncias de maior dimensão, os autores recorrem a uma matheuristic composta por uma fase construtiva e quatro fases de pesquisa local, organizadas num esquema de Variable Neighborhood Descent (VND). Os testes computacionais mostram que a matheuristic consegue resolver instâncias com dados reais com múltiplos drones e pontos de lançamento.

Complementarmente, Liu et al. [2025] propõem o *Drone-Truck Arc Routing Problem (DT-ARP)*, onde uma única carrinha e múltiplos drones colaboram na execução da inspeção. A carrinha segue uma rota sobre a rede rodoviária, servindo como base móvel para o lançamento e recolha dos drones. Os drones realizam voos com restrições de alcance e autonomia, sendo obrigados a regressar à carrinha após cada rota. Este problema caracteriza-se por uma forte interdependência entre a rota da carrinha e os voos dos drones, já que os pontos de lançamento e aterragem dos drones estão condicionados pela posição da carrinha.

O problema é formulado inicialmente como um ARP, mas é transformado num problema de roteamento nos nodos através de duas técnicas: a transformação de dois nodos e a de três nodos. Na transformação de dois nodos, o segmento a visitar é representado por dois nodos, correspondentes aos pontos inicial e final desse mesmo segmento. Já na transformação de três nodos, o segmento é representado por três nodos: o ponto inicial, um ponto intermédio e o ponto final. Esta transformação permite modelar visitas múltiplas aos mesmos nodos e facilita a definição de variáveis associadas ao tempo de chegada, crucial para minimizar o makespan, ou seja, o tempo entre o início da inspeção ao primeiro nodo e o término da inspeção ao último nodo. A versão com uma única carrinha e múltiplos drones é resolvida usando um algoritmo Adaptive Large Neighborhood Search (ALNS), uma metaheurística iterativa que destrói parcialmente a solução atual e reconstrói uma nova solução com base em regras adaptativas, ajustadas dinamicamente durante o processo de procura. A eficácia do ALNS é demonstrada em testes computacionais com instâncias de grande dimensão, comparando o seu desempenho com algoritmos exatos e outras heurísticas.

A integração de drones em ARP representa uma evolução na área de logística aérea. A inspeção de linhas elétricas constitui um exemplo desta aplicação, onde é necessário percorrer segmentos contínuos de rede, garantindo a inspeção visual completa e respeitando restrições operacionais. Em particular, os problemas MM-MT-dLARP e DT-ARP destacam-se por abordarem, de forma complementar, dois cenários comuns: múltiplos drones com múltiplas carrinhas (e decisões de localização) no primeiro caso, e operação cooperativa de uma carrinha com vários drones no segundo.

Ambos os problemas consideram a possibilidade de múltiplas viagens com o drone, o que é essencial quando a extensão da rede é superior à autonomia do drone. Além disso, as abordagens propostas incorporam mecanismos avançados de resolução, combinando modelação matemática com algoritmos heurísticos eficientes, o que permite lidar com instâncias reais, sendo algo fundamental para aplicações industriais e operacionais, como são as da EDP Labelec.

Além dos modelos diretamente aplicados à inspeção de linhas com drones, outros trabalhos fornecem contributos metodológicos relevantes para o PILED. Um exemplo é o estudo de Amorosi et al. [2021], que aborda o problema do caixeiro-viajante com múltiplos drones (*Multiple Flying Sidekicks Traveling Salesman Problem (M-FSTSP)*). Embora não diretamente focado em inspeção de linhas elétricas, este problema explora a coordenação entre um veículo terrestre e vários drones, elementos também essenciais nos problemas DT-ARP e MM-MT-dLARP, apresentados anteriormente. O trabalho de Amorosi et al. [2021] destaca-se ainda pela proposta de modelos de otimização em PLIM e heurísticas baseadas em decomposição, aplicadas em situações onde existe a cooperação entre meios de transporte.

No mesmo sentido, Sacramento et al. [2019] apresentam um problema de roteamento com drones que envolve a coordenação simultânea de carrinhas e drones para entregas, onde existem restrições de capacidade das carrinhas, tempo limite das rotas e autonomia dos drones, com o objetivo de minimizar os custos totais de operação. Para enfrentar esse desafio, os autores propõem um algoritmo de ALNS, tendo sido usado como base para abordagens posteriores em contextos mais complexos, como no DT-ARP de Liu et al. [2025].

Por sua vez, Chen et al. [2021] consideraram restrições de tempo em problemas com robôs de entrega, um cenário análogo à gestão de autonomia e tempo de voo dos drones em rotas de inspeção. Estes autores propuseram um algoritmo ALNS para otimizar

rotas exigindo ainda coordenação entre veículos e robôs de forma a minimizar o custo de deslocação com penalizações associadas a atrasos nas entregas.

Do ponto de vista da estruturação do problema, o trabalho de Fernández et al. [2019] sobre o Capacitated Location Arc Routing Problem (CLARP) aproxima-se conceptualmente do MM-MT-dLARP. Neste problema, os autores consideram decisões conjuntas de localização e roteamento com restrições de capacidade, aplicadas à inspeção de arcos por veículos com autonomia ou capacidade limitada. Especificamente, são analisados três cenários: a manutenção e inspeção de redes e infraestruturas rodoviárias como ruas, estradas e pontes; a recolha de resíduos em que cada arco representa uma rua que precisa de ser percorrida para recolher lixo, onde a capacidade do veículo é limitada pela quantidade que pode recolher até regressar ao depósito; e a inspeção de condutas ou canalizações onde os arcos representam condutas que necessitam de inspeção. Além disso, este trabalho reforça a importância de uma discretização espacial dos arcos, aspeto também explorado no trabalho de Campbell et al. [2021].

Para além das abordagens que integram drones com carrinhas, destaca-se ainda o trabalho de Campbell et al. [2021], que propõe o Length Constrained K-Drones Rural Postman Problem (LCK-DRPP). Este problema foca-se exclusivamente na operação de drones sem apoio terrestre, considerando que cada drone tem uma autonomia limitada (restrição de comprimento por rota), e que é necessário cobrir integralmente um conjunto de linhas.

Este trabalho fundamenta-se em estudos anteriores como o de Reinelt and Theis [2006], que fornece a base teórica do poliedro do Rural Postman Problem (RPP), permitindo o desenvolvimento de formulações mais fortes em programação inteira, um elemento chave para o sucesso dos algoritmos exatos no contexto do LCK-DRPP. Além disso, aplicações práticas como o trabalho de Rauhakallio [2020], que discute a evolução da inspeção automatizada de infraestruturas, e, ainda, Shafiee et al. [2021], que explora o uso de drones em ambientes críticos, como turbinas eólicas offshore, ressalvam a importância de considerar falhas de missão e análise de risco, fatores críticos em ambientes industriais e fundamentais na definição de restrições operacionais realistas.

A principal complexidade do LCK-DRPP reside no facto de os drones poderem entrar e sair de qualquer ponto ao longo das linhas, o que faz com que o problema seja caracterizado como contínuo. Para o tornar tratável, os autores propõem a discretização das linhas em segmentos poligonais introduzindo pontos ao longo da linha. Assim, em vez de considerar infinitos pontos possíveis, o problema passa a ter um número finito de opções, tornando-o mais simples de modelar e resolver. A resolução baseia-se numa formulação de programação inteira com um algoritmo branch-and-cut para instâncias pequenas, complementado por uma matheuristic que refina iterativamente a discretização do segmento em pontos.

Em suma, a literatura recente evidencia um esforço crescente para desenvolver modelos eficientes que considerem a complexidade dos cenários reais de inspeção de linhas elétricas, combinando múltiplas restrições operacionais e a cooperação entre diferentes veículos e tecnologias. As contribuições dos autores mencionados anteriormente representam avanços significativos nesta direção, oferecendo fundamentos teóricos para o desenvolvimento de soluções práticas e eficientes para inspeção de infraestruturas com drones.

Desta forma, apesar do PILED se relacionar com estudos anteriores, sendo um ARP onde o objetivo é minimizar o tempo total de inspeção com recurso a um único drone e coordenando as suas rotas com as rotas de um veículo de apoio, usa uma abordagem diferente. Este é adaptado à realidade e às necessidades da EDP Labelec, usando dados

reais, onde foi sugerida, e posteriormente discutida com o decisor da empresa, uma nova abordagem de definição de pontos de paragem, divisão da linha elétrica em segmentos e uso de restrições operacionais, que consideram o alcance e autonomia do drone utilizado, para tornar este estudo útil para a aplicação nas inspeções futuras da empresa.

Capítulo 3

Definição do Problema

Este capítulo apresenta a caracterização do problema de otimização associado à inspeção de linhas elétricas com recurso a drones. A Secção 3.1, desenvolvida tendo por base o artigo desenvolvido por Coelho and Martins [2025], descreve a evolução dos métodos de inspeção utilizados na EDP Labelec, desde abordagens tradicionais até à adoção de tecnologias mais recentes que usam drones. De seguida, é detalhada a metodologia atualmente implementada para recolha e análise dos dados de inspeção, destacando-se o contributo das tecnologias utilizadas para a identificação atempada de anomalias e para uma avaliação contínua e fiável do estado das infraestruturas.

Por fim, na Secção 3.2 é apresentado o PILED, sendo introduzida a notação que servirá de base ao modelo matemático em PLIM desenvolvido no Capítulo 4.

3.1 Evolução da Inspeção de Linhas Elétricas na EDP Labelec

A inspeção das linhas de energia na EDP Labelec teve início em 1980, recorrendo à inspeção a pé. Os técnicos percorriam os corredores das linhas, avaliando manualmente o estado das infraestruturas, identificando danos e verificando a presença de vegetação indesejada. Apesar de minucioso, este processo era demorado, pouco seguro e particularmente desafiante em zonas de difícil acesso.

No ano de 1994 foram introduzidos helicópteros, permitindo uma cobertura mais ampla e eficiente das linhas elétricas. Esta melhoria foi consolidada em 1996 com a implementação de dispositivos nos helicópteros, que estabilizam câmaras e sensores, garantindo imagens de maior qualidade.

Em 2007, a modernização continuou com a adoção da tecnologia *Light Detection* and *Ranging (LiDAR)*, que possibilitou medições exatas da distância entre as linhas e a vegetação circundante. Este avanço aumentou a fiabilidade das inspeções e reforçou a segurança da infraestrutura.

Com o aparecimento dos drones em 2014, a EDP Labelec apostou no desenvolvimento dos seus próprios drones para satisfazer as suas necessidades específicas na inspeção de linhas elétricas. Contudo, em 2018, a evolução do mercado levou à adoção de drones industriais avançados, permitindo um aumento da eficiência e da precisão das inspeções.

A utilização de drones gerou uma grande quantidade de dados, exigindo soluções tecnológicas para o seu processamento e armazenamento. A digitalização tornou-se essencial para transformar esta informação bruta em conhecimento útil permitindo uma

gestão mais eficaz da infraestrutura elétrica. Graças a estes avanços, a EDP Labelec melhorou significativamente a eficiência global das suas atividades de inspeção de linhas elétricas, proporcionando um serviço mais seguro e eficiente.

Atualmente, a inspeção às linhas elétricas segue uma metodologia bem definida, composta por três fases principais: recolha de informação no terreno, análise dos dados obtidos e produção de um output para dar seguimento à manutenção.

Na fase inicial os dados são capturados ao longo das linhas, sendo possível utilizar tanto helicópteros como drones. No caso dos drones existe uma maior flexibilidade de voo e menor custo operacional, sendo amplamente utilizados em zonas de difícil acesso.

Nesta fase são recolhidos diferentes tipos de dados, cada um com um objetivo específico, como por exemplo:

- Imagens RGB: São utilizadas para identificar defeitos visíveis em componentes das linhas elétricas.
- Imagens térmicas (infravermelhos): Permitem a deteção de anomalias térmicas, como zonas de aquecimento excessivo, que podem sinalizar falhas em curso ou potenciais problemas nos componentes da infraestrutura elétrica.
- Dados LiDAR: Permitem obter representações tridimensionais precisas, garantindo o cumprimento dos requisitos de segurança relacionados com a proximidade da vegetação às linhas elétricas.

Na fase seguinte, os dados recolhidos são analisados recorrendo a ferramentas especializadas para o seu processamento. Desta forma, são identificadas e classificadas as anomalias estruturais e térmicas, além de potenciais riscos associados à vegetação. Adicionalmente, os dados provenientes de diferentes fontes são combinados e analisados, proporcionando uma visão completa das condições das infraestruturas.

Por último, são gerados relatórios de inspeção, que contemplam os resultados da análise de dados, e, paralelamente, documentos com recomendações de manutenção, com prioridades de acordo com a gravidade e urgência dos problemas identificados, permitindo uma gestão mais eficiente dos recursos e a mitigação de riscos operacionais.

Concluindo, a evolução da metodologia de inspeção da EDP Labelec demonstrou uma transição progressiva de métodos manuais para métodos mais tecnológicos, incluindo o uso de helicópteros, sensores e estabilizadores, tecnologia LiDAR e drones. Esta transformação permitiu ganhos em precisão e rapidez na recolha de dados, viabilizando a deteção de anomalias térmicas e estruturais, bem como o controlo da vegetação, o que contribui para uma gestão mais eficiente da inspeção das linhas elétricas.

3.2 Problema da Inspeção de Linhas Elétricas com Drones

O PILED centra-se na definição de rotas, tanto aéreas como terrestres, que assegurem a cobertura integral das linhas elétricas, respeitando limitações operacionais dos drones, com o objetivo de minimizar o tempo total de inspeção.

O planeamento deve, portanto, considerar dois níveis interdependentes: por um lado, o traçado das rotas aéreas que assegurem a cobertura das linhas; por outro, a definição do percurso da viatura de apoio. É necessário assegurar que cada rota de voo seja executada

dentro dos limites de alcance e autonomia do drone, e, simultaneamente, é essencial que a viatura possa aceder aos pontos de paragem definidos para lançar e recolher o drone.

Dada a complexidade do planeamento manual nestes contextos, propõe-se a formulação de um modelo em PLIM que permita gerar as trajetórias mais eficientes para o drone e para a viatura de apoio, contribuindo para a redução do tempo de intervenção no terreno, e consequentemente para a minimização dos custos operacionais. Além disso, a sistematização deste processo potencia ganhos de eficiência no futuro. Este tipo de abordagem é particularmente relevante em operações de grande dimensão, como as conduzidas pela EDP Labelec que, segundo o decisor da empresa, no ano de 2025 irá inspecionar cerca de 150 linhas elétricas com recurso a drones a nível nacional.

A Figura 3.1 apresenta uma representação esquemática de uma instância do PILED, evidenciando a estrutura da rede que serve de base à modelação matemática. Nesta rede, distinguem-se os diferentes tipos de nodos e arcos que integram o sistema de inspeção: os segmentos da infraestrutura elétrica, os respetivos pontos extremos, os pontos de paragem acessíveis ao veículo de apoio, e as ligações possíveis entre estes pontos, quer por via terrestre, quer por via aérea.

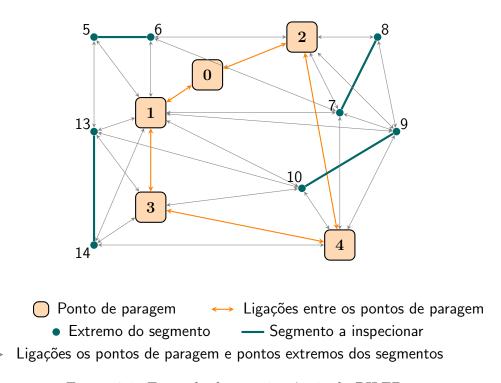


Figura 3.1: Exemplo de uma instância do PILED

O conjunto S representa os segmentos da linha elétrica que devem ser inspecionados pelos drones. Cada segmento corresponde a uma ligação entre dois pontos extremos da infraestrutura e está representado na Figura 3.1 por traços a verde escuro. Esses pontos extremos, representados por pontos verdes escuros, formam o conjunto P_s .

O conjunto P corresponde aos pontos de paragem acessíveis por estrada, onde o operador pode parar o veículo de apoio para lançar e recolher o drone. Este conjunto contém ainda um depósito fictício 0 para simplificar a formulação do problema em PLIM definido no Capítulo 4. Estes pontos são representados por quadrados a laranja na Figura 3.1.

Com base nestes pontos, são definidos diferentes conjuntos de arcos, que distinguem os modos de deslocação disponíveis:

- A_p : representa os arcos terrestres, ligando pares de pontos de paragem P, que correspondem às linhas a laranja na Figura 3.1. Estes representam os deslocamentos possíveis da viatura de apoio ao longo da rede rodoviária.
- A_s : refere-se aos arcos de voo, ligando pontos do conjunto $P \cup P_s$, mas excluindo ligações exclusivamente entre pontos de paragem. Estes arcos, representados na Figura 3.1 como linhas a preto, simbolizam os trajetos que podem ser percorridos por drones.

Apesar dos dois conjuntos de arcos, A_p e A_s , estarem representados na Figura 3.1, de forma a simplificar a apresentação da instância, não são representados todos os arcos existentes entre os pontos. Assim, o PILED pode ser modelado num grafo orientado definido da seguinte forma: $G = (V, A) = (P \cup P_s, A_p \cup A_s)$

Além dos conjuntos que definem a rede de inspeção, define-se ainda um conjunto de parâmetros explicados na subsecção 5.2.1. Entre estes, destacam-se a autonomia de voo dos drones α , o raio de alcance máximo admissível para cada rota aérea β , a distância d_{ij} e tempo t_{ij} necessário para percorrer um arco $(i,j) \in A_s \cup A_p$.

Os conjuntos e parâmetros descritos anteriormente serão usados na formulação matemática apresentada no capítulo seguinte e encontram-se sumarizados na Tabela 3.1.

Tabela 3.1: Resumo dos conjuntos e parâmetros utilizados para a definição do modelo

Conjunto/ Parâmetro	Definição
P	Conjunto de pontos de paragem e do depósito fictício 0
$A_p = \{(i,j) : i, j \in P, i \neq j\}$	Arcos entre os pontos de paragem
S	Conjunto de segmentos que precisam de inspeção
P_s	Conjunto dos pontos extremos de segmentos em ${\cal S}$
$A_s = \{(i,j) : i,j \in P \cup P_s, i \neq j\} \setminus A_p$	Arcos de voo
α	Autonomia do drone (minutos)
β	Alcance máximo do drone (metros)
d_{ij}	Comprimento do arco $(i, j) \in A_s \cup A_p$ (metros)
t_{ij}	Tempo para percorrer o arco $(i,j) \in A_s \cup A_p$ (minutos)

Como exemplo ilustrativo de uma solução admissível para a instância apresentada na Figura 3.1, considere-se a possibilidade da viatura de apoio iniciar a operação no depósito 0 e, seguidamente, dirigir-se ao ponto de paragem 1, lançando o drone para inspecionar os segmentos (5,6) e (13,14), que retorna depois ao ponto de paragem 1. Em seguida, o

operador desloca-se pela estrada até ao ponto de paragem 4, onde outro voo é realizado para inspecionar o segmento (9,10). Por fim, o operador desloca-se até ao ponto de paragem 2, a partir do qual inspeciona o segmento (7,8) e seguidamente regressa ao depósito. Esta sequência, que respeita o retorno ao ponto de lançamento e cobertura dos segmentos a inspecionar, ilustra uma solução admissível do PILED.

Capítulo 4

Metodologia

Este capítulo apresenta a formulação do PILED em PLIM, que visa minimizar o tempo total de inspeção, assegurando a visita a todos os segmentos da infraestrutura elétrica e respeitando as limitações dos equipamentos utilizados.

Inicialmente, são definidas as variáveis de decisão utilizadas no modelo. Em seguida, é apresentada a formulação matemática, onde são especificadas a função objetivo e as restrições que refletem os requisitos operacionais do problema. Esta formulação constitui a base para a resolução computacional e posterior análise de resultados.

4.1 Formulação do Problema

4.1.1 Variáveis de Decisão

Para modelar o problema de otimização descrito, foram definidas as seguintes variáveis de decisão:

$$x_{ijp} = \begin{cases} 1, & \text{se o segmento } (i,j) \in A_s \text{ \'e atravessado na rota do drone que parte do} \\ & \text{ponto de paragem } p \in P \\ 0, & \text{caso contr\'ario} \end{cases}$$

$$y_p = \begin{cases} 1, & \text{se o drone \'e lançado do ponto de paragem } p \in P \\ 0, & \text{caso contr\'ario} \end{cases}$$

$$w_{ij} = \begin{cases} 1, & \text{se o veículo terrestre atravessa o arco } (i,j) \in A_p \\ 0, & \text{caso contrário} \end{cases}$$

 g_{ij} = quantidade de fluxo que atravessa o arco $(i,j) \in A_p$ e que representa o número de pontos de paragem que ainda podem ser usados

 $a_{ip}=$ instante de chegada do drone ao ponto $i\in P_s$ na rota que parte do ponto de paragem $p\in P$

4.1.2 Formulação em PLIM do PILED

Função Objetivo:

$$\min \sum_{p \in P} \sum_{(i,j) \in A_S} t_{ij} x_{ijp} + \sum_{(i,j) \in A_P} t_{ij} w_{ij}$$
(4.1)

Restrições:

$$\sum_{p \in P} \sum_{(i,j) \in A_s} (x_{ijp} + x_{jip}) \ge 1, \qquad \forall (i,j) \in S : i < j$$
(4.2)

$$\sum_{j \in P} x_{pjp} = y_p, \qquad \forall p \in P$$

$$(4.3)$$

$$\sum_{j \in P_s} x_{jpp} = y_p, \qquad \forall p \in P$$

$$(4.4)$$

$$\sum_{j \in P \cup P_s} x_{ijp} = \sum_{j \in P \cup P_s} x_{jip}, \qquad \forall i \in P_S, \ \forall p \in P$$

$$(4.5)$$

$$a_{jp} \ge a_{ip} + t_{ij}x_{ijp} - M(1 - x_{ijp}),$$
 $\forall (i, j) \in A_S : i \notin P, j \notin P, \forall p \in P$ (4.6)

$$\sum_{j \in P \cup P_s} t_{ji} \cdot x_{jip} \le a_{ip} \le (\alpha - t_{ip}) \cdot y_p, \qquad \forall i \in P_S \setminus P, \quad \forall p \in P$$

$$(4.7)$$

$$x_{ijp} \le y_p,$$
 $\forall (i,j) \in A_s, \quad \forall p \in P$ (4.8)

$$x_{ijp} = 0, \forall (i,j) \in A_s, \quad \forall p \in P : (4.9)$$
$$i \neq p, \ j \neq p, \ e \ d_{ip} > \beta \lor d_{ip} > \beta$$

$$\sum_{i \in P} w_{0j} = 1 \tag{4.10}$$

$$\sum_{j \in P: \ j \neq p} w_{pj} = y_p, \qquad \forall p \in P$$

$$(4.11)$$

$$\sum_{j \in P: \ j \neq p} w_{jp} = y_p, \qquad \forall p \in P$$

$$\tag{4.12}$$

$$\sum_{p \in P} g_{0p} = |P| - 1 \tag{4.13}$$

$$\sum_{j \in P} g_{jp} = \sum_{j \in P} g_{pj} + y_p, \qquad \forall p \in P$$

$$(4.14)$$

$$g_{ij} \le (|P| - 1) \cdot w_{ij}, \qquad \forall (i, j) \in A_P \tag{4.15}$$

$$x_{ijp} \in \{0, 1\}, \quad \forall (i, j) \in A_s, \qquad \forall p \in P$$
 (4.16)

$$y_p \in \{0, 1\}, \qquad \forall p \in P \tag{4.17}$$

$$w_{ij} \in \{0, 1\}, \qquad \forall (i, j) \in A_p \tag{4.18}$$

$$g_{ij} \ge 0, \qquad \forall (i,j) \in A_p \tag{4.19}$$

$$a_{ip} \ge 0,$$
 $\forall i \in P_s, \ \forall p \in P$ (4.20)

O modelo proposto visa minimizar o tempo total de operação, tal como definido na

função objetivo (4.1), que é composta pela soma dos tempos associados aos arcos percoridos pelos drones (somatório com variáveis x_{ijp}) e pelos veículos terrestres (somatório com variáveis w_{ij}).

As restrições (4.2) asseguram que todos os segmentos a inspecionar $(i, j) \in S$ sejam cobertos por pelo menos uma rota de voo, considerando ambos os sentidos. As restrições (4.3) e (4.4) impõem que, sempre que um operador realiza uma paragem no ponto p, então deve existir pelo menos um arco de voo que parte de p e um que chega a p, respetivamente. As restrições (4.5) asseguram que nos pontos de inspeção $i \in P_s$, ao longo de cada rota de voo iniciada em p, o número de arcos que entram coincidem com o número de arcos saem.

As restrições (4.6) impõem uma relação de precedência temporal entre os pontos visitados: caso o arco (i,j) seja utilizado numa rota com origem em p, o tempo de chegada ao ponto j deve ser, no mínimo, igual ao tempo de chegada a i acrescido do tempo de deslocação entre ambos, sendo utilizada uma constante grande M, definida como $M = \max\{t_{ij} : (i,j) \in A_s\} \times |A_s|$, para tornar esta redundante quando o arco não é utilizado.

As restrições (4.7) garantem que o tempo de chegada aos pontos de inspeção se encontra dentro dos limites definidos pela autonomia do drone α , sendo também limitado inferiormente pelo tempo de atravessar o arco que entra em i.

Já as restrições (4.8) e (4.9) asseguram coerência operacional, garantindo que arcos aéreos apenas são utilizados a partir do ponto p se o ponto de lançamento p for visitado e que arcos (i, j) que ultrapassem o limite de alcance β a partir de p, não poderão ser visitados a partir desse mesmo ponto, fixando $x_{ijp} = 0$.

As restrições (4.10) impõem que o ponto de partida fictício 0 da rede terrestre tenha exatamente uma saída. As restrições (4.11) e (4.12) asseguram que, para cada ponto de paragem p, existe exatamente um arco que entra e um arco que sai, se esse ponto for visitado. As restrições (4.13) garante que o fluxo total proveniente do ponto fictício é igual ao número total de pontos de paragem |P| - 1 porque o depósito já foi visitado, enquanto as restrições (4.14) assegura a conservação de fluxo em cada ponto de paragem: a quantidade de fluxo que entra deve ser igual à quantidade que sai somado a uma unidade, caso o ponto seja visitado.

A coerência entre o uso dos arcos e o fluxo é assegurada pelas restrições (4.15), que obrigam o valor da variável de fluxo g_{ij} a ser nula sempre que o arco (i, j) não é utilizado e, no máximo, a ser igual ao número total de pontos de paragem |P| - 1, quando o arco (i, j) é utilizado.

As restrições (4.16) a (4.20) definem os domínios das variáveis: x_{ijp} , y_p e w_{ij} são variáveis binárias, enquanto g_{ij} e a_i^p são variáveis contínuas não negativas.

4.1.3 Uma Nova Função Objetivo - FO2

Com o objetivo de tornar o modelo mais realista e alinhado com os procedimentos operacionais praticados pela EDP Labelec, foi proposta uma nova versão da função objetivo, denominada FO2. Na FO2, além do tempo de voo do drone e do tempo de deslocamento do veículo de apoio, passou-se a considerar o tempo necessário para a preparação e recolha do equipamento em cada ponto de paragem.

Este tempo adicional inclui todas as ações associadas à operação segura do drone, nomeadamente a paragem do veículo, montagem e verificação de todo o equipamento,

configuração de voo do drone, montagem dos pinos e verificação das condições de segurança, assim como a sua desmontagem e recolha do material utilizado.

Dessa forma, a nova função objetivo visa minimizar o tempo total de inspeção, considerando agora três componentes:

- 1. Tempo de deslocamento terrestre do veículo de apoio;
- 2. Tempo de voo do drone;
- 3. Tempo de preparação (set-up e set-down) em cada ponto de paragem utilizado.

Formalmente, a FO2 pode ser expressa como:

$$\min \sum_{p \in P} \sum_{(i,j) \in A_S} t_{ij} x_{ijp} + \sum_{(i,j) \in A_P} t_{ij} w_{ij} + \sum_{p \in P} k_p y_p$$

onde: $k_p = \text{tempo de } set\text{-}up + \text{tempo de } set\text{-}down.$

Capítulo 5

Dados e Resultados

Neste capítulo são apresentados os dados utilizados e os resultados obtidos a partir da aplicação do modelo de otimização apresentado no Capítulo 4. Inicialmente, na Secção 5.1 descreve-se o processo de recolha, tratamento e preparação dos dados fornecidos pela empresa EDP Labelec. Estes dados foram integrados com informações espaciais complementares através do software QGIS, permitindo a construção de cenários reais para a aplicação do modelo.

Em seguida, na Secção 5.2 são apresentados e analisados os resultados obtidos, permitindo avaliar a eficiência da abordagem proposta e a sua possível aplicabilidade prática no contexto de inspeção com drones na EDP Labelec.

5.1 Recolha e Processamento de Dados

Seguidamente irá ser apresentada a sequência adotada para a obtenção e preparação dos dados.

Fonte dos dados

Os dados referentes às linhas elétricas a serem inspecionadas foram fornecidos pela EDP Labelec no formato KML, contendo o mapa completo das linhas elétricas de média, alta e muito alta tensão de Portugal previstas para inspeção com recurso a drones no ano de 2025, representadas na Figura 5.1 através da representação no Google Earth Pro. Esses dados vetoriais foram, posteriormente, importados para o software QGIS, versão 3.34.14 [QGIS Development Team, 2025], uma ferramenta open-source de Sistemas de Informação Geográfica (SIG) que permite a visualização, análise e sobreposição de múltiplas camadas georreferenciadas, facilitando o trabalho com dados espaciais. Neste contexto, a sobreposição de camadas foi bastante importante pois permitiu o cruzamento dos dados das linhas elétricas com mapas de estradas e outras ferramentas de geoprocessamento como os Buffer 's para a verificação de cobertura da totalidade da linha, e polígonos de recorte para dividir os dados em instâncias mais pequenas, tal como é explicado de seguida.

Figura 5.1: Mapa de linhas elétricas a inspecionar com drones em 2025

Seleção da linha em estudo

No QGIS, realizou-se uma seleção específica da linha em estudo recorrendo à ferramenta de processamento "Seleção Vetorial - Selecionar por expressão", combinada com código em Python aplicados na tabela de atributos para filtrar e extrair apenas a linha escolhida aleatoriamente para análise. Esta é identificada como linha C2068, localizada na região de Mafra e apresentada na Figura 5.2 a vermelho. Essa etapa permitiu o recorte geográfico necessário para focar o estudo na linha específica.

Mapas complementares e sobreposição

Para complementar o cenário, adicionando a informação das estradas, foi utilizado um mapa vetorial das estradas de Portugal obtido no servidor de downloads GeoFabrik [Geofabrik, 2025], especificamente o arquivo gis_osm_roads_free_1. Este mapa, que contém informações sobre as vias públicas, foi incorporado ao projeto no QGIS e sobreposto à linha elétrica selecionada, tal como é demonstrado na Figura 5.2, possibilitando a análise conjunta das vias de acesso, representadas a cinzento, e da infraestrutura elétrica, representada a vermelho, fundamental para o planeamento das rotas de inspeção com drones, que também inclui o percurso do veículo de apoio.

Figura 5.2: Linha elétrica C2068 - Mafra

Definição dos pontos de paragem

Neste momento, a inspeção das linhas elétricas realizada com recurso a drones, na EDP Labelec, não segue nenhum processo definido. Desta forma, os pontos de paragem do veículo de apoio são escolhidos, por operadores com experiência, de forma intuitiva durante a inspeção, fazendo assim paragens em locais estratégicos onde estão reunidas condições de segurança.

Assim, foi definido um processo, aprovado pelo decisor da empresa, onde a definição dos pontos de paragem dos veículos de apoio, representados na Figura 5.3 a laranja, foi realizada através da interseção vetorial entre o mapa das estradas e a linha elétrica em estudo. Para isso, foi utilizada a ferramenta de processamento "Sobreposição de vetor - Interseção de linhas", um algoritmo que cria pontos onde as linhas na camada de interseção (mapa das estradas) intersetam a linha da camada de entrada (linha elétrica).

Além disso, na tabela de atributos desse conjunto de pontos de paragem, com auxílio de código em Python, foram calculadas as coordenadas de todos os pontos permitindo a geração dos dados geográficos necessários para a resolução do PILED.

Figura 5.3: Representação dos pontos de paragem na linha C2068 - Mafra

Segmentação da linha elétrica

De seguida, foi realizada uma divisão da linha elétrica para que esta esteja divida em segmentos mais curtos que consigam ser visitados dentro das limitações de autonomia e alcance do drone.

Caso esta segmentação não fosse realizada teria de ser definido que o drone poderia entrar e sair em qualquer ponto da linha elétrica o que traria uma maior complexidade ao modelo de PLIM e dificuldade na sua resolução. Desta forma, são definidos segmentos que podem ser visitados a partir de pontos de paragem dentro do raio de alcance do drone.

Para isso, aplicou-se uma simplificação geométrica dividindo a linha em segmentos de até 250 metros de comprimento, utilizando a ferramenta "Geometria Vetorial - Dividir linhas por comprimento máximo" do QGIS. Este valor máximo permite ao mesmo tempo, não ter um número excessivo de segmentos (não sendo um comprimento muito reduzido) e, ainda, que estes consigam ser inspecionados dentro do raio de alcance do drone (não sendo um comprimento demasiado longo).

Após esse processo, os vértices desses segmentos foram extraídos e as suas coordenadas foram calculadas. Os pontos iniciais e finais de cada segmento foram numerados para facilitar a identificação e a definição dos pontos extremos dos segmentos a inspecionar.

Verificação da cobertura

Para validar a eficácia dos pontos de paragem identificados, foi utilizada no QGIS a ferramenta de geoprocessamento *Buffer*, que permitiu criar áreas circulares em torno de cada ponto de paragem com raio igual ao alcance máximo do drone. A sobreposição dessas zonas de cobertura com os segmentos da linha elétrica possibilitou verificar se, a partir desses pontos de paragem, seria possível inspecionar toda a extensão da linha. A análise confirmou que todos os segmentos da linha estavam efetivamente cobertos, tal como mostra a Figura 5.4, validando assim a distribuição espacial dos pontos de paragem e reforçando a coerência do conjunto de dados utilizado.

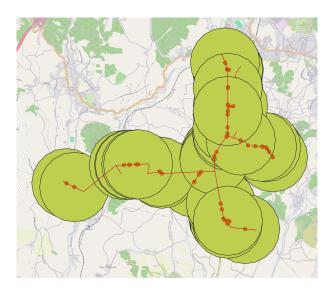


Figura 5.4: Verificação da cobertura utilizando Buffer's

Conversão do sistema de coordenadas

Os dados originais encontravam-se no sistema de coordenadas geodésicas EPSG:4326 que são medidas angulares (latitude e longitude). Para possibilitar cálculos métricos de distância, as camadas foram reprojetadas para o sistema de coordenadas projetadas EPSG:25829, que utiliza unidades em metros e é adequado para Portugal Continental onde todas as coordenadas têm valores positivos. Essa reprojeção garante que todas as operações matemáticas necessárias para obter distâncias entre pontos sejam realizadas de forma correta e consistente.

Exportação e organização dos dados

Após o processamento e preparação no QGIS, os dados foram exportados no formato CSV. Posteriormente, esses arquivos foram importados para o Excel, onde foram organizados em formato de tabela.

No Excel, os dados referentes aos segmentos das linhas elétricas foram organizados numa tabela contendo as seguintes colunas, tal como mostra a Figura 5.5: X_START e Y_START, que representam as coordenadas X e Y do ponto inicial de cada segmento; X_END e Y_END, correspondentes às coordenadas do ponto final; inicial_ID e final_ID, identificadores únicos dos pontos inicial e final, respetivamente; e comprimento, que indica o comprimento do segmento em metros. Os IDs dos extremos dos segmentos variam entre 1 e 144.

Figura 5.5: Ficheiro de dados com informação dos segmentos

Os dados relativos aos pontos de paragem foram organizados numa outra tabela no Excel, como mostra a Figura 5.6, contendo as colunas ID, que é o identificador único de cada ponto com valores compreendidos entre 145 e 200, e X e Y, que correspondem às coordenadas do ponto de paragem no sistema de coordenadas projetadas.

Figura 5.6: Ficheiro de dados com informação dos pontos de paragem

Divisão em instâncias

De forma a observar o desempenho do modelo em PLIM desenvolvido perante instâncias de diferentes dimensões, procedeu-se ainda à divisão da linha elétrica em quatro instâncias distintas. Cada instância corresponde a uma secção da linha original, contendo os seus próprios pontos de paragem e segmentos. Para realizar essa divisão foi utilizada a ferramenta de processamento "Sobreposição de vetor - Recortar" com o objetivo de recortar a camada vetorial da linha elétrica usando elementos de uma camada de polígonos adicional. A Figura 5.7 mostra o polígono desenhado para recortar a camada vetorial da linha elétrica correspondente à Instância 2.

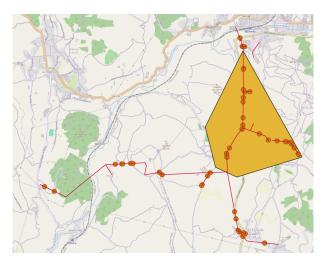


Figura 5.7: Polígono utilizado para obter a Instância 2

Na Tabela 5.1 é detalhada a constituição de cada instância em termos de número de pontos de paragem (|P|) e de segmentos a inspecionar (|S|), sendo apresentada no Anexo A a listagem dos pontos de paragem pertencentes a cada instância. Esta abordagem permite uma melhor experiência computacional pois possibilita a análise a diferentes cenários. As Instâncias 1 e 3 são ambas de menor dimensão, no entanto, ao contrário da Instância 1, a Instância 3 apresenta um maior número de pontos de paragem em relação aos segmentos a serem inspecionados, o que proporciona maior flexibilidade na definição dos pontos de paragem utilizados. A Instância 4, mesmo não sendo a instância de maior dimensão, apresenta uma complexidade superior pois tem um número de segmentos a inspecionar muito superior ao número pontos de paragem definidos, em comparação com a Instância 2.

Tabela 5.1: Instâncias a usar na experiência computacional

Instância	P	S
Instância 1	5	13
Instância 2	27	23
Instância 3	10	9
Instância 4	14	24
Linha Completa	56	69

Para todo o processo de obtenção das instâncias, o uso do QGIS revelou-se essencial para a manipulação, análise e preparação dos dados geoespaciais, tornando possível a aplicação do modelo em PLIM a instâncias reais da inspeção de linhas elétricas com drones na EDP Labelec.

5.2 Resultados

Os resultados apresentados nesta secção foram obtidos através da aplicação do modelo em PLIM desenvolvido em Python, utilizando o solver Gurobi, versão 12.0.0. Os testes computacionais foram executados num computador com as seguintes especificações: processador Intel Core i7, 16 GB de memória RAM e sistema operativo Windows 11.

5.2.1 Valores dos Parâmetros

De forma a replicar a operação da EDP Labelec, foram definidos parâmetros que permitem calcular a distância e os tempos de deslocação e avaliar a viabilidade técnica de cada arco da rede em relação à autonomia e ao alcance do drone.

Os valores dos parâmetros utilizados no modelo foram definidos em conjunto com o decisor da EDP Labelec, e são explicados seguidamente e apresentados na Tabela 5.2.

- v_d : a velocidade média do drone situa-se entre os três a cinco metros por segundo. Por esse motivo foi considerado para este estudo o valor de quatro metros por segundo (m/s), valor utilizado para estimar os tempos de deslocação aéreos.
- v_c : a velocidade a que um carro pode circular na maioria das estradas em estudo é de 50 quilómetros por hora. Assim, foi considerado esse valor que são aproximadamente 14 metros por segundo para calcular os tempos de deslocação terrestres.
- α: a autonomia do drone corresponde à distância máxima, em minutos, que este consegue percorrer durante o tempo total de voo, devido à limitação de bateria.
 Os drones utilizados pela EDP Labelec nas inspeções de linhas elétricas têm uma autonomia de aproximadamente 30 minutos.
- β: o raio de alcance máximo do drone, distância máxima entre o drone e o operador, depende das características do equipamento e das condições de operação. Em operações de inspeção com drones, mantendo linha de vista direta, e de acordo com a legislação europeia aplicável em Portugal pela Autoridade Nacional de Aviação Civil, para drones como os utilizados pela EDP Labelec, este alcance situa-se, em condições favoráveis, entre 500 e 800 metros, respeitando sempre os limites de altitude. Desta forma, e após conversa com o decisor, foi definido para este estudo um valor de 700 metros [Autoridade Nacional da Aviação Civil, 2025].
- δ : a altura média dos postes da rede elétrica, na zona em estudo, é de aproximadamente 20 metros. Esta é considerada para os cálculos relacionados com a distância de voo do drone.

Tabela 5.2: Valores dos parâmetros usados na experiência computacional do PILED

Parâmetro	Definição	Valores
v_d	Velocidade do drone (m/s)	4
v_c	Velocidade do veículo de apoio (m/s)	14
α	Autonomia do drone (min.)	30
β	Alcance máximo do drone (m)	700
δ	Altura dos postes (m)	20

5.2.2 Cálculo das Distâncias

Com o objetivo de calcular as distâncias de deslocação foi definida uma função para obter d_{ij} que representa a distância a percorrer num arco $(i,j) \in A_s \cup A_p$. Seguidamente, é também definido o parâmetro t_{ij} , que representa o tempo necessário para percorrer um arco $(i,j) \in A_s \cup A_p$. Este parâmetro é calculado fazendo d_{ij} a dividir por v_d , se (i,j)

 $\in A_s$, representando assim um tempo de voo, ou d_{ij} a dividir por v_c , se $(i,j) \in A_p$, representando desta vez um tempo de deslocação terrestre. Esta informação é resumida nas Equações 5.1 e 5.2.

$$d_{ij} = \begin{cases} \text{distância de voo,} & \text{se } (i,j) \in A_s \\ \text{distância terrestre,} & \text{se } (i,j) \in A_p \end{cases}$$
 (5.1)

$$t_{ij} = \begin{cases} \frac{d_{ij}}{v_d}, & \text{se } (i,j) \in A_s \\ \frac{d_{ij}}{v_c}, & \text{se } (i,j) \in A_p \end{cases}$$

$$(5.2)$$

As distâncias entre pontos foram calculadas de acordo com a natureza dos pontos envolvidos, segundo três critérios distintos:

- Entre pontos de paragem: Quando ambos os pontos pertencem ao conjunto de pontos de paragem, isto é: i, j ∈ P, a distância é calculada com base na rede rodoviária do município de Mafra, obtida através da biblioteca osmnx do Python. A distância corresponde ao comprimento do caminho mais curto entre esses pontos por estradas acessíveis.
- Entre pontos da linha elétrica: Quando ambos os pontos pertencem à linha elétrica, isto é: $i, j \in P_s$, a distância é calculada utilizando a Fórmula 5.3 da distância Euclidiana no plano bidimensional, com base nas coordenadas dos pontos, sendo (x_k, y_k) as coordenadas do ponto k.

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
(5.3)

• Entre um ponto de paragem e um ponto na linha elétrica: Quando um dos pontos pertence aos pontos de paragem P e outro à linha elétrica P_s, isso significa que o ponto i ∈ P_s está a uma altura δ = 20 metros do nível do ponto j ∈ P. Neste caso, a distância é determinada como a hipotenusa tridimensional, através da Fórmula 5.4 e tal como é representado na Figura 5.8, considerando a distância horizontal (distância euclidiana no plano) e a distância vertical (altura do poste δ), representando o voo na diagonal do drone de um ponto de paragem até a um ponto da linha elétrica, ou vice-versa.

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + \delta^2}$$
 (5.4)

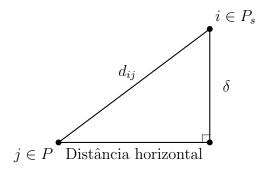


Figura 5.8: Representação da distância entre um ponto de paragem j e um ponto i na linha elétrica

5.2.3 Análise dos Resultados Obtidos

Procedeu-se então à análise dos resultados obtidos executando o modelo proposto para as diferentes instâncias apresentadas na Tabela 5.1.

A Tabela 5.3 contém os resultados obtidos através da aplicação do modelo proposto no Capítulo 4. A tabela inclui as seguintes colunas: o nome da instância; o limite inferior (LI) e o limite superior (LS) do valor ótimo obtido pelo *solver* no tempo limite definido, ambos expressos em minutos, onde o limite superior corresponde à melhor solução encontrada; o *gap* percentual, que representa a diferença entre os limites inferior e superior, calculado através da Fórmula 5.5; e o tempo total de execução do *solver*, medido em segundos, que foi limitado a 3600 segundos (uma hora).

$$gap = \frac{LS - LI}{LS} \times 100\%, \tag{5.5}$$

Tabela 5.3: Resultados obtidos para a FO1

Instância	LI (min.)	LS (min.)	Gap (%)	Tempo (seg.)
Instância 1	8,66	8,66	0,00	15
Instância 2	26,07	27,48	5,13	3600
Instância 3	14,52	14,52	0,00	1
Instância 4	42,47	42,47	0,00	2436
Linha Completa	79,36	99,33	20,11	3600

Através da análise dos resultados apresentados na Tabela 5.3 podemos concluir que foi possível encontrar a solução ótima (SO) de três instâncias (Instância 1, 3 e 4) pois o limite inferior é igual ao limite superior o que se traduz num gap de 0%. Na Instância 2, o tempo limite de execução do solver foi atingido e a solução admissível (SA) encontrada

tem um gap de 5,13% o que reflete que o valor da SA encontrada é bastante próximo do ótimo. Quanto à solução encontrada para a Instância Linha Completa podemos verificar que esta, tal como era esperado, também atingiu o tempo limite e o valor desta se encontra no máximo a 20% do valor ótimo, registando um tempo de inspeção de 99,33 minutos, que é aproximadamente uma hora e 40 minutos.

Relativamente aos tempos de execução é possível verificar que nas Instâncias 1 e 3 a SO foi encontrada muito rapidamente, em 15 segundos ou menos. Já na Instância 4, tal como era de esperar, foi mais demorado, sendo esta a instância de maior dimensão, com 14 pontos de paragem e 24 segmentos, que foi possível resolver dentro do tempo limite definido.

De seguida é ainda descrita e analisada a solução obtida para a Instância 1. Como a análise às restantes instâncias é semelhante, esta encontra-se no Anexo B.

Instância 1

A Figura 5.9 apresenta o percurso de inspeção, do veículo de apoio (a azul escuro) com os pontos de paragem utilizados (a verde: $p_1 = 162$ e $p_2 = 164$), como também os percursos do drone em cada lançamento, cada um com a sua respetiva cor (azul claro e azul escuro).

Figura 5.9: Representação da SO para a Instância 1

A SO encontrada usou apenas dois pontos de paragem, o que demonstra uma estratégia eficiente de cobertura dos segmentos com pouca movimentação do veículo terrestre e a rota do veículo de apoio seguiu a seguinte trajetória: $0 \to 162 \to 164 \to 0$.

O tempo mínimo de inspeção obtido foi de 8,66 minutos, englobando tanto os trajetos do drone, com 8,64 minutos, como a deslocação entre pontos de paragem, com 1 segundo. Foram executadas duas rotas com o drone:

- A partir do ponto 164 foi executada a rota: $164 \rightarrow 90 \rightarrow 76 \rightarrow 77 \rightarrow 133 \rightarrow 132 \rightarrow 131 \rightarrow 130 \rightarrow 113 \rightarrow 115 \rightarrow 92 \rightarrow 123 \rightarrow 124 \rightarrow 125 \rightarrow 92 \rightarrow 121 \rightarrow 164;$
- A partir do ponto 162 foi executada a rota: $162 \rightarrow 87 \rightarrow 76 \rightarrow 92 \rightarrow 94 \rightarrow 96 \rightarrow 95 \rightarrow 162$.

O facto de o ponto de paragem 164 servir de origem para grande parte das inspeções, sendo inspecionados 14 segmentos enquanto que a partir do ponto de paragem 162 foram apenas inspecionados cinco segmentos, sugere que este ponto se encontra bem posicionado relativamente a vários segmentos, permitindo uma maior concentração de operações a partir do mesmo ponto de paragem, isto é possível verificar na representação das rotas do drone onde os segmentos a inspecionar se encontram identificados com setas azuis.

A solução encontrada é a SO para este conjunto de dados pois o limite inferior é igual ao limite superior, o que se traduz num gap de 0%. Deste modo, a solução foi obtida de forma eficiente, com um tempo total bastante reduzido. Este resultado indica que o modelo é capaz de encontrar soluções com aplicabilidade prática, para instâncias de pequena dimensão.

5.2.4 Análise dos Resultados Obtidos com FO2

De forma a testar a FO2 apresentada na Secção 4.1.3, foram definidos dois tempos fixos para as atividades de set-up e set-down, em conjunto com o decisor da empresa, nomeadamente:

- Tempo de set-up: 5 minutos;
- Tempo de set-down: 5 minutos.

Assim, cada ponto de paragem utilizado tem uma penalização adicional de 10 minutos, que passa a ser contabilizada na função objetivo e corresponde ao tempo de *set-up* e de *set-down*.

Com esta modificação, espera-se reduzir o número de pontos de paragem utilizados, favorecendo soluções em que um mesmo ponto seja utilizado como base para a inspeção de um maior número de segmentos. Assim, além do aumento do tempo total de inspeção, espera-se observar:

- Um menor número de pontos de paragem utilizados;
- Um aumento do tamanho das rotas do drone, de forma a cobrir mais segmentos a partir de menos pontos de paragem;
- Uma redistribuição dos pontos de paragem para posições mais centrais.

A aplicação desta nova função será comparada com os resultados obtidos com a função objetivo original, permitindo uma análise crítica dos impactos operacionais e estratégicos desta alteração. Na Tabela 5.4 é possível observar os resultados obtidos através da utilização da FO2, sendo esta organizada da mesma forma que a Tabela 5.3.

Tabela 5.4: Resultados obtidos para a FO2

Instância	LI (min)	LS (min.)	Gap (%)	Tempo (seg.)
Instância 1	28,66	28,66	0,00	70
Instância 2	57,37	71,05	19,25	3600
Instância 3	34,52	34,52	0,00	1
Instância 4	73,74	96,03	23,21	3600
Linha Completa	157,91	235,80	33,03	3600

Através dos resultados obtidos com a FO2 podemos verificar que foi possível encontrar a SO para as Instâncias 1 e 3, onde o gap é 0% e o tempo de resolução foi bastante reduzido. Já nas restantes instâncias o tempo limite foi atingido sendo geradas SA com gaps de aproximadamente 20%. Relativamente à Instância Linha Completa, a solução encontrada regista um gap de 33,03% e um tempo total de inspeção de cerca de 235,80 minutos que são aproximadamente quatro horas.

Seguidamente, e tal como foi feito na secção anterior, é descrita e analisada uma das instâncias, neste caso a Instância 2, sendo que a análise às restantes instâncias se encontra no Anexo C.

Instância 2

A Figura 5.10 ilustra a SA encontrada para a Instância 2 utilizando a FO2, onde foi atingido o tempo limite de execução do solver, resultando numa SA de 71,05 minutos. Os pontos de paragem utilizados foram os pontos 145, 154, 192 e 194, e o trajeto do veículo de apoio foi o seguinte: $0 \rightarrow 145 \rightarrow 154 \rightarrow 194 \rightarrow 192 \rightarrow 145 \rightarrow 0$.

O tempo total percorrido pelo veículo de apoio foi de 3,21 minutos, enquanto os drones realizaram rotas que totalizaram 27,84 minutos. Assim, o tempo total da SA foi de 71,05 minutos.

Foram executadas quatro rotas com o drone:

- A partir do ponto 145 foi executada a rota: $145 \rightarrow 55 \rightarrow 54 \rightarrow 61 \rightarrow 53 \rightarrow 135 \rightarrow 103 \rightarrow 105 \rightarrow 74 \rightarrow 75 \rightarrow 145$;
- A partir do ponto 154 foi executada a rota: $154 \rightarrow 103 \rightarrow 137 \rightarrow 138 \rightarrow 139 \rightarrow 142 \rightarrow 144 \rightarrow 154$;
- A partir do ponto 192 foi executada a rota: $192 \rightarrow 72 \rightarrow 73 \rightarrow 59 \rightarrow 57 \rightarrow 54 \rightarrow 127 \rightarrow 126 \rightarrow 102 \rightarrow 100 \rightarrow 98 \rightarrow 74 \rightarrow 192$;

• A partir do ponto 194 foi executada a rota: $194 \rightarrow 118 \rightarrow 113 \rightarrow 111 \rightarrow 102 \rightarrow 109 \rightarrow 128 \rightarrow 129 \rightarrow 194$.

Em comparação com a FO1, para a qual a análise dos resultados é apresentada no Anexo B, podemos verificar que os pontos de paragem diminuíram de sete para quatro. Existiu também um aumento do tempo de inspeção em 44,35 minutos, sendo que 40 minutos foram resultado da penalização associada ao número de pontos de paragem utilizados. Além disso, esta solução apresenta um gap de aproximadamente 20%, ao contrário da solução obtida com a FO1 que teve um gap de apenas 5%. Quanto às rotas do drone, estas tiveram uma maior dimensão, como seria de esperar, havendo um aumento no tempo de voo do drone e uma diminuição do tempo de deslocação do veículo de apoio. Foi ainda possível observar que os pontos de paragem escolhidos foram diferentes dos utilizados na FO1, sendo estes locais mais centrais e estratégicos onde, com menor número de pontos de paragem, se conseguiu visitar todos os segmentos da linha elétrica dessa instância, tal como é possível verificar na representação das rotas dos drones onde os segmentos a inspecionar surgem a azul.

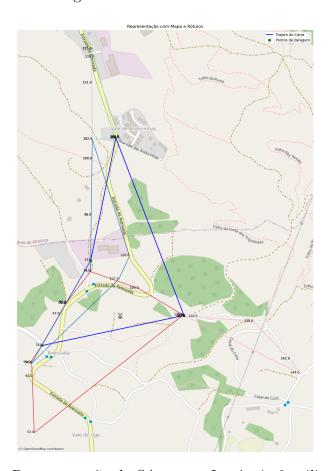


Figura 5.10: Representação da SA para a Instância 2 utilizando a FO2

Foi ainda construída a Tabela 5.5 de forma a apresentar e comparar todos os resultados obtidos aplicando as duas funções objetivo. Além da informação apresentada anteriormente, nas Tabelas 5.3 e 5.4, nesta tabela é ainda possível observar os tempos das deslocações do veículo de apoio e do drone, em minutos, nas colunas TC e TD, respetivamente, e o número de pontos de paragem utilizados em cada instância, na coluna #PP.

Tabela 5.5: Tabela resumo dos resultados obtidos com a FO1 e FO2

Instância	LI (min)	LS (min.)	TC (min.)	TD (min.)	#PP	Gap (%)	Tempo (seg.)
Instância 1 - FO1	8,66	8,66	0,02	8,64	2	0,00	15
Instância 1 - FO2	28,66	28,66	0,02	8,64	2	0,00	70
Instância 2 - FO1	26,07	27,48	3,50	23,98	7	5,13	3600
Instância 2 - FO2	57,37	71,05	3,21	27,84	4	19,25	3600
Instância 3 - FO1	14,52	14,52	0,11	14,41	2	0,00	1
Instância 3 - FO2	34,52	34,52	0,11	14,41	2	0,00	1
Instância 4 - FO1	42,47	42,47	12,28	30,19	6	0.00	2436
Instância 4 - FO2	73,74	96,03	12,28	33,75	5	23,21	3600
Linha Completa - FO1	79,36	99,33	20,10	79,23	19	20,11	3600
Linha Completa - FO2	157,91	235,80	19,92	85,88	13	33,03	3600

A partir da análise dos resultados da Tabela 5.5 podemos verificar, em primeiro lugar, que as Instâncias 1 e 3, mantiveram o mesmo percurso, registando assim tempos de deslocação do veículo e do drone iguais. A diferença nos valores ótimos reflete apenas a penalização existente pelo número de pontos de paragens utilizados pelo veículo de apoio, que nesses dois casos foi de 20 minutos, por serem efetuadas apenas duas paragens. Estas são também as duas instâncias que foram mais rápidas em termos de tempos de resolução, e, ainda que, na Instância o tempo de resolução tenha aumentado de 15 para 70 segundos, foram encontradas as SO rapidamente, o que se refletiu em gaps de 0%.

Nas Instâncias 2 e 4, os tempos de resolução foram significativamente superiores e apenas foi encontrada a SO na Instância 4 através da FO1, sendo essa a instância de maior dimensão que foi possível resolver no tempo definido.

Em relação aos tempos percorridos pelo veículo de apoio e pelo drone, podemos verificar que em todos os casos testados o tempo registado pela operação dos drones foi sempre superior ao tempo de deslocação do veículo.

Quanto aos gaps obtidos podemos apurar que com a FO2 esse valor é sempre superior ou igual, refletindo assim a complexidade acrescida com a utilização dessa nova função objetivo.

Capítulo 6

Conclusão

Este TFM teve como principal objetivo a formulação e aplicação de um modelo matemático para otimizar o processo de inspeção de linhas elétricas com recurso a drones, no contexto da EDP Labelec. Através da modelação do PILED em PLIM, foi possível propor uma abordagem sistematizada que permite definir trajetos tanto para os drones como para os veículos de apoio, respeitando as limitações operacionais dos drones.

A implementação do modelo foi precedida por um processo rigoroso de recolha, preparação e tratamento de dados geográficos reais, recorrendo a várias ferramentas como o QGIS e a programação com linguagem de programação Python. A preparação dos dados permitiu criar instâncias de diferentes dimensões que representam com precisão o problema real da EDP Labelec. A introdução de uma nova função objetivo, que inclui o tempo de preparação e recolha dos drones em cada ponto de paragem, tornou o modelo ainda mais alinhado com a prática operacional da empresa.

Os resultados obtidos demonstraram a aplicabilidade do modelo proposto e a sua capacidade de gerar soluções admissíveis para cenários reais. Estas soluções são geradas de forma eficiente nas instâncias de menor dimensão, enquanto que nas maiores, as soluções obtidas têm gap 's para o valor ótimo de 30% no máximo, sendo a FO2 mais complexa que a FO1.

A utilização desta metodologia pode representar uma mais-valia significativa para a EDP Labelec, contribuindo para uma redução dos tempos de inspeção, uma gestão mais eficaz dos recursos e uma maior fiabilidade na monitorização da infraestrutura elétrica. Além disso, a automatização do planeamento das rotas de inspeção permite a fácil aplicabilidade e repetição do processo, características importantes em operações de larga escala.

Para trabalhos futuros, sugere-se a restrição da definição dos pontos de paragem apenas a locais que garantam condições de segurança para o estacionamento do veículo de apoio e o lançamento do drone, nomeadamente zonas com espaço livre e acessibilidade adequada, tornando o modelo ainda mais adaptado à realidade da EDP Labelec. Adicionalmente, a utilização de metaheurísticas, como o ALNS utilizado em problemas deste tipo com bons resultados, poderá permitir resolver instâncias de maior dimensão com tempos computacionais mais reduzidos. Para além disso, seria interessante explorar a aplicação do modelo num cenário de operação Beyond Visual Line of Sight (BVLOS), onde o drone não depende da linha de visão direta do operador, permitindo rotas de maior alcance e com potencial para a redução do número de pontos de paragem necessários. Esta abordagem permitiria comparar métricas de eficiência entre operações Visual Line of Sight (VLOS) e BVLOS, como o tempo total de inspeção, o número de pontos de

paragem utilizados e a diferença entre tempos de voo e de deslocação terrestre. Por fim, a consideração da operação simultânea de múltiplos drones, bem como a integração de vários veículos de apoio podem também sugerir melhorias no processo de inspeção.

Bibliografia

- L. Amorosi, J. Puerto, and C. Valverde. Coordinating drones with mothership vehicles: The mothership and drone routing problem with graphs. *Computers & Operations Research*, 136:105445, 2021.
- Autoridade Nacional da Aviação Civil. Aeronaves Civis Pilotadas Remotamente, 2025. URL https://www.anac.pt/vPT/Generico/drones/Paginas/AeronavesCivisPilotadasRemotamente.aspx. Acedido em: 13 de junho de 2025.
- J. F. Campbell, Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura. Solving the length constrained k-drones rural postman problem. *European Journal of Operational Rese*arch, 292(1):60–72, 2021.
- C. Chen, E. Demir, and Y. Huang. An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots. *European Journal of Operational Research*, 294(3):1164–1180, 2021.
- A. Coelho and R. M. Martins. Leveraging overhead powerline inspection using drones and digitalization. In *CIRED 2025 Conference*, June 2025. Paper 353, 16–19 June 2025.
- T. Corberán, I. Plana, and J. M. Sanchis. The min max multi-trip drone location arc routing problem. *Computers & Operations Research*, 174:106894, 2025.
- EDP Energias de Portugal. Labelec Centro de Ensaios e Inovação da EDP, 2024. URL https://edp.com/pt. Acedido em: 29 de maio de 2025.
- EDP Labelec. Labelec Centro de Ensaios e Inovação da EDP, 2024. URL https://www.edp.com/pt/inovacao/labelec. Acedido em: 29 de maio de 2025.
- E. Fernández, G. Laporte, and J. Rodríguez-Pereira. Exact solution of several families of location-arc routing problems. *Transportation Science*, 53(5):1313–1333, 2019.
- Geofabrik. Geofabrik download server: Portugal, 2025. URL https://download.geofabrik.de/europe/portugal.html. Acedido em 12 de junho de 2025.
- X. Liu, S. H. Chung, and C. Kwon. An adaptive large neighborhood search method for the drone–truck arc routing problem. *Computers & Operations Research*, 176:106959, 2025.
- QGIS Development Team. QGIS Geographic Information System, 2025. URL https://qgis.org/. Acedido em 15 de junho de 2025.

- P. Rauhakallio. The past, present, and future of powerline inspection automation. *POWER*, 2020.
- G. Reinelt and D. O. Theis. A note on the undirected rural postman problem polytope. *Mathematical programming*, 106:447–452, 2006.
- D. Sacramento, D. Pisinger, and S. Ropke. An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. *Transportation Research Part C: Emerging Technologies*, 102:289–315, 2019.
- M. Shafiee, Z. Zhou, L. Mei, F. Dinmohammadi, J. Karama, and D. Flynn. Unmanned aerial drones for inspection of offshore wind turbines: A mission-critical failure analysis. *Robotics*, 10(1):26, 2021.

Apêndice A

Pontos de Paragem das Instâncias

Abaixo apresentam-se os pontos de paragem atribuídos a cada uma das quatro instâncias, resultado do processo de recorte descrito na Secção 5.1:

- Instância 1: [162, 163, 164, 189, 195]
- Instância 2: [145, 151, 154, 155, 156, 157, 158, 159, 160, 161, 173, 178, 179, 180, 183, 184, 185, 186, 187, 188, 191, 192, 193, 194, 196, 197, 198]
- Instância 3: [168, 169, 170, 171, 172, 181, 182, 190, 199, 200]
- Instância 4: [146, 147, 148, 149, 150, 152, 153, 165, 166, 167, 174, 175, 176, 177]

Apêndice B

Análise de Resultados Obtidos com a FO1

Instância 2

Na Instância 2 o tempo máximo de execução do solver foi atingido, no entanto, foi encontrada uma SA com valor de 27,48 minutos. Esta solução é comparada ao limite inferior de 26,07 minutos, resultando num gap de 5,13%, conforme apresentado na Tabela 5.3. O tempo total de inspeção foi de 27,48 minutos, dos quais 3,50 minutos correspondem ao deslocamento do carro e 23,98 minutos ao tempo de voo do drone.

A Figura B.1 contém a representação gráfica do percurso de inspeção, incluindo o trajeto do carro, representado a azul escuro, e os voos do drone a partir dos pontos de paragem selecionados, representados a azul claro, azul escuro, vermelho, castanho, laranja, amarelo e cor-de-rosa.

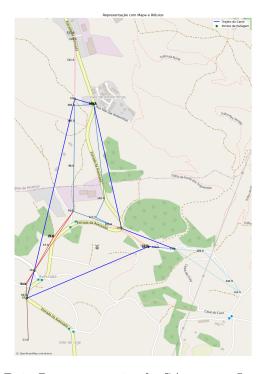


Figura B.1: Representação da SA para a Instância 2

Foram utilizados sete pontos de paragem na solução final: [145, 155, 158, 183, 184, 194,

196] e o veículo de apoio percorreu o seguinte trajeto: $0 \rightarrow 145 \rightarrow 183 \rightarrow 155 \rightarrow 158 \rightarrow 196 \rightarrow 194 \rightarrow 184 \rightarrow 145 \rightarrow 0$.

A utilização de múltiplos pontos de paragem sugere que, nesta instância, a distribuição dos segmentos de inspeção exigiu maior dispersão geográfica das operações, não existindo uma forte concentração de voos a partir de poucos pontos de paragem, como observado, por exemplo, na Instância 1.

Foram executadas várias rotas de drone a partir dos pontos de paragem utilizados, nomeadamente:

- A partir do ponto 145 com a rota: 145 \to 55 \to 54 \to 57 \to 59 \to 73 \to 72 \to 75 \to 74 \to 145
- A partir do ponto 155 com a rota: $155 \rightarrow 103 \rightarrow 137 \rightarrow 155$
- A partir do ponto 158 com a rota: $158 \rightarrow 144 \rightarrow 142 \rightarrow 139 \rightarrow 138 \rightarrow 158$
- A partir do ponto 183 com a rota: $183 \rightarrow 54 \rightarrow 61 \rightarrow 53 \rightarrow 183$
- A partir do ponto 184 com a rota: $184 \rightarrow 102 \rightarrow 111 \rightarrow 113 \rightarrow 118 \rightarrow 184$
- A partir do ponto 194 com a rota: $194 \rightarrow 129 \rightarrow 128 \rightarrow 109 \rightarrow 102 \rightarrow 100 \rightarrow 98 \rightarrow 74 \rightarrow 105 \rightarrow 127 \rightarrow 126 \rightarrow 194$
- A partir do ponto 196 com a rota: $196 \rightarrow 105 \rightarrow 103 \rightarrow 135 \rightarrow 196$

Apesar da complexidade acrescida, o modelo conseguiu encontrar uma SA dentro do tempo limite de execução. O gap de 5,13% indica que o valor desta solução está relativamente próximo da SO.

Instância 3

A Figura B.2 apresenta a SO obtida, com o trajeto do carro representado a azul escuro, os pontos de paragem selecionados a verde ($p_1 = 168$ e $p_2 = 182$), e os trajetos do drone em diferentes cores.

Figura B.2: Representação da SO para a Instância 3

A solução encontrada recorreu apenas a dois pontos de paragem, com um trajeto terrestre simples: $0 \to 168 \to 182 \to 0$. Em relação aos drones foram realizadas, no total, duas rotas, sendo elas:

- A partir do ponto 168 a rota: $168 \rightarrow 84 \rightarrow 82 \rightarrow 80 \rightarrow 71 \rightarrow 86 \rightarrow 168$;
- A partir do ponto 182 a rota: $182 \rightarrow 71 \rightarrow 69 \rightarrow 67 \rightarrow 65 \rightarrow 53 \rightarrow 51 \rightarrow 182$.

O tempo total percorrido pelo carro foi de 6,68 segundos, enquanto os drones percorreram um total de 14,41 minutos. Desta forma, o tempo total da solução foi de 14,52 minutos e ogap de 0%. Além disso, o tempo de execução foi de apenas 1 segundo, o que demonstra uma elevada eficiência do modelo para esta instância que tem menor complexidade.

Instância 4

A Figura B.3 ilustra a SO encontrada, com o trajeto do carro a azul escuro, os pontos de paragem selecionados a verde, pontos 147, 148, 152, 165, 174 e 177, e os trajetos do drone representados em diferentes cores.

Figura B.3: Representação da SO para a Instância 4

O trajeto do carro foi composto pelo seguinte percurso: $0 \rightarrow 147 \rightarrow 148 \rightarrow 177 \rightarrow 165 \rightarrow 174 \rightarrow 152 \rightarrow 147 \rightarrow 0$, conectando os seis pontos de paragem utilizados.

Foram realizadas seis rotas de drone, distribuídas pelos pontos de paragem conforme é apresentado seguidamente:

- A partir do ponto 147 a rota: $147 \rightarrow 11 \rightarrow 9 \rightarrow 7 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 147;$
- A partir do ponto 148 a rota: $148 \rightarrow 11 \rightarrow 13 \rightarrow 15 \rightarrow 148$;
- A partir do ponto 152 a rota: $152 \rightarrow 37 \rightarrow 30 \rightarrow 32 \rightarrow 35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 21 \rightarrow 25 \rightarrow 152$;
- A partir do ponto 165 a rota: $165 \rightarrow 44 \rightarrow 51 \rightarrow 165$;
- A partir do ponto 174 a rota: $174 \rightarrow 30 \rightarrow 39 \rightarrow 41 \rightarrow 43 \rightarrow 48 \rightarrow 44 \rightarrow 45 \rightarrow 47 \rightarrow 174$;
- A partir do ponto 177 a rota: $177 \rightarrow 22 \rightarrow 15 \rightarrow 17 \rightarrow 19 \rightarrow 21 \rightarrow 177$.

O tempo total de deslocação do carro foi de 12,28 minutos, enquanto os drones realizaram trajetos que totalizaram 30,19 minutos. Assim, o tempo total da solução foi de 42,47 minutos, que corresponde também ao tempo mínimo necessário para concluir a inspeção de todos os segmentos, uma vez que o gap é de 0%.

Linha completa

A Figura B.4 ilustra a SA encontrada, com o trajeto do carro representado em azul escuro e os pontos de paragem utilizados destacados em verde: [145, 147, 148, 153, 155, 160, 162, 172, 174, 177, 180, 181, 182, 184, 188, 189, 191, 194, 196].

O tempo total de deslocação do carro foi de 20,10 minutos, enquanto o tempo total percorrido pelo drone foi de 79,23 minutos. Assim, o tempo total da solução foi de 99,33 minutos. Apesar de o tempo limite ter sido atingido, foi encontrada uma SA com um gap de 20,11%.

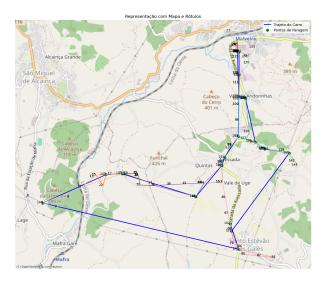


Figura B.4: Representação da SA para a Linha Completa

Apêndice C

Análise de Resultados Obtidos com a FO2

Instância 1

A Figura C.1 ilustra o percurso realizado na SO da Instância 1 com a FO2, onde foi alcançado um tempo mínimo de 28,66 minutos. Os pontos de paragem utilizados foram o 162 e o 164, e o trajeto do carro foi o seguinte: $0 \to 162 \to 164 \to 0$.

O tempo total percorrido pelo carro foi de 1 segundo, enquanto os drones realizaram trajetos que totalizaram 8,64 minutos. Assim, o tempo total da solução foi de 28,66 minutos, considerando mais 10 minutos por cada ponto de paragem utilizado, comparativamente à solução obtida com a FO1.

Em comparação com a FO1 podemos verificar que os pontos de paragem utilizados foram os mesmos dois e as rotas do drone também permaneceram iguais.

Figura C.1: Representação da SO para a Instância 1 - FO2

Instância 3

A Figura C.2 apresenta a SO obtida para a Instância 3 através da FO2, com um tempo mínimo de inspeção de 34,52 minutos. Os pontos de paragem utilizados foram, mais uma vez, o 168 e 182 confirmando que poderão ser as melhores localizações para as paragens realizadas na inspeção desta instância. A necessidade de dois pontos de paragem reflete a limitação de alcance do drone, já que não consegue cobrir toda a linha elétrica utilizando um único ponto de paragem.

O tempo total de inspeção aumentou em 20 minutos, devido ao tempo de paragem do veículo de apoio, enquanto o carro percorreu apenas 6,68 segundos e as rotas do drone totalizaram 14,41 minutos, permanecendo iguais às da solução obtida com a FO1.



Figura C.2: Representação da SO para a Instância 3 - FO2

Instância 4

A Figura C.3 apresenta a SA encontrada para a Instância 4 através da FO2, com um tempo total de 96,03 minutos. Embora o tempo limite de execução tenha sido atingido, a solução mostra um gap de aproximadamente 20% e tem apenas cerca de 4 minutos a mais do que a SO com a FO1, o que mostra que existe margem de melhoria da solução obtida nesta variação, já que ainda não é a ótima.

Os pontos de paragem foram reduzidos de seis para cinco, comparativamente à solução da FO1, e foram utilizados os seguintes pontos: [147, 150, 153, 165, 174]. Já o trajeto do carro foi o seguinte: $0 \to 147 \to 165 \to 174 \to 153 \to 150 \to 147 \to 0$.

O tempo total percorrido pelo carro foi de 12,28 minutos, enquanto as rotas do drone totalizaram 33,75 minutos, resultando num tempo total de 96,03 minutos.

Observou-se um aumento no tempo de inspeção, que passou de 42,47 para 96,03 minutos, sendo 50 desses minutos atribuídos ao tempo de set-up e set-down dos drones. As rotas dos drones tornaram-se maiores e existiu uma diferença nos pontos de paragem mantendo três dos usados na solução obtida com a FO1. Além disso, o tempo de voo dos drones aumentou, comparativamente à solução obtida com a FO1, enquanto o tempo de deslocação do veículo de apoio permaneceu constante, lembrando que esta comparação é feita entre uma SA com um gap considerável e uma SO, ou seja, existe ainda margem de melhoria na SA.

Figura C.3: Representação da SA para a Instância 4 - FO2

Linha completa

A Figura C.4 apresenta a SA encontrada para a Linha Completa utilizando a FO2, com um tempo total de 235,80 minutos. Nesta instância o tempo limite foi atingido e a solução demonstra um *gap* considerável, refletindo a complexidade do problema.

Foram utilizados 13 pontos de paragem: [147, 149, 153, 162, 163, 167, 168, 173, 174, 179, 182, 188, 193].

O tempo total percorrido pelo carro foi de 19,92 minutos, enquanto as rotas dos drones totalizaram 85,88 minutos, resultando em um tempo total de 235,80 minutos.

Observou-se uma redução no número de pontos de paragem, comparativamente à solução obtida com a FO1, que passaram de 19 para 13, mas o tempo de inspeção aumentou significativamente. O aumento no tempo total de inspeção é atribuído principalmente ao tempo adicional de paragem e às rotas dos drones, que agora contêm mais segmentos.

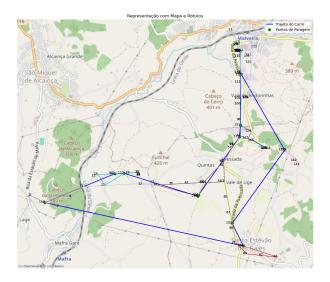


Figura C.4: Representação da SA para a Linha Completa - FO2