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GLOSSARY 

 

ANN – Artificial Neural Network 

BERT – Bidirectional Encoder Representations from Transformers 

CRISP-DM – Cross-Industry Standard Process for Data Mining 

DNN – Deep Neural Network 

GB – Gradient Boosting 

KNN – K-Nearest Neighbors 

MAPE – Mean Absolute Percentage Error 

ML – Machine Learning 

MLP – Multilayer Perceptron 

MLR – Multiple Linear Regression 

NLP – Natural Language Processing 

OLS – Ordinary Least Squares 

PCA – Principal Component Analysis 

RF – Random Forest 

RMSE – Root Mean Squared Error 

SVR – Support Vector Regression 

TF-IDF – Term Frequency–Inverse Document Frequency 
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ABSTRACT 
 

This study investigates how accurately machine learning can predict apartment prices in Limassol, 

Cyprus, and whether adding textual data from listing descriptions improves performance beyond 

standard property features. Over 4,000 listings were scraped between November 2024 and 

February 2025, each containing structured numerical attributes (e.g., area, property age, 

coordinates) and free-text descriptions written by sellers. The text was preprocessed and vectorized 

using TF-IDF. Two input sets were tested: one with only structured features, and another 

combining those with textual data. Five regression algorithms were evaluated using grid search 

and cross-validation. All machine learning models outperformed the hedonic linear regression 

benchmark, highlighting their ability to capture more complex pricing patterns. Gradient Boosting 

performed best, achieving R² = 0.84 and MAPE = 16.5% without text. Adding descriptions led to 

a modest improvement (R² = 0.86, MAPE = 15.6%), suggesting that text captures some qualitative 

signals not fully reflected in the numeric data. However, the gain was limited, likely due to 

overlapping content or the shallow representation of TF-IDF. Overall, while listing descriptions 

offer incremental value, most predictive power stems from the core property features. Future work 

could explore more advanced embedding techniques to better capture meaning and nuance. 

 

KEYWORDS: House price prediction; Real estate; Machine learning; Text mining 
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1. Introduction 

Predicting house prices is valuable for individuals, businesses, and institutions engaged in the real 

estate market. Buyers use predictions to gauge whether a listing reflects fair value, helping them 

avoid overpaying or missing opportunities. Sellers rely on estimates to price their properties 

competitively. For banks, insurers, and investors, accurate price models inform lending, risk 

assessment, and investment strategies. These models also support decision-making by highlighting 

market trends and outliers. 

Real estate is a cornerstone of global economic activity. In the European Union, it plays a central 

role in regional development and household wealth, with residential property often being the 

largest asset owned by individuals. In Q2 2022, EU housing prices peaked with a 10.5% year-on-

year rise before slowing in 2023. By mid-2024, the market had begun recovering, with a 3.0% 

annual increase. Despite this volatility, some regions bucked the trend, most notably Cyprus, where 

property sales surged by 31.0% year-on-year. These figures prove the highly uneven and dynamic 

nature of housing markets (Eurostat, 2024). 

The pace of change is particularly pronounced in rapidly growing urban centers, where demand is 

shaped by foreign direct investment and shifting demographics. Limassol, a coastal city on the 

southern edge of Cyprus with a population of around 240,000, exemplifies this dynamic. As the 

island’s commercial, and shipping hub, Limassol draws strong interest from foreign investors 

attracted by its low taxes and warm climate. Cyprus’s residency-by-investment scheme, which 

grants permanent residency to non-EU nationals investing €300,000 or more in real estate, further 

amplifies demand. Tourism adds another layer of pressure, sustaining year-round interest in short-

term rentals and seafront properties. The result is skyrocketing demand for apartments, which 

dominate the urban market. In Q1 2023, Limassol accounted for approximately one-third of all 

property sales and 45% of transaction value in Cyprus, with apartment prices rising 10.4% year-

on-year, well ahead of other major cities like Nicosia and Paphos (Deloitte, 2023). 

This surge in demand reveals the deeper complexity of real estate markets, where prices reflect a 

mix of context-specific, interrelated factors. Traditional models like hedonic pricing, with their 

linear assumptions, often struggle to capture these nuances. As real estate markets grow more 

competitive, the need to identify opportunities and detect inefficiencies has led to the adoption of 

more advanced tools. Simultaneously, the data itself has evolved, now encompassing not just 

structured features but also unstructured inputs like images and textual data. In turn, machine 

learning has gained popularity for its ability to model nonlinear relationships and integrate diverse 

data sources. 
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Yet despite this momentum in both the evolution of valuation methods and the growth of markets 

like Limassol, smaller markets remain largely overlooked in academic research on property price 

prediction. Many studies have focused on highly liquid, mature markets, leaving smaller, fast-

growing cities under-analyzed and full of inefficiencies that create opportunities for those able to 

detect them. With sales in Limassol jumping by 30 percent year-on-year, it is clear that some actors 

are already capitalizing on this growth. However, in the broader European context, Cyprus remains 

a small and underrepresented market as it accounts for less than 1% of the EU’s House Price Index, 

compared to 21% for Germany. This contrast highlights the mismatch between the country’s 

growth momentum and its visibility in real estate research. The profit potential in such markets 

fuels demand for advanced tools that can uncover inefficiencies and unlock hidden value. In cities 

like Limassol, where investment is driven by lifestyle appeal, residency incentives, and rental 

yields, this dynamic is especially pronounced. At the same time, features like sea views, beach 

proximity, or vague terms like “luxury finishes” introduce subjectivity that complicates pricing 

even among similar properties. While institutional actors may rely on sophisticated models to 

exploit these inefficiencies, individual buyers and sellers typically lack such resources, leaving 

much of this potential untapped. As Zhang et al. (2024) argue, future research should explore 

whether predictive models generalize across different markets. 

Given this gap in the literature, this study asks: “To what extent can apartment prices in Limassol 

be accurately predicted using machine learning techniques, and does the inclusion of listing 

descriptions improve predictive performance compared to structured features alone?” 

 

To guide the analysis, the study sets out three main objectives: 

1. To evaluate how accurately apartment prices can be predicted using structured property 

features 

2. To assess whether listing descriptions add meaningful predictive value 

3. To compare the performance of different machine learning algorithms 

 

The analysis follows the CRISP-DM framework (Shearer, 2000), commonly used in data mining 

projects, and aligns with the POST DS methodology (Costa and Aparicio, 2020), which extends 

CRISP DM by emphasizing structured project management, an approach that suits the iterative 

model development and evaluation process in this study. 

 

From a theoretical perspective, this study examines whether machine learning models can 

accurately predict apartment prices in smaller, less mature markets, such as Limassol, and whether 

incorporating textual data enhances predictions based solely on structured property features. From 

an empirical perspective, it compares the predictive performance of models trained on structured 

features alone versus those that also include TF-IDF-transformed listing descriptions. It also 

examines how prediction accuracy varies across different price segments, offering a detailed view 

of model performance across the market. 
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This paper is organized as follows. Section 2 presents a literature review on the primary topics 

relevant to our work. Section 3 presents the methodology. Section 4 outlines the results of our 

experiments. Section 5 presents a discussion of the results and how it relates to the literature. 

Lastly, Section 6 concludes the paper and suggests directions for future research. 

2. Literature review 

This section covers the three core areas relevant to our study: hedonic price models based on 

statistical methods, machine learning approaches, and models that apply text mining and natural 

language processing techniques to house price prediction. 

2.1 Hedonic approaches 

Real estate price prediction has long attracted researchers’ interest due to the financial incentives 

tied to identifying mispriced properties. These opportunities persist because real estate markets are 

often inefficient: information is fragmented, disclosure is inconsistent, and valuations rely heavily 

on subjective judgment (Glaeser et al., 2008). As Herath and Maier (2015) note, high transaction 

costs, infrequent sales, and the uniqueness of each asset further hinder price discovery. In such 

settings, even approximate estimates of fair value can offer a strategic advantage. 

 

The aforementioned inefficiencies highlight the value of predictive models. They help not by 

perfectly detecting mispricing, but by flagging listings that merit closer review (Vargas-Calderón 

& Camargo, 2020). They are also useful when comparable sales are scarce or pricing is unclear 

(Khani Dehnavi et al., 2025). Moreover, since house prices tend to be negotiable, data-based 

estimates can strengthen a buyer’s position and help sellers set more realistic asking prices. In this 

way, these models help reduce information assymetries which are prevalent in real estate markets 

(Jung et al., 2022; Akerlof, 1970). 

 

The foundation of real estate price modeling was established by Court (1939), who proposed that 

a product’s value could be decomposed into the value of its individual characteristics. This concept 

was later formalized by Rosen (1974) through the hedonic pricing model, which treats properties 

as bundles of attributes. He argued that buyers evaluate each structural attribute, such as size, 

layout, or number of rooms, to determine what they are willing to pay. Empirical research has 

shown that basic structural features like property size, room count, building age, floor level, and 

amenities consistently account for a substantial share of price variation (Sirmans et al., 2005). 

 

While Rosen’s model established the role of structural property features in price formation, it did 

not account for spatial relationships between properties. Later research made it clear that location 

also plays a critical role, not just in terms of neighborhood but in how a property is positioned 

relative to others. Studies have shown that proximity to factors such as schools, parks, or the coast 

influences buyer preferences and price patterns (Goodman and Thibodeau, 1998; Pace and Gilley, 
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1997; Monson, 2009). Frew and Wilson (2002) went further by showing that adding location 

variables significantly improves the predictive accuracy of hedonic models, even those originally 

focused only on structural features. This highlights that regardless of model complexity, spatial 

context is essential. To capture this, modern models often include geographic coordinates and/or 

engineered distance-based features to account for spatial variation and improve predictive 

performance (Wei et al., 2022; Rey-Blanco et al., 2024). 

 

Even when location is properly accounted for, traditional hedonic models still face other important 

limitations. First, they require the analyst to predefine variables, transformations, and interactions. 

While this can capture simple nonlinearities, it often misses more complex relationships, especially 

when interactions are not explicitly defined (Chin and Chau, 2003). This limits accuracy and 

scalability, particularly in high-dimensional datasets (Limsombunchai, 2004). In contrast, machine 

learning models learn such patterns automatically, making them more suitable for mass appraisal 

tasks (Peterson & Flanagan, 2009). This was further validated by Ho, Tang, & Wong (2020), who 

showed that Random Forest and Extra Trees cut test set MAPE by as much as 63.6% relative to 

the linear regression model.   

2.2 Machine learning approaches 

A variety of machine learning algorithms have been used for house price prediction. Random 

Forest (RF), Gradient Boosting (GB) and Support Vector Regression (SVR) are common choices, 

while many studies have also tested artificial neural networks (ANN). A smaller group of studies 

takes a time series approach, focusing on forecasting broader market trends. Most existing 

solutions rely exclusively on numerical housing features, while a smaller subset incorporates 

unstructured inputs extracted through text mining or images from property descriptions. While 

there is no clear winner among algorithms, the consensus is that machine learning methods tend 

to outperform traditional linear or hedonic models. 

 

SVR has proven to be a reliable method for house price prediction, consistently delivering strong 

results across various datasets and setups. Ho, Tang, and Wong (2020) emphasized that SVR 

remains a strong option when quick predictions are needed, as it maintains solid accuracy even 

with limited computation time. Vasquez and Chellamuthu (2021) further showed that kernel choice 

matters, with nonlinear kernels clearly outperforming linear ones. 

 
When predictive accuracy is prioritized over speed, ensemble methods offer clear advantages. Ho 

et al. (2020) recommend using RF or GB in such cases, a view echoed across the literature. RF has 

consistently delivered strong results across different market contexts. In Saint Petersburg, it 

outperformed linear regression in a mass appraisal of two-room apartments (Antipov & 

Pokryshevskaya, 2012). In Spain, Baldominos et al. (2018) identified it as the top-performing 

model for high-end listings. Tchuente and Nyawa (2022) applied it across multiple French cities 

and reported generally robust performance, despite some variation by location. In South Korea, 
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Hong, Choi, and Kim (2020) found that it cut prediction error down to 5.5%. Even in the typical 

Boston Housing dataset, Adetunji et al. (2022) found it produced stable and accurate results. 

Building on the success of RF, GB methods have also gained traction for their strong predictive 

performance. Zaki et al. (2022), for instance, applied XGBoost to a basic structured dataset and 

found it delivered strong results. Zhang, Li & Branco (2024) tested GB against RF, SVR, and deep 

neural networks (DNNs) using two input setups: structured data only and structured plus text, and 

found that it outperformed all other algorithms in both cases. 
 

Artificial neural network (ANN) solutions, including deep learning, have also been widely 

explored. Early evidence from Limsombunchai et al. (2004), who used New Zealand housing data, 

and Peterson and Flanagan (2009), working in a U.S. context, demonstrated that ANNs produced 

more accurate and stable results than traditional hedonic regression, especially in mass appraisal 

settings. More recent studies show ANNs remain competitive or superior in diverse applications. 

For instance, Rampini and Re Cecconi (2022), using real estate data from Italy, found that ANN 

models outperformed not only traditional methods but also XGBoost, suggesting their suitability 

for more complex valuation tasks. Moreover, Mostofi et al. (2022) implemented a deep learning 

architecture enhanced with PCA and showed that DNNs maintained high prediction accuracy even 

with relatively small samples. Similarly, Kalliola et al. (2021) confirmed the effectiveness of 

multi-layer perceptrons (MLP) in limited data environments, reinforcing the potential of ANNs 

when traditional models might struggle. In contrast, Root, Strader, & Huang (2023) argue that 

ANNs often underperform compared to regression trees and SVMs, as they require large data and 

careful tuning to deliver consistent results. 

An alternative research direction explores hybrid models that integrate multiple algorithms or data 

types to enhance predictive accuracy. These approaches aim to combine the strengths of different 

methods such as the interpretability of linear models, the robustness of ensemble trees, and the 

flexibility of ANNs into a single framework. For example, Varma et al. (2018) fed outputs from 

linear regression and RF into a neural network to improve performance on Mumbai housing data. 

Zhao et al. (2019) extracted visual features from property images using a CNN and used XGBoost 

for the final prediction, outperforming both DNNs and KNN. Zhao and Wang (2023) designed a 

stacking ensemble combining SVR, RF, GBM, and ridge regression into a meta model, which 

consistently outperformed individual models across datasets. Similarly, Akyüz et al. (2023) 

proposed a three stage hybrid system combining residual based clustering, KNN, and SVR, which 

significantly outperformed standalone models on both real world and benchmark datasets.  

While much of the literature treats house price prediction as a regression problem at the individual 

property level, some studies adopt alternative formulations. For example, time series approaches 

aim to forecast broader market trends, as in Samadani and Costa (2021), who combined time series 

models with machine learning to predict price evolution in Portugal. Others frame the task as a 

classification problem. For instance, Park and Bae (2015) used ML algorithms to predict whether 
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the final sale price would be higher or lower than the listing price, helping sellers make more 

informed pricing decisions. 

 

To consolidate this review, Table 1 summarizes key studies applying machine learning to real 

estate price prediction, detailing the markets analyzed, algorithms tested, best-performing models, 

key predictive variables, and reported performance metrics. 

 

2.3 Text mining approaches 

Text mining refers to the process of extracting meaningful information from unstructured textual 

data by transforming it into a structured, analyzable format (Feldman & Sanger, 2007). In real 

estate, it is used to extract information from property descriptions, capturing qualitative aspects 

such as renovation quality, scenic views, or interior finishes that structured variables may 

overlook. These elements can influence buyer perception and affect price expectations 

(Baldominos, 2018). Language that reflects exclusivity, comfort, or outdoor appeal has been 

shown to carry predictive value (Alfano & Guarino, 2022). However, to incorporate textual data 

into most predictive models, listing descriptions must be transformed into numerical 

representations using vectorization techniques. These techniques are generally grouped into two 

categories: frequency-based and context-based methods. 

Frequency-based methods transform text into numerical features by capturing how often terms 

appear, either within a document or across the entire corpus. A basic example is the Bag-of-Words 

model, which represents text as binary or count-based indicators of word presence. Nowak and 

Smith (2015) used this method to encode unigrams and bigrams from listing descriptions as 

dummy variables in a hedonic regression. Their baseline model included only bedroom and 

bathroom counts and time dummies, omitting key variables like square footage or location, so 

adding even simple text features led to a 25% reduction in pricing error. While effective, this 

approach treats all words equally, ignoring their informativeness. This limitation motivates more 

refined weighting schemes like TF-IDF (Term Frequency–Inverse Document Frequency; Salton 

& Buckley, 1988), which emphasizes words that are common in a specific listing but rare across 

others. In real estate, TF-IDF helps surface unique or high-impact phrases that correlate with price. 

Stevens (2014) applied TF-IDF-transformed features in machine learning models such as SVM 

and GB, showing improved predictive performance over Bag-of-Words.  Similarly, Bushuyev et 

al. (2024) combined TF-IDF with structured features in a LightGBM model, reporting a 13.4% 

drop in mean squared error. These studies show that even simple frequency-based representations 

can significantly complement structured features in predictive performance. 

Context-based methods move beyond word counts by learning meaning from how words are used 

in sentences. Unlike frequency-based approaches that treat each word separately, these models 

generate embeddings: numerical representations shaped by context, so that words used in similar 
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ways receive similar values. There are two main types: neural embeddings, which focus on nearby 

words, and transformer-based models like BERT, which consider the entire sentence. 

Early neural embedding models such as Word2Vec (Mikolov et al., 2013), GloVe (Pennington et 

al., 2014), and Doc2Vec (Le & Mikolov, 2014) create compact numerical representations of text. 

Word2Vec and Doc2Vec are simple ANNs that learn from nearby words in a sentence, while 

GloVe relies on word co-occurrence counts across the entire dataset. Word2Vec and GloVe 

produce fixed vectors for each word while Doc2Vec extends this to full documents. For example, 

Vargas-Calderón and Camargo (2019) used Doc2Vec to turn property descriptions into vectors 

and combined them with structured data in an XGBoost model to predict whether a home was 

priced above or below average. While their goal was classification, the study showed that these 

text-based features added useful information. 

More recently, transformer-based models like BERT (Devlin et al., 2018) generate word 

embeddings that adapt to their surrounding context. These models capture more subtle meanings 

and have been applied to real estate price prediction by combining description embeddings with 

structured features, often leading to improved results. Baur et al. (2023) used BERT to encode 

listing descriptions and combined the output with a GB model. Using listings from Berlin, 

Hamburg, Munich, and Los Angeles, they found that adding BERT-based text features reduced 

pricing errors by up to 17% across all markets, with especially strong gains for higher-priced 

listings. 

One of the most comprehensive evaluations of text representation techniques for house price 

prediction was conducted by Zhang et al. (2023). Unlike other studies that typically rely on a single 

technique, they tested TF-IDF, self-trained Word2Vec, several pretrained embeddings (GloVe, 

FastText, Google News), and BERT across both traditional and deep learning models. Their 

experimental design included three setups: structured-only, text-only, and structured-plus-text. In 

the combined setup (the one relevant here), TF-IDF ranked first in predictive performance, 

followed by Word2Vec and then BERT. Although Word2Vec performed best in the text-only 

setup, that scenario falls outside this study’s scope. Notably, the performance gap between TF-

IDF and the neural embeddings was narrow, suggesting that the added complexity of pretrained 

models may not justify the trade-off. The authors attribute this to domain mismatch, as models like 

BERT and pretrained Word2Vec were not trained on real estate–specific language. In contrast, 

TF-IDF delivered strong results out of the box while also reducing the feature space from over 

15,000 to just 412 terms. Given its low complexity, interpretability, and computational efficiency, 

we argue that TF-IDF offers the best trade-off and will therefore be used in this study. 

Building on this prior work, we apply text mining to house price prediction in a smaller, less liquid, 

and largely unexplored real estate market. While existing studies clearly show that incorporating 

textual data improves valuation, they almost exclusively focus on large, data-rich markets. These 

are typically major metropolitan areas with high transaction volumes and abundant online listings, 
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making them ideal for developing and testing models. However, this raises the question of whether 

such text mining techniques can generalize to smaller, less liquid markets like Limassol, where 

data availability and market dynamics differ. Zhang et al. (2023) also noted this, emphasizing the 

need to test the generalizability of text-based models across regions and data sources. We compare 

models trained on structured features alone to those that combine structured and textual data to 

isolate their added value. Finally, we evaluate standard machine learning, tree-based ensembles, 

and dee to assess their effectiveness in this underexplored setting. Given the unique dynamics of 

Cyprus’s housing market, where sales trends have diverged sharply from broader European 

patterns, it remains unclear whether findings from larger, more liquid markets will hold. 

 

To consolidate this review, Table 1 summarizes key studies applying machine learning to real 

estate price prediction, including input features, algorithms used, market studied, best-performing 

models, and reported performance. 

 

Table 1. Summary of studies predicting property price with machine learning 

Author(s) Target 

Feature 

Key Features Algorithms Used Market 

Studied 

Best Model(s) Performance 

Ho, Tang 

& Wong 

(2020) 

Log price Area, age, floor, travel 
time 

SVM, RF, GBM Hong 
Kong 

GB MAPE = 0.32%; R² = 
0.90 

Baldomino

s et al. 

(2018) 

Price Total area, internal area, 

year, rooms, baths, 

amenities, location 

Linear Regr., kNN, 

MLP, SVR, Tree 

Ensembles 

Madrid, 

Spain 

Ensemble 

(Regression 

Trees) 

MAPE = 16.8%; R² = 

0.46 

Hong et al. 

(2020) 

Price Area, rooms, construction 

year, floor, building type, 

distance to subway 

OLS, RF Gangna

m, 

South 

Korea 

RF MAPE = 5.5%; OLS 

MAPE = 20% 

Zaki et al. 

(2022) 

Price 13 structural features Hedonic regression, 
XGBoost 

Not 
specifie

d 

GB R² = 0.841; Hedonic R² = 
0.42 

Zhang, Li 

& Branco 

(2024) 

Price 

(normalize

d) 

80+ features incl. area, 

bedrooms, pool, parking, 

location 

Linear regression, 

SVR, RF, GB, DNN 

Canada GB RMSE = 0.0189; R² = 

0.841 

Limsombu

nchai et al. 

(2004) 

Price 

(NZD) 

Age, type, bedrooms, 

baths, garages, amenities 

Hedonic regression, 

ANN 

New 

Zealand 

ANN ANN RMSE = 449,111; 

R² = 0.90Hedonic RMSE 

= 876,215; R² = 0.62 

Rampini 

& Re 

Cecconi 

(2021) 

Price Size, location, floor, 

rooms, condition, energy 
class 

ElasticNet, XGBoost, 

ANN 

Italy ANN MAE = €15,360 

Mostofi et 

al. (2022) 

Price Area, room count, age, 

floor, longitude, latitude 

DNN (with PCA), RF, 

SVR, KNN 

Iran DNN + PCA MAPE = 7.18%; R² = 

0.94 

Kalliola et 

al. (2021) 

Apartment 
price 

(debt-free) 

Living area, number of 
flats, construction year, 

income, services 

MLP (Bayesian-tuned) Helsinki
, 

Finland 

Optimized 
MLP 

RMSE = €33,232; MAE 
= €23,321; R² = 0.95; 

RME = 8.3% 

Zhao & 

Wang 

(2023) 

Median 

value of 

owned 
homes 

13 Boston housing 

features (e.g. RM, 

LSTAT, TAX) 

LR, SVR, Ridge, 

Lasso, MLP, RFR, 

GBR, Stacking 
Ensemble 

Boston, 

USA 

Stacking 

(SVR, RFR, 

GBR, LR → 
Ridge) 

MSE = 8.75; R² = 0.8841; 

EVS = 0.8839 
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3. Methodology 

This study follows the CRISP-DM framework (Shearer, 2000), with added structure from the 

POST-DS methodology (Costa and Aparicio, 2020), which integrates project management into the 

process. The steps below cover data exploration, preparation, modeling, and evaluation. The full 

code used in this study is available in a dedicated GitHub repository. 

3.1 Data understanding 

The dataset combines two types of real estate data: structured features (i.e number of bedrooms, 

area) and unstructured textual descriptions written by sellers or agents. While structured data 

captures objective, quantifiable attributes, textual descriptions often include subjective elements 

commonly found in real estate ads, such as mentions of design, renovation quality, or views. These 

qualitative aspects can influence perceived value but are not always reflected in fixed fields.  

 

Data was collected via web scraping from Bazaraki.com, the leading property listings platform in 

Cyprus, using Python and BeautifulSoup. The focus is exclusively on apartments in the Limassol 

district, a coastal area in the south of Cyprus. Figures 1 and 2 show the geographical context of 

Cyprus and the Limassol district. 

 

Figure 1. Location of Cyprus within Europe 

 

Figure 2. Location of the Limassol District in Cyprus 

The scraping process yielded 8,176 apartment listings, each containing both structured features 

and a corresponding property description, although with some variation. Figure 3 presents an 

example of a typical listing description. Our initial target was the listed price (later log-transformed 

for modeling purposes). To ensure uniformity during extraction, any missing fields were left blank. 

Data was collected between October 2024 and February 2025. 

 

https://github.com/staasios/masters
https://www.bazaraki.com/
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Figure 3. Example of a house listing's description text extracted from real estate listings. 

3.2 Data preparation 

The raw dataset consists of structured property features and unprocessed textual descriptions. The 

cleaning and preprocessing steps for each set are outlined separately in the following subsections. 

3.2.1 Structured features 

The extracted data included numerous structured fields, but only those with reliable and consistent 

coverage were retained. These align well with key variables identified in the literature. In addition, 

given our study’s focus on evaluating the contribution of textual descriptions, the analysis was 

based on a basic set of structured variables. The selected features and their descriptions are 

presented in Table 2. 

 
Table 2. Selected structured property features and their descriptions 

Feature Description 
Type 

area Total internal area of the apartment in square meters 
Continuous 

bedrooms Number of bedrooms in the apartment 
Discrete 

bathrooms Number of bathrooms, including en-suite or guest WCs 
Discrete 

floor The floor level on which the apartment is located 
Discrete 

age Age of the property, calculated from the construction year 
Continuous 

lat Latitude coordinate of the apartment's location 
Continuous 

long Longitude coordinate of the apartment's location 
Continuous 

is_penthouse Boolean indicator of whether the apartment is a penthouse 
Binary 

has_pool Boolean indicator of whether the apartment has access to a pool (luxury proxy) 
Binary 

 

The following four steps were applied to clean and preprocess the features, resulting in the final 

dataset used for modeling. They are presented in the order in which they were carried out: Feature 

removal, value mapping, missing values, and outlier removal. 

 

Features such as detailed amenities (e.g., fireplace, garden, alarm system), parking types, air 

conditioning levels, energy ratings, and furnishing status were removed due to inconsistent 
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presence across listings and excessive categorical granularity. Preliminary tests using the models 

in this study showed only negligible gains in predictive performance, not enough to justify the 

added complexity. 

 

Next, value mapping was applied to standardize bedroom and bathroom counts. Non-numeric 

entries were converted to integers: studios were mapped to 0 bedrooms, and "6 and more" was set 

to 6. For bathrooms, "5+" was treated as 5. While this simplification is not ideal, it reflects how 

the information was presented in the listings. These cases made up a small portion of the data and 

were unlikely to materially affect the results. 

The features with the most extensive missingness were the floor number and the construction year, 

which were used to calculate the property age. Each required dedicated handling. 

Floor levels ranged from "ground floor" to "8th and above", without finer granularity. To model 

this as a continuous variable, the "ground floor" was mapped to 0, and all upper floors were set to 

8. Missing values were first filled by extracting numbers from listing descriptions using regex, 

which still left 41% of entries missing. These were then imputed using a KNN regressor trained 

on area, price, bedrooms, and location. The model achieved a mean absolute error of approximately 

±1 floor, an acceptable trade-off to retain observations without introducing substantial noise. 

While grouping upper floors may reduce precision, the chosen models can still capture such 

effects. 

Each listing included a condition label (new, resale, or under construction) and a construction year, 

which was either a valid year, the string "older" (pre-1994), or missing. "Older" entries were 

flagged and cleared. After applying regex to extract years from descriptions, 82% of the dataset 

still had missing values. These were composed of 24% from new listings, 9% from resale, 47% 

from under construction, and 1% from older listings. Assigning 2025 to under-construction 

properties (resulting in age = 0) reduced the overall missing rate to 35%. The remaining values 

were imputed using the median construction year within each group. The final variable used was 

property age, calculated as 2025 minus the construction year. 

Other missing values were observed in the geographical coordinates and the number of bathrooms. 

These observations were dropped. For binary features, missingness was assumed to indicate non-

presence, which is a reasonable assumption in the context of real estate listings where sellers 

typically specify what a property includes, not what it lacks. These were set to 0. 

 

Finally, to ensure data quality, outliers in price and area were identified using three complementary 

statistical methods: the percentile method (e.g., 1st and 99th percentiles), the interquartile range 

(IQR) method (values beyond 1.5 times the IQR), and the standard deviation method (values 

exceeding three standard deviations). A data point was removed only if all three methods agreed, 

ensuring true outliers were eliminated while minimizing unnecessary data loss. Additionally, 
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manual filtering was applied to remove listings with incorrect geographical coordinates, including 

those placed outside Cyprus or in unrealistic locations. A visual inspection was also conducted by 

plotting the listings on a map, allowing for the removal of isolated listings that were significantly 

distant from property clusters. 

3.2.2 Textual features 

The property descriptions are texts found in each listing, written to inform and persuade potential 

buyers. They often include context like “quiet residential area near the city center” or highlight 

features such as “brand new kitchen”. An example of this is shown in Figure 3. We aim to extract 

valuable information from this unstructured text to enhance price prediction. To do so, we apply 

the TF-IDF embedding technique. 

 

We used Scikit-learn’s TfidfVectorizer, removing words that appeared in fewer than 3% or more 

than 95% of listings. This helped eliminate both noise from rare terms and dilution from overly 

frequent ones. As a result, the number of features dropped from 3,812 to 279, improving both 

computational efficiency and model performance. The resulting TF-IDF matrix was then used as 

input in the regression models. A full list of terms is available in the GitHub repository.  

 

Since TF-IDF works best with clean and consistent text, we applied several preprocessing steps to 

prepare the listing descriptions. The rationale behind each step was to help the model detect 

patterns that structured features might miss, without repeating information already present in those 

features. We also wanted to avoid anything that could accidentally leak the target variable into the 

model. The steps were the following: 

• We began by removing Greek text, emojis, URLs, and listing-specific identifiers, such 

as registration numbers or internal codes. Since fewer than 3% of listings were written 

in Greek, this step allowed us to focus on English descriptions only without losing 

valuable content. The administrative codes added no real value for price prediction, so 

they were taken out to reduce noise. 

• Next, we cleaned up symbols and numbers. We replaced characters like "+", "&", and 

"%" with their word equivalents: "plus", "and", "percent", to keep everything 

consistent. All numeric content was removed, including digits, written numbers like 

"one" to "ten", ordinals like "1st" and "second", and anything representing currency, 

such as "€" or "eur". These elements typically correspond to structured features already 

included in the model like area, or bedroom count so we removed them from the text 

to avoid duplication and ensure our models learn from descriptive content rather than 

repeating known inputs. 

• We manually standardized domain-specific terms to make sure different forms of the 

same idea were treated as one. For instance, we converted “sqm”, “m²”, and “sq.m” 

into a single version, “square meters”. We also grouped different spellings of “air 
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conditioning”, such as “ac”, “a/c”, and “air-condition”. This was done by reviewing the 

dataset manually, identifying inconsistent wording, and mapping all variations to a 

unified format. 

• We replaced all punctuation and special characters with spaces to avoid breaking words 

into meaningless fragments. Excess whitespace was removed to ensure the text was 

clean and ready for tokenization. 

• We used spaCy to tokenize the text, splitting each cleaned description into individual 

words. This allowed us to work with the text at the word level for the next steps in the 

pipeline. 

• After tokenization, we removed all tokens that were not valid English words using 

WordNet. This helped eliminate typos, misspellings, foreign terms, and broken pieces 

of text. 

• With only meaningful tokens remaining, we applied lemmatization using spaCy. This 

step reduced each word to its base form, for example, changing “running” to “run” and 

“houses” to “house”, to make sure our models recognize different forms of the same 

concept as one. We also removed any single-character tokens since they do not carry 

useful information. 

• Finally, we removed common English stop words like “the”, “is”, and “and”. These 

words show up frequently in almost every description but do no contribute anything 

meaningful to the prediction task, so removing them helped reduce noise and improve 

model focus. 

 

With the core cleaning steps complete, we shifted focus to refining the vocabulary itself. While 

the remaining text was standardized and free of obvious noise, many high-frequency terms still 

carried little predictive value. To address this, we followed a simple iterative process aimed at 

filtering out generic language and highlighting more meaningful content: 

1. Extract N-grams  

With clean lemmas, we extracted unigrams, bigrams, and trigrams: single words, two-word 

phrases, and three-word phrases that frequently appeared across the corpus. N-grams help 

identify recurring language patterns and offer a quick overview of the dominant terms in 

the dataset. This step helped us assess whether the remaining text contained signals that 

could actually help the model predict price. 

2. Visualize 

We visualized the most frequent n-grams to evaluate what kinds of terms were dominating 

the corpus. This allowed us to ask a critical question: Can this word or phrase help 

differentiate one property from another in terms of price? 

3. Remove Real Estate-Specific Stop Words  

Using that lens, we removed common domain-specific words like “area,” “bedrooms,” and 

“apartment.” These terms either duplicated information already captured in structured 
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features (for example, number of bedrooms, property type), or added no value because they 

appeared in almost every listing. If a word does not help the model distinguish between 

listings, it does not belong in the text. 

4. Repeat 

We repeated the entire cycle, extracting n-grams, visualizing them, and removing any 

additional high-frequency, low-value terms that offered no real differentiation between 

properties. This iterative loop continued until the n-gram plots reflected a more focused 

and informative set of terms aligned with our goal of helping the model predict price. 

Figure 4 presents the most frequent unigrams before and after removing real estate-specific 

stopwords. Initially, words like “area,” “apartment,” and “bedroom” dominate. These are clear 

examples of terms that add little value, as they either duplicate information already captured in 

structured features or appear in nearly every listing. After removing the real estate stopwords we 

identified, the resulting text reveals more descriptive and potentially differentiating terms such as 

“view,” “terrace,” “private,” and “quiet,” which are better suited to help the model distinguish 

between listings and predict price. 
 

  

Figure 4. Most Frequent Unigrams Before and After Real Estate Stopword Removal 

3.2.3 Feature Engineering 

Feature engineering can improve model performance by embedding domain knowledge into the 

data. The goal was to replicate the reasoning a local expert might use when valuing a property, 

considering how location, landmarks, and neighborhood context affect price. To capture 

Limassol’s market dynamics, we introduced four spatial features: distance to the coast, City of 

Dreams Casino, and Four Seasons Hotel, along with a binary indicator for whether the apartment 

lies above or below the main highway. 

 

All distances were calculated in kilometers using the Haversine formula, which accounts for the 

Earth's curvature and provides a more accurate estimate than straight-line methods. The 

implementation is shown in Figure 5. 
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Figure 5. Haversine distance function for proximity calculation 

To construct these features, we required various geographical coordinates. While the apartment 

coordinates were obtained directly from the listings, all other spatial data were retrieved using the 

OpenStreetMap Overpass Turbo API.  

 

Prior to feature creation, we excluded listings in Akrotiri, the UK-administered territory southwest 

of Limassol. Although technically within the Limassol district, the region is not part of the 

Republic of Cyprus and is, therefore, irrelevant to the local housing market. Listings from that area 

were less than 100 and so were removed. Figure 6 illustrates the spatial distribution of the 

apartment listings retained for our analysis. Black dots represent the retained listings; the red-

shaded area marks excluded Akrotiri. 

 

 

Figure 6. Geospatial distribution of listings 

3.2.3.1 Proximity to Coast 

Coastal living is a major draw in Cyprus, especially in Limassol, where the seafront is long, fully 

developed, and lined with sandy beaches, and the island’s first skyscrapers. This area has become 

a status symbol, attracting both wealthy locals and foreign buyers. Based on this, we created a 

proximity-to-coast feature, assuming that closer distance to the coast drives up prices. 

 

To measure this accurately, we focused on Limassol’s urban seafront, shown in Figure 7. The 

black line represents the coastline segment used in the calculation. It begins at Marina Beach, just 

east of the Limassol Port, and continues eastward along the developed coastline. Although the 
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coast technically extends further, we used the easternmost listing as a cutoff, since listing density 

drops off sharply beyond that point. 

 

The western boundary starts at Marina Beach because the adjacent Limassol Port is industrial and 

offers no residential value. Further southwest, the coastline wraps around Akrotiri, which lies 

outside the Republic of Cyprus and is disconnected from the urban housing market. Including these 

segments would distort proximity values by making remote, irrelevant areas appear desirable. 

 

The coastline was modeled as a dense sequence of GPS coordinates, and each apartment’s 

proximity was calculated as the minimum distance to this line using the Haversine function 

presented in Figure 5. This approach captures practical, not just theoretical, access to the urban 

beachfront. 

 

 

Figure 7. Proximity of listed apartments to the urban seafront 

3.2.3.2 Proximity to Casino 

The City of Dreams Mediterranean, shown in Figure 8, is Europe’s largest integrated casino resort 

and one of Cyprus’s most significant recent developments. Opened in 2023 in western Limassol 

after a €600 million investment, it includes a luxury hotel, entertainment district, and high-end 

retail. Its presence is accelerating real estate development in the area. 

We include proximity to the casino to capture this emerging dynamic. As a new western anchor 

point and investment hotspot, it may drive capital appreciation in nearby neighborhoods. Listing 

density around the casino is high and fades eastward, possibly reflecting early-stage demand 

clustering. 
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Figure 8. Proximity of listed apartments to City of Dreams casino 

3.2.3.3 Proximity to Four Seasons Hotel 

The Four Seasons Hotel, shown in Figure 9, is located in East Limassol, within Agios Tychonas, 

a long-established hub for luxury housing, five-star resorts, and upscale beachfront developments. 

Unlike the City of Dreams Casino, which reflects an emerging investment zone in the west, this 

area represents a mature and fully developed luxury cluster. We created a proximity feature based 

on the hotel’s location to capture this concentration of high-end real estate. Together, the casino 

and the Four Seasons help the model capture price variation along Limassol’s east-west luxury 

axis. 

 

Figure 9. Proximity of listed apartments to Four Seasons Hotel 

 

3.2.3.4 Position Relative to Highway 

This feature is a binary variable indicating the property's location relative to the Limassol highway 

(A1/A6), where a value of 1 denotes properties situated north (above) the highway and 0 denotes 

those located south (below) it. 

We hypothesize that two apartments with similar characteristics can have different prices 

depending on location. Areas above the highway are typically suburban, with more space and 

usually houses rather than apartments. In contrast, areas below the highway are denser and more 

urban, where proximity to amenities often drives higher demand and prices. 
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As shown in Figure 10, the black dotted line represents the highway, clearly separating the 

suburban areas above from the denser urban areas below. Listings appear more concentrated below 

the highway, suggesting that the urban-suburban divide may indeed exist. However, this pattern 

could reflect the sample rather than a true underlying division. Capturing this distinction could be 

important, as it may influence property values. 

 

 

Figure 10. The density of Listings Above or Below the Highway 

3.3 Exploratory Data Analysis 

Prior to modeling, we explore the cleaned dataset to understand how the features behave and relate 

to the target variable. We start with the structured features, followed by a separate analysis of the 

textual descriptions. 

 

3.3.1 Structured features 

We begin the analysis with descriptive statistics to summarize the main characteristics of the data. 

Table 2 presents key summary values such as the mean, standard deviation, quartiles, and range 

for all structured features, along with counts for binary variables. The average listing price is 

€550,445, ranging from €128,000 to nearly €4 million, reflecting substantial variation across 

properties. Most apartments have two bedrooms, two bathrooms, and a median size of 89 square 

meters. Among the binary features, only a minority of listings are penthouses, including a pool, or 

are located above the highway. 

 

Table 3. Summary of descriptive statistics 

Feature Count Mean SD Min Q1 Median Q3 Max 

Price - 550,445 441,648 1280,00 299,000 420,000 630,000 3,950,000 

Area - 98 39 30 77 89 115 308 

Floor - 2 1 0 1 2 3 8 
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Bedrooms - 2 1 0 2 2 3 6 

Bathrooms - 2 1 1 1 2 2 5 

Latittude - 34.698 0.018 34.636 34.689 34.7 34.711 34.744 

Longitude - 33.054 0.043 32.946 33.026 33.057 33.082 33.204 

Age - 3 7 0 0 0 2 45 

Proximity to coast - 2.36 1.85 0 0.78 2.1 3.32 8.9 

Proximity to casino - 8.41 3.5 0.33 6.02 8.42 10.54 21.82 

Proximity to Four Seasons - 7.31 3.69 0.02 4.46 6.7 9.6 17.62 

Is above highway 1868 
 

      

Is penthouse 860 
       

Has pool 1476               

Number of observations: 5319 

Next, we visualize the distributions of all continuous features to understand their behavior. Figure 

11 shows kernel density plots for each variable in both their original form on the left and after 

applying a log transformation on the right. Many of these features, especially price and area, are 

heavily right-skewed, meaning most values are low with a few very high ones. This skewness can 

reduce modeling accuracy and make predictions more sensitive to outliers. We apply a log 

transformation to all continuous variables with positive values to address this. The result is more 

balanced, bell-shaped distributions better suited for modeling. Accordingly, we use the log-

transformed versions of these variables in all subsequent analyses and models. 
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Figure 11. Kernel Density Plots of Continuous Features (Original vs Log-Transformed) 
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To examine the relationship between each feature and the target variable, we plot the natural 

logarithm of price (the target) against all structured features, using scatter plots for continuous 

variables and box plots for discrete and binary variables, as shown in Figure 13. Among these, one 

relationship stands out: the association between the natural logarithm of area and the natural 

logarithm of price. We highlight it separately in Figure 12 with a fitted linear regression line. While 

the pattern suggests a strong association, the R² value of 0.42 indicates that area alone explains 

only part of the variation in price. 

 

Figure 12. Relationship of log(price) vs. log(area) with linear fit 

The remaining features show more complex patterns. Prices tend to decrease with greater distance 

from key landmarks and increase with structural characteristics like the number of bedrooms, 

bathrooms, and floor level. Binary features such as pool and penthouse status are associated with 

higher median prices, suggesting their potential role as indicators of luxury or premium properties. 

However, these relationships are often noisy, nonlinear, and overlapping. Even where trends are 

visible, they are not always strong or consistent. 
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Figure 13. Relationships of structured features vs. log(price) 

Moreover, we examine how the structured features relate to one another by calculating 

correlations, using Pearson correlation for continuous variables and point-biserial correlation for 

binary variables. Figure 14 presents the resulting correlation matrix. As expected, apartment area, 

number of bedrooms, and number of bathrooms show strong positive correlations with price and 

each other. Proximity to landmarks, such as the coast and the Four Seasons hotel, displays a 

negative correlation with price, indicating that properties closer to key attractions tend to be more 

expensive. Binary features such as pool access also show positive associations with price, while 

position relative to the highway shows little correlation. 
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Figure 14. Correlation matrix of structured features 

We observe multicollinearity among some predictors, particularly area, bedrooms, and bathrooms. 

While this can be problematic in interpretive models, our goal is to minimize prediction error 

which makes multicollinearity irrelevant in this context. In fact, the correlation analysis highlights 

meaningful associations with price, reinforcing the relevance of these features. Their 

interdependence supports the use of flexible machine learning models capable of capturing 

nonlinear interactions. 

 

Overall, the exploratory analysis reveals two key insights. First, although area has the strongest 

relationship with price, it alone is not sufficient. That is, multiple features are needed to adequately 

capture price variation. Second, the relationships among features and with the target are often 

nonlinear and interdependent. These patterns align with the literature and further justify the use of 

machine learning over traditional linear approaches. 
 

3.3.2 Textual features 

This subsection provides a brief overview of the listing descriptions using a visual analysis. The 

goal is to assess whether text-based features can improve price prediction by capturing information 

not already reflected in the structured data. If properties across different price levels are described 

in similar ways, the text is unlikely to add value. After all, if both low-end and high-end apartments 

use the same language, there is no new signal for the model to learn from. On the other hand, if 

the descriptions reveal meaningful differences, such as sellers of higher-priced properties 
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emphasizing premium features, it suggests that the text contains useful information. In that case, 

including it in the model becomes both logical and necessary to improve predictive accuracy. 

 

To explore this hypothesis, we created word clouds for three price groups: the 5% cheapest listings, 

the 5% most expensive, and those priced near the median. If the descriptions reflect price 

differences, we should observe some noticeable variation in the language used. Figures 15 through 

17 confirm that this is the case. In the cheapest listings (Figure 15), words like “balcony,” 

“project,” “modern,” and “close” are common, pointing to practical features and basic amenities. 

The most expensive listings (Figure 16) utilize terms such as “luxury,” “private,” “design,” and 

“sea,” which suggest a focus on lifestyle and exclusivity. Listings near the median (Figure 17) 

include more neutral words such as “parking,” “space,” and “modern.” This pattern supports our 

hypothesis: as price changes, so does the language used to describe properties. That suggests the 

text may indeed carry useful information as it pertains to price prediction. 

 

Figure 15. Wordcloud for 5% cheapest apartments 

 

Figure 16. Wordcloud for 5% most expensive apartments 
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Figure 17. Wordcloud for median-priced apartments 

Nonetheless, it is important to acknowledge a potential limitation. Real estate professionals write 

these descriptions intending to promote the property, which means the language used is likely not 

entirely objective. Certain features may be selectively emphasized or presented to enhance the 

property's appeal. This marketing-driven bias can influence the linguistic patterns our model learns 

from. While this issue is not examined in this study, its potential impact on the results is duly 

recognized. 

3.4 Modelling 

This subsection describes the modelling strategy used to predict apartment prices, including the 

selected algorithms and experimental setup (Aparicio et al, 2022). Two input configurations are 

evaluated: one using only structured features, and another combining structured features with text-

based features extracted from listing descriptions. 

The prediction task is framed as a regression problem, with the target variable being the natural 

logarithm of the apartment’s listed price. Six algorithms are tested, selected for their demonstrated 

effectiveness in related studies and their ability to model different types of relationships. The 

chosen algorithms are the following: 

• Gradient Boosting (GB) is an ensemble method that builds decision trees sequentially, 

with each tree correcting the errors of the previous ones. It is well-suited to structured data 

with complex, nonlinear interactions. 

• Random Forest (RF) constructs multiple decision trees on bootstrapped samples and 

averages their outputs. It reduces variance and performs reliably with minimal tuning. 

• Support Vector Regression (SVR) fits a function within a specified margin of tolerance 

and uses kernel functions to capture nonlinear relationships. It is particularly effective for 

smaller datasets. 
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• Multilayer Perceptron (MLP) is a neural network composed of one or more hidden 

layers, allowing it to approximate nonlinear functions. It is useful for learning moderately 

complex patterns in tabular data. 

• Deep Neural Network (DNN) extends the MLP architecture by adding more layers, 

enabling it to learn hierarchical feature representations. It is capable of modelling high-

dimensional, nonlinear relationships but requires careful tuning. 

• Multiple Linear Regression (MLR) serves as the baseline hedonic model, predicting 

price as a linear function of the input variables. While limited in flexibility, it offers 

interpretability and serves as a reference point for evaluating more complex models. 

All models were implemented in Python using Scikit-learn (Pedregosa et al., 2011), with the 

exception of DNN, which was implemented in PyTorch (Paszke et al., 2019) using the Skorch 

wrapper (Tschannen et al., 2019) to ensure compatibility with the Scikit-learn pipeline. 

The dataset was split into 80% training and 20% testing, using a fixed random seed to ensure 

reproducibility. Hyperparameter tuning was performed using GridSearchCV with five repetitions 

of five-fold cross-validation, optimizing for mean squared error as the loss function (implemented 

as negative MSE for scoring purposes). Once the optimal hyperparameters were identified, each 

model was retrained on the full training set. The best-performing model was then selected for each 

input configuration. 

In total, ten configurations were evaluated by applying five algorithms to two input types. In the 

combined setup, listing descriptions were converted into numerical vectors using word 

embeddings and concatenated with the structured features. The hyperparameter grid used for 

tuning is provided in Table 4. Parameters not listed were left at default values. Results from the 

tuning process are presented in the subsequent section. 

 

Table 4. Grid search parameters and values 

Algorithm Parameter Values Description 

GB n_estimators 100, 300, 500, 1000 

Number of boosting rounds. Higher values can improve performance but 

increase training time. 

 max_depth 3, 4, 5, 6 

Maximum depth of each tree. Controls model complexity and risk of 

overfitting. 

 learning_rate 0.01, 0.1, 0.2, 0.3 

Shrinks each tree’s impact. Lower values need more trees, but often 

generalize better. 

 subsample 1, 0.8 
Fraction of training data used for each tree. Adds randomness to reduce 
overfitting. 

RF bootstrap True, False 
Enables bootstrap sampling for building trees. Adds diversity to the 
ensemble. 

 max_depth 5, 7, 10, 15, 30, None Limits how deep trees can grow. None allows full growth until pure splits. 

 max_features 10, 50, 100, 500, 1000 

Sets how many features are considered at each split. Affects randomness 

and performance. 
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 n_estimators 'sqrt', 'log2' 

Number of trees in the forest. More trees improve stability but increase 

training time. 

MLP hidden_layer_sizes (64,), (128,), (64, 64), (128, 64) Defines the size and number of hidden layers. 

 activation 'ReLU' 
Activation function applied between layers. ReLU helps with nonlinearity 
and efficiency. 

 solver 'adam' Training optimizer. 'adam' adapts the learning rate during training. 

 learning_rate 0.001, 0.01 Starting learning rate. Affects how fast the model updates weights. 

 alpha 0.001, 0.01, 0.1 L2 regularization term to prevent overfitting. 

 batch_size 32, 64 Number of samples used per training step. Impacts speed and stability. 

 max_iter 500 Max number of iterations. Training stops earlier if convergence is reached. 

SVR C 1, 10, 50, 100, 500 Regularization strength. Balances margin size and error tolerance. 

 epsilon 0.005, 0.01, 0.05, 0.1, 0.2 The width of the margin where no penalty is given. 

 kernel rbf Kernel type used to map data into higher dimensions. 

 gamma scale', 'auto' Kernel coefficient. Controls influence of individual points. 

DNN batch_size 10, 20, 32, 64 Number of training samples used in each forward/backward pass. 

 max_epochs 50, 75, 100, 150 Maximum number of full passes through the training data. 

 learning_rate 0.0001, 0.001, 0.01 Initial learning rate for the optimizer. 

 activation 'ReLU' 

The activation function is applied to hidden layers (ReLU introduces 

nonlinearity). 

 dropout_rate 0.1, 0.2 Fraction of neurons randomly dropped during training to reduce overfitting. 

 neurons 50, 100, 200 Number of units per hidden layer, controlling model capacity. 

The total number of experiments conducted in this study is 31,700. This includes 2,500 

experiments for SVR, 2,400 for MLP, 6,000 for RF, 6,400 for GB, and 14,400 for the DNN. Each 

algorithm was evaluated across both input configurations and every unique hyperparameter setup 

was assessed using 5-fold cross-validation repeated five times, resulting in 25 runs per 

configuration. 

3.5 Evaluation 

We evaluated all models using three commonly used metrics in real estate prediction: Root Mean 

Squared Error (RMSE), the coefficient of determination (R²), and Mean Absolute Percentage Error 

(MAPE). These metrics provide complementary insights into model performance. 

Since the target variable was transformed using the natural logarithm of price, RMSE and R² were 

calculated in log space: 
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RMSE is useful because it expresses average prediction error in the same units as the target 

variable and penalizes large errors more heavily. However, when calculated in log space, RMSE 

is no longer in euros and cannot be directly interpreted. Exponentiating it to convert back to the 

original scale introduces bias due to the curvature of the exponential function, which typically 

results in an underestimation of the true error. The same limitation applies to R², which remains 

helpful for understanding the proportion of variance explained but does not reflect accuracy in 

monetary terms. 

To overcome these issues, we also used MAPE, which was calculated after reversing the log 

transformation: 

MAPE =
100

𝑛
∑|

𝑦𝑖̃ − 𝑦̂𝑖̃
𝑦𝑖̃

|

𝑛

𝑖=1

 

MAPE expresses error as a percentage of the actual price, making it easier to interpret. For 

example, a MAPE of 10 percent means the model’s predictions are off by 10 percent on average, 

regardless of whether the apartment costs €200,000 or €2 million. This makes MAPE especially 

useful in real estate, where prices vary widely. 

Finally, to examine whether prediction accuracy is consistent across the price spectrum, we divided 

the test set into ten price-based buckets and computed MAPE separately for each decile. This 

allowed us to assess whether the models perform equally well for lower and higher-priced 

properties. 
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4. Results 

This section presents the experimental results. We begin by reporting the outcomes of the grid 

search on the training data, which were used to determine the optimal hyperparameters for each 

learning algorithm. Next, we evaluate the models based on their RMSE scores to identify the best-

performing model for each input type: structured features only and those that combine structured 

features with textual features. The best-performing models for each input type are then applied to 

the test set to assess their performance. 

4.3.1 Grid search results 

The best validation RMSE and R² scores for all algorithm–input set combinations are reported in 

Figure 18. These scores reflect the performance of each algorithm using its optimal 

hyperparameters, identified through grid search. The corresponding hyperparameter values for 

each algorithm–input set combination are provided in Table 7 in the Appendix. 

 

When using only structured features, GB, followed by RF, achieved the highest performance in 

terms of RMSE and R². MLP, DNN, and SVR performed moderately and did not match the tree-

based models, even with extensive hyperparameter tuning, possibly due to their sensitivity to 

architecture and training data size. 

 

With the addition of textual features, GB remained the best-performing model, with a slight 

improvement in RMSE and R². SVR also showed a more noticeable gain, while RF, MLP, and 

DNN performed worse compared to their structured-only versions. 

 

  

Figure 18. Validation RMSE and R² by Input Type and Algorithm 

4.3.2 Final models’ results 

Based on the grid search results, GB performed better than all other algorithms across both input 

sets. We therefore proceed with two GB models that were tuned using the best hyperparameters: 

one trained only on structured features and one trained on both structured and textual data. Each 

model is evaluated on the test set to check how well it generalizes to new data. The selected setups 

are shown in Table 5. 
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Table 5. Top-performing models and their optimal parameters for each input set 

Input set Algorithm Best parameters 

Structured features GB 

learning_rate = 0.1, 

max_depth = 6,  

n_estimators = 500,  

subsample = 0.8 

All features GB 

learning_rate = 0.1, 
max_depth = 5,  

n_estimators = 1000,  

subsample = 0.8 

 

Table 6 shows the test results of the final models. The model using only structured features 

performed well, with a test R² of 0.836, RMSE of 0.229, and MAPE of 16.52 percent. When textual 

features were added, performance improved slightly: R² increased to 0.857, RMSE dropped to 

0.214, and MAPE decreased to 15.59 percent. This means that, on average, predictions are off by 

about 15.6 percent. For example, for a property worth €1,000,000, the predicted price would 

usually be within ±€156,000. Both models fit the training data very well, and the small difference 

between training and test results suggests good generalization without excessive overfitting. 

 

Table 6. Final models' results 
      

Input set Algorithm 
train 

R² 

test 

R² 

train 

RMSE 

test 

RMSE 

train 

MAPE 

test 

MAPE 

Structured features GB 0.992 0.836 0.054 0.229 3.99 16.52 

All features GB 0.995 0.857 0.041 0.214 3.15 15.59 

 

We also examined how the model performs across different price segments. The test set was 

divided into ten deciles based on actual property prices, and MAPE was calculated for each, as 

shown in Figure 19. 

 

  

Figure 19. MAPE per price decile – Structured features vs. All features 
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The left side of the figure presents results for the model trained on structured features only. MAPE 

ranged from 13.71% to 25.58%, with relatively consistent performance across the lower and 

middle deciles (13.71% to 17.29%). However, error increased in the higher segments, rising to 

19.91% in the ninth decile and peaking at 25.58% in the tenth. The right side of the figure illustrates 

the impact of adding textual features. While the overall pattern remained similar, MAPE improved 

across most deciles. The range narrowed to 13.34%–23.37%, with small reductions of 0.2–0.6 

percentage points in the lower and middle segments. Improvements were more pronounced in the 

upper range: the ninth decile dropped from 19.91% to 18.26%, and the tenth from 25.58% to 

23.37%. 

 

To better understand the modeling challenge in the upper price segment, we also examined the 

variability of input features and the target variable across price quintiles. Figure 20 presents the 

accumulated standard deviation across all structured input features (left) and the standard deviation 

of the target variable, log price (right). 

 
Figure 20. Feature and Target Variability Across Price Quintiles 

The results show that input variability remains relatively stable across segments, while target 

variability increases significantly in the highest quintile. This indicates that, in the top segment, 

the model is required to predict over a broader output range without a corresponding increase in 

input variation. 

 

As a complementary analysis, feature importance was examined based on the GB model trained 

only on structured property features. As shown in Figure 21, property size is clearly the most 

influential predictor, followed by proximity to the coast and longitude. This shows that size and 

location dominate value formation. Other features like floor level, property age, and landmark 

proximity also contribute moderately, while attributes such as being a penthouse or highway 

position have a very limited impact on price predictions in the Limassol market. 
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Figure 21. Feature Importance Based on Structured Property Attributes 

5. Discussion 
This section discusses the study’s main findings, highlighting model performance, the contribution 

of textual features, differences across price segments, and how these results relate to existing 

research. 

Firstly, all the machine learning models explored in this study showcased superior performance 

metrics than the benchmark linear regression model. This supports the idea, shown in past research 

(Peterson and Flanagan, 2009; Ho et al., 2020; Zhang et al., 2023), that machine learning methods 

are more effective than traditional hedonic models. These models are better at capturing complex 

patterns and relationships in the data, which makes them more suitable for predicting house prices. 

Secondly, the results show that apartment prices can be predicted quite accurately using only basic 

property attributes. Gradient Boosting (GB), for example, achieved strong performance on the test 

set, confirming that features like property size, age, and location explain most of the price 

variation. Spatial features, such as how close a property is to the coast, were especially important. 

This is in line with what other studies have found (Hernes et al., 2024; Limsombunchai et al., 2004; 

Zaki et al., 2022), and confirms that structured data still holds strong predictive value, especially 

when location information is included (Frew & Wilson, 2002; Rey-Blanco et al., 2024). 

Moreover, adding the textual data from property listings gave a small but consistent improvement 

in performance. The test R² increased and MAPE dropped slightly, with SVR showing the biggest 

benefit. This supports earlier studies (Abdallah, 2018; Nowak & Smith, 2016; Bushuyev et al., 

2024), which also found that TF-IDF-based text features can improve prediction accuracy. 

However, the gains in our study were more modest. This may be due to the repetitive or vague 
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language often used in Cyprus listings and the overlap between textual and structured features. For 

example, when both mention proximity to the sea. In addition, since the TF-IDF method used here 

relies on unigrams, it likely cannot capture context or distinguish between phrases like “sea view” 

and “no view,” which may limit its effectiveness.  

Furthermore, GB maintained its lead across both input types, confirming its robustness. This 

matches earlier research (Zhang et al., 2023; Ja’afar et al., 2021) showing its consistent strength. 

Its learning process likely helped it deal with noisy or overlapping features better than RF, which 

performed worse when text was added. RF, although able to process sparse data, lacks the iterative 

refinement of boosting methods and may have been affected by the presence of low-signal or 

redundant features. For example, proximity to the coast is a structured continuous feature, while 

words like “beach” or “sea” often appear in listings located near the shoreline. This results in 

overlapping signals, where both structured and textual features capture similar location 

information. Even though care was taken during preprocessing to minimize such redundancy, 

some overlap is difficult to avoid, given the nature of how real estate descriptions are written. SVR, 

although not as accurate overall, gained the most from the text data, likely because it handles high-

dimensional, sparse data well (Ho et al., 2020). MLP and DNN, on the other hand, performed 

worse with text, despite extensive tuning and regularization. This supports previous concerns 

(Root et al., 2023; Mostofi et al., 2022) that deep learning models may overfit when trained on 

small datasets with many input variables. 

Another key finding is that model accuracy dropped in the top price decile. For the most expensive 

properties, performance worsened compared to the rest of the dataset, with MAPE increasing 

notably both with and without text. This shows how hard it is to predict luxury prices, where there 

are fewer listings and much more variation. Most studies report average performance across the 

whole dataset, but these results highlight that high-end listings may behave differently 

(Baldominos, 2018; Kalliola et al., 2021). Even though our dataset was too small to build separate 

models for each segment, this result suggests that future studies should look at segment-specific 

approaches for luxury homes. 

Finally, our results support the conclusion from Zhang et al. (2024) that TF-IDF is a practical and 

effective text representation method. While more advanced methods like BERT or Word2Vec may 

work better in larger datasets with better-quality text, they also require more resources and domain-

specific tuning. In our case, TF-IDF offered good results with much lower complexity, which is 

important for smaller markets like Limassol where data is inevitably less abundant. 
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6. Conclusion 

Limassol’s real estate market offers a compelling case for predictive modeling, combining rapid 

growth, varied demand, and a mix of objective and subjective factors. Despite this momentum, the 

local market’s smaller size has kept it largely underexplored in research. This study examined 

whether apartment prices in this market can be accurately predicted using machine learning and 

whether listing descriptions provide additional value beyond structured features. 

 

To investigate this, we scraped over 4,000 apartment listings from a leading Cypriot real estate 

platform and constructed a dataset combining structured variables such as size, location, and floor 

level with unstructured text descriptions. Location-based features were engineered using 

geographic data and tailored preprocessing was applied to both types of inputs. Text descriptions 

were converted into numerical vectors using TF-IDF based on unigrams. 

 

Five machine learning algorithms were tested using grid search with five-fold cross-validation and 

repeated five times. GB consistently outperformed the alternatives. With only structured inputs, it 

achieved an R² of 0.836 and a MAPE of 16.52 percent. When listing descriptions were added, 

performance improved slightly, reaching an R² of 0.857 and a MAPE of 15.59 percent. This 

suggests that textual data can provide useful signals, but the overall impact remains modest. 

 

Several limitations of the current study suggest directions for future research. The reliance on 

listing prices, which are shaped by seller expectations, agent strategies, and market sentiment, 

introduces label noise. These prices may differ from final transaction values, which were not 

available. Additionally, listings that remain active for longer periods, often because they are 

overpriced or unrealistic, are more likely to appear in the dataset. This creates a subtle imbalance 

that may affect how the models learn. Access to actual sale prices and time-on-market data would 

help improve label quality and reduce bias. 

 

The textual descriptions also present challenges. They are usually written to persuade, rather than 

to objectively describe the property. Sellers may highlight positive traits and leave out negative 

ones. This makes the descriptions subjective and can mislead the models. There is also overlap 

between structured and textual features. For example, both may mention how close a property is 

to the sea. The models used unigrams, which means they could not understand phrases or context. 

As a result, they likely treated terms like “sea view” and “no view” as similar. Future studies could 

test n-gram models or more advanced text embeddings like Word2Vec or BERT to better capture 

meaning. 

 

Regarding the models, deep learning approaches such as MLP and DNN were sensitive to the 

number of input features and showed a higher risk of overfitting. This was likely due to the 

combination of moderate dataset size and high dimensionality introduced by the textual features. 
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In addition, these models underperformed in the luxury segment, where listings are fewer and more 

diverse. Segmenting the market and training different models for each price range, especially for 

high-end properties, could improve accuracy. The current study also used a single snapshot of the 

market. Adding time-based variables, such as listing dates or economic indicators, could help 

capture market changes. Clustering methods could also help reveal hidden market segments. These 

segments could then be used as inputs for the models. Finally, combining structured and textual 

data using hybrid models may lead to better predictions. 

 

Overall, our study demonstrates the feasibility and potential of applying machine learning to 

predict apartment prices in smaller fast-growing markets and highlights the added but still limited 

value of listing descriptions in this market. 
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8. Appendix 
 
Table 7. Algorithm results and best parameter settings from grid search 

Regression 

algorithm 

Input 

set 

Validation 

R2 

Validation 

RMSE 

Best parameters 

MLR Structured features 0.7255 0.302 'fit_intercept': True 

All features - - - 

SVR Structured features 0.7922 0.2627 'C': 1, 'epsilon': 0.2, 'gamma': 'auto', 'kernel': 'rbf' 

All features 0.828 0.2391 C': 10, 'epsilon': 0.01, 'gamma': 'auto', 'kernel': 'rbf' 

RF Structured features 0.8351 0.234 bootstrap': False, 'max_depth': 15, 'max_features': 'sqrt',  

'n_estimators': 500 

All features 0.8204 0.2443 bootstrap': False, 'max_depth': 30, 'max_features': 'sqrt',  

'n_estimators': 1000 

GB Structured features 0.8386 0.2314 learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 500,  

'subsample': 0.8 

All features 0.8499 0.2234 learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 1000,  

'subsample': 0.8 

MLP Structured features 0.785 0.2672 activation': 'relu', 'alpha': 0.1, 'batch_size': 64,  

'hidden_layer_sizes': (128,), 'learning_rate_init': 0.001,  

'max_iter': 500, 'solver': 'adam' 

All features 0.7648 0.2794 activation': 'relu', 'alpha': 0.1, 'batch_size': 32,  

'hidden_layer_sizes': (128, 64), 'learning_rate_init': 0.001,  

'max_iter': 500, 'solver': 'adam' 

DNN Structured features 0.78 0.2703 batch_size': 32, 'lr': 0.001, 'max_epochs': 150,  

'module__activation': 'ReLU', 'module__dropout_rate': 0.2,  

'module__neurons': 50 

All features 0.7708 0.2749 batch_size': 10, 'lr': 0.001, 'max_epochs': 150,  

'module__activation': 'ReLU', 'module__dropout_rate': 0.1,  

'module__neurons': 200 
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