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ABSTRACT 

The acknowledgement and quantification of uncertainty in option pricing represents 

a critical challenge in the field of finance that has been largely underexplored. The present 

study proposes to quantify the uncertainty of option pricing by using conformal 

prediction, thus aiming to fill a gap in existent literature. Conformal prediction is a 

technique for constructing prediction intervals with valid coverage in finite samples 

without making distributional assumptions. Using a large dataset of call and put options 

on the S&P500, we conduct an empirical study to evaluate the performance of conformal 

prediction intervals for gradient boosting machines. The empirical results indicate that 

the prediction intervals reach an empirical coverage equal to the nominal target, which is 

not observed in non-conformal methodologies. Furthermore, we observe systematic 

variations in the width of the intervals across option characteristics. Notably, out-of-the-

money options and options with a short time-to-maturity have relatively wider prediction 

intervals, suggesting higher pricing uncertainty. We also observe that short-term put 

options have wider intervals than short-term call options, due to their inherent payoff 

differences. Overall, the findings validate the use of conformal prediction in the field of 

option pricing and highlight its practical value for financial decision-making under 

uncertainty. 

KEYWORDS: Conformal Prediction; Option Pricing; Machine Learning; Quantile 

Regression; LightGBM. 

JEL CODES: C13; C15; C31; G13; G17. 
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RESUMO 

O reconhecimento e a quantificação da incerteza na determinação do preço das opções 

representam um desafio critico na área das finanças que tem sido largamente 

subexplorado. O presente estudo propõe-se quantificar a incerteza na determinação do 

preço das opções recorrendo à metodologia de previsão conformalizada, procurando 

assim colmatar uma lacuna existente na literatura. A previsão conformalizada é uma 

técnica que permite construir intervalos de previsão com cobertura válida em amostras 

finitas, sem fazer suposições sobre a distribuição da amostra. Recorrendo a uma vasta 

base de dados de opções no S&P500, realizamos um estudo empírico para avaliar o 

desempenho de intervalos de previsão conformalizados para gradient boosting machines. 

Os resultados empíricos indicam que os intervalos atingem uma cobertura empírica igual 

à cobertura nominal, o que não é assegurado em metodologias não conformes. Além 

disso, observamos variações sistemáticas na largura dos intervalos consoante as 

características das opções. Nomeadamente, as opções out-of-the-money e as opções com 

um curto período até à maturidade têm intervalos de previsão relativamente mais largos, 

o que sugere uma maior incerteza na determinação do preço. Observamos também que as 

calls com curto período até à maturidade têm intervalos mais largos do que as puts com 

curto período até à maturidade, devido às diferenças inerentes de retorno. Em suma, os 

resultados validam a utilização da previsão conformalizada no âmbito da previsão de 

preços de opções financeiras e salientam o seu valor prático para a tomada de decisões 

financeiras em condições de incerteza. 

PALAVRAS-CHAVE: Previsão Conformalizada; Precificação de opções; Machine 

Learning; Regressão de Quantis; LightGBM. 

CÓDIGOS JEL: C13; C15; C31; G13; G17. 
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GLOSSARY 

ATM – At-the-money. 

CQR – Conformal Quantile Regression. 

EFB – Exclusive Feature Bundling. 

GOSS – Gradient-based One-side Sampling. 

IV – Implied Volatility. 

ITM – In-the-money. 

LightGBM – Light Gradient Boosting Machine. 

LT – Long Term. 

ML – Machine Learning. 

MT – Medium Term. 

NQR – Non-conformal Quantile Regression. 

OTM – Out-of-the-money. 

ST – Short Term. 

XGBoost – Extreme Gradient Boosting Machine. 

 

 

 

  



 

v 

 

TABLE OF CONTENTS 

Acknowledgments ....................................................................................................... i 

Abstract ....................................................................................................................... ii 

Resumo ...................................................................................................................... iii 

Glossary ..................................................................................................................... iv 

Table of Contents........................................................................................................ v 

List of Figures ............................................................................................................ vi 

List of Tables ............................................................................................................. vi 

1. Introduction ............................................................................................................ 1 

2. Literature review ..................................................................................................... 2 

2.1. Prediction Intervals .......................................................................................... 2 

2.2. Machine Learning Model for Quantiles .......................................................... 3 

3. Methodology ........................................................................................................... 4 

3.1. Conformal Quantile Regression ...................................................................... 4 

3.2. Light Gradient Boosting Machine ................................................................... 6 

4. Data ......................................................................................................................... 9 

4.1. Description, Treatment and Statistics .............................................................. 9 

4.2. Training, calibration and test datasets ........................................................... 16 

5. Results .................................................................................................................. 18 

5.1. Empirical coverage ........................................................................................ 20 

5.2. Conditional coverage ..................................................................................... 22 

6. Conclusions .......................................................................................................... 24 

References ................................................................................................................ 25 

 



 

vi 

 

LIST OF FIGURES 

FIGURE 1 – Block diagram of sequential ensemble learning. ..................................... 7 

FIGURE 2 – Block diagram of parallel ensemble learning. ......................................... 7 

FIGURE 3 – Option prices against moneyness........................................................... 11 

FIGURE 4 – Call option prices against moneyness and maturity. ............................. 12 

FIGURE 5 – Put option prices against moneyness and maturity. ............................... 12 

FIGURE 6 – Input variables’ histograms.................................................................... 15 

FIGURE 7 – Input variables’ boxplots. ...................................................................... 16 

FIGURE 8 – Conformal prediction intervals against option moneyness (S/K). ......... 19 

FIGURE 9 – Conformal prediction intervals against time-to-maturity. ..................... 20 

 

LIST OF TABLES 

TABLE I – Hyperparameters search space for the Light Gradient Boosting 

Machine……………………………………………………………………………...9 

TABLE II – Statistics on Input Variables and Response Variable…………………...14 

TABLE III – Kolmogorov-Smirnov by feature………………………………………17 

TABLE IV – Sample moneyness and maturity……………………………………….18 

Table V – Empirical Coverage and Median Relative Widht of the Prediction Intervals 

from CQR and NQR………………………………………….….…………………21 

Table VI – Conditional Coverage and Median Relative Widht of CQR for different 

levels of Time to Maturity……………………………………………….…………23 

TABLE VII – Conditional Coverage and Median Relative Widht of CQR for different 

levels of Moneyness…………………………………………………….………….23 

 

 

 



1 

 

1. INTRODUCTION 

In financial markets, the use of derivatives broadly increased in recent years. An 

option is defined as a contract between two parties that gives the buyer the right, but not 

the obligation, to buy or sell a particular asset in the future at a certain predefined price 

(Bouzoubaa and Osseiran, 2010).  

The accurate pricing of options represents a fundamental element of risk management 

and trading strategies. Traditionally, option pricing has been based on models such as the 

Black-Scholes model (Black & Scholes, 1973). However, the model relies on several 

assumptions that do not align with real-world market conditions, including constant 

volatility, interest rates and dividend yields, as well as the log-normally distributed stock 

prices and the no-arbitrage assumption. Considering the above, the emergence of machine 

learning presented an opportunity to explore a novel approach to options pricing. The 

seminal contributions of Hutchinson et al. (1994) and Malliaris & Salchenberger (1993) 

established the foundations for the development of more sophisticated machine learning 

option pricing in contemporary research. Neural Networks are the most frequently 

employed algorithms for predicting option prices (e.g. Fang & George, 2017; Gan & Liu, 

2024; Gaspar et al., 2020; Umeorah et al., 2023). Other machine learning algorithms, such 

as tree-based ensembles, are also widely used (e.g. Ech-Chafiq et al., 2023; Shubham et 

al., 2023). 

 Even though these algorithms yield good results, often outperforming the 

accuracy of traditional pricing models, the element of uncertainty associated with option 

price predictions has been predominantly disregarded in literature. From the risk 

management point of view, it seems relevant to be able to quantify that uncertainty, 

particularly in high-stakes decisions such as option trading. This can be achieved through 

prediction intervals, using upper and lower bounds that encompass the response variable 

with high probability. According to Romano et al. (2019), the ideal prediction intervals 

should meet two criteria: first, given a significance level α, the prediction interval should 

provide a coverage of 1 – α in finite samples without making strong distributional 

assumptions. Second, the intervals should be as narrow as possible, to ensure that the 

predictions are informative.  
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We employ a methodology of conformal prediction, that ensures that the empirical 

coverage level of the intervals closely aligns with the nominal target. To assess the level 

of uncertainty of the predictions, we can observe how the relative width of the intervals 

varies for different regions of the regressor space. A narrower interval suggests a more 

confident prediction, keeping the empirical coverage level at the nominal target. 

Moreover, we can analyse how the option characteristics influence uncertainty, 

namely the moneyness and time to maturity of the options. The objective of this 

dissertation is, therefore, to quantify the uncertainty of option pricing by using conformal 

prediction, thus aiming to fill a gap in existent literature. This study is one of the first to 

use conformal prediction in the field of option pricing, building upon the work of Bastos 

(2024). 

This dissertation is structured as follows. The next section introduces the state-of-

the-art in constructing prediction intervals as a measure of option price uncertainty, 

followed by a discussion on different machine learning algorithms that can be employed 

for that use. In Section 3, the conformal prediction framework is explained in detail, as 

well as the predictive model chosen for that purpose. Section 4 explains the data selection 

process and its descriptive statistics. In Section 5, we present and discuss the results. 

Finally, Section 6 summarizes the key findings from the study and suggests further 

developments. 

2. LITERATURE REVIEW 

2.1. Prediction Intervals 

The issue of quantifying uncertainty in option price predictions can be addressed 

using prediction intervals. Various approaches have been proposed and developed for the 

construction of prediction intervals in the field of statistics, which can then be applied to 

several areas. 

A straightforward approach to construct prediction intervals is to adopt the split 

conformal prediction method, introduced by Papadopoulos et al. (2002). This method 

involves splitting the data into training, calibration and test sets. The training set is used 

to train the model, while the calibration set is used to compute “conformity scores”. The 

test data is used to create and evaluate the quality of the intervals. A regression model is 

trained on the test data and for each observation the conformity scores are computed, 
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using the absolute residuals. However, this method has a major limitation: it produces 

intervals with a fixed length, which does not accurately reflect the varying widths of 

intervals observed empirically for option prices, as noted by Bastos (2024). 

To address the aforementioned limitation, Papadopoulos et al. (2011, 2008) 

proposed a locally adaptive approach to make conformal prediction adaptive to 

heteroskedasticity. This method can generate non-constant and narrower intervals by 

adapting to local properties of the data. However, Romano et al. (2019) identified several 

limitations to this approach, namely the inflation of the prediction intervals when the data 

is homoscedastic and the underestimation of the prediction error, thus resulting in some 

loss of adaptivity of the intervals. 

Considering the limitations of these methods, we use the method of conformal 

quantile prediction in this study, as proposed by Romano et al. (2019). This method also 

requires splitting the data into training and calibration sets. After defining a coverage 

level 1 – α, we fit two quantile regression models on the training set, which can be any 

regression model. Next, we compute the conformity scores that quantify the magnitude 

of the error made by the plug-in prediction interval. Afterwards, we compute the quantile 

of the empirical distribution of the conformity scores. Finally, the output should be a 

conformalized prediction interval for the option price. 

2.2. Machine Learning Model for Quantiles 

The method of conformal quantile regression for prediction intervals requires 

training a regression model to predict quantiles. Ivașcu (2021) compares the performance 

of several machine learning models for option pricing, concluding that tree-based 

ensembles, such as gradient boosting machines and random forests, outperform neural 

networks and support vector machines in the pricing errors. In this study, we use a tree-

based algorithm as the quantile regression model, more specifically a modified version of 

a gradient boosting machine. 

A decision tree resorts to recursive binary splitting of the predictor space to 

generate a prediction. We start with a root node containing all the observations and then 

recursively split the data into subsets that are finer and finer as the trees progress. The 

process continues until the stopping criterion is met. The prediction is given by the mean 

value of the training observations in the leaf node. This algorithm is very efficient and 
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simple to understand, but it is also prone to overfit new data. To overcome that limitation, 

Ho (1995) introduced an ensemble method by building multiple trees in different 

subspaces of the feature space, thus increasing the generalization accuracy. Friedman 

(2001) introduced a gradient boosting machine, an algorithm of sequential trees in which 

each tree learns and enhances its performance based on the error residuals of the 

preceding tree. The extreme gradient boosting, or XGBoost, (Chen and Guestrin, 2016) 

is one of the most popular algorithms that implement gradient boosting. Its popularity 

comes from the adaptability of the model. Unlike the traditional gradient boosting 

machine, this model produces trees in parallel rather than sequentially. The Light 

Gradient Boosting Machine, or LightGBM (Ke et al., 2017) implements gradient boosting 

but focuses on being computationally efficient. This algorithm grows trees sequentially. 

Besides its speed, the algorithm also has other benefits: it performs well when trained 

with large datasets, even reaching a faster training time than the XGBoost, and it has a 

low memory consumption, as it converts continuous values to discrete bins (Mienye and 

Sun, 2022). On the other hand, the algorithm can lead to overfitting if it is trained in a 

small dataset, as the trees could be too complex. 

 

3. METHODOLOGY 

3.1. Conformal Quantile Regression 

The following methodology is based on the work of Romano et al. (2019). Let Y 

represent an option price and X represent the corresponding features. Given a training set 

of n option prices {𝑌𝑖}𝑖=1
𝑛  and corresponding features {𝑋𝑖}𝑖=1

𝑛 , we train a machine learning 

model. Our aim is to compute a prediction interval 𝐶(𝑋𝑛+1) ⊆ ℝ for an unknown option 

price given its known features. For a certain desired nominal coverage 1 − 𝛼, we have 

𝑃{𝑌𝑖 ∈  𝐶(𝑋𝑛+1)} ≥ 1 − 𝛼 , (1) 

where we expect the prediction interval to have a 1 − 𝛼 probability of containing the 

option price. The samples from the dataset should be exchangeable and drawn from a 

joint distribution – for instance, if the observations are independent and identically 

distributed, the assumption holds. 
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We begin by splitting the initial training data into two disjoint subsets: an actual 

training set {(𝑋𝑖, 𝑌𝑖) ∶ 𝑖 ∈  Ι1} and a calibration set {(𝑋𝑖, 𝑌𝑖) ∶ 𝑖 ∈  Ι2} to obtain 

conformity scores. We should also define the miscoverage level 𝛼 ∈ [0,1]. The 

conditional distribution function of option prices Y given the set of features X is defined 

as 

𝐹(𝑦|𝑋 = 𝑥) = 𝑃(𝑌 ≤ 𝑦|𝑋 = 𝑥), (2) 

and the conditional quantile function is 

𝑞𝛼(𝑋) = 𝑖𝑛𝑓{𝑌 ∈ ℝ ∶ 𝐹(𝑌|𝑋 = 𝑥) ≥ 𝛼 }. (3) 

The goal of the conditional quantile regression is to estimate quantiles, namely the 

median, of Y conditional on X. By fitting two conditional quantile models 𝑞𝛼

2
 (𝑋) and 

𝑞1−
𝛼

2
 (𝑋) on the training set, we obtain a conditional prediction interval for 𝑌𝑛+1: 

𝐶(𝑋𝑛+1) = [𝑞𝛼
2

(𝑋𝑛+1), 𝑞
1− 

𝛼
2

(𝑋𝑛+1)] . (4) 

The methodology allows any regression model to be used for quantiles. We use a 

gradient boosting machine as the regression quantile model, specifically a Light Gradient 

Boosting Machine, as explained in detail in Section 3.2. 

 Next, we compute the conformity scores that quantify the error of the prediction 

interval. The conformity scores are computed for each observation within the calibration 

set and are given by: 

𝐸𝑖 = max [�̂�𝛼
2

(𝑋𝑖) − 𝑌𝑖 , 𝑌𝑖 − �̂�
1−

𝛼
2

(𝑋𝑖)] , ∀ 𝑖 ∈  Ι2. (5) 

If our prediction of 𝑌𝑖 is below the lower end of the prediction interval 𝑌𝑖 < �̂�𝛼

2

(𝑋𝑖), 

then the magnitude of the error is given by 𝐸𝑖 = �̂�𝛼

2

(𝑋𝑖) − 𝑌𝑖. Similarly, if the prediction 

of 𝑌𝑖 is above the upper end of the prediction interval  𝑌𝑖 > �̂�1−
𝛼

2

(𝑋𝑖), and the magnitude 

of the error is given by 𝐸𝑖 = 𝑌𝑖 − �̂�1−
𝛼

2

(𝑋𝑖). At last, if the prediction of 𝑌𝑖 belongs within 

the prediction interval �̂�𝛼

2

(𝑋𝑖) < 𝑌𝑖 < �̂�𝛼

2

(𝑋𝑖), then the magnitude of the error corresponds 

to the largest of the non-positive differences. We can illustrate the above with a set of 

examples.  



BEATRIZ LEITE                                              CONFORMAL PREDICTION OF OPTION PRICES WITH MACHINE LEARNING  

6 

 

We can take an interval of [0.006; 0.01]. Starting with the case of undercoverage, 

let us consider 𝑌𝑖 = 0.004. Since the prediction is below the lower end of the interval 

�̂�𝛼

2

(𝑋𝑖) = 0.006, the conformity score is given by max [0.006-0.004; 0.004-0.01] = max 

[0.002; -0.006] = 0.002. For the case of overcoverage, we can consider 𝑌𝑖 = 0.012. The 

prediction is above the upper end of the interval �̂�1−
𝛼

2

(𝑋𝑖) = 0.01 and the conformity 

score is given by max [0.006-0.012; 0.012-0.01] = max [-0.006; 0.002] = 0.002. Finally, 

if the prediction is within the interval 𝑌𝑖 = 0.008, then the conformity score is always 

non-positive max [0.006-0.008; 0.008-0.01] = max [-0.002; -0.002] = -0.002. 

We then compute a quantile of the empirical distribution of the conformity scores, 

which conformalizes the plug-in prediction interval: 

𝑄1−𝛼(Ι2) =  
(1 − 𝛼)(1 + Ι2)

Ι2
-th empirical quantile of{𝐸𝑖: 𝑖 ∈  Ι2}. (6) 

Finally, our output of this methodology is a conformalized prediction interval for 𝑌𝑛+1: 

𝐶(𝑋𝑛+1) = [�̂�𝛼
2

(𝑋𝑛+1)  − 𝑄1−𝛼(Ι2), �̂�
1− 

𝛼
2

(𝑋𝑛+1) + 𝑄1−𝛼(Ι2)] . (7) 

 The methodology of conformal quantile regression ensures valid coverage in 

finite samples, without making distributional assumptions (Romano, 2019). This means 

that, for a given prediction interval, the empirical coverage level is very close to the 

nominal coverage level, i.e., if we want to obtain prediction intervals with 90% coverage, 

we should take 𝛼 = 0.1, fit the conditional quantile function at the 5% and 95% levels, 

obtain the corresponding intervals, and the empirical coverage level we obtain from it is 

very close to the 90% level we wanted. The methodology also ensures statistical 

efficiency of quantile regression and can take any algorithm for quantile regression. 

Finally, the prediction intervals are adaptive to heteroscedasticity, since they are 

calibrated using conditional quantile regression instead of conditional mean regression. 

 

3.2. Light Gradient Boosting Machine 

In this section, the LightGBM algorithm is introduced in detail. The algorithm 

implements gradient boosting and is designed to be highly computationally efficient, 

making it very fast. It can be used for classification, ranking and regression. LightGBM 
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produces trees sequentially, as seen in Figure 1, unlike algorithms such as the XGBoost, 

that produce trees in parallel, as per Figure 2. This ensures that the algorithm is effective 

when processing large-scale data and features. This algorithm contains two novel 

techniques: gradient-based one-side sampling (GOSS), which is used to deal with a large 

number of observations in the dataset, and the exclusive feature bundling (EFB), used to 

deal with a large number of features (Ke et al., 2017). GOSS is a subsample technique 

that is used in the training dataset for building the base trees in the ensemble. The 

technique increases the importance of the observations with higher uncertainty in their 

classifications, which are the ones with a higher gradient, as these should contribute more 

to the information gain (Bentéjac et al., 2021). The EFB technique combines sparse 

features into a single feature when those features do not have non-zero values 

simultaneously, i.e., for mutually exclusive features (Bentéjac et al., 2021).  

 

 

 

FIGURE 1 – Block diagram of sequential ensemble learning. 

 

 

 

 

 

FIGURE 2 – Block diagram of parallel ensemble learning. 

The prediction �̂�of the algorithm is obtained by summing the predictions of all 

the decision trees {𝑓𝑘(𝑋)}𝑘=1
𝐾 : 

�̂� = ∑ 𝑓𝑘(𝑋).

𝐾

𝑘=1

(8) 

The initial tree 𝑓1(𝑋) is a regular decision tree trained on the training dataset. The 

subsequent decision trees incrementally added to the committee, however, are trained on 
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the errors produced by the trees coming before. The objective of this process is to rectify 

the errors made by the previous decision trees. For each iteration, the tree to be added to 

the committee is the one that minimizes the regularized loss function: 

∑ 𝐿(𝑌𝑖,  �̂�𝑖
(𝑘−1)

+ 𝑓𝑘(𝑋𝑖)

𝑛

𝑖=1

) + 𝛾𝑇 +
1

2
𝜆‖𝑤𝑘‖2, (9) 

where the last two terms are regularization terms. These terms serve to penalize complex 

trees, thus preventing the committee from overfitting the training data (Bastos, 2024). 

As our objective is to predict quantiles, we use a pinball loss function as the loss 

function. The pinball loss function is a metric to assess the accuracy of quantile 

predictions (Romano, 2019): 

𝐿𝛼(𝑦, 𝑧) = {
(𝑦 − 𝑧)𝛼,  𝑖𝑓 𝑦 ≥ 𝑧

(𝑧 − 𝑦)(1 − 𝛼),  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(10) 

where 𝑦 represents the option price 𝑌𝑖, 𝑧 represents the quantile forecast  �̂�𝑖
(𝑘−1)

+ 𝑓𝑘(𝑋𝑖) 

and α represents the target quantile. From Eq. (10) we can see that the pinball loss function 

is always positive. The more accurate quantile predictions have the lower pinball loss 

functions. 

Since the accuracy of the predictions is highly influenced by the hyperparameters, 

we need to determine the optimal number and range of variation of the hyperparameters 

of the model. We use the hyperparameters’ search space proposed by Bastos (2024) and 

perform a grid-search analysis to find the optimal values. The hyperparameters included 

in the grid-search, presented in Table I, are the following: 

• Number of trees in the ensemble: this refers to the total number of decision trees 

in the ensemble. Although the first trees added usually offer significant 

improvements in out-of-sample accuracy, the marginal benefit typically 

diminishes as more trees are added, reflecting the phenomenon of diminishing 

returns. 

• Maximum number of leaves per tree: this parameter limits the number of terminal 

nodes in a tree to help control model complexity. Overly complex models may 

lead to overfitting, which happens when a model follows the noise too closely 

instead of the underlying pattern between the target Y and the inputs X. An 
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overfitted model will fit well the training data but will undermine the out-of-

sample accuracy. 

• Maximum tree depth: this parameter imposes a limit on the depth of each decision 

tree, also to control model complexity and help mitigate the risk of overfitting. 

• Learning rate: the learning rate controls the step size in the gradient descent 

algorithm. If this parameter is too small, the convergence may be slow. On the 

other hand, if it is too large, the gradient descent might fail to converge. 

TABLE I 

HYPERPARAMETERS SEARCH SPACE FOR THE LIGHT GRADIENT BOOSTING MACHINE 

Hyperparameter Search space 

Number of trees in the ensemble {100, 500, 1000, 2500, 5000} 

Maximum number of leaves per tree {32, 64, 128, 256} 

Maximum tree depth {8, 16, 32, 64} 

Learning rate {0.005, 0.01, 0.05, 0.1, 0.5} 

 

Once we perform the grid-search, we determine the optimal values for the 

hyperparameters, thus obtaining models with the lowest mean absolute error on the 

validation data. After the models are trained, we can calculate prediction intervals for the 

test data. In all computations, we use a random set with 20% of the observations as 

validation data. 

4. DATA 

4.1. Description, Treatment and Statistics 

We use data extracted from the Ivy DB US database by OptionMetrics. The 

dataset comprises European call and put options on the S&P 500 index, traded from 

January 2018 to December 2022. For each option, we have the date of the observed option 

price, a call-put flag to distinguish calls and puts, the strike price, volume of option 

contracts, implied volatility, days to expiration, option price, spot price, dividend yield 

and risk-free rate.  
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In order to guarantee the quality of the data, we apply liquidity filters. Observations 

with volume lower than 20 contracts are excluded from the analysis (Gaspar et al., 2020), 

as illiquid options might increase noise in the model due to their potential stale prices and 

wide bid-ask spreads. Observations with price below 0.05 USD are excluded, to eliminate 

very cheap options which are usually deep-out-of-the-money and are unlikely to be 

exercised. We also exclude observations with maturity of fewer than 10 trading days and 

higher than 1 year (Bastos, 2024) to ensure more stability in the model. Options very 

close to expiration date can have big variations in price due to time decay and gamma 

effects, while options with a long time until maturity may be less liquid. We also cap 

volatility at 0.8. Additionally, we exclude deep-in-the-money and deep-out-of-the-money 

contracts from the analysis (0.5 < S/K < 1.5) (Bastos, 2024), as these options behave 

differently than near-the-money options, since they are less sensitive to market data.  

After all the filters are applied, the total sample size is 1,831,515 option contracts, 

with 704.915 call contracts and 1,126,600 put contracts. Although the sample size 

significantly decreased after the filters were applied, it is still much larger than what was 

found in the literature – for instance, Bastos (2024) used 120,180 empirical observations. 

Figure 3 illustrates the option prices against moneyness. Call options have a price near 

zero when they are deep out-of-the-money, i.e., with moneyness significantly below 1, as 

it is unlikely that they will be exercised. As moneyness increases, the prices increase. For 

put options, we see they have a price near zero when they are deep out-of-the-money, i.e., 

with moneyness significantly above 1, and their price increases when they are in-the-

money. We can also observe that put option prices can go much higher than call option 

prices, for a few observations. This could be attributed to the fact that investors are more 

willing to seek downside protection, and tendency to perceive a large downward 

movement in an asset as more probable than a large upward movement (Bouzoubaa and 

Osseiran, 2010). Given that put options can be used as a hedging instrument against a 

downward movement in an asset price, they confer the downside protection that the 

investors seek, thus putting upward pressure in the price of put options. 
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FIGURE 3 – Option prices against moneyness 

 

Figure 4 and Figure 5 represent, respectively, a call and put option price surface, 

plotted against moneyness and maturity. We can observe the same pattern as described in 

the previous figure regarding moneyness. We do not observe a significant change in 

option prices against maturity as we are dealing with a relatively short period, ranging 

from 10 trading days to one year, which excludes very short-term options and very long-

term options from the analysis. 
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FIGURE 4 – Call option prices against moneyness and maturity. 

 

 

 

FIGURE 5 – Put option prices against moneyness and maturity. 
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Table II presents the descriptive statistics of the input variables and response 

variable, split between call options and put options. The median option price scaled by 

the strike is 0.008 for both call and put options. The median moneyness for call options 

is 0.973, slightly lower than the median moneyness for put options of 1.067, although 

both are near ATM. At least 75% of the call option prices are below one, and at least 75% 

of the put option prices are above one, indicating that these options are typically out-of-

the-money. The median implied volatility for put options is 0.246, higher than the median 

for call options of 0.163. This is consistent with the expected from volatility skew theory 

– if an asset or index price drops, volatility tends to increase. Since puts pay on the 

downside and investors tend to look for downside protection, the price of OTM put 

options tends to be higher than price of OTM call options, ceteris paribus. This also 

reflects on the implied volatility of OTM puts tending to be higher than the OTM calls 

(Bouzoubaa and Osseiran, 2010). The median maturity is a little over a month for both 

call and puts. An interesting result to observe is the high skewness of the option prices in 

percentage of the strike, especially for call options, which implies heavy right tails. This 

highlights that the distribution is asymmetric, which is not a problem in quantile 

regression. Since the methodology modelS a conditional quantile instead of the 

conditional mean of the target variable, we do not have to assume normality of the 

distribution. 
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TABLE II 

STATISTICS ON INPUT VARIABLES AND RESPONSE VARIABLE 

Call options      

 Option price 

scaled by the 

Strike 

Moneyness Implied 

volatility 

Maturity Risk-

free rate 

Dividend 

yield 

Mean 0.017 0.965 0.174 0.207 0.014 0.014 

Std dev 0.031 0.060 0.073 0.192 0.011 0.004 

Min 0.000 0.503 0.049 0.044 0.001 0.000 

25% 0.002 0.941 0.120 0.079 0.002 0.012 

50% 0.008 0.973 0.163 0.127 0.015 0.015 

75% 0.021 0.996 0.211 0.262 0.023 0.017 

Max 0.521 1.500 0.799 0.996 0.049 0.021 

Median 0.008 0.973 0.163 0.127 0.015 0.015 

Skewness 7.034 0.217 1.853 1.880 0.436 -1.352 

Kurtosis 74.958 10.607 7.053 3.288 -0.850 2.069 

Put options      

 Option price 

scaled by the 

Strike 

Moneyness Implied 

volatility 

Maturity Risk-

free rate 

Dividend 

yield 

Mean 0.014 1.105 0.263 0.211 0.014 0.015 

Std dev 0.019 0.120 0.109 0.189 0.011 0.004 

Min 0.000 0.507 0.038 0.044 0.001 0.000 

25% 0.003 1.019 0.185 0.083 0.002 0.012 

50% 0.008 1.067 0.246 0.139 0.016 0.016 

75% 0.019 1.161 0.316 0.274 0.023 0.017 

Max 0.489 1.500 0.800 0.996 0.049 0.021 

Median 0.008 1.067 0.246 0.139 0.016 0.016 

Skewness 4.179 1.165 1.130 1.800 0.349 -1.331 

Kurtosis 34.378 0.948 1.866 3.015 -0.871 2.420 
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Figure 6 displays the histograms for each input variable, and Figure 7 displays the 

associated box plots. Implied volatility is right-skewed and has several outliers in the 

upper end of the boxplot – meaning the values that fall over the 75th percentile. 

Moneyness is centred around ATM options. The maturity is heavily right skewed, centred 

around a month-long maturity. 

 

 

FIGURE 6 – Input variables’ histograms. 
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FIGURE 7 – Input variables’ boxplots. 

 

4.2. Training, calibration and test datasets 

All the models perform a random split of 80/20 between the training and test sets, 

and the CQR employed one more split of 80/20 within the training set to split the data in 

training set and calibration set, respectively. The training dataset is a set of observations 

that are used to train the models with pinball loss functions. The calibration dataset is 
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used to predict quantiles and compute conformity scores. Finally, the test dataset allows 

us to make an unbiased evaluation of the conformal prediction intervals. 

To assess whether the training and test datasets have a similar distribution, we 

employ the Kolmorogov-Smirnov test feature-by-feature. The findings presented in Table 

III lead us to conclude that the distributions are likely the same, as evidenced by the p-

value higher than 0.05 for every variable and by the low K-S statistic, which measures 

the largest difference between the empirical distribution function of both datasets. 

TABLE III 

KOLMOGOROV-SMIRNOV BY FEATURE 

 Implied 

volatility 

Moneyness Maturity Risk-free 

rate 

Dividend 

yield 

 

p-value 0.9530 0.8092 0.3600 0.5159 0.8833 
 

statistic 0.0010 0.0012 0.0017 0.0015 0.0011 
 

For small Kolmogorov-Smirnov statistics (p-value higher than 0.05), we do not reject the null hypothesis 

of the datasets being drawn from the same distribution  

 

 

To mitigate any issue of sampling variability, the calculations are performed 50 

times using different random splits of the data into training, calibration and test datasets. 

The results presented come from an average of the 50 trials, thus increasing reliability. 

The models use an array of features to compute the target variable. For each 

option, the target variable is the option price in percentage of the strike (price/K). The 

scale is normalized when we divide the option price by the strike price, thus ensuring a 

more stable target variable. After the prediction, we rescale by multiplying the result by 

the strike to have the option price. The model features are the moneyness (S/K), maturity, 

implied volatility, interest rate and dividend yield.  

An option is said to be at-the-money (ATM) when the strike price is equal to the 

current spot price of the underlying asset (Bouzoubaa and Osseiran, 2010). Here, we 

considered as ATM the options with less than two percent deviation from the spot price, 

so 0.98 < S/K < 1.02. A call option is in-the-money (ITM) when the strike price is below 

the current price of the underlying asset, and out-of-the-money (OTM) when the strike 

price is above the spot price. Therefore, above the 1.02 moneyness threshold we have the 
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ITM calls and below the 0.98 threshold are the OTM calls. For put options, the opposite 

happens – a put option is ITM when the strike price is above the spot price and OTM 

when the strike price is below the current trading price. So, above the 1.02 moneyness 

threshold we have the OTM puts and below the 0.98 threshold are the ITM puts. 

Naturally, at the maturity date, only ITM options will be exercised, as the remaining states 

of moneyness at maturity imply that the options are worthless. 

For maturity, we considered short-term (ST) to be below 30 trading days, long-

term (LT) when the maturity is above 60 days and medium-term (MT) for the ones falling 

in between. Table IV displays the distribution of moneyness and maturity for call and put 

options in the dataset. We should note the bias in the distribution – ATM, OTM and short-

term options are over represented in the dataset, which is expected since these are the 

most traded options in the markets, but might still influence the precision of the 

predictions for ITM and long-term options (Gaspar et al., 2020). 

TABLE IV 

SAMPLE MONEYNESS AND MATURITY. 

 Moneyness Maturity 

 ITM ATM OTM ST MT LT 

Call options 7.49% 35.19% 57.32% 46.92% 27.22% 25.86% 

Put options 4.51% 21.2% 74.29% 44.37% 28.49% 27.14% 

 

5. RESULTS 

In this section, we present the results of the conformal quantile regression models 

for predicting option prices and compare them with a non-conformal quantile regression 

model. We use empirical coverage and relative width of prediction intervals as 

performance metrics. In Section 5.1 we perform an empirical coverage analysis and in 

Section 5.2 we analyse the conditional coverage of the model. 

Figure 8 displays the conformal prediction intervals plotted against moneyness. 

Figure 9 shows the conformal prediction intervals plotted against time-to-maturity. In the 

upper plots are represented the call options and in the lower plots are represented the put 

options. The nominal coverage of the intervals is set to 0.9, meaning that, if the conformal 
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intervals are valid, approximately 90% of the actual option prices should fall within the 

predicted intervals. The bars in grey represent the instances where the prediction interval 

failed to cover the actual value. The dots represent actual option prices missed by the 

intervals. The variations in the width of the intervals across moneyness reflect the model’s 

ability to adapt to uncertainty. Wider intervals are observed in regions where the model 

has less confidence in the predictions, while narrower intervals correspond to more 

confident predictions.  

 

 

FIGURE 8 – Conformal prediction intervals against option moneyness (S/K). 
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FIGURE 9 – Conformal prediction intervals against time-to-maturity. 

5.1. Empirical coverage 

 To assess the validity of the coverage guarantees given by the CQR model, we 

resort to two important metrics – empirical coverage and relative width. Empirical 

coverage is calculated as the proportion of observed option prices that lie within the 

prediction intervals. The median relative width of the intervals refers to the median of 
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their size. The wider the intervals are, the more easily we can expect the actual 

observation value to fall within the interval. However, for an interval to be informative, 

it should be as narrow as possible. Conversely, for narrower intervals, it is more 

challenging for the intervals to encompass the true observed value. This reveals a trade-

off relationship between the two metrics – if we wish to increase the empirical coverage 

of a prediction interval, we will increase the size of the prediction interval, all else equal. 

 Table V presents the empirical coverage and median relative width of prediction 

intervals, using both conformal and non-conformal methodologies. CQR refers to the 

intervals obtained from the conformal machine learning models for quantiles, while NQR 

refers to the intervals using plain machine learning models for quantiles. The CQR 

intervals reach an empirical coverage level very close to the nominal coverage level of 

0.9, thus guaranteeing the finite-sample coverage. In contrast, the NQR presents empirical 

coverage levels below the nominal target, meaning that the model undercovers the actual 

option prices. The values reported throughout the analysis result from an average of 50 

random split of the data into training, calibration and test sets. 

 The median relative width of the NQR intervals is lower than the CQR intervals. 

This is expected, since non-conformal models do not provide a finite-sample coverage 

guarantee and therefore tend to underestimate the uncertainty. The wider CQR intervals 

reflect the ability to capture the uncertainty inherent to estimating option prices. It is also 

worth noting that the CQR model is trained on less data than the NQR model, given an 

additional split is performed, to hold 20% of the observations from the training dataset to 

serve as the calibration dataset. 

TABLE V 

EMPIRICAL COVERAGE AND MEDIAN RELATIVE WIDHT OF THE PREDICTION 

INTERVALS FROM CQR AND NQR 
 

Empirical coverage Relative width 
 

NQR CQR NQR CQR 

Calls 0.8096 0.9000 5.38% 6.94% 

Puts 0.8134 0.9000 7.28% 8.35% 
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5.2. Conditional coverage 

 The empirical coverage analysis satisfies the marginal coverage guarantee 

expressed in Eq. (1). However, this guarantee does not automatically hold for a 

conditional coverage analysis. To obtain valid conditional coverage across different 

regions of the regressor space, i.e., to guarantee that the coverage of the intervals is still 

the same as the nominal coverage of 90% even in subsets of the data, it would be 

necessary to train individual models on each subset. Table IV suggests that for certain 

subsets of the data, such as ITM and long-term options, the data could be limited to 

effectively train separate models for each region. Nevertheless, it remains an interesting 

analysis to explore the behaviour of the conditional coverages in subsets of the data when 

the model is trained on the full dataset. 

Table VI displays the conditional coverages and median relative widths for 

different levels of time to maturity. We can observe that the empirical coverage of the 

prediction intervals increases for shorter maturities, closely aligning with the nominal 

level for medium-term maturities. However, long-term options tend to undercover, while 

short-term options tend to overcover. The relative width of the prediction intervals is 

lower for longer maturities, suggesting that the model is less confident in predicting 

option prices for shorter term options. The results are consistent with the expected, given 

that option prices can vary significantly near the strike price as they get closer to maturity. 

Finally, it is worth comparing the results for the intervals of call option prices and put 

option prices. While they follow the same pattern, it is visible that the median relative 

width of short-term options is significantly higher for puts when compared to calls. This 

could be due to the higher implied volatility in puts than in calls, as we observed in Table 

III, which is linked to the different implied volatility skew. Put options generate positive 

payoffs when asset prices decrease, namely during market crashes, which are frequently 

accompanied by increases in volatility. The market tends to perceive negative trends in 

asset prices as more probable than positive ones, meaning that after a decrease in prices, 

the investors tend to anticipate further decreases. (Bouzoubaa and Osseiran, 2010). This 

perception results in the downside of an asset having a higher implied volatility associated 

with it than the upside. The higher implied volatility reflects the higher uncertainty, which 

results in wider prediction intervals for put options. 
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TABLE VI 

CONDITIONAL COVERAGE AND MEDIAN RELATIVE WIDHT OF CQR FOR DIFFERENT 

LEVELS OF TIME TO MATURITY 
 

Empirical coverage Relative width 
 

ST MT LT ST MT LT 

Calls 0.9262 0.9112 0.8441 7.91% 7.20% 5.57% 

Puts 0.9270 0.9082 0.8502 11.31% 8.53% 5.49% 

ST: T < 30, MT: 30 ≤ T < 60, and LT: T ≥ 60, with T = maturity in days 

Table VII shows the conditional coverages and median relative widths for different 

levels of moneyness. The empirical coverage of the prediction intervals decreases with 

moneyness, as we observe higher empirical coverages for OTM options. ITM options 

tend to undercover actual prices, even more than observed for options with higher time 

to maturity. However, it is worth noting that they are closer to the nominal target than the 

results provided by the NQR models. The relative width of the prediction intervals tends 

to decrease with moneyness, which suggests that the model is less confident in predicting 

option prices for OTM options. This finding is in line with the expected, since OTM 

options have low intrinsic value, and are prone to lose value quickly as they approach 

maturity. ATM options present the narrowest intervals. This could be due to the high 

concentration of options near-the-money in our dataset, which is an accurate reflection of 

the same concentration seen in the market. Given the high number of observations in this 

small range of moneyness, the model can generate more confident predictions. 

TABLE VII 

CONDITIONAL COVERAGE AND MEDIAN RELATIVE WIDHT OF CQR FOR DIFFERENT 

LEVELS OF MONEYNESS 
 

Empirical coverage Relative width 
 

OTM ATM ITM OTM ATM ITM 

Calls 0.9171 0.8911 0.8108 12.93% 3.79% 5.86% 

Puts 0.9086 0.8850 0.8287 10.85% 4.22% 8.81% 

OTM call and ITM put: M < 0.98, ATM: 0.98 ≤ M < 1.02, ITM call and OTM put: M ≥ 1.02, with M = 

moneyness 
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6. CONCLUSIONS 

 This study addresses the problem of quantifying uncertainty in option pricing 

using conformal quantile prediction. We conduct an empirical experiment using call and 

put options on the S&P500, traded between January 2018 to December 2022, with a total 

of 1.8 million observations. We use conformal quantile regression to generate statistically 

rigorous prediction intervals for machine learning models that predict option prices. The 

predictive model employed is a modified version of a gradient boosting machine.  

The results confirm the empirical coverage guarantee provided by the 

conformalized model, contrasting with the non-conformal model that undercovers 

significantly the actual option prices. Furthermore, we uncover several findings regarding 

the uncertainty in option pricing. We obtained wider prediction intervals for options 

closer to maturity, suggesting a less confident prediction by the model. Indeed, option 

prices can vary significantly near the strike price as they get closer to expiration. We also 

observed wider intervals for out-of-the-money options, as these possess low intrinsic 

value. Finally, we uncover a novel difference between the intervals for call and put 

options with short time-to-maturity, with the latest presenting significantly wider 

intervals than the former, thereby offering an interesting insight into the asymmetries of 

market expectations and model uncertainty. 

This study considered a much larger number of observations than those found in 

similar literature, with over 1.8 million observations. Additionally, we analysed both call 

and put options. Future research could build upon these findings, as it could be 

meaningful to analyse the results with separate models for different regions of the dataset, 

to allow a conditional coverage guarantee. This framework could also be used with a 

different predictive machine learning model, or for price predictions of a different type 

of financial asset.  
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