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ABSTRACT 

This research explores the application of a Vector Error Correction Model (VECM) 

in forecasting Default Rates, using key macroeconomic indicators such as Gross 

Domestic Product, inflation and unemployment rates. The VECM was selected due to its 

ability to deal with non-stationary cointegrated variables, allowing it to capture both the 

short-term dynamics and the long-term equilibrium relationships between the variables. 

The forecasted Default Rate is a critical variable in the estimation of the Variable 

Scalar Approach. Under IFRS 9, this approach adjusts Through-the-Cycle Probabilities 

of Default into Point-in-Time Probabilities of Default, allowing the inclusion of forward-

looking macroeconomic indicators in the Probability of Default estimate, thereby 

enhancing financial institutions' ability to estimate Expected Credit Losses and internal 

capital requirements. 

The study finds that the VECM provided reasonably accurate forecasts for default 

rates during the period considered, with minimal deviations from the observed data, all 

within an acceptable range. While diagnostic tests confirmed the model's robustness and 

reliability, limitations were observed in its ability to predict extreme economic events, 

particularly during financial crises such as those of 2009 and 2020. To address this 

limitation, a worst-case scenario is incorporated into the scalar factor calculation. Despite 

these challenges, the model has proven to be a valuable tool for enhancing credit risk 

management. 

 

 

 

 

Keywords: Default Rate; Probability of Default; Vector Error Correction Model; 

Variable Scalar Approach. 
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1. INTRODUCTION 

In response to the 2008 global financial crisis, banking sector regulators aimed to 

reinforce risk management policies and the accounting standards used, leading to more 

demanding requirements. The International Accounting Standards Board (IASB) and the 

European Banking Authority (EBA) have been fundamental in promoting the adoption of 

forward-looking approaches to estimate Probabilities of Default (PD). The IASB 

introduced IFRS 91, which requires financial institutions to implement expected credit 

loss (ECL) models that incorporate both historical data and forward-looking 

macroeconomic indicators, ensuring earlier and more accurate recognition of potential 

credit losses (International Accounting Standards Board, 2009). The EBA has supported 

this application in the European banking sector by issuing guidelines on credit risk 

management and the calculation of expected credit losses, ensuring compliance with 

IFRS 9 (European Banking Authority, 2017). 

The Variable Scalar approach enables the inclusion of forward-looking 

macroeconomic indicators in PD estimation. A key aspect of this approach is the 

transformation of Through-the-Cycle (TTC) PD2, which reflect long-term averages into 

Point-in-Time (PIT) PD3 that adjust according to current macroeconomic conditions, 

allowing institutions to better anticipate and manage risks during economic downturns. 

This methodology promotes financial stability by ensuring that institutions proactively 

take future risks into account. 

The Default Rate (DR) has a crucial role in estimating the scalar factor under the 

Variable Scalar Approach. By accurately predicting the default rate, institutions can 

compute the scalar factor, which adjusts the PD estimations to reflect current and future 

economic conditions, making it an essential tool for managing credit risk during periods 

of economic stress. For this reason, accurate forecasting of the DR is essential, as it 

 
1 International Financial Reporting Standard (IFRS) published by the International Accounting 

Standards Board. It addresses the accounting of financial instruments. 
2 Through the Cycle (TTC) PD predicts the average default rate for a particular rating over an economic 

cycle, disregarding short-term variations in economic conditions. 
3 Point-in-Time (PIT) PD assesses the likelihood of default at a point in time for a specific rating, 

factoring in current economic conditions. 
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directly impacts the precision of the scalar factor and, consequently, the institution's 

ability to estimate ECL and internal capital requirements.  

In this research, the Vector Error Correction Model (VECM) was selected for 

forecasting default rates due to its ability to handle non-stationary cointegrated variables, 

allowing the capture of both short-term dynamics and long-term equilibrium relationships 

between macroeconomic variables. The VECM is particularly well-suited for this context 

since variables, such as Gross Domestic Product (GDP), inflation, and unemployment 

rates are expected to move together in the long term, exhibiting cointegration. These 

macroeconomic variables are anticipated to have a critical role in predicting future default 

rates, making the VECM an ideal choice for producing accurate and reliable forecasts. 

Throughout the study, the rationale behind the selection of the VECM, its estimation 

process, the diagnostic tests applied and the results obtained will be explored in detail. 
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2. LITERATURE REVIEW 

In this chapter, reference will be made to papers that helped in the decision-making 

process regarding the model's development. Subsection 2.1 assesses the diverging views 

on the most appropriate statistical model for predicting the Default Rate. Subsection 2.2 

covers the selection of the best approach for determining internal capital requirements for 

banks: using PD Point-in-Time or PD Through-the-Cycle models. 

 

 2.1 DEFAULT RATE FORECASTING METHODOLOGIES 

After the 2008 global financial crisis, the prediction of default rates in stressed 

economic scenarios took on a new dimension, both in the academic and regulatory fields. 

Much due to this period, which exposed the weaknesses in traditional risk management 

systems, the importance of implementing robust models capable of predicting default 

probabilities was evident, especially in periods of economic instability. Over time, 

various methodologies have been developed to address these challenges, each offering 

distinct advantages and limitations. This literature review section summarizes the key 

contributions of existing models for predicting default rates, through macroeconomic 

drivers, econometric techniques and stress testing frameworks. 

In response to the financial crisis, Basel III demanded stricter and higher capital 

requirements, encouraging the use of stress scenarios in assessing capital adequacy. 

Under the imposed framework, banks and financial institutions were incentivized to 

predict the ratings of their debtors, and consequently Probabilities of Default, including 

Default Rates, in stress scenarios, such as economic downturns (Basel Committee on 

Banking Supervision, 2017). This provided a strong foundation for many subsequent 

studies. 

Credit rating models, which are based on transition matrices, are a common tool for 

predicting Probabilities of Default and are based on the historical rating transitions of 

borrowers, using the matrix generated to estimate future default probabilities (Hadad, et 

al., 2009; Malik & C., 2012). The cohort method is commonly used in this context, with 

the Basel Committee on Banking Supervision (BCBS) recommending a 1-year horizon 

for estimation (Basel Committee on Banking Supervision, 2004). However, this type of 
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model is limited by the fact that it has linear assumptions and tends to struggle with 

capturing the non-linear dynamics that occur during volatile economic periods. 

Due to its simplicity and easy interpretation, the Ordinary Least Squares (OLS) 

method is widely used to estimate the impact of macroeconomic variables such as Gross 

Domestic Product, interest rates, the change in real house prices and unemployment rates 

on Default Rates and Loan Loss Ratios. However, the omission of unobservable risk 

factors (such as firm-specific risks) in portfolio loss models leads to biased results of 

default risk. These variables are an additional motivation for using non-linear models, 

considering that all loans exposed to these types of risk factors are subject to an increase 

in default risk (Duffie, et al., 2009). Despite this, OLS has maintained its popularity, being 

applied in studies of Sveriges Riksbank (the Swedish central bank) due to its user-friendly 

nature and general applicability to aggregate-level data (Buncic, et al., 2019). 

Recognizing the weaknesses of OLS, fixed effects models were developed with the 

purpose of controlling unobserved heterogeneity (Roesch & Scheule, 2012). Similar to 

those mentioned above, fixed effect models also estimate the relationship between PD 

and macroeconomic variables, although taking into account institution-specific effects 

that do not vary over time. An extension of this approach is the Least-Square Dummy 

Variable (LSDV) model, which also allows for industry-specific factors. Qu applied this 

type of model to predict PD at the industrial level, however, the author realized that the 

assumption of constant sectoral effects could be problematic over long-term horizons 

(Qu, 2006). 

Logit models have been more widely used in the context of Default Rate forecasting 

due to their ability to deal with binary results (Default or Non-Default) (Bartual, et al., 

2012; Tserng, et al., 2014). Simon and Rowles used this model to estimate Default Rates 

in the Netherlands using macroeconomic variables such as GDP growth and interest rates 

(Simons & Rolwes, 2009). Despite the flexibility and ease of interpretation, logit models 

assume that the relationship between explanatory variables and default rates remains 

constant over time, which may not necessarily be true, particularly in recessions. 

Belotti and Crook applied a discrete survival model to analyze the impact of behavior 

and macroeconomic variables on credit card default probabilities. This type of dynamic 

model is more effective than static alternatives due to its ability to include time-varying 
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covariates such as interest rates, unemployment and account balances. To further 

strengthen the robustness of stress testing, the authors used Monte Carlo simulations to 

map the distribution of default probabilities in several extreme economic scenarios. This 

simulation-based approach allows the generation of loss distributions and the prediction 

of potential scenarios under adverse conditions. By simulating thousands of potential 

macroeconomic outcomes, the Monte Carlo method provides a reliable way of stressing 

credit card portfolios and thus estimating default rates, whether at a portfolio or individual 

account level (Bellotti & Crook, 2013). Despite the robustness of the results obtained, 

applying this type of model to large datasets and estimating for several variables can 

become too computationally intensive. 

Senior and Bailey estimated the impact of several macroeconomic variables on the 

Default Rate of Jamaica's banking sector using the Generalized Method of Moments 

(GMM). This estimation technique has proven to be highly predictive, providing reliable 

results for various economic scenarios. This method allowed policymakers to regulate 

systemic risk and financial fragility, providing valuable insights regarding this topic 

(Senior & Bailey, 2017). Despite its strong predictive capacity, GMM requires careful 

handling and, similarly to the dynamic model applied by Belotti and Crook, can be 

computationally intensive when applied to large datasets or very long horizons. 

With the aim of addressing the limitations of traditional econometric models, 

researchers are turning to more complex econometric models, such as the Factor-

Augmented Vector Autoregressive (FAVAR) model. FAVAR models are an “advanced” 

version of the traditional Vector Autoregressive (VAR), as they allow for the inclusion 

of latent factors that account for unobservable influences. Zsigraiova applied this model 

to evaluate the relationship between Non-Performing Loans (NPL) and economic shocks, 

showing that FAVAR is effective at capturing both observable and unobservable factors 

that impact default risk (Zsigraiová, 2014). However, this type of model is quite complex 

but also computationally intensive, making its application in real stress tests impractical. 

Similarly, Global Vector Autoregressive (GVAR) models are an evolution of the 

VAR model, allowing several countries or regions to be incorporated into their analysis. 

Due to their ability to capture global interdependencies and spillover effects between 

economies, GVAR models gained recognition for analyzing the impact of global 
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economies on DR, as these models are capable of stimulating risk factors in multiple 

countries (Pesaran, et al., 2006). Due to the usefulness of GVAR for assessing the 

spillover effects of economic shocks, Castrén, Dées and Zaher used it to simulate the 

effect on DR of shocks to GDP growth, interest rates and equity prices (Castrén, et al., 

2010). Although powerful, these types of models are highly complex and can be difficult 

to implement, especially when data from several regions and industries is required. 

In recent years, machine learning techniques such as the Least Absolute Shrinkage 

and Selection Operator (LASSO) have been applied. This model excels in high-

dimensional environments, where there are many potential DR predictors. By reducing 

the coefficient of the least important variables to zero, LASSO simplifies the model and 

minimizes the risk of overfitting. Chan-Lau demonstrated the usefulness of LASSO in 

predicting 1-year PD in different industrial sectors, emphasizing its effectiveness in 

handling large datasets. However, the biggest criticism of this model is its reliance on 

data-driven selection, which could result in the inclusion of explanatory variables with no 

theoretical basis for their connection to default rates. As a result, models that perform 

well in-sample can fail in out-of-sample tests (Chan-Lau, 2017).  

Each model has its strengths and weaknesses when it comes to predicting default rates 

using macroeconomic variables. Traditional approaches such as OLS or fixed effects 

models provide simplicity but can suffer from inconsistency when dynamic features or 

unobserved heterogeneity are involved. More advanced models such as LASSO, FAVAR 

or even GMM, offer more flexibility and accuracy in the results obtained but are more 

complex, computationally intensive and difficult to implement. 

A recurring challenge of PD forecasting is capturing the natural non-linear dynamics, 

especially during economic downturns. The most advanced models adopt different 

strategies to mitigate this problem. GMM incorporates lagged variables and accounts for 

endogeneity, but this requires careful handling of the data to avoid bias. LASSO models 

mitigate the problem by operating on larger datasets but at the cost of failing theoretical 

grounding. 
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 2.2 POINT-IN-TIME AND THROUGH-THE-CYCLE MODELS 

There has been a debate about the most effective approach in credit risk modeling: 

Point-in-Time or Through-the-Cycle. In accordance with the frameworks imposed by 

Basel II and III, both play a crucial role in estimating credit risk and banks' internal capital 

requirements. PIT models respond dynamically and expeditiously to changing 

macroeconomic conditions, providing a better expectation of borrowers' 

creditworthiness. In contrast, TTC models generate more stability by smoothing out the 

fluctuations of economic cycles, thus focusing on long-term risks. This chapter explores 

the key contributions to understanding the differences, advantages and disadvantages of 

each approach, the regulatory framework that contributed to their development and the 

methodologies employed by different authors to estimate the Probabilities of Default.  

To analyze the differences between PIT and TTC Probabilities of Default, Topp and 

Perl examined the TTC methodology used by some rating agencies, such as Standard & 

Poor's (S&P). Contrary to expectations, the analysts concluded that, despite their 

independence from economic cycles, PD nevertheless vary in response to cycles, 

particularly across different industries. This discrepancy creates potential problems for 

institutions that rely on external Through-the-Cycle models for their internal PIT models. 

In cases where the connection is misaligned, it can generate incorrect risk assessments, 

either underpricing or overpricing risk, depending on the economic cycle. The authors 

therefore highlighted the importance of calibrating external TTC models with due care to 

avoid this type of miscalculation when integrating them into internal risk assessment 

models (Topp & Perl, 2010). 

Begin and Thomas evaluated the impact of the Basel II regulations on PD modeling 

for retail portfolios, highlighting the shift towards more complex credit risk assessment 

techniques. They assessed the differences between the main methodologies for Through-

the-Cycle Probability of Default modeling: structural models and the variable scalar 

method. This last approach is based on adjusting PIT PD into TTC PD by applying a 

scalar factor reflecting long-term economic conditions, creating more stability in capital 

requirements. However, the authors noted that this approach encounters some challenges 

in incorporating portfolio changes over time. On the other hand, structural models, in 

addition to macroeconomic variables, take advantage of non-cyclical risk factors, such as 
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loan-to-value ratios (LTV) and debt service ratios (DSR), to generate more accurate long-

term Probabilities of Default. In addition, the Probabilities of Default changes as maturity 

approaches. Nevertheless, this methodology is not very easily implemented and requires 

large data samples. As expected, both methodologies have strengths and weaknesses, 

depending on the portfolio and market conditions (Begin & Thomas, 2012). 

Focusing on the cyclicality of PD, driven by the Internal Ratings-Based (IRB) 

approach within the Basel II regulations, Nagy and Biró underlined the procyclicality of 

PIT-based PD, where capital requirements fluctuate within the economic cycle, 

generating risk underestimation during an economic expansion and overestimation during 

recessions. To mitigate this, the authors discussed various methodologies, such as a TTC 

ratings-based approach, which minimizes fluctuations by averaging Probabilities of 

Default over the cycle. They also debate calibration methods and the use of the Vasicek 

model. Calibration methods involve adjusting PD to ensure that they reflect the long-term 

and are less influenced by short-term economic conditions. These methods usually 

include adjustments such as the variable scalar approach. Vasicek's model, which forms 

the basis of the IRB's capital function, calculates the conditional Probability of Default, 

assuming that the PD is normally distributed and is influenced both by the borrower's 

individual (idiosyncratic) risk and by systematic economic factors. The main concept of 

the model is that the unconditional PD (TTC) is the average of the conditional Probability 

of Default in different economic scenarios. Similar to Begin and Thomas, Nagy and Biró 

also suggest mitigating these effects through the Prudential Regulation Authority's (PRA) 

variable scalar approach. In the end, their conclusion is that it is challenging to separate 

cyclical and non-cyclical components, especially in portfolios that require more active 

management (Nagy & Biró, 2018). 

In 2021, Eder released a paper revisiting the dualism of PIT versus TTC models, 

criticizing the binary distinction made regarding the use of both models. As such, the 

author argued that credit risk models operate on a spectrum with elements of both Point 

in Time and Through-the-Cycle. The paper details the historical evolution of these 

concepts, as well as the impact of regulatory frameworks such as Basel II and III, and 

IFRS9, on the development of credit risk models. While Basel II and III tend to favor 

TTC estimation for capital requirements, IFRS9 pushes for a forward-looking Point-in-

Time models approach to estimate expected credit losses. Eder concludes that an 
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oversimplified view of PIT and TTC models as opposing models causes confusion in 

practice, and further concludes that the models should be seen as flexible tools that can 

be adapted depending on the regulatory context and the risk environment (Eder, 2021). 

The literature on PIT and TTC credit risk models describes the complexities involved 

in balancing short-term and long-term risk assessment. As discussed, Point-in-Time 

models are a short-term approach, reacting instantly to economic conditions and 

introducing volatility into capital requirements. On the other hand, Through-the-Cycle 

models offer more stability by averaging PD over the cycle, while ignoring short-term 

risks. Various approaches, such as variable scalar models, structural models and 

calibration techniques, have been proposed in order to address the limitations of both 

models. However, as the literature reveals, no approach provides a definitive solution. 

Thus, credit risk modeling remains a dynamic field, with the need for ongoing adaptation 

of the methodologies applied by regulators and financial institutions, depending on the 

conditions of the economy, the markets, regulatory changes and the uniqueness of each 

portfolio. 
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3. METHODOLOGY 

Despite not being an option explicitly considered by the researchers, the model 

selected to forecast the default rate was the Vector Error Correction Model. Similar to 

FAVAR, this model is a more “advanced version” of VAR. The advantage of the VECM 

over the VAR is that it can handle non-stationary cointegrated variables, allowing to 

capture both short-term fluctuations and long-term equilibrium relationships. Although 

computationally simpler, the VAR model was not considered since it is not suitable for 

non-stationary or cointegrated variables. 

When forecasting the Default Rate using macroeconomic data, such as inflation, 

interest rates, unemployment rate and the Default Rate itself, it is expected that these 

variables will move together in the long term, exhibiting cointegration. So, by considering 

these relationships, the VECM provides more accurate and meaningful predictions of the 

Default Rate. This was the main reason for the model's selection. 

While the VECM is not among the simplest models, it is also not excessively 

complex. Instead, it strikes a balance by effectively capturing long-term equilibrium 

relationships and short-term dynamics among variables, without being overly complex or 

computationally intensive. It provides the sophistication needed to obtain reliable and 

robust estimates, without having a high computational burden and without major 

implementation difficulties. 

Throughout this chapter, the methodology used to develop the model will be 

described. Starting with the VECM modeling process (Subsection 3.1) and progressing 

to the application of the forecasted Default Rate in estimating future Probabilities of 

Default, and consequently, its impact on banks' internal capital requirements (Subsection 

3.2). 

 

 3.1 VECTOR ERROR CORRECTION MODELING 

3.1.1 Time Series 

Time series analysis involves the study of a range of data points collected over a 

specific period of time, with the purpose of identifying underlying patterns, understanding 
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the dynamics between variables over time, or forecasting future values (Hamilton, 1994). 

For the analysis to be reliable and consistent, it must be carried out on a sizable sample 

with a large number of data points. This assures the detection of reliable trends and 

patterns, the detection of possible seasonal variance and the minimization of noisy data. 

If the model's output is completely determined by the parameter values of the model 

and its initial conditions, the time series is considered deterministic. If there is randomness 

present, and therefore the output is not driven by the parameter values but by probability 

distributions, the time series is considered stochastic. 

Time series modeling is commonly used in fields such as finance, economics, 

engineering, and meteorology. Some practical examples of time series analysis are 

rainfall measurements, heart rate monitoring (ECG), automated stock trading, and interest 

rate forecasting. 

One of the first and main steps in time series modeling, which heavily influences the 

modeling approach and the estimates achieved, is determining if the series is stationary 

or non-stationary. 

A time series is considered stationary if its statistical properties, such as mean, 

variance and covariance, are constant over time. When performing a graphical analysis 

of this type of series, it is possible to note that they usually do not show trends, seasonality 

or cyclicality; these series fluctuate around a constant mean. The following graphic is a 

representation of a stationary series, per Juselius (Juselius, 2006): 

 

Figure 1: Stationary Series 

If a time series' statistical properties change over time, it is non-stationary. Unlike 

stationary series, non-stationary series exhibit trends, seasonality, cyclicality and 
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changing variances. The following is a graphical representation of a non-stationary series, 

per Juselius (Juselius, 2006): 

 

Figure 2: Non-stationary Series 

In order to analyze the stationarity of a series, several methods are recommended. The 

first approach is visual inspection, where the graphical representation should show a 

constant mean and variance, with no trend or seasonality. Nevertheless, this technique is 

intended only as a first analysis, as it is not very reliable and requires some experience 

from the analyst. Another approach is the statistics summary method, which splitting the 

time series into several periods and compare the mean and variance of each period. If 

these differ considerably, the series is most probably non-stationary. Although it is more 

effective and accurate than visual inspection, as it is a more objective approach, it is still 

not 100% reliable. The last approach is to perform a statistical test. For instance, the 

Augmented Dickey-Fuller (ADF) test is one of the most widely used methods of 

stationarity testing. Briefly, ADF's null hypothesis is that the series has a unit root, 

meaning it is non-stationary. If the test statistic is less than the critical value, the null 

hypothesis is rejected, indicating that the series is stationary (Dickey & Fuller, 1979). 

Determining whether the time series is stationary or not is a key factor for model 

selection, since non-stationary time series are not suitable for a considerable number of 

time series models. Applying non-stationary data inappropriately to a type of model 

designed for stationary data can lead to false results, i.e., relationships between variables 

may appear stronger than they are. This can be seen as a problem when estimating 

financial and economic data, which are mostly non-stationary. For instance, VAR models 

require stationary variables to perform accurate estimates. Meanwhile, Vector Error 

Correction Models can properly estimate using non-stationary time series. Nevertheless, 
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there are techniques for transforming non-stationary variables into stationary, such as 

differencing. 

 

3.1.2 Trend Analysis 

In time series analysis, trend refers to long-term movements or the data's direction 

(upwards or downwards) (Hamilton, 1994). It can represent sustained increases or 

decreases, as well as gradual changes over time. Trends can be classified into several 

types, being the most common linear, quadratic, and exponential.  

A linear trend is a constant movement upward or downward, over time. It is typically 

represented by a straight line that fits the data points, as shown below (Canela, et al., 

2019): 

 

Figure 3: Linear Trend 

A quadratic trend is when the time series exhibits a curvilinear movement. The 

direction of the trend changes over time, creating a parabola-like pattern. The series may 

start decreasing (increasing), reach a peak, and then increase (decrease). The figure below 

compares a quadratic trend (dashed line) with a linear trend (straight line) (Canela, et al., 

2019). 
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Figure 4: Quadratic Trend 

An exponential trend is when the increase or decrease in the series' movement occurs 

at an increasing rate. For this case, Canela et al. (2019) demonstrate the application of a 

technique called exponential smoothing to trends (Canela, et al., 2019). This technique 

consists of applying exponentially decreasing weights to past observations, giving more 

weight to recent data while smoothing short-term fluctuations to reveal long-term trends. 

 

Figure 5: Exponential Trend 

Identifying trend existence and its type is crucial in time series modeling, as it greatly 

impacts the model's ability to estimate long-term relationships between variables. 

Ignoring trends frequently leads to inaccurate models and biased results. For instance, if 

a linear trend is omitted in an increasing series, the model may falsely attribute this growth 

to short-term dynamics, leading to a spurious regression where relationships appear 

significant but are actually misleading. Identifying the existence and type of trend can 

even be essential in determining which model to apply. 

Since this research aims to use a VECM to forecast the default rate, it is important to 

analyze how trends are incorporated into the model. The VECM allows for the inclusion 
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of trends in both the cointegration equation and the short-term dynamics. The following 

trend specifications can be applied to VECM: 

• There is no constant or trend included, the series is considered to oscillate 

around the constant mean; 

• A constant is included in the cointegration equation and in the short-term 

dynamics. It allows the model to take into account the long-term mean or 

equilibrium level of the variables; 

• A constant and a trend are included, as well as capturing the equilibrium level 

of the variables, it also captures the upward or downward movement over 

time. 

To analyze the existence of a trend in a series, the main approaches are as follows: 

• Visual inspection: the graphical representation of the time series should show 

one of the trends mentioned above clearly. However, the analysis should be 

supplemented with statistical tests.  

• Statistical Test: One approach to validating the usefulness of a trend is to 

perform an ordinary least squares (OLS) regression on the time series, 

considering the linear and quadratic terms of the trend. This approach allows 

for modeling a quadratic trend, helping to assess how the variables change 

over time. The statistical significance of the trend is then evaluated using an 

F-test. The regression coefficients are estimated using the OLS model. The p-

values are then calculated to test the null hypothesis: the coefficient is zero, 

which means the trend in the series is not statistically significant. If the p-value 

is below a chosen significance level (e.g., 0.05), the null hypothesis is rejected, 

indicating that the trend is statistically significant. 

 

3.1.3 Lag-order selection criteria 

In time series analysis, a lag is the amount of time that a variable is shifted backwards 

in order to analyze the impact of those past values on its current or future values 

(Hamilton, 1994). From the standpoint of developing a VAR/VECM model, selecting the 

optimal lag is a critical step, as it guarantees the accurate modeling of short and long-term 

dynamics between time series variables. The lag length choice determines the model's 
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ability to capture historical dependencies and cointegration relationships among 

variables. The main criteria used for lag selection are the Akaike Information Criterion 

(AIC), the Schwarz Bayesian Criterion (SBIC), and the Hannan-Quinn Criterion (HQC), 

each having its particular way of assessing the balance of model complexity vis-à-vis 

goodness-of-fit. The selection of the optimal lag is not merely a technical requirement, 

but a decisive factor in the model's accuracy and effectiveness in forecasting. Underfitting 

the lag length can generate biased estimates and overfitting can introduce unnecessary 

complexity, reducing the accuracy of forecasts, as research has shown (DeSerres & Guay, 

1995). 

In order to calculate each criterion, the Lütkepohl approach was applied. Although 

very similar to the standard method, and while maintaining its core structure, Lütkepohl 

focuses on the residual behavior of each lag evaluated, rather than the log-likelihood, as 

it provides a better assessment of suitability, especially for VAR and VECM. In addition, 

this approach is able to accommodate larger data samples for these models (Lütkepohl, 

2005). 

The final formulas obtained by Lütkepohl for calculating each criterion were as 

follows (Lütkepohl, 2005): 

AIC =
2𝑝𝐾2

𝑇
+ ln(|Σ𝑢|) (1) 

SBIC =
ln(𝑇)

𝑇
𝑝𝐾2 + ln(|Σ𝑢|) (2) 

HQC =
2𝑙𝑛{ln(𝑇)}

𝑇
𝑝𝐾2 + ln(|Σ𝑢|) (3) 

Where 𝑝 is the number of lagged terms, T the number of observations, 𝐾 the number 

of endogenous variables, and Σ̂𝑢 is the maximum likelihood estimate for the error 

covariance matrix, with 𝑢𝑡 being the 𝐾 × 1 vector of disturbances. 

When selecting the optimal lag length, by balancing model fitness and complexity, 

AIC tends to be more tolerant of adding more parameters than the other criteria, which 

can lead to more complex models. To the contrary, SBIC tends to have higher penalties 

for complex models and is therefore more likely to prefer simpler models, especially with 

large data samples. HQC finds a balance between AIC and SBIC, having a penalty for 
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model complexity that grows more quickly than AIC but slower than SBIC. Often the 

criteria will not indicate the same lag as the optimal one, requiring an extra analysis, such 

as a robustness check. In conclusion, AIC tends to overestimate lag length, SBIC 

underestimates it and HQC tends to identify the optimal lag length. 

 

3.1.4 Vector Autoregression Model 

The VAR model is a statistical model designed to capture the linear interdependencies 

between different variables, each represented by a time series (Stock & Watson, 2001). 

A VAR(p) model, where p is the lag length selected after performing the AIC, SBIC and 

HQC criteria, is a seemingly unrelated regression model containing the same explanatory 

variables in each equation, in case of no constraints placed on the coefficients. Applying 

a linear regression on each equation generates the maximum likelihood estimates of the 

coefficients. Once estimated, these coefficients are used to evaluate the residuals that, 

subsequently, are applied to obtain the cross-equation error variance-covariance matrix 

Σ̂𝑢.  

One advantage of the VAR model, compared to univariate autoregressive models, is 

that it allows studying several time series variables and the relationships between them, 

rather than a single time series. In addition, VAR models are particularly useful for 

predicting future values based on historical data and analyzing how a shock to one 

variable affects the other variables in the system, often measured using impulse response 

functions (IRFs), which trace the impact of such shocks over time. 

The following formula is considered for the VAR(p) model with exogenous variables, 

as per Lütkepohl (Lütkepohl, 2005): 

y𝑡 = 𝑐 + AY𝑡−1 + B0x𝑡 + 𝜖𝑡 (4) 

Where: 

• y𝑡 is the 𝐾 × 1 vector of endogenous variables; 

• 𝑐 is a 𝐾 × 1 vector of parameters (constants and/or trends); 

• A is a 𝐾 × 𝐾𝑝 matrix of coefficients. With 𝐾𝑝 being the total number of lagged 

endogenous variables in the system; 

• B0 is a 𝐾 ×𝑚 matrix of coefficients; 
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• x𝑡 is the 𝑚 × 1 vector of exogenous variables; 

• 𝜖𝑡 is the 𝐾 × 1 vector of white noise innovations; 

• Y𝑡 is the 𝐾𝑝 × 1 matrix given by Y𝑡 = (

y𝑡
⋮

y𝑡−𝑝+1
) 

Estimating a VAR model plays an important role in Vector Error Correction 

modeling. Firstly, it is fundamental for conducting a Granger Causality Test, which is 

essential for understanding whether the variables contribute to predicting each other by 

analyzing the lagged relationships between them (Granger, 1969). Additionally, a VAR 

model provides a basis for understanding the structure of a VECM, as the VECM can be 

seen as a restricted form of VAR. By visualizing the structure of the VAR, it is possible 

to better understand short-term dynamics and prepare for transitioning to a VECM, which 

incorporates both short-term dynamics and long-term equilibrium through the inclusion 

of error correction terms. 

 

3.1.5 Granger Causality Test 

Granger causality is a statistical test used to determine whether variables help predict 

each other (Granger, 1969). Specifically, it examines whether the past values of one 

variable contain information that helps predict the future values of another variable, in 

addition to the information provided by its own past values. This test is essential in the 

identification of the causality direction between variables, which is important for 

understanding the interactions and dependencies in the system.  

By determining whether the past values of a variable help to predict another variable, 

the test clarifies which variables contribute significantly to the model's predictive power. 

If a variable does not Granger-cause another variable, it can be considered unnecessary 

for the model. This process helps to refine the process by eliminating variables that do 

not provide predictive value, thus improving the efficiency and interpretability of the 

model. 

The test is based on the following definition, by Granger: “Definition 1: Causality. 

We say that 𝑌𝑡 is causing 𝑍𝑡 if we are better able to predict 𝑍𝑡 using all the available 

information than if the information apart from 𝑌𝑡 had been used.” (Granger, 1969).  
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To demonstrate the application of the Granger Causality test, a simple VAR model is 

considered with 𝑝 lags, 𝑚 exogenous variables and two variables, represented by time 

series 𝑦1𝑡 and 𝑦2𝑡. The model consists of the following equations: 

y𝑡 = [
𝑦1𝑡
𝑦2𝑡
] = [

𝑐1
𝑐2
] +∑[

𝑎11,𝑗 𝑎12,𝑗
𝑎21,𝑗 𝑎22,𝑗

] [
𝑦1,𝑡−𝑗
𝑦2,𝑡−𝑗

]

𝑝

𝑗=1

+ [
𝑏11 𝑏12 ⋯ 𝑏1𝑚
𝑏21 𝑏22 ⋯ 𝑏2𝑚

] [

𝑥1𝑡
𝑥2𝑡
⋮
𝑥𝑚𝑡

] + [
𝜖1𝑡
𝜖2𝑡
] (5) 

In order to assess whether 𝑦2𝑡 Granger-causes 𝑦1𝑡, the null hypothesis is that 𝑎12,𝑗 =

0 for all lags (𝑗 = 1, . . . , 𝑝), while the alternative hypothesis states that at least one 𝑎12,𝑗 ≠

0 for all lags (𝑗 = 1, . . . , 𝑝). The null hypothesis claims that the past values of 𝑦2𝑡 do not 

contribute to predicting 𝑦1𝑡. Thus, if the null hypothesis is rejected, it shows that the past 

values of 𝑦2𝑡 Granger-cause 𝑦1𝑡. 

For small to medium sample sizes, the approach to test the hypotheses is typically the 

F-test, as it is a more suitable method for these sample sizes, considering that it is easier 

to interpret and computationally simpler to obtain. For such cases, the test statistic is 

calculated as follows: 

𝐹 =
(𝑅𝑆𝑆𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 − 𝑅𝑆𝑆𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑒𝑑)/𝑞

𝑅𝑆𝑆𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑒𝑑/(𝑇 − 𝑘 − 1)
  ~  𝐹(𝑞, 𝑇 − 𝑘 − 1) (6) 

Where: 

• 𝑅𝑆𝑆𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 and 𝑅𝑆𝑆𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑒𝑑 are the Residual Sum of Squares from the 

restricted (where 𝑎12,𝑖 = 0 for all lags (𝑖 = 1, . . . , 𝑝))  and unrestricted models, 

respectively;  

• 𝑞 is the number of restrictions, which represents the number of coefficients 

being tested (in this case, it is equal to the number of lagged terms 𝑝); 

• 𝑘 is the total number of parameters in the unrestricted model, meaning that 

𝑘 = 𝐾 × 𝑝 + 𝐾 ×𝑚. 

One crucial point is to always test in both directions: 𝑦2𝑡 ⇒ 𝑦1𝑡 and 𝑦2𝑡 ⇐ 𝑦1𝑡. 

Therefore, to assess bidirectional causality, the same procedure is applied to test whether 

𝑦1𝑡 has predictive power for 𝑦2𝑡, but adapting the hypotheses to 𝑎21,𝑖 = 0 for all lags (𝑖 =

1, . . . , 𝑝). 
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3.1.6 Johansen cointegration test 

Testing for cointegration is a crucial step in VECM modeling, as it ensures the 

presence of cointegration among the multiple time series variables, which is a prerequisite 

for VEC models. Although the individual time series are non-stationary, cointegration 

implies the existence of a linear combination of these variables that is stationary, 

indicating a long-run equilibrium relationship. The approach chosen to test for 

cointegration was the Johansen test, which employs the maximum likelihood estimation 

method to determine the number of cointegrating vectors in the system (Johansen, 1995). 

This test was preferred over other options such as the Engle-Granger test (Engle & 

Granger, 1987), as it has advantages such as testing multiple cointegrating relationships 

simultaneously, and is particularly effective in multivariable contexts where these 

variables influence each other dynamically. By correctly identifying cointegration 

relationships, the Johansen test ensures that the VECM captures both short-term and long-

term dynamics, guaranteeing the accuracy of the model. 

The Johansen cointegration test is based on a VECM and its matrix Π, also known as 

the long-run impact matrix, which plays a central role in identifying cointegration 

relationships. A more detailed description of the importance and role of this matrix in a 

VECM will be presented in the upcoming section. The Johansen test is a fundamental 

factor in determining whether there are cointegration vectors and how many there are. 

The rank of the matrix Π, denoted as 𝑟, represents the number of cointegration 

relationships. This rank can vary from 0 to 𝐾 − 1. The results of a Johansen test and their 

meaning are as follows: 

i. If 𝑟 = 0, there is no cointegration; 

ii. If 0 < 𝑟 < 𝐾, there is one or more cointegrating relationships; 

iii. If 𝑟 = 𝐾, the system is stationary. 

The eigenvalues of the matrix Π, given as 𝜆𝑖, are essential for evaluating its rank, 

since the matrix's rank is equivalent to the number of non-zero eigenvalues. 

The Johansen cointegration test uses the following two main test statistics: 

1. Trace Statistic (𝝀𝐭𝐫𝐚𝐜𝐞) 
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The trace statistic tests the null hypothesis that the number of cointegrating vectors is 

less than or equal to 𝑟, against the alternative hypothesis that there are more than 𝑟 

cointegrating vectors. The formula given by Johansen for the Trace Statistic is (Johansen, 

1995): 

𝜆trace(𝑟) = −𝑇 ∑ ln(1 − �̂�𝑖)

𝐾

𝑖=𝑟+1

(7) 

2. Maximum Eigenvalue Statistic (𝝀𝐦𝐚𝐱) 

The maximal eigenvalue statistic tests the null hypothesis that the number of 

cointegrating vectors is 𝑟, against the alternative hypothesis that there are 𝑟 + 1 

cointegrating vectors. The formula is the following: 

𝜆max(𝑟, 𝑟 + 1) = −𝑇 ln(1 − �̂�𝑟+1) (8) 

This test is based on looking at the next largest eigenvalue to determine if adding 

another cointegration vector significantly improves the model. 

The results of both test statistics are then compared with the critical values provided 

by the Johansen test tables. These tables offer critical values needed to evaluate the test 

statistics. 

 

3.1.7 Vector Error Correction Model 

The Vector Error Correction Model is a restricted form of the VAR model designed 

to analyze systems of non-stationary series that are cointegrated, i.e., although the 

individual variables may be non-stationary, they share a long-term equilibrium 

relationship (Johansen, 1995). The main objective of the VECM is to capture both the 

short-term dynamics and the long-term equilibrium relationships between the variables. 

The role of the VECM in long-term equilibrium is to model how deviations from long-

term equilibrium (cointegration relationships) are corrected. This is captured by the error 

correction term, which ensures that deviations are gradually adjusted over time. On the 

other hand, the function of the VECM in short-term dynamics is, while considering long-

term relationships, to account for short-term fluctuations or interactions between 
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variables, by including lagged differences of the variables. In the model, these short-term 

dynamics are captured through the Γ matrices. 

Following confirmation of cointegration via the Johansen test, the modeling of the 

VECM is carried out. The Vector Error Correction Model is parameterized as follows: 

∆y𝑡 = Πy𝑡−1 +∑Γ𝑖∆y𝑡−𝑖

𝑝−1

𝑖=1

+ 𝐯 + 𝛿𝑡 + 𝜃1𝑠1 +⋯+ 𝜃𝑑𝑠𝑑 + 𝜖𝑡 (10) 

Where: 

• y𝑡 is a 𝐾 × 1 vector of endogenous variables; 

• Π is the 𝐾 × 𝐾 long-run impact matrix; 

• Γ1 , . . . , Γ𝑝−1 are 𝐾 × 𝐾 matrices of parameters; 

• 𝐯 is a 𝐾 × 1 vector of parameters; 

• 𝛿 is a 𝐾 × 1 vector of coefficients; 

• 𝑡 is a linear time trend; 

• 𝑠1 , . . . , 𝑠𝑑 are orthogonalized seasonal indicators; 

• 𝜃1 , . . . , 𝜃𝑑  are 𝐾 × 1 vectors of coefficients on the orthogonalized seasonal 

indicators. 

In a VECM, the long-run impact matrix is crucial in understanding the long-term 

dynamics between the time series variables of the system and is key to determining the 

number and nature of these dynamics. The matrix is defined as follows: 

Π = 𝛼𝛽′ (9) 

𝛼 is a 𝐾 × 𝑟 adjustment matrix, which indicates how each variable adjusts in response 

to deviations from the long-term equilibrium. 𝛽 is a cointegration matrix that contains the 

cointegration vectors representing the long-term relationships between the variables. 

Therefore, 𝛽′ is a 𝑟 × 𝐾 matrix corresponding to the transpose of the 𝛽 cointegration 

matrix. 

In the VECM equation described, there are two types of deterministic elements:  

• The trend component which varies over time, denoted as 𝐯 + 𝛿𝑡; 

• The Seasonal component, shown as 𝜃1𝑠1+. . . +𝜃𝑑𝑠𝑑 , which repeats over 

specific periods. 
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However, Johansen demonstrated that the inclusion of these deterministic elements 

introduces certain constraints to the model. Essentially, the estimated number of 

cointegration equations is based on non-standard distributions, and adding any term that 

generalizes the deterministic specification, such as event indicators, to the equation 

changes these distributions. As a result, the inclusion of these indicators is not feasible in 

the presented version of the VECM (Johansen, 1995). 

In the case of having seasonal indicators in the model, these must not be collinear 

with a constant term, otherwise one of the indicator variables will be omitted. 

If the inclusion of event indicators, such as constant and trend, in the equation is 

required, the model can be reparametrized as follows: 

∆y𝑡 = 𝛼(𝛽y𝑡−1 + 𝜇 + 𝜌𝑡) +∑Γ𝑖∆y𝑡−𝑖

𝑝−1

𝑖=1

+ γ + 𝜏𝑡 + 𝜖𝑡 (11) 

Where: 

• 𝜇 is a 𝐾 × 1 vector of constant terms in the long-term relationship; 

• 𝜌 is a 𝐾 × 1 vector of trend coefficients in the long-term relationship; 

• γ is a 𝐾 × 1 vector of constant terms in the short-term relationship; 

• 𝜏 is a 𝐾 × 1 vector of trend coefficients in the short-term relationship. 

The specific characteristics exhibited by the variables in the time series and trend 

analysis will determine the most appropriate VECM equation to apply. 

Time Series and trend Analysis, lag-order selection criteria, the Granger causality test, 

and the Johansen cointegration test are essential steps that precede the VECM estimation. 

These steps are crucial for identifying the correct model parameters and ensuring that the 

VECM is as accurate as possible. After estimating the VECM, diagnostic tests are 

conducted to validate its robustness. These tests include the Lagrange multiplier test, the 

stability test, the Jarque-Bera test, and the impulse response function, all of which will be 

discussed in the following sections. 
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3.1.8 Lagrange-Multiplier Test 

The first diagnostic test performed is the Lagrange-multiplier (LM) test, which is 

essential for detecting the presence of autocorrelation in the residuals of a VECM 

(Johansen, 1995). Confirming that the residuals are uncorrelated is crucial to ensure valid 

statistical inference. This test is particularly useful in systems with a multivariable nature, 

such as the VECM. 

The autocorrelation is verified up to a specified lag. The detection of autocorrelation 

may suggest that the model is misspecified, meaning that additional lags or a different 

model structure is required. In contrast, non-correlation indicates that the model is well 

specified and that the model is capturing all relevant dynamics. 

To perform the Lagrange-multiplier test for autocorrelation, a VECM without any 

trend is considered: 

∆y𝑡 = 𝛼�̂�𝑡 +∑Γ𝑖∆y𝑡−𝑖

𝑝−1

𝑖=1

+ 𝜖𝑡 (12) 

With �̂�𝑡 = �̂�y𝑡. 

�̂�𝑡 represents the exogenous variables in the equation presented, which is in essence 

a VAR model with 𝑝 − 1 lags. 

In order to perform the test statistic, an augmented VAR must be computed. This VAR 

is obtained by adding a 𝐾 × 1 vector of residuals. This vector, denoted as 𝐞𝑡, is composed 

by the residuals 𝐞1, 𝐞2, . . . , 𝐞𝐾 of the 𝐾 equations in the system. 

The LM test statistic at lag 𝑗 is calculated as: 

LM𝑗 = (𝑇 − 𝑑 − 0.5) ln (
|Σ̂|

|Σ̃𝑗|
)  ~  𝜒2(𝐾2) (13) 

Where: 

• 𝑑 is the number of coefficients estimated in the Augmented VAR; 

• Σ̂ is the maximum likelihood estimate of the variance-covariance matrix of the 

residuals from the estimated VAR; 
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• Σ̃𝑗 is the maximum likelihood estimate of the variance-covariance matrix of 

the residuals from the augmented VAR. 

For each lag 𝑗, an augmented regression is formed in which the new residual variables 

are lagged 𝑗 times. If there are missing values for these 𝑗 lags, they are replaced by zero, 

as proposed by R. Davidson and J. G. MacKinnon (Davidson & MacKinnon, 1993). 

The test statistic is performed from lag 1 until the lag defined by the researcher. The 

null hypothesis of the test, for each lag 𝑗, is that there is no autocorrelation at the evaluated 

lag length. 

 

3.1.9 Stability Test 

The stability test ensures that the system is dynamically well behaved and that the 

relationships between the variables will remain within reasonable bounds over time, 

which implies that after a shock, the system will return to equilibrium quickly (Lütkepohl, 

2005). The stability test is conducted by analyzing the companion matrix derived from 

the VECM. If the model is proven to be unstable, the estimates and forecasts are 

considered unreliable. 

In order to perform the stability test, the estimates of the VECM parameters must first 

be converted into the corresponding VAR model estimates. 

The estimated long-run impact matrix Π̂ can be defined as (Johansen, 1995): 

Π̂ =∑A𝑖 − 𝐈𝐾

𝑝

𝑖=1

(14) 

Where 𝐈𝐾 is the 𝐾-dimensional identity matrix. 

And the estimated short-term dynamics matrix Γ̂ is equivalent to: 

Γ̂𝑖 = − ∑ A𝑗

𝑝

𝑗=𝑖+1

(15) 
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Defining 

Γ = 𝐈𝐾 −∑Γ𝑖

𝑝−1

𝑖=1

(16) 

Solving the equations for A, we obtain: 

A1 = Π + Γ1 + 𝐈𝐾 (17) 

A𝑖 = Γ𝑖 − Γ𝑖−1     for 𝑖 = {2, . . . , 𝑝 − 1} (18) 

A𝑝 = Γ𝑝−1 (19) 

Thus, A is the companion matrix that captures the dynamics of the system, and it can 

be constructed as: 

A =

(

 
 

A1 A2 ⋯ A𝑝−1 A𝑝
𝐈
0
⋮

0
𝐈
⋮

⋯
⋯
⋱

0
0
⋮

0
0
⋮

0 0 ⋯ 𝐈 0 )

 
 

(20) 

If all the eigenvalues of the companion matrix A, denoted as 𝜆𝑖, lie within the unit 

circle, i.e., the module of each eigenvalue is strictly less than 1, the VECM is stable, 

which implies that the system will return to equilibrium after any shock. These 

eigenvalues are obtained by solving the characteristic equation det(A − 𝜆𝐈) = 0. If any 

eigenvalue lies outside the unit circle, the VECM is considered unstable, its results are 

considered unreliable, and the model may display “explosive” behavior, never reverting 

to equilibrium. 

An additional validation step is that since there are 𝐾 endogenous variables and 𝑟 

cointegrating vectors in the VECM, the companion matrix must have 𝐾 − 𝑟 unit moduli. 

If any of the remaining moduli approach the unit value, it suggests that the system is on 

the verge of instability. This could indicate that trends or seasonal patterns are present but 

not modeled properly or that the cointegration equations estimated by the Johansen test 

are too high or that they are not stationary.  
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3.1.10 Normality of residuals 

Testing for normality verifies whether the error terms follow a Gaussian distribution, 

a condition that supports valid statistical inference (Johansen, 1995). Normality ensures 

that asymptotic distributions can be achieved without large sample sizes. This test helps 

to assess the robustness and reliability of the estimated VECM, even in smaller samples. 

The Jarque-Bera, skewness, and kurtosis tests are essential diagnostic tools for 

assessing the normality of residuals. 

The Jarque-Bera, Skewness and Kurtosis tests are essential diagnostic tools for 

assessing the normality of the residuals. These test statistics must be computed using the 

orthogonalized residuals. A method for obtaining the orthogonalized residuals, denoted 

as �̂�𝑡, is to premultiply the vector of residuals from the 𝐾 equations of the model with 

the Cholesky decomposition of Σ̂ (as defined in (13)): 

�̂�𝑡 = (�̂�1𝑡, . . . , �̂�𝐾𝑡)
′ = �̂�−1𝜖�̂� (21) 

Where �̂� is the Cholesky decomposition of Σ̂. 

Skewness Test 

The Skewness test evaluates the asymmetry of the residual distribution. For example, 

a skewness value of 0 indicates a symmetric distribution, while a significant skewness 

value indicates model misspecification or the presence of outliers.  

The skewness coefficients are then calculated using the residuals orthogonalized as 

follows: 

�̂�𝑘1 =
1

𝑇
∑�̂�𝑘𝑡

3

𝑇

𝑖=1

(22) 

Resulting in the 𝐾 × 1 vector, 

�̂�1 = (�̂�11, . . . , �̂�𝐾1)′; 

Based on the null hypothesis of Gaussian disturbances, the skewness statistic is 

λ̂1 =
𝑇�̂�1

′ �̂�1
6

 ~ 𝜒2(𝐾) (23) 
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Kurtosis Test 

Kurtosis is a fundamental diagnostic test for Vector Error Correction models as it 

assesses the “tailedness” of the residual distribution, indicating the likelihood of outliers. 

In a VECM, excessive kurtosis can indicate that extreme values are more common than 

expected. 

The kurtosis coefficients are then calculated using the residuals orthogonalized as 

follows: 

�̂�𝑘2 =
1

𝑇
∑�̂�𝑘𝑡

4

𝑇

𝑖=1

(24) 

Resulting in the 𝐾 × 1 vector, 

�̂�2 = (�̂�12, . . . , �̂�𝐾2)′;       

Based on the null hypothesis of Gaussian disturbances, the kurtosis statistic is 

λ̂2 =
𝑇(�̂�2 − 3)

′
(�̂�2 − 3)

24
 ~ 𝜒2(𝐾) (25) 

Jarque-bera Test 

The Jarque-bera is a combination of the skewness and kurtosis tests, assessing the 

normality of the residuals. If the test indicates that the distribution of the residuals deviates 

from the normal distribution, this suggests that asymptotic distributions are not attainable 

and that a larger data sample is required. 

The Jarque-Bera test statistic is calculated as: 

JB = Skewness + Kurtosis ~ 𝜒2(2𝐾) (26) 

 

3.1.11 Impulse Response Function 

The Impulse Response Function is an important tool for assessing the impact of a one-

time shock to a variable on the current and future values of the model's endogenous 

variables (Lütkepohl, 2005). Specifically, the IRF helps to understand how a shock to a 

variable would propagate through the system over time, affecting the variable itself and 

the remaining variables. In the context of a VECM, where the variables are cointegrated, 
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the IRF highlights both short-term fluctuations and long-term adjustments towards 

equilibrium between the system's variables. So, the main advantage of applying the IRF 

to the VECM, lies in its ability to provide insights into the interaction dynamics and causal 

relationships between variables. By analyzing the IRF, it is possible to analyze how 

quickly and to what extent variables return to equilibrium after a shock. In addition, IRF 

contributes to the next step in modeling a VECM: Forecasting, as it shows the possibilities 

of future variable values under different scenarios. By simulating shocks and analyzing 

the resulting impulse responses, researchers can predict how variables might evolve in 

the future. 

Then, given the companion matrix Â𝑗 from (20), the estimates of the simple IRFs are 

obtained by: 

Φ̂𝑖 =∑Φ̂𝑖−𝑗Â𝑗

𝑖

𝑗=1

(27) 

Where Â𝑗 = 0𝐾   for 𝑗 > 𝑝, with 0𝐾 being the 𝐾 × 𝐾 null matrix. 

 

 3.2 FORWARD-LOOKING ADJUSTMENT 

Under IFRS 9, financial institutions are encouraged to forecast single or multiple 

economic scenarios in order to enhance the accuracy of the Expected Credit Losses 

calculation, while being required to maintain robust impairment models (European 

Banking Authority, 2017). Incorporating the macroeconomic component into 

Probabilities of Default is one method of capturing the requirements of the accounting 

standard. It is possible to include macroeconomic conditions in Probabilities of Default 

by adjusting Through-the-Cycle PD, based on the macroeconomic cycle, into Point-in-

Time PD, which reflect current macroeconomic conditions, being more accurate and 

timely adjusted. In order to make the adjustment, the Financial Services Authority (FSA) 

suggests using a scalar factor corresponding to a coefficient that converts the TTC PD 

into a PIT PD, denominated the Variable Scalar Approach. 

Estimating “forward-looking” economic conditions is the first step in the adjustment 

process. The purpose of using the Vector Error Correction Model was to forecast these 
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future economic conditions, specifically the Default Rate. Then, the scalar factor is 

calculated by dividing the forecasted Default Rate by the average Default Rate across all 

T periods (where the forecasted estimates are already included), as shown in the following 

formula: 

SF𝑇 = DR𝑇 × 𝑇 × [∑DR𝑡

𝑇

𝑡=1

]

−1

(28) 

Where SF𝑇 is the scalar factor for the last observation 𝑡, and 𝐷𝑅𝑇 is the Forecasted 

Default Rate. 

Remembering that the estimated Probabilities of Default have a direct impact on 

banks' internal capital requirements, a calculation based entirely on PIT PD would 

introduce significant volatility, due to the PD's sensitivity to short-term economic 

fluctuations (Nagy & Biró, 2018). 

In order to create more stability in capital requirements, the minimum scalar factor 

assumed is 1 (100%), implying that in economic expansion periods, where the capital 

requirements are minimal, the expected credit losses will be calculated using TTC PD, as 

recommended by the Financial Conduct Authority (Financial Conduct Authority, 2021). 

This means that, in reality, neither a PIT PD nor a TTC PD approach is being applied, but 

rather a hybrid between the two, referred to as the Forward-looking adjusted PD. The 

following graph is presented to better understand the approach applied: 

 

Figure 6: Forward-looking Adjusted PD 
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The scalar factor's minimum value of 1 is not the only factor that helps to reduce 

volatility. As the European Banking Authority suggests, incorporating multiple scenarios, 

such as the base case and the worst-case, also prevents large PD fluctuations (European 

Banking Authority, 2023). 

The graph shows an ideal application of these approaches: for prudential purposes, 

the adjusted PD is always higher than the PIT PD, which is possible by incorporating the 

worst-case scenario in its calculation. This inclusion is crucial to ensure that actual capital 

requirements are never higher than estimated capital requirements. And, in the event of 

the worst-case scenario, such as an unexpected economic recession, the values converge, 

as shown in the graph. 

Therefore, with the inclusion of the worst-case scenario and the minimum value of 1 

assumed for the scalar factor, the forward-looking adjusted PD formula would be: 

Forward − looking adjusted PD𝑡 = 𝑚𝑎𝑥[(SFBC,𝑡 ×𝑊BC + SFWC,𝑡 ×𝑊WC); 1] × PDTTC(29) 

Where SFBC,𝑡 and SFWC,𝑡 are the scalar factors of the base and worst-case scenarios, 

respectively; And 𝑊BC and 𝑊WC are the weights of the base and worst-case scenarios, 

respectively. The term 𝑚𝑎𝑥[(SFBC,𝑡 ×𝑊BC + SFWC,𝑡 ×𝑊WC); 1] in the formula is 

referred to as the Forward-Looking Adjustment, representing the scalar factor that 

incorporates both base and worst-case scenarios while maintaining a minimum value of 

1. 
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4.DATA & RESULTS   

This chapter presents and discusses the results obtained with the model, which was 

developed according to the steps described in the Methodology Section. Subsection 4.1 

provides a detailed description and analysis of the data used, along with the VECM 

specification tests. In Subsection 4.2, the VECM is estimated and the diagnostic test 

results are presented. Subsection 4.3 focuses on the model's forecasts, and finally, in 

Subsection 4.4, the application of the forward-looking adjustment is discussed. 

 

 4.1 DATA ANALYSIS 

This study is based on the Default Rate reported annually by S&P. This Default Rate 

was chosen due to the agency's reputation, prestige and reliability, as well as due to the 

size and global nature of the study sample (with approximately 23288 issuers from over 

one hundred different countries). The data comprises the period between 1981 and 2023, 

consists of forty-three observations and has been extracted from the official S&P Global 

website. 

The impact of the following macroeconomic variables on the Default Rate was 

analyzed in the model: 

• Unemployment Rate is the percentage of the labor force that is unemployed. 

Unemployment refers to individuals capable of working and of working age, 

but who are not currently employed; 

• Inflation is a rate that measures how much more expensive a set of goods and 

services has become in a certain period, reflecting a loss of purchasing power; 

• Gross Domestic Product (GDP) at constant prices is the total monetary value 

of all goods and services produced during a specific period, adjusted for 

inflation. Using constant prices ensures that the values reflect real economic 

growth by eliminating the effects of rising price levels. The values are 

presented as year-on-year rates of change, expressed in percentages, to 

illustrate the pace of economic growth over time. 

In order to align the macroeconomic data sample with the one from the S&P Default 

Rate report, annual figures for the Unemployment Rate, Inflation, and GDP of Advanced 



VECM APPROACH FOR DEFAULT RATE FORECASTING  HUGO NEVES 

 

33 

 

Economies4 from 1981 to 2023 were used. These figures were extracted from the World 

Economic Outlook database, available on the International Monetary Fund's website. 

The initial step in the analysis is verifying whether the variables are stationary. While 

the Augmented Dickey-Fuller test is commonly used to assess stationarity, it is essential 

to first evaluate the presence of trends and determine the optimal lag length for each 

variable, as both factors can significantly influence the accuracy and reliability of the 

stationarity test results. 

To begin this process, the presence of trends in the data is assessed. The graphical 

representations (Figure 7) suggest that the Default Rate and the GDP have no trend. The 

presence of a trend in the remaining variables is unclear, but it appears that the 

Unemployment Rate shows a downward linear trend and Inflation exhibits a quadratic 

convex trend. This potential trend in the Unemployment Rate graph suggests the 

possibility of non-stationarity. Moreover, the visible cycles and lack of clear mean 

reversion further highlight its non-stationary nature, as the series does not maintain a 

stable mean or variance over time. 

 

 

 

 

Figure 7: Time Series 

 
4 Countries with a high level of economic and social development, evidenced by criteria such as GDP 

per capita and the Human Development Index. 
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To complement the analysis, a graphical representation of the time series in first 

differences was also produced, where no variable appears to display a trend (Appendix 

Figure 11). Additionally, the statistical test described in the methodology was carried out, 

and the following results were obtained (complete analysis in Table 9 of the Appendix): 

 

Table 1: Trend Statistical Tests Results Summary 

In conclusion, no single trend is representative of all the variables in the system. There 

is no evidence of a linear or quadratic trend in the target variable - Default Rate -, in the 

GDP or in the Unemployment Rate. As not all variables exhibit a trend, and to avoid 

unnecessarily increasing model complexity, the trend will be omitted. Including a trend 

could risk over-parameterizing the model without providing significant improvements in 

predictive power. However, a constant should be included. 

After assessing the presence of trends and determining the optimal lag length for each 

variable (Appendix Table 9), the Augmented Dickey-Fuller test was applied. The results 

(Appendix Table 10) indicate that the Default Rate and GDP are stationary at the 5% 

significance level, as their test statistics are lower than the critical values and their p-

values are below 0.05. On the other hand, the Unemployment Rate and Inflation are not 

stationary, as its test statistics are higher than the critical values and p-values of 0.5034 

and 0.1420, respectively – both exceeding the 5% threshold. This indicates that further 

differencing or transformation is required to achieve stationarity. Having non-stationary 

data further justifies the use of the VECM, as this methodology is specifically designed 

to handle non-stationary time series. 

At first glance, the Augmented Dickey-Fuller test result indicating non-stationarity in 

the Unemployment Rate may seem counterintuitive. Typically, unemployment rates are 

expected to revert to their natural levels over time, exhibiting mean-reverting behavior 

characteristic of a stationary process. However, the observed non-stationarity can be 
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attributed to the phenomenon of hysteresis in unemployment. Hysteresis occurs when 

temporary economic shocks, such as recessions, have long-lasting effects on the 

unemployment rate, preventing it from returning to pre-shock levels even after the 

economy recovers. This form of long-term unemployment arises from the persistence of 

high unemployment rates over extended periods, often leading to structural 

unemployment. During prolonged economic downturns, unemployed workers may 

experience skill degradation, labor market detachment, or stigmatization, making 

increasingly difficult to re-enter the workforce. These dynamics contribute to a permanent 

shift in the natural rate of unemployment. The existence of hysteresis has been widely 

studied and empirically confirmed in various economies, supporting the observation of 

non-stationary behavior in unemployment rates (Khraief, et al., 2020; Yilanci, 2008). 

Next, the lag selection is considered. Computing the Lütkepohl approach for the lag-

order selection criteria, the following results were obtained: 

 

Table 2: Lütkepohl's Lag-order Selection Criteria Results 

The results indicate that all the selection criteria - AIC, SBIC and HQC - unanimously 

recommend a lag length of two. This agreement across all criteria removes any ambiguity 

in determining the optimal lag. Selecting two lags ensures an appropriate balance between 

model adequacy and complexity, making it the most reasonable choice for the analysis. 

With the specifications established, the underlying VAR model can now be estimated 

to perform the Granger Causality Test. Based on the results obtained (Appendix Table 

10), the following diagram was created: 



VECM APPROACH FOR DEFAULT RATE FORECASTING  HUGO NEVES 

 

36 

 

 

Figure 8: Granger Causality Relationships Diagram 

The diagram illustrates the four Granger causality relationships between the time 

series, confirming that all variables, apart from GDP, are actively involved in the model. 

The overall system, which incorporates all variables, demonstrates predictive power over 

the Default Rate and the Unemployment Rate. Additionally, it should be noted that the 

other variable that granger-causes the DR is the Unemployment Rate. The Granger 

Causality Test confirms the presence of short-term dynamics between the variables. 

However, no pair of variables exhibits mutual causality. 

In order to assess the existence of cointegration between the variables, the Johansen 

cointegration test is performed. 

 

Table 3: Johansen Cointegration Test Results 

The results displayed in Table 3 confirm the existence of one cointegration 

relationship, thus justifying the use of the VECM for this research. The estimated value 

of the test statistic is greater than the critical value at rank 0, leading to the rejection of 

the null hypothesis and indicating the presence of one or more cointegration vectors. 
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However, as signaled in rank 1, the estimated statistic falls below the critical value, which 

implies the existence of only one long-term equilibrium relationship. 

 

 4.2 VECM & DIAGNOSTIC TESTS RESULTS 

The model's output, shown in Table 11 of the Appendix, reveals a statistically 

significant long-term relationship between the Default Rate and both the Unemployment 

Rate and Inflation, in the cointegration equation. The coefficient reveals a positive 

correlation between these variables, meaning that as Unemployment Rate and Inflation 

increase, the Default Rate also tends to increase in the long run. Despite the existence of 

long-term equilibrium relationships between the macroeconomic variables and the 

Default Rate, these relationships do not exhibit the expected predictive power for short-

term changes in the Default Rate. This is evidenced by the lack of statistical significance 

in the error correction term within the Default Rate equation, which suggests that 

deviations from the long-term equilibrium do not significantly influence short-term 

adjustments in the Default Rate. As a result, while the model captures meaningful long-

term dynamics, its utility for short-term forecasting of the Default Rate is limited. 

While the error correction term within the Default Rate equation is not statistically 

significant, the model still identifies statistically significant short-term relationships. In 

particular, the Unemployment Rate emerges as the macroeconomic variable with a 

statistically significant short-term impact on the Default Rate. This is consistent with the 

results of the Granger causality test, which showed that the past values of the 

Unemployment Rate are a strong predictor of the Default Rate. The coefficient presented 

for this short-term relationship suggests that rising unemployment is a strong indicator of 

deteriorating economic conditions, leading to higher default rates. Thus, as theoretically 

expected, the default and unemployment rates are positively correlated. 

The comparison with the VAR model (Appendix Table 12), estimated with variables 

in first differences due to the non-stationarity of the Unemployment Rate, highlights 

differences in short-term results. Unlike the VAR, the VECM incorporates an error 

correction term, which allows it to account for long-term equilibrium relationships. While 

the error correction term in the VECM does not play a significant role in predicting short-

term changes in the Default Rate, the model still captures meaningful short-term 
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dynamics through significant relationships, such as that with the Unemployment Rate. In 

contrast, the VAR model shows limited explanatory power for short-term changes, with 

none of the lagged variables being statistically significant in explaining changes in the 

Default Rate and generally low R-squared values. This makes the VECM a more 

comprehensive tool for analyzing short-term relationships alongside its long-term 

insights. 

The first diagnostic test applied to the model was the Lagrange-multiplier, ensuring 

that there is no autocorrelation present in the residuals. Computing the LM Test, the 

following results were obtained: 

 

Table 4: Lagrange-multiplier Test Results 

The test statistic was performed from lag 1 until lag 4, and the null hypothesis cannot 

be rejected for any of these, indicating that there is no autocorrelation in the residuals up 

until order 4. The LM results suggest that the model is robust and reliable. 

Moving on to the stability test, the aim is to assess whether all the eigenvalues of the 

estimated VECM companion matrix lie within the unit circle.  

 

Figure 9: Companion Matrix Roots 
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The graphical representation shows that the estimated eigenvalues are all within the 

unit circle, ensuring the stability of the model. Hence, after a shock, the system will return 

to equilibrium quickly. 

Since there are four endogenous variables and one cointegration vector in the VECM, 

the companion matrix must have 4 − 1 unit moduli, which is the case, as proven in Table 

13 of the Appendix. 

To assess the normality of the residuals, the Jarque-Bera test was performed and the 

following p-values were obtained: 

 

Table 5: Jacque-Bera Test Results 

Examining the results, it can be noted that the residuals of all the variables, including 

the Default Rate, follow a normal distribution. The null hypothesis is not rejected for any 

variable, indicating that their residuals do not deviate from normality. To confirm this, 

the results of the Kurtosis and Skewness tests were analyzed. As the kurtosis test shows 

(Appendix Table 14), no residual distribution exhibits significant “tailedness”, indicating 

that outliers are not expected. Similarly, the Skewness test (Appendix Table 15) reveals 

no significant asymmetry in the residuals' distribution, confirming that they are 

symmetrically distributed around the mean. 

An analysis of the variable's historical data, along with the graphical representation 

of its residuals (Appendix Figure 12), indicates that there are some extreme positive 

values. This implies that the model tends to underestimate cases of extreme upward 

movements in the Default Rate. The assessment of these extreme values reveals that there 

is a theoretical and economic justification for the periods in which the model 

underestimates the Default Rate values - specifically in 2009 and 2020. Both years are 

well known for their extremely adverse macroeconomic conditions, caused by two 

unpredictable occurrences: in 2009, the consequences of the 2008 global financial crisis 
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severely impacted the world's economies, leading to an increase in defaults and financial 

instability (International Monetary Fund, 2009). Similarly, in 2020, the COVID-19 

pandemic caused unprecedented global economic stoppages, leading to serious financial 

disruptions (International Monetary Fund, 2020).  

It can be concluded that, although the residuals in the model do not exhibit significant 

skewness or deviations from normality, some extreme values are observed. These 

extreme values can be attributed to the impact of years of extreme macroeconomic 

distress, such as 2009 and 2020. However, these isolated shocks do not invalidate the 

model, as the residuals remain symmetrically distributed around the mean overall, 

confirming the robustness and reliability of the results.  

Moving on to the last diagnostic test, the results from the Impulse Response Function 

illustrate how a one-time shock to each of the system's variables affects the future values 

of the default rate. In accordance with the findings of the Granger causality test and the 

statistically significant relationships identified in VECM, the IRF test (Annex Table 16 

and Figure 13) indicates that the variable with the most significant short-term impact on 

the DR is the Unemployment Rate. Additionally, the results confirm that Inflation does 

not have a notable influence on short-term fluctuations in the DR but contributes to the 

long-term equilibrium relationship. 

 

 4.3 FORECASTED DEFAULT RATE 

Before proceeding with the forecasting of the Default Rate for future years, a VECM 

was estimated with data until 2021 (inclusive), allowing for a comparison between 

forecasted and observed values. This comparison helps determine whether the predicted 

data deviates significantly from the actual observed data. 
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Figure 10: Observed and Forecasted Default Rates 

The model predicted a DR of 2.06% for 2022 and 2.81% for 2023. When compared 

to the actual observed rates of 0.99% for 2022 and 1.85% for 2023, there is a deviation, 

although it cannot be considered too significant, especially when considering the inherent 

unpredictability of macroeconomic data. These differences result in a root mean square 

error (RMSE) of 1.01%. To put this into context, since 1981, the maximum and minimum 

default rates observed have been 4.15% and 0.15%, respectively. Given that the predicted 

rates are higher than the observed rates, the deviation is more tolerable, as it demonstrates 

a conservative approach designed to take preventive measures into account. 

Having obtained acceptable estimates, the forecasting can be pursued for future years. 

In accordance with IFRS 9 guidelines, financial institutions typically forecast 

macroeconomic variables over a three-year horizon, as estimates for longer periods may 

no longer be considered reliable. Thus, the VECM obtained the following forecasts for 

2024, 2025 and 2026: 

Year 
Default 

Rate 
GDP 

GDP 

(IMF) 

Unemployment 

Rate 

Unemployment 

Rate (IMF) 
Inflation 

Inflation 

(IMF) 

2024 1,66% 1,77% 1,74% 4,35% 4,64% 5,01% 2,62% 

2025 1,55% 1,48% 1,77% 4,31% 4,67% 5,44% 2,05% 

2026 1,45% 1,44% 1,77% 4,30% 4,65% 5,63% 2,01% 

Table 6: Forecasted Default Rate, GDP, Unemployment Rate and Inflation 
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The model predicted a gradual decline in the Default and Unemployment rates over the 

next three years. Regarding GDP, the forecast indicates a slow but steady growth. And, 

for Inflation, the VECM predicted a gradual increase, which, considering that inflation 

has already fallen in 2023, signaling a turning point, makes the forecast seem slightly 

unrealistic. To support this analysis, Figure 14 in the appendix provides a graphical 

representation of the variables’ evolution over time. 

In addition to the estimates obtained, the IMF forecasts for GDP, unemployment rates 

and inflation were also included for comparison with the VECM results. Comparing the 

results further supports the previous conclusion that the Inflation forecasted by VECM is 

likely to diverge from the actual results, as these inflation estimates differ significantly 

from those of the IMF, representing an RMSE of 3.18%. In contrast, the forecasts for 

GDP and the Unemployment Rate are aligned with the IMF's projections, with RMSE 

values of 0.25% and 0.33%, respectively. 

 

 4.4 FORWARD-LOOKING ADJUSTMENT 

Once the forecast has been completed, the following step is to calculate the Scalar 

Factor, beginning with its estimation for the base scenario as described in the 

methodology. Then, as VECM is not capable of generating a worst-case scenario, this 

scenario was derived from historical data. The historical analysis determined that in 

11.63% of the years, a scalar factor exceeding 200% was required to accurately estimate 

the Default Rate. This percentage will serve as the weighting for the worst-case scenario. 

For the worst-case value, 238.53% was used, which corresponds to the average value of 

the scalar factors exceeding 200%. The inclusion of a worst-case scenario is crucial when 

estimating the scalar factor and, consequently, the forward-looking adjusted PD, as it 

enables the integration of extremely adverse macroeconomic conditions into the model, 

which are always unpredictable. 

Thus, the values achieved for the Scalar Factor that incorporates the worst and base 

case, referred to as the Forward-looking Adjustment, are the following: 
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Year 
Default 

Rate 

Average 

Default Rate 

Base Case 

Scalar Factor 

Worst Case 

Scalar Factor 

Worst Case 

Weight 

Forward-looking 

Adjustment 

2024 1,66% 1,45% 114,18% 

238,53% 11,63% 

128,64% 

2025 1,55% 1,46% 106,64% 121,98% 

2026 1,45% 1,46% 99,80% 115,93% 

Table 7: Forward-looking Adjustment Results 

The default rate forecast for 2024 and 2025 alone exceeds the average of past years, 

which is sufficient for the Scalar Factor to exceed the minimum threshold of 100%. When 

the worst-case scenario is included, the scalar factor surpasses the 100% threshold for all 

three years. Consequently, the Forward-Looking Adjustment parameter has been adapted 

to reflect these forecasted macroeconomic conditions, ensuring compliance with 

prudential requirements. 

In conclusion, the estimated forward-looking adjusted PD corresponds a PD PIT. For 

instance, in 2024, the PD in place corresponds to the PD TTC provided by S&P, 

multiplied by the forward-looking adjustment factor of 1.2864. This adjustment has 

resulted in a modest increase in internal capital requirements and expected credit losses 

to account for potential risks. 

 

 

 

 

 

 

 

 

 

 

 



VECM APPROACH FOR DEFAULT RATE FORECASTING  HUGO NEVES 

 

44 

 

5. CONCLUSION 

Although the VECM is a suitable model for predicting the default rate, there is limited 

evidence of its application in this specific context. However, through the development of 

the model in this research, it has proven to be a valid method for forecasting the default 

rate. The diagnostic tests that were carried out confirm that the model is reliable and 

robust, capturing both short-term dynamics and long-term equilibrium relationships 

between the default rate and key macroeconomic variables, such as GDP, inflation, and 

the Unemployment Rate. 

In addition, the model was able to provide reasonably accurate predictions of default 

rates for the period considered, since the deviations from the observed data were minimal 

and within an acceptable range. This evidence highlights the practical applicability of the 

model for financial institutions. As demonstrated in this study, the Default Rate can be 

used as a basis for estimating a scalar factor and, consequently, a forward-looking 

adjusted Probability of Default, with the ultimate goal of predicting expected credit losses 

and forecasting internal capital requirements. 

Nevertheless, the estimated model has certain limitations. The relatively small sample 

size of forty-three observations may hinder its ability to accurately capture the 

relationships between variables. Furthermore, the model's reliance on historical data 

presents challenges in forecasting extreme economic events, as evidenced by the extreme 

positive values in the residuals during major financial crises (e.g., 2009 and 2020). 

Nevertheless, the underestimation of default rates in these cases is believed to be 

attributable to the unpredictable nature of these economic shocks, rather than a model 

misspecification. On the other hand, the use of annual data may have further constrained 

the model's capacity to anticipate severe economic conditions, as key indicators of 

economic distress may be seen over shorter intervals, such as quarterly or monthly 

periods, and may not have been fully captured. 

The fact that the study sample for the default rate and macroeconomic variables is not 

perfectly aligned in terms of the countries included in the sample can also introduce 

inconsistencies. This misalignment can lead to inaccuracies in capturing the true 

relationships between the variables and can affect the reliability of the model's 

predictions. 
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Another point worth noting is that the discrepancies between the model's inflation 

forecasts and those of the IMF may indicate that the model did not fully capture certain 

economic dynamics. 

In conclusion, even though the VECM demonstrates robustness and reliability in 

forecasting default rates in relatively stable economic conditions, its results should be 

interpreted cautiously during periods of anticipated severe economic stress. Future 

research could mitigate this limitation by expanding the data set, incorporating quarterly 

data, exploring additional variables or considering alternative modeling approaches that 

take extreme economic events into account. 
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APPENDIX  

 

Figure 11: Time Series in First Differences 
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Table 8: Deterministic Components of the Time Series 

 

 

 

 



VECM APPROACH FOR DEFAULT RATE FORECASTING  HUGO NEVES 

 

52 

 

 

 

 

 



VECM APPROACH FOR DEFAULT RATE FORECASTING  HUGO NEVES 

 

53 

 

 

Table 9: Lag-order Selection for the Augmented Dickey-Fuller Test 
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Table 10: Augmented Dickey-Fuller Tests Results 

 

 

Table 11: Granger Causality Results 
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Table 12: VECM 
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Table 13: VAR 

 

Table 14: Stability Test Results 

 

Table 15: Kurtosis Test Results 

 

Table 16: Skewness Test Results 
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Figure 12: VECM Residuals 

 

 

Table 17: Impulse Response Functions on Default Rate 
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Figure 13: Impulse Response Functions on Default Rate 
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Figure 14: Time Series including Forecasted Values 


