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ABSTRACT 

This dissertation provides novel insights on the use of Machine Learning models, 

particularly the XGBoost algorithm, for realized volatility forecasting and its 

employment in investment strategies. The study focuses on the SP500 Index, from 1990 

to 2024. A trading strategy using volatility swaps is simulated from 2018 to 2024 using 

the forecast results. 

We perform an analysis to test which combination of machine learning model and 

inputs perform better at the task at hand. The models studied are the XGBoost, Random 

Forests and Neural Networks, and the variable inputs the Intrinsic Mode Functions 

(IMFs) resulting from CEEMDAN decomposition, and market variables from the 

United States. The XGboost algorithm with both the IMFs and market variables is the 

best performing ML model out of the study made, while also outperforming two 

different naïve models used as benchmarks. 

We demonstrate the applicability of the forecasts through simulating a volatility 

swap investment that under realistic circumstances and various test scenarios is able to 

produce encouraging payouts, although with extremely high payoff volatility. 

 

KEYWORDS: Volatility Forecasting; XGBoost; Random Forests; Neural Networks; 

Volatility Swaps. 

JEL CODES: C63, G15, G17, G11. 
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RESUMO 

Esta dissertação oferece novos contributos obre o uso de modelos de Machine 

Learning, especificamente o algoritmo XGBoost, para previsão de volatilidade 

realizada e sua aplicação em estratégias de investimento. O estudo concentra-se no 

índice SP500, de 1990 a 2024, e simula uma estratégia de investimento com swaps de 

volatilidade entre 2018 e 2024 com base nas previsões obtidas. 

Realiza-se uma análise para testar qual combinação de modelo de Machine 

Learning e variáveis apresenta melhor desempenho na tarefa. Os modelos avaliados 

incluem XGBoost, Florestas Aleatórias (Random Forests) e Redes Neuronais 

(Artificial Neural Networks), enquanto as variáveis testadas são as Funções Modais 

Intrínsecas (IMFs - Intrissic Mode Functions) resultantes da decomposição CEEMDAN 

e variáveis de mercado dos Estados Unidos. O algoritmo XGBoost, combinando IMFs 

e variáveis de mercado, destaca-se como o modelo de ML mais eficiente no estudo, 

tendo também melhor performance que dois “naïve models” diferentes usados como 

referência. 

A aplicabilidade das previsões é testada por meio da simulação de um investimento 

em swaps de volatilidade, que, com suposições realistas e diversos cenários, demonstra 

resultados encorajadores em termos de retornos, no entanto apresentado uma 

volatilidade extremamente alta. 

 

PALAVRAS-CHAVE: Previsão de Volatilidade; XGBoost; Florestas Aleatórias; 

Redes Neurais; Swaps de Volatilidade. 

CÓDIGOS JEL: C63, G15, G17, G11. 
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GLOSSARY 

 

AN – Annualized Return. 

ANN – Artificial Neural Networks. 

ATM – At-the-money. 

BSM – Black-Scholes Model. 

CART - Classification and Regression Trees. 

CEEMDAN - Complete Ensemble Empirical Mode Decomposition with Adaptive 

Noise. 

EMD - Empirical Mode Decomposition. 

EEMD - Ensemble Empirical Mode Decomposition. 

IMF – Intrinsic Mode Function. 

IV – Implied Volatility. 

MAE – Mean Absolute Error. 

MAPE – Mean Absolute Percentage Error. 

ML – Machine Learning. 

MLP - Multi-Layer Perceptron. 

MSE – Mean Squared Error. 

RF – Random Forest. 

RMSE – Root Mean Squared Error. 

RV – Realized Volatility. 

SP500 - Standard & Poor's 500 Index. 
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1. INTRODUCTION 

 
Financial markets moved more than a quadrillion dollars in 2024 (London Stock 

Exchange, 2024), derivatives and structured products included. A derivative is a 

financial product whose value depends on the value of an underlying security 

(Bouzoubaa & Osseiran, 2010) such as a stock or a bond for example. To price them 

and even more complicated products such as structured products, which combine two 

or more derivatives, there are multiple variables that one needs to consider. The risk-

free rate and the spot price of the underlying are common inputs in most pricing models. 

Volatility of the underlying is another variable indispensable in pricing a structured 

product. But there is a big difference between these three variables. At any given time, 

the risk-free rate across different maturities and markets can be closely inferred from 

government bonds and instruments alike, and the spot price of the underlying is usually 

known, as well as the other inputs like time to maturity and the strike price. But the 

volatility of the underlying asset across the maturity of the product is an incognita until 

we reach the maturity date of the product. As such, a key element to price structured 

products is impossible to know at the moment of pricing, giving great importance to 

the study of the best and most efficient ways to find proxies to this unknowable input. 

There are different ways to measure volatility, but it is usually presented as an 

annualized standard deviation of log returns measured on the closing prices of the 

underlying. It is also of extreme importance to mention the two different volatilities 

that are used in option pricing theory and that will appear in this dissertation. Realized 

volatility (RV) is the observed volatility over a certain period of time and is the variable 

which this study intends to forecast. Implied volatility (IV), on the other hand, is the 

volatility implied by the price of vanilla options being traded in the market. That is, 

given a certain price for an option, there is only one volatility according to the Black 

Scholes Model (BSM) (Black and Scholes, 1973) that corresponds to that price. The 

BSM result for calls is shown in Equation 1. 

𝐶𝑡 = 𝑁(𝑑1)𝑆𝑡 + 𝑁(𝑑2)𝐾𝑒−𝑟𝑡 , (1) 

where: 

𝑑1 =
ln (

𝑆𝑡
𝑘

) + (𝑟 +
𝜎2

2
) 𝑡

𝜎√𝑡
 , (2)

 

𝑑2 =  𝑑1 − 𝜎√𝑡 , (3) 
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and: 

• 𝐶𝑡 is the price of the call at time t 

• 𝑆𝑡 is the price of the underlying at time t 

• 𝐾 is the strike of the option 

• 𝑟 is the theoretical risk-free rate 

• 𝜎 is the volatility of the underlying 

• 𝑁 is the Normal Distribution 

Since vanilla option prices for liquid assets are determined by the offer and demand 

dynamics in the market, the BSM can be used to extract Implied Volatilities (IVs) using 

reserve engineering from those prices. It is commonly said that for a vanilla option, its 

value can be either expressed as its price or by the volatility implied by that price. These 

IVs are then used to price more complex financial instruments. IVs can then be 

understood as forward guess of the market for future realized volatility valid up to the 

maturity of the product. 

As a forward guess of the market, IVs do not perfectly represent reality and the 

future RVs. As such, there is still the paradox of needing an unknowable variable to get 

the correct prices for non-liquid products. To deal with the volatility paradox, multiple 

approaches have been used over the years and across multiple models. The most 

common has been the use of the IV, even with its shortcomings. Despite its empirical 

success, this approach exhibits limitations beyond the Black-Scholes-Merton 

framework. A critical constraint arises from the absence of liquid options markets for 

certain underlying assets, which impedes reliable implied volatility derivation. 

This parallel between volatilities and option prices, as well as the importance of 

volatility to the pricing of highly traded products makes it so that having an upper hand 

in forecasting realized volatility can help to provide the market with an alternative. In 

addition, one could try to “beat” the market by entering in long positions when 

forecasted realized volatilities are above the implied volatility and short positions when 

the opposite happens. Accurate volatility forecasting also improves pricing accuracy, 

which in turn improves market efficiency. 

As such, techniques to forecast the RVs have been employed over the years. From 

using Implied Volatilities, to the first statistical models such as ARCH (Engle, 1982) 

and GARCH (Bollerslev, 1986) and then to Machine Learning models, a plenitude of 

approaches have been used to forecast volatility. In this work, we propose studying the 
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performance of three widely used Machine Learning models (Random Forests, 

XGBoost and Neural Networks) in combination with a signal decomposition method, 

CEEMDAN (Torres et al., 2011) which is employed for volatility forecasting by Zhu 

& Zhong (2024). 

The objective of this dissertation is not only to expand on the work by Zhu & Zhong 

(2024), by introducing new variables and changing the model structure, but to also test 

the model forecasts in a trading scenario. 

2. LITERATURE REVIEW 

 
This section is divided into three subsections to give a clear picture of the 

developments made in the field of volatility forecasting, from the early pre-machine 

learning models to the more state-of-the-art algorithms which have become prevalent 

with the increase in computer power. 

 

2.1.Early Volatility Forecasting Methods 

 

Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity 

(ARCH) models that capture time-varying volatility and volatility clustering. However, 

they can be overly responsive to outliers and may require many parameters for longer 

lag structures. Bollerslev (1986)  developed the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models which improve on ARCH by 

incorporating both past volatility and past variance forecasts. They are more 

parsimonious and better capture long-memory effects in volatility. However, they 

assume symmetric responses to positive and negative shocks while it has been shown 

that negative shocks have more impact than positive ones (Bouzoubaa & Osseiran, 

2010). 

In the 90s, asymmetric GARCH models such as EGARCH (Nelson, 1991), GJR-

GARCH (Glosten, Jagannathan & Runkle, 1993) were introduced to deal with the 

afore-mentioned problem but were at times too complex to estimate. In the early 2000s 

the first RV forecasting models using high-frequency intraday data were used but the 

data are usually not widely available to the public. 

Proposed by Corsi in 2009, the Heterogeneous Autoregressive model of Realized 

Volatility (HAR-RV) model captures long-memory properties and heterogeneous 
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market participants. It is simple to estimate and provides good forecasting performance 

but may not fully capture extreme market events (Corsi, 2009). 

 

2.2.Machine Learning in Volatility Forecasting 

 
In recent years, due to the rise in processing power and the scientific community 

effort in bringing machine learning (ML) into a plenitude of areas of study, ML models 

have been applied to RV forecasting with good results. These models can capture 

complex, non-linear patterns in the data. However, they often require large amounts of 

data and can be less interpretable than traditional statistical models. 

There have been multiple studies on the viability of using ML models to forecast 

volatility with favorable results in out-of-sample accuracy when compared to 

traditional linear models (see Rosa, Maciel, Gomide & Ballini, 2014,  Miura , Pichl & 

Kaizoji, 2019, Zhu et al., 2023, Zhang et al., 2024).  

In this study, Random Forests (RF) (Breiman, 2001), XGBoost (Chen & Guestrin, 

2016) and Artificial Neural Networks (ANN) (see McCulloch and Pitts, 1943 and 

Rosenblatt, 1958) are used, all of these models being of simple implementation and 

widely used in financial markets problems. RFs have been employed in both option 

pricing (Lin et al., 2021) and for volatility forecasting (Zhu et al., 2023). Its simple and 

intuitive structure, as well as its resistance to overfitting, are commonly cited as the 

strengths of these decision-based algorithms. XGBoost is an extension of the Random 

Forest framework, with improvements to decrease variance and bias of the results. 

ANNs  are the most commonly used ML model for volatility forecasting due to their 

non-parametric structure, not needing to assume any underlying function to the data 

(see Bucci, 2020, Christensen et al., 2023, Zhang et al., 2024, Zhu et al., 2023). 

 

2.3.CEEMDAN Decomposition 

 
Forecasting financial time series such as realized volatility presents unique 

challenges due to their inherently non-linear, non-stationary, and noisy nature. To 

improve the predictive accuracy of machine learning models in such conditions, it is 

beneficial to preprocess the data using signal decomposition methods. One such method 

is the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN), as first proposed by Torres et al. (2011) and later employed in volatility 
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forecasting by Zhu & Zhong (2024), a powerful extension of the original Empirical 

Mode Decomposition (EMD) technique (Huang et al., 1998). 

3. DATA DESCRIPTION 

3.1.First Database 

 
This study focuses on the US market, specifically on the Standard & Poor's 500 

Index (BBG ticker: SPX, referred as SP500 moving forward in this paper). As such, the 

data used are US and SP500 related metrics. 

The data has daily observations from January 2nd 1990 until December 31st 2024 

across several variables. Those variables can be split into two categories: SP500 

descriptive variables and US market variables. 

The first group is composed of the SP500 closing value and of the VIX (CBOE 

Volatility Index) value. It is worth defining this VIX Index.  As per the official CBOE 

website: 

 The VIX Index is a calculation designed to produce a measure of constant, 30-day expected 

volatility of the U.S. stock market, derived from real-time, mid-quote prices of S&P 500 Index 

(SPX) call and put options. On a global basis, it is one of the most recognized measures of 

volatility -- widely reported by financial media and closely followed by a variety of market 

participants as a daily market indicator. 

In: CBOE 

The second group of variables consists of the daily values of the following 

variables: 10 years US Bonds Yield, 3 months US T-Bill Yield, Gold Futures prices 

(BBG ticker: GCM5), Brent Oil Futures prices (BBG ticker: LCOM5), USD/EUR 

exchange rate. In Table I we can see descriptive statistics of the variables, while in 

Figure 1 we have a visualization of the SP500 Closing Values and the VIX Index over 

time. In this graph it is easy to identify some well-known periods of high volatility 

which correspond to global crisis (2008 subprime crisis, 2020 Covid Crash, start of the 

war in Ukraine in 2022). 
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TABLE I 

DESCRIPTIVE STATISTICS OF ORIGINAL VARIABLES 

 

SP500 

Close 

($) 

VIX 

10 

Years 

Bond 

Yield 

3-

Month 

T-Bill 

Yield 

Gold 

Future 

Prices 

($) 

Brent 

Oil 

Future 

Prices 

(%) 

USD/EUR 

Exchange 

Rate 

Count 9,131 9131 9131 9131 9131 9131 9131 

Mean 1,695.28 19.46% 4.25% 2.67% 913.48 53.10 0.85 

Standard 

Deviation 
1,252.01 7.82% 1.97% 2.23% 612.71 32.73 0.11 

Min 295.50 9.1% 0.52% -0.05% 253.90 9.64 0.63 

25% 909.90 13.8% 2.57% 0.20% 365.60 20.81 0.77 

Median 1284.40 17.6% 4.15% 2.37% 679.70 49.61 0.84 

75% 2101.00 22.8% 5.76% 4.90% 1333.40 76.81 0.91 

Max 6090.27 82.7% 9.09% 7.99% 2800.80 146.08 1.21 

FIGURE 1 - SP500 Close ($) and VIX plotted over time 

 

3.2.Final Database 

 
To improve the variables and to better characterize it in preparation for it being used 

to train the ML models, several new variables are computed. 

We compute the daily log returns of the SP500 and of the market variables, and 

calculate the standard deviation of those log returns for the SP500 over different time 

frames. This standard deviation is in fact the RV used in this work. For consistency 
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with past works and field practices, the RVs are annualized. The 7-day (5 trading days), 

20-day (15 trading days) and 30-day (22 trading days) RVs are added to the database. 

The behavior of volatility over different timespans is visualized in Figure 2, where we 

can see the higher volatility of the 7-day RV compared to the 30-day. 

FIGURE 2 - 7 and 30-day RVs plotted over time 

To better understand the behavior of RV and to serve as inputs to the ML models 

ahead, the Sharpe Ratio of the SP500, as well as the Negative Realized Semi Variance, 

Realized Semi Jump (as used by Zhu et al. (2023) with positive results in improving 

forecast accuracy) and lagged variables are computed. The Sharpe Ratio, defined by 

William F. Sharpe in 1966, is a widely used metric for assessing the risk-adjusted return 

of an investment. It is defined as the difference between the portfolio's return and the 

risk-free rate, divided by the standard deviation of the portfolio’s excess return: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
�̅�𝑝 − 𝑅𝑓

𝜎𝑝
 , (4) 

where �̅�𝑝 is the expected return of the portfolio (in our study the daily log return of 

SP500), 𝑅𝑓  the risk free rate (in our study the 3-Month T-Bill yield converted from 

yearly to a daily yield) and 𝜎𝑝 the volatility of the portfolio (in our study the 7-day past 

realized volatility). The Negative Realized Semi Variance is a measure of downside 

risk, measuring the variance of negative returns of the SP500 as: 

𝑅𝑆− =
1

𝑁−
∑ 𝑅𝑡

2

𝑁

𝑡=1

× 𝕝(𝑅𝑡 < 0) , (5) 

where 𝑁− is the number of days with negative returns on the studied interval, 𝑅𝑡 the 

log return between t and t-1 and 𝕝 and operator that assumes the value of 1 when 𝑅𝑡 <
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0 is true and 0 otherwise. In this study N was set as 30. Lastly, the Realized Semi Jump 

is an extension of Realized Semi Variance which focuses on observations where the 

returns are above or below a certain threshold. To focus on the downside again, we 

defined a jump as an observation with its log return observing the following inequality: 

𝑅𝑡 < �̅�𝑡 − 1.96𝜎𝑡  , (6) 

where �̅�𝑡 is the average of the past 30 days log returns and 𝜎𝑡 the realized volatility 

during the same interval. These three metrics and the 7 and 30-day RVs are further 

described in Table II, as they are the most relevant for the study ahead. 

TABLE II 

FURTHER DESCRIPTIVE STATISTICS 

 

5-day 

Realized 

Volatility 

30-day 

Realized 

Volatility 

Sharpe 

Ratio 

Negative 

Realized 

Semi 

Variance 

Realized 

Semi Jump 

Count 9126 9101 9,130 9101 9101 

Mean 12.98% 14.89% 0.36% -0.74% -12.62% 

Standard 

Deviation 
9.89% 9.29% 7.36% 0.58% 10.99% 

Min 0.74% 3.36% -31.42% -5.46% -64.98% 

25% 7.00% 9.28% -4.67% -0.91% -17.78% 

Median 10.61% 12.57% 0.48% -0.59% -13.70% 

75% 15.94% 17.83% 5.70% -0.38% 0.00% 

Max 136.23% 93.10% 38.96% -0.01% 0.00% 

 

4. METHODOLOGY 

4.1.Defining the Target Variable and overview of methodology 

 
We define the target variable, that is, the variable intended to forecast, as the Future 

Realized Volatility. The RVs currently present in the database describe the volatility 

observed on the SP500 over the past X trading days (X being 5, 15 and 22). The 

objective of the study is to forecast the observed volatility over the next 30 regular days, 

so that the forecast is comparable with that of the market, using VIX as a proxy for 

market sentiment. That being said, the target variable for an observation on any given 



 

9 
 

day is the RV of the observation located 22 trading days ahead, which on average 

corresponds to 30 regular days, the timespan of the VIX.  

During the study, we first analyze the forecast of the 30-day RV across three 

different ML models to choose the optimal model. This optimal model results from a 

study on which model performs better over four performance metrics (MAE, RMSE, 

𝑅2 Score and MAPE). During this same step, it is also tested the effects of adding a 

CEMMDAN decomposition on our RV series as proposed by Zhu & Zhong (2024) . 

The effects of using market variables as inputs are also analyzed by training the models 

with and without them. We also compare the ML models to two naïve models that serve 

as benchmarks. The first model is based on the VIX, where each forecasted future RV 

is the current value of the VIX Index on the day of forecasting. This model assumes 

that the implied volatility given by the market is a perfect predictor of the realized 

volatility. The second naïve model is based on the past 30-day RV. We take the 

volatility realized over the past 30 days as the forecast for the RV over the next 30 days. 

We use the forecast of the best model found to simulate a trading strategy based on 

volatility swaps, with the goal of testing the practical usefulness of these forecasts. We 

measure the performance of the strategy across several metrics and the assumptions 

made for the strategy are tested over different sensitivity analysis tests. 

 

4.2.CEEMDAN Decomposition 

 
CEEMDAN is designed to address two critical shortcomings of its predecessors, 

EMD (Huang et al., 1998) and Ensemble Empirical Mode Decomposition  (EEMD, see 

Wu & Huang, 2009): mode mixing and reconstruction error. Mode mixing refers to the 

issue where signals of vastly different scales are either spread across multiple 

components or entangled within a single one. While EEMD mitigates this by adding 

white noise during decomposition, it introduces new challenges, such as incomplete 

reconstruction and residual noise in the final signal. CEEMDAN effectively solves both 

problems by introducing a systematic, adaptive noise-assisted strategy that allows for 

accurate reconstruction of the original signal and cleaner separation into meaningful 

components (Torres et al., 2011, Zhu & Zhong, 2024). 

The CEEMDAN algorithm works by adding white noise to the original time series 

and performing multiple decompositions. Through ensemble averaging of the 

decomposed modes across noise-added replications, it yields a series of Intrinsic Mode 
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Functions (IMFs), each representing a distinct frequency component from high to low, 

and a final residual trend. Mathematically, the original series can be represented as the 

sum of these IMFs and the residual, 𝑟(𝑡): 

𝑥(𝑡) =  ∑ 𝐼𝑀𝐹𝑖(𝑡)

𝑛

𝑖=1

+ 𝑟(𝑡) . (1) 

Each IMF captures a specific oscillatory mode of the signal, while the residual 

captures the underlying long-term trend. 

In the context of volatility forecasting, CEEMDAN helps transform a highly 

volatile and chaotic series into multiple smoother and more stationary sub-series. These 

decomposed components can then be used as inputs to machine learning.  

In Zhu & Zhong (2024)  each model is trained on individual IMFs, and the final 

prediction is obtained by aggregating the predictions from all components. This strategy 

tailored to each IMF allows models to better learn both short-term fluctuations and 

long-term trends, improving forecast accuracy. However, in this paper, each IMF 

computed from the target variable series will be used as an input to the models, and the 

forecast will be made on the RV itself instead of on each IMF series. This approach is 

chosen with the goal of simplifying the approach by reducing the number of forecasts 

made, while testing if the usefulness of using the CEEMDAN decomposition still 

stands. 

The effectiveness of CEEMDAN has been empirically demonstrated by Zhu & 

Zhong (2024) across multiple financial indices, including the S&P 500, where it 

outperformed traditional and hybrid models in terms of mean squared error (MSE) and 

mean absolute error (MAE). Its integration into volatility modelling frameworks 

presents a robust preprocessing technique for enhancing model performance in noisy 

and non-linear financial environments. 

 

4.3.ML Models to be used and Performance Metrics 

4.3.1. Performance Metrics 

 
To get the best possible results, three ML models are tested based upon four 

different performance metrics (MAE, RMSE, 𝑅2 Score and MAPE). 

The MAE measures the average of the absolute errors of each prediction made by 

the model. It is calculated as: 
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𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�|𝑛

𝑖=1

𝑛
 , (2) 

where 𝑦𝑖  are actual values and �̂�𝑖  are predicted values. 

MSE measures the average of the squares of the errors — that is, the average 

squared difference between the predicted values and the actual values. It penalizes 

larger errors more heavily, making it useful for models where large deviations are 

especially undesirable. Mathematically, it is calculated as: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

. (3) 

Root Mean Squared Error (RMSE) is simply the square root of MSE. It brings the 

unit of the error back to the original unit of the target variable, making it easier to 

interpret in a financial context. 

The 𝑅2 Score, an extension of the classical coefficient of determination, is adapted 

for use in non-linear and non-parametric machine learning models. It measures the 

proportion of the variance in the target variable that is captured by the model's 

predictions, regardless of how the model is estimated. A score of 1 indicates perfect 

prediction, while a score of 0 implies that the model performs no better than predicting 

the mean of the observed data. 

The 𝑅2  Score evaluates how well the predicted values replicate the true values 

relative to a baseline model (here the mean of the target). So: 

𝑅2 𝑆𝑐𝑜𝑟𝑒 = 1 − 
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

 . (4) 

The mean absolute percentage error (MAPE) expresses accuracy as a percentage, 

making it easier to communicate performance across different datasets. It is defined as 

the difference between actual and predicted values as a proportion of the actual values: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖

|

𝑛

𝑖=1

 . (5) 

This metric, although helpful due to allowing comparison across different models 

forecasting different variables, can be problematic when actual values are close to zero, 

which happens while studying volatility. However, it is still a helpful extra measure of 

comparison between models. 
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These metrics together provide a comprehensive assessment, from error magnitude 

(MSE, RMSE), to explanatory power ( 𝑅2  Score), and practical interpretability 

(MAPE). 

 

4.3.2. Random Forest 

 
The Random Forest model was developed by Breiman (2001) based on the idea that 

a committee of slightly different trained algorithms that give different opinions comes 

to a better conclusion than a single more specialized algorithm. This approach has been 

shown to enhance stability and accuracy of predictions. The final output of the Random 

Forest model is determined as the average of predictions made by an ensemble of 

decision trees, each trained on a different subset of the original training data. These 

subsets are generated using the Bootstrap Aggregating (or Bagging) technique, which 

involves randomly sampling the training data with replacement to create diverse 

datasets for each tree (Breiman, 1996). This approach reduces variance and helps 

prevent overfitting by ensuring that the individual trees are less correlated, despite 

being trained on the same underlying problem. Ho (1995) had already demonstrated 

that growing trees in random feature subspaces further enhances generalization, as it 

introduces additional randomness and diversity into the ensemble. 

Each tree in a Random Forest commences with a root node that contains a bootstrap 

sample of the original dataset. For a given node, the decision regarding the split is made 

by employing a variant of the CART (Classification and Regression Trees) (Breiman 

et al., 1984), which finds the optimal split using the Gini impurity criterion (adapted to 

decision  tree algorithms by Breiman et al. (1984) based on the work of Gini (1912)) 

for classification tasks and MSE for regression tasks. As our forecasting problem is a 

regression, the following MSE formula is employed: 

𝑀𝑆𝐸 = 𝑚𝑖𝑛𝑗,𝑡 (
𝑁𝑙𝑒𝑓𝑡

𝑁
 𝑀𝑆𝐸𝑙𝑒𝑓𝑡  +

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
 𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡) , (6) 

where 𝑗 is a feature, 𝑡 is the threshold, 𝑁 is the total number of samples at the node, and 

𝑁𝑙𝑒𝑓𝑡  and 𝑁𝑟𝑖𝑔ℎ𝑡 are the numbers of samples in the left and right subsets formed by the 

split. The Impurity in each node is then given by: 

𝑀𝑆𝐸𝑛𝑜𝑑𝑒 =  
1

𝑁𝑛𝑜𝑑𝑒
∑ (𝑦𝑖 − �̅�𝑛𝑜𝑑𝑒)2

(𝑖∈𝑛𝑜𝑑𝑒)

 , (7) 

where �̅�𝑛𝑜𝑑𝑒 is the average of the target values in the node. 



 

13 
 

Each tree ends in leaves, where the final value is determined by the average of the 

target variable values of the observation in the leaf, when there is no further efficient 

split possible. The final output is the average of each trees output. A visualization of 

the algorithm can be seen in Figure 3, while we show the hyperparameters used are  in 

Table III. 

 

FIGURE 3 – Random Forest Algorithm 

TABLE III 

RANDOM FOREST HYPERPARAMETERS 

Hyperparameter Value 

Maximum tree depth 10 

Number of decision trees 300 

Minimum number of samples 

required to split an internal 

node 

5 

 

4.3.3. XGBoost 

 
XGBoost (Extreme Gradient Boosting), developed by Chen & Guestrin (2016), is 

a high-performance implementation of gradient boosted decision trees, designed for 

speed and performance. It has gained popularity in various machine learning tasks, 

including structured data classification and regression, due to its scalability, 

regularization, and robustness to overfitting (Chen & Guestrin, 2016). These 

characteristics make it a suitable model for volatility forecasting. 
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XGBoost constructs an ensemble of decision trees in a sequential manner, where 

each tree attempts to correct the errors made by the previous ones. It minimizes a 

regularized objective function that balances model complexity and training error, 

defined as: 

ℒ(𝜙) = ∑ 𝑙(�̂�𝑖 , 𝑦𝑖) + ∑ Ω(𝑓𝑘)

𝑘

,

𝑖

(8) 

Where 𝑙 is a differentiable loss function (e.g., logistic or squared error), and Ω(𝑓𝑘) is a 

regularization term that penalizes model complexity to prevent overfitting: 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

, (9) 

with T representing the number of leaves and 𝑤𝑗  the score on each leaf. 

Each prediction at time t is also adjusted via a learning rate ratio to avoid overfitting 

by slowing learning and improving generalization. 

�̂�𝑖
(𝑡)

= �̂�𝑖
(𝑡−1)

+ 𝜂𝑓𝑡 (𝑥𝑖), (10) 

where 𝜂 is the learning rate (0 < 𝜂 < 1) and  𝑓𝑡 (𝑥𝑖) the output of the newly added tree 

at iteration t. 

Some of the key innovations that contribute to XGBoost's effectiveness in advanced 

machine learning tasks relate to its handling of missing data, memory efficiency, and 

optimization strategy. The algorithm is designed to automatically manage missing 

values by learning, during training, the optimal direction for handling such instances at 

each split. This allows the model to make accurate predictions even when some input 

features are incomplete, without requiring prior imputation. 

In addition, XGBoost employs a columnar (or column block) data structure, which 

improves computational efficiency by enhancing memory access. This format reduces 

memory overhead and speeds up tree construction. XGBoost also performs second-

order optimization, meaning it utilizes both the first and second derivatives (gradients 

and Hessians) of the loss function. This enables more precise and stable updates to tree 

splits compared to traditional boosting methods, which typically only rely on first-order 

gradients. These architectural and algorithmic advances make XGBoost highly scalable 

and robust across a wide range of structured data problems (Chen & Guestrin, 2016). 

The model is applied with some fixed hyperparameters that influence aspects such 

as maximum tree dept and learning rate. Table IV presents the hyperparameters used. 
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TABLE IV 

XGBOOST HYPERPARAMETERS 

Hyperparameter Value 

Maximum tree depth 6 

Learning Rate (𝜂) 0.05 

Maximum number of boosting 

rounds (trees) 
300 

Early stopping rounds 50 

Loss function squared error 

Fraction of features used to 

train each tree 
0.8 

Fraction of training data used 

per tree 
0.8 

Initial prediction score for all 

instances 
0.5 

 

4.3.4. Neural Networks 

 
Artificial Neural Networks (ANNs) (see McCulloch and Pitts, 1943 and Rosenblatt, 

1958), are a class of non-parametric machine learning models inspired by the 

interconnected structure of biological neurons. Their principal strength lies in their 

ability to model complex, non-linear relationships between inputs and outputs, making 

them well-suited to domains like financial time series forecasting, where such 

relationships are rarely linear or stationary (Gaspar et al., 2020). 

In this study, a feedforward neural network is implemented using a Multi-Layer 

Perceptron (MLP) architecture (Rumelhart et al., 1986. The network architecture 

consists of three hidden layers with sizes (100, 100, 50). The activation function used 

in the hidden layers is the Rectified Linear Unit (ReLU), defined as: 

Φ(𝑧) = max(0, 𝑧), (11) 

which introduces non-linearity while mitigating vanishing gradient issues (Glorot et al., 

2011). 

The forward pass through each neuron in the network is governed by the equation: 

𝑎𝑗
(𝑙)

= Φ ( ∑ 𝑤𝑗,𝑖
𝑙 𝑎𝑖

𝑙−1 + 𝑏𝑗
𝑙

𝑛=𝑙−1

𝑖=1

) , (12) 

where: 
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• 𝑎𝑗
(𝑙)

 is the activation of neuron j in layer l, 

• 𝑤𝑗,𝑖
𝑙  is the weight connecting neuron i in layer l-1 to neuron j in layer l, 

• 𝑏𝑗
𝑙  is the bias term. 

The final output layer computes the predicted value �̂�,which is compared to the 

actual value y using the Mean Squared Error (MSE) loss function. This loss is 

minimized during training using the Adam optimizer (Kingma and Ba, 2015), an 

adaptive stochastic gradient descent algorithm that combines momentum and adaptive 

learning rate techniques: 

𝜃𝑡 = 𝜃𝑡−1 − 𝜂
�̂�𝑡

√𝑣𝑡 + 𝜖
 , (13) 

where �̂�𝑡  and 𝑣𝑡  are bias-corrected first and second moment estimates (moving 

averages of past gradients and past squared gradients, respectively), and η is the 

learning rate. 𝜖 is a term added to ensure numerical stability even when 𝑣𝑡 is close to 0. 

The network training process includes early stopping, a regularization technique 

that halts training when performance on a validation set no longer improves. This helps 

mitigate overfitting, which is a common risk with deep architectures on small or noisy 

financial datasets. 

From a theoretical perspective, the Universal Approximation Theorem asserts that 

a feedforward neural network with at least one hidden layer and a sufficient number of 

neurons can approximate any Borel-measurable function to any desired accuracy, under 

mild assumptions (Hornik et al., 1989). This provides strong justification for applying 

MLPs to complex regression problems such as volatility prediction. 

 

4.4.Trading Strategy 

 
The trading strategy on which the forecasts are tested is based on volatility swaps 

as described by Bouzoubaa & Osseiran, 2010. 

 

4.4.1. Volatility Swaps 

 
A volatility swap is a product that allows investors to directly trade volatility 

without being exposed to other factors. They trade over the counter (OTC) and are 
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illiquid instruments that are usually only available in intra-bank trades or to institutional 

clients. 

However, given that they are the most suitable product to trade volatility, we use 

them in our strategy. 

Volatility swaps pay the difference between the realized volatility of a financial 

asset over the life of the swap and some prespecified strike volatility. The strike is 

chosen between the counterparties in order for the present value of the swap to be zero. 

This strike is “determined by the implied volatility skew”, depending on the at-the-

money (ATM) implied volatility and the convexity of the skew. These swaps “allow 

one to take a clean view on the levels of implied volatility being high or low relative to 

the expected realized volatility” (Bouzoubaa & Osseiran, 2010). It is also worth noting 

that volatility swaps usually only have one cashflow exchange date at maturity. 

The payoff of the swap to the buyer is: 

𝑆𝑤𝑎𝑝𝑝𝑎𝑦𝑜𝑓𝑓 = (𝑅𝑉(𝑇) − 𝐾) × 𝑁 , (20) 

where RV(T) is the observed realized volatility of the underlying during the life of the 

swap, K is the strike volatility and N is the notional. Note that like in regular swaps, the 

notional N never exchanges hands and is used only to compute the payoff at maturity. 

As a convention, the buyer of the swap is defined as the party that has a bullish view 

on volatility, i.e. the party receiving the payoff described in (20), and the seller the party 

with the bearish view, receiving the symmetric payoff. 

 

4.4.2. The Strike of the Volatility Swap 

 
Since the VIX is defined as “a measure of constant, 30-day expected volatility of 

the U.S. stock market, derived from real-time, mid-quote prices of S&P 500 Index 

(SPX) call and put options” (official CBOE website), here we take it as the strike for 

the volatility swaps, which in the strategy have 30 days maturity to align with the VIX. 

This way, using a simple financial product, one can directly bet on volatility based on 

the value of the forecast and that of a public available Index, whose live values are 

always available. This is of course an assumption as in real trades, the strike of volatility 

swaps is not pre-defined nor needs to be the VIX, being instead any volatility level 

agreed by both parties. This assumption is later tested by performing sensitivity analysis 

to variations in the trading costs which in turn can be also interpreted as changes in the 

strike. 
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4.4.3. Trading Strategy Implementation 

 
With volatility swaps already defined, the actual trading strategy can be defined as 

follows. The three variables of interest are: 

• 𝑅𝑉𝑖  is the realized volatility of the SP500 over the 22 trading days (around 

30 days) after the day i 

• 𝐹𝑖  is the forecast for that realized volatility, that is, 𝐹𝑖  is the output of the 

best model on any day i 

• 𝑉𝐼𝑋𝑖 is the VIX index value on any day i and is the strike of each volatility 

swap entered. 

The strategy consists of entering a volatility swap with 30 days maturity (22 trading 

days) on every trading day, with the direction of the swap (the investor being the buyer 

or seller) defined by the signal of 𝐹𝑖 −  𝑉𝐼𝑋𝑖. If this difference is positive, the model 

signals that the VIX is lower than what the forecast of future RV is, and as such the 

investor would be the buyer of the swap. The opposite would happen if the signal were 

negative. 

As such, here are the payoffs for any swap entered on day i, for each scenario: 

• If 𝐹𝑖 >  𝑉𝐼𝑋𝑖, we buy a swap and 30 days later the payoff is: 

𝑆𝑤𝑎𝑝𝑝𝑎𝑦𝑜𝑓𝑓 = (𝑅𝑉𝑖 − 𝑉𝐼𝑋𝑖) × 𝑁 , (21) 

• If 𝐹𝑖 <  𝑉𝐼𝑋𝑖, we sell a swap and 30 days later the payoff is: 

𝑆𝑤𝑎𝑝𝑝𝑎𝑦𝑜𝑓𝑓 = −(𝑅𝑉𝑖 − 𝑉𝐼𝑋𝑖) × 𝑁 . (22) 

The strategy then consists of 22 constant open positions on 30-day maturity 

volatility swaps as described above. These 22 open positions come from the fact that 

we approximate 30 regular days by 22 trading days, and the swaps that mature each day 

are continually replaced by new ones. 

 

4.4.4. Trading Costs, Spread and Initial Capital 

 
As mentioned before, these are illiquid products, and as such, trading and 

transactions costs need to be taken into account. Let us denote by 𝑐 the trading cost (for 

simplification of language, from here on the trading and transaction costs will be 

bundled together and studied as if merged) in percentage of the notional for each swap. 

Then, the payoff in case the investor is the buyer can be rewritten as: 

𝑆𝑤𝑎𝑝𝑝𝑎𝑦𝑜𝑓𝑓 = (𝑅𝑉𝑖 − 𝑉𝐼𝑋𝑖) × 𝑁 − 𝑐 × 𝑁 = (𝑅𝑉𝑖 − 𝑉𝐼𝑋𝑖 − 𝑐) × 𝑁 . (23) 
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Even as the seller of the swap, the investor still incurs on these trading costs as here 

buyer and seller are only terms used to define our view on volatility, but the investor is 

always the one who is entering a trade with a market maker who charges these fees 

whichever the direction of the swap. As such, the payoff for being the sellers of the 

swap and taking into account trading costs is: 

𝑆𝑤𝑎𝑝𝑝𝑎𝑦𝑜𝑓𝑓 = −(𝑅𝑉𝑖 − 𝑉𝐼𝑋𝑖) × 𝑁 − 𝑐 × 𝑁 = −(𝑅𝑉𝑖 − 𝑉𝐼𝑋𝑖 + 𝑐) × 𝑁 . (24) 

In theory, an investor would not need any initial capital to enter in this strategy, 

however, if the swap ends up giving a negative payoff, the investor needs to cover the 

loss. As such, in the simulation, the strategy starts with a loan of $X, which pays 

quarterly interest based on the 3-month T-bill yield plus a spread (s), as it is unrealistic 

to assume that the interest paid would merely be a proxy to the risk-free rate. 

In the simulation, 𝑅𝑉𝑖  and 𝑉𝐼𝑋𝑖 are known values, and 𝐹𝑖  is the output of the model. 

However, the trading costs (𝑐), the notional amount (N), the initial loan amount (X) and 

the spread (s) are inputs to the simulation that need to be given values. The notional 

and loan amount are closely related and can be seen as a relation, so what is studied is 

the loan amounts needed for a fixed notional, which is $100. As such, we do a 

sensitivity analysis on each one of the three variables (c, s and X) to see how the strategy 

behaves in different possible scenarios and assumptions. 

5. RESULTS 

5.1.CEEMDAN Decomposition 

 
The first results we present are that of the CEEMDAN decomposition of the 30-day 

Realized Volatility series. Using the PyEMD library from Python, the CEEMDAN 

function is applied to our time series, with the decomposition being shown in Figure 4. 

The 11 IMFs and the Residuals can be seen. It is easily observable how the 

decomposition starts from extracting very short-term patterns in the data in the first 

IMFs, and progressively finding longer trends in the time series until IMF 11 which is 

the least varying sub-series. It is also worth noting the scale of the residual series, whose 

values are on a 1 x 10^{-16} scale, showing how complete the CEEMDAN 

decomposition is, with most information on the original series being present on the 11 

IMFs and barely any left as residual. 



 

20 
 

FIGURE 4 – CEEMDAN decomposition of the 30-day Realized Volatility 

 

5.2.Best Model and Forecast – XGBoost 

 
Next, the three ML models are trained on a train – test split of 82/18. We present 

the performance metrics of each model with the different inputs in Table V. There, we 

also present the same metrics applied to out two naïve models, the naïve with VIX and 

naïve with RV. As it can be observed, the XGBoost model using IMFs and market 

variables as variables was overall the best performing model. The effects of adding the 

IMFs as inputs are also noticeable, with significant increase in performance in all 

metrics. The effects of the market variables are more nuanced, with the changes being 

positive although almost negligible for XGBoost and Random Forest, but negative for 

the ANN. 
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TABLE V 

PERFORMANCE METRICS OF ML MODELS 

 Without IMFs and Without Market Variables 

 MAE RMSE 𝑅2 Score MAPE 

Random Forest 0.0320 0.0445 -0.45 36.74% 

XGBoost 0.0300 0.0383 -0.07 34.46% 

Neural Network 0.0316 0.0394 -0.13 35.72% 

 With IMFs and Without Market Variables 

 MAE RMSE 𝑅2 Score MAPE 

Random Forest 0.0225 0.0274 0.45 24.82% 

XGBoost 0.0202 0.0245 0.56 22.83% 

Neural Network 0.0197 0.0271 0.47 19.79% 

 With IMFs and With Market Variables 

 MAE RMSE 𝑅2 Score MAPE 

Random Forest 0.0225 0.0273 0.46 24.82% 

XGBoost 0.0195 0.0240 0.58 21.53% 

Neural Network 0.0251 0.0350 0.10 24.84% 

 Benchmark Models 

 MAE RMSE 𝑅2 Score MAPE 

Naïve with VIX 0.0554 0.0634 -1.93 61.90% 

Naïve with RV 0.0263 0.0337 0.17 26.38% 

 

In Table V we also highlight in bold the best model and input combination for each 

metric. The XGBoost model with both the IMFs and the market variables performs 

better than the rest in all but one metric, that being the MAPE, on which the ANN with 

only IMFs is the best model. Going more in depth on each one of the tested inputs, there 

is no doubt that the inclusion of the outputs from the CEEMDAN decomposition 

improves performance, with all metrics getting better, namely the 𝑅2 Score. The market 

variables have a slightly positive impact on the forecast performance of XGBoost and 
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Random Forest models but considerably make the ANN perform worse across all 

metrics. This model is worse at dealing with the increase in complexity due to extra 

variables and cannot extract any useful new information from the market variables 

without losing interpretability of the IMFs and original inputs. 

It is also important to compare the ML models with the two naïve models. First 

comparing them with each other, we see that the model based on the past RVs (Naïve 

with RV) shows better metrics than the one based on the VIX, suggesting that using 

past realized volatilities as proxies to future ones might be more accurate than using 

implied volatilities. Then, comparing our best Naïve model with the ML models, we 

start by noting that it outperforms the three ML models when we don’t use the IMFs as 

inputs. However, the addition of the CEEMDAN decomposition does improve the ML 

models performance significantly, making all three ML models perform better than the 

naïve with RVs model across all metrics. This is an important result as the extra 

complexity of using ML for forecasting volatility needs to be justified by an increase 

in accuracy over simple models that are easier to implement. 

With these results, we get the final forecast of the 30-day RV using the best model 

found, the XGBoost with both IMFs and market variables. We recall the Train-Test 

split, which is the following: 

• Train Data: 02/01/1990 – 31/12/2017 (around 82% of the data) 

• Test Data: 02/01/2018 – 31/12/2024 (around 18% of the data) 

We show the forecasting results in Figure 5, where the model predictions can be 

seen next to the real values. It is seen that the forecast follows most changes in the 

observable RV, albeit with some lag at times. Note as well how the model is not able 

to fully predict the huge spike in volatility from COVID (beginning of 2020). In Figure 

6 the VIX index is added as well, providing a clear picture of both estimators (our model 

and the VIX) compared to the actual values. It is seen that the VIX shows the same 

problem of sometimes lagging real RV. However, the VIX is a more volatile estimator 

than our forecast, showing higher and more frequent spikes in volatility. 
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FIGURE 5 –30-day observed RV and XGBoost Predictions plotted 

FIGURE 6 –30-day observed RV, XGBoost Predictions and VIX Index Plotted 

 

5.3.Trading Strategy Results 

 
The trading strategy is simulated during the test period. As mentioned in the 

Methodology Section, it consists of a portfolio of 30-day maturity volatility swaps, 

whose direction depends on our forecast. The notional of each swap is set to $100. For 

the first simulation, whose results can be seen in Figure 7 and Table VI, the trading 

costs were fixed at 2%, the spread at 1% and the initial loan amount to $100. 

FIGURE 7 –Accumulated profits of the Strategy (c=2%, s=1% and X=$100) 
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TABLE VI 

TRADING STRATEGY RESULTS (C=2%, S=1% AND X=$1M) 

Parameter Value 

Notional per Swap $100 

Initial Loan Amount $100 

Trading Costs 2% 

Spread 1% 

Final Portfolio Value $3,548.79 

Annual Return on Notional 68.30% 

Percentage of Swaps with 

Positive Payoffs 
65.47% 

Average Positive Payoff $6.13 

Average Negative Payoff $5.87 

 

Before starting the interpretation of the results, it is relevant to define how they will 

be measured. As this particular investment strategy does not require any initial 

investment, popular measures such as returns on investment are not applicable due to 

the lack of an initial investment. As such, different ways to measure the performance 

of the strategy are employed. The annualized return (AR) on notional is defined in 

Equation 24. Rolling returns are also used, defined as the return on the accumulated 

value of the strategy at a certain date. We also employ the use of absolute returns, taking 

the returns at face value, without comparing them to any reference amount. Lastly, we 

analyse the Sharpe ratio of the strategy. The return on notional is written as: 

𝐴𝑅 = (
𝐹𝑉 − 𝑁

𝑁
+ 1)

1
𝑛

− 1 , (24) 

with FV being the final value of the portfolio, N the notional of each swap, and n the 

number of years the strategy was ran. 

The positive performance of the strategy is easily seen in Figure 7. It is worth noting 

the returns during the COVID period, where the accumulated value of the strategy went 

from around $800 to $2,000 in around two months. The AR on notional, defined in 

Equation 24, is 68.30%. As comparison, the SP500 had a performance of around 14% 

on this same metric in the same time frame. However, these results only have meaning 

if we do an adequate sensitivity analysis, as they fully depend on the values set for our 

variables (c as the trading costs, s as the spread and X as the initial loan amount). 
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FIGURE 8 – Cashflows over 2018, 2020, 2022 and 2024 
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For better clarity on how the strategy performs, Figure 8 shows the daily cashflows 

of the strategy. Each green bar represents a trading day where the corresponding 

maturing swap has a positive payoff, while red bars represent negative payoffs. We 

present the years of 2018, 2020, 2022 and 2024 in Figure 8 to give an overview of the 

cashflows behavior, while the remaining 3 years of the strategy are in the Appendices. 

The choice of the years presented in this section is arbitrary. Over the four years 

presented, it is worth noticing the balance between positive and negative flows in 2018 

and 2024, while 2020 not only shows higher values as well as a majority of positive 

days. 2022 shows values in the same scale as 2018, however this year is characterized 

by a majority of negative payoffs, namely in the second half of the year. 

After, we present two plots with rolling returns. Figure 9 has the rolling return on 

the accumulated profit from the last trading day, i.e. the payoff of each day expressed 

as a percentage of the accumulated portfolio value from the day before. Figure 10 shows 

the same but compares the gain in one month (22 trading days) of the strategy, with the 

accumulated value at the beginning of those trading days. As expected, both series 

converge to 0 as the portfolio value grows while the returns keep the same scale, as 

they are calculated on the constant notional. It is interesting however to note that the 

daily returns seem to have an average close to 0 while the monthly returns already show 

the clear tendency for the strategy to have strong positive performance. 

Figure 9 – Daily Rolling Returns 
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Figure 10 – Monthly Rolling Returns 

To conclude we look into the risk-return profile of the strategy using the Sharpe 

ratio. As mentioned in the Data Section, the Sharpe ratio is defined as the expected 

excess return of the strategy in comparison to the risk-free rate, by units of risk 

measured by the volatility. This measure is interesting as it puts the returns of an 

investment in a risk management perspective, in the sense that it gives how much the 

investment yields by unit of volatility. However, this volatility does not distinguish 

upside and downside volatility. This means that two strategies with symmetric returns, 

one positive and the other negative, since having same volatility, will be equally 

penalised by their volatilities in the Sharpe ratio. Certain strategies can yield only 

positive returns but if they wildly vary, i.e. highly volatile, the Sharpe ratio will still be 

low, potentially leading one to believe the strategy to be riskier than it is. 

The inputs to calculate the volatility swap strategy Sharpe ratio are the mean return 

of the strategy, its volatility, measured as the standard deviation of the returns and the 

mean risk-free rate. The mean return of the strategy is calculated as the average of the 

swaps payoffs in percentage of the nominal while the mean risk-free rate is taken as the 

average of taking the daily 3-month T-Bill yield and making it a 1-day yield. The mean 

excess return is the difference between the two aforementioned means. 

Table VII presents the Sharpe ratio analysis for the whole period of the simulation 

and for each individual year. It is here that the caveat of the trading strategy is found. 

While the high returns cannot be ignored, when put in comparison to the strategy 

volatility, one can see that these payoffs are highly volatile, causing the Sharpe ratio to 

be low, around 0.22, i.e. there is not a lot of return per unit of volatility. It is usually 

said that a “good” Sharpe ratio is one above 1, as one would get more returns than the 

volatility being exposed to. As mentioned above, this ratio does not take into account 

the difference between upside and downside volatility, so a low Sharpe ratio does not 
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make the strategy a bad investment by itself, but it is a good indicator of the type of 

investment this would be – one where payoffs can vary a lot and very fast, almost as 

easily providing extreme positive returns one day as giving great losses the next. 

Taking also a look at each individual year, it is worth noting the year of 2023, being 

the standout performer with a Sharpe ratio above 1. While the average daily return of 

this year is not the highest observed, that title belonging to the year of 2020, the low 

volatility of returns in 2023 increases the ratio by a substantial amount. We also 

highlight the year of 2022 as it is the only year with a negative Sharpe ratio, due to the 

negative expected excess return. 

TABLE VII 

SHARPE RATIO ANALYSIS 

 
2018-

2024 
2018 2019 2020 2021 2022 2023 2024 

Sharpe Ratio 0.22 0.29 0.27 0.33 0.22 -0.17 1.16 0.19 

Mean Daily 

Excess Return 
2.0% 1.6% 1.5% 6.1% 1.7% -1% 2.8% 1% 

Volatility of 

Returns 
8.9% 5.6% 5.4% 18.4% 7.9% 5.8% 2.4% 4.5% 

 

5.3.1.  Trading Strategy - Sensitivity Analysis 

 
In this subsection we first present the sensitivity analysis for the trading costs and 

for the spread, ceteris paribus. For the initial loan amount, the minimum value that 

makes the strategy never go negative is computed as a function of the trading costs. The 

performance of the strategy starting at different points in time is also tested by analysing 

rolling one-year performances. 

Figures 11 and 12 show the sensitivity of the AR on notional to trading costs and 

spread, respectively. First looking at Figure 11, it is noticeable how the strategy stops 

yielding profits at 4% of trading costs, showing an average sensitivity of around -20% 

of AR for every +1% of trading costs. One can look at the trading costs not only as a 

fee charged by the counterparty, but also as a penalization of taking the VIX as strike 

and of other assumptions made for our model and strategy. It is seen that our forecast 

can take a 4% combination of fees and penalizations under these conditions. 
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FIGURE 11 –Sensitivity Analysis to Trading Costs (s=1% and X=$100)  

On the other hand, we show in Figure 12 that the spread has little effect on the 

returns of the strategy, which is expected, as the interest payments are only quarterly 

(by our own assumption) while the trading costs come into effect every trading day. 

Simulating the strategy with the spread varying from 0 to 10% shows an impact of less 

that 2% on the AR on Notional. It is also important to note that the spread is also very 

dependent on the loan amount, meaning that if he had chosen a higher loan amount 

when performing this analysis, the impact of the spread could have been higher. 

However, since the strategy never has any days where the accumulated wealth is 

negative for the values that we assumed as trading costs and initial loan amount, it can 

be inferred that this is a conservative analysis as the initial loan amount could be lower. 
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FIGURE 12 –Sensitivity Analysis to Spread (c=2% and X=$100)  

Next, we perform the study on the minimum initial loan amount. This value is 

defined as the one that makes the strategy never have a day were the accumulated 

wealth is negative. This is an important analysis as big loans are not accessible to every 

investor, and as such, it is important to test how much this strategy is free of initial 

capital. Also, it is in the interest of the investor to minimize the loan taken. In Figure 

13 we see that this minimum amount grows exponentially with the trading costs. It is 

once again shown that the limit of the effectiveness of the strategy lies at the 4% trading 

costs mark. Until the 3% level, however, the strategy is indeed free of any initial capital 

in the world of the assumptions made.  

FIGURE 13 –Minimum Loan Amount in function of Trading Costs (s=1%)  
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The final test performed is the rolling one-year performance of the strategy, where 

we compute the performance over one-year periods on different starting points. We do 

this analysis to check for certain period dependency of the strategy, as well as to analyse 

which conditions favour the strategy the most. In the upper panel of Figure 14 we show 

the analysis with trading costs fixed at 2% and it is seen that on only three starting dates 

(shown as the blue dots) the following one-year performance was negative, those 

negative performances coming on the mid-2021 to mid-2023 period. The best 

performing period, as noticed before, is the one including the beginning of the COVID 

outbreak, a period characterized by extremely high volatility and bearish markets. 

Figure 14 also shows the same but for 3% trading costs, in the lower panel. In these 

conditions, the last two simulations show negative returns as well, once again proving 

the strategy sensitivity to trading costs. 

 

FIGURE 14 – Performance of the strategy with different starting points, above 

c=2%, below c=3% (s=1%, X=$100) 
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6. CONCLUSION 

 

The objective of this work is to test the adequacy of using machine learning to 

forecast volatility. In the last chapter we show that the forecast made by the XGBoost 

model, when applied in a trading strategy and depending on the assumptions made, can 

bring returns above the SP500 itself. 

The previous literature in the field of volatility forecasting is mostly focused on the 

models and inputs to be used and that analysis is also made here, as it is essential and 

the driving force of theoretical innovation. We show that the XGBoost model is the 

most efficient model between the three (XGBoost, Random Forests and Artificial 

Neural Networks) proposed, while the CEEMDAN decomposition has shown to 

definitely improve performance when applied as input to the models. This approach 

simplifies the previous method employed by Zhu & Zhong (2024) while keeping the 

improvements of adding the decomposition to the forecast. The combination of the ML 

model with the CEEMDAN decomposition outperforms the two chosen benchmark 

naïve models. As suggested by Zhu & Zhong (2024) in their own study, the impact of 

adding market variables is also tested and is shown to also improve performance in the 

tree-based models, albeit in a much smaller scale while worsening the performance of 

the ANN. 

Where we go further than previous literature is by putting the performance of the 

forecasts to the test in a trading strategy using volatility swaps. Although the strategy 

performs well in terms of returns in the tested sample and with realistic assumptions, it 

is found that the trading costs are the main driver of the performance of the strategy, 

while the volatility of the strategy returns are high, leading to a poor Sharpe ratio. 

In future studies, the models applied could be further developed, not only by using 

more state-of-the-art models but also by performing a more in depth hyperparameter 

search. The assumptions for the trading strategy can also be further studied and 

compared to those observed on traded financial products observed on the market.  
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APPENDICES 

 

Figure 15 – Cashflows over 2019, 2021 and 2023 
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