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Abstract

This study aims to understand what a firm’s investment strategy should be if the firm considers
purchasing insurance.

We consider an investment model with two sources of uncertainty. The firm’s future revenue is
assumed to depend on a random economic indicator, following a Geometric Brownian Motion. On
the other hand, unexpected adverse events, that reduce a firm’s future revenue, are introduced out,
described by a compound Poisson Process.

The objective is to decide on the optimal moment for the firm to invest in the market and the
insurance contract that it wants to buy. The decision to buy an insurance contract depends on
the insurance premium and how the firm measures its risk. We formulate the model as a control
problem that is solved using a dynamic programming approach.

JEL codes: C61; E22; G12; G22; G41.

Keywords: optimal stopping, insurance, investment, premium principle, risk.
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1 Introduction

The main goal of a firm is to maximize the expected profit and minimize the risks. Firms
nowadays are threatened by several risks in the market, characterized by the uncertainty of various
external and not controllable factors.

In this way, firms are increasingly exposed to unexpected and unfortunate events. This is where
insurance comes in, as an important way to mitigate losses caused by these external factors. Costs
related with damages to the firm’s property, costs of lawsuits or even the income loss reported by
a firm are examples of losses that can be partially or even totally covered by insurances. Thus,
insurers can help the business survive or even thrive.

When the firm’s management has the entitlement to take a decision that may lead change,
expand or even abandon a project such as investments, they are faced with a real option. This
projects usually entail tangible assets (Trigeorgis [1996]).

The field of research of real options has contributed to several other fields, such as financial
economics and strategic management. It also provides approaches that help explain the greater
flexibility in decision making by a firm under conditions of uncertainty. Using real options to
organize the investment helps the firm in containing the investment’s downside risk, while preserving
the upside potential (Ragozzino et al. [2016]).

Over the last two decades, the investment approaches have changed a lot due to the application
of the theory of financial options to study real assets investment strategies. Several works in the
literature on real options study the valuation under uncertainty.

Among them, Trigeorgis [1993], combines real options and their interactions with financial flex-
ibility; McDonald and Siegel [1985] examine the investment decision of firms undertaking risky
investment projects; Majd and Pindyck [1987] develop an explicit model of investment projects;
Pindyck [1990] presents some simple models of irreversible investment and shows how optimal in-
vestment rules and the valuation of projects can be obtained; Pindyck [1993] has derived a simple
decision rule that maximizes the firm’s value and shows how two types of uncertainty have very
different effects on investment. Some problems were modeled within the study of the optimization
of the firm’s profit with two sources of uncertainty, including natural resource investments, environ-
mental and new technology adoption, and strategic and competitive options (see, Dixit and Pindyck
[1994] Farzin et al. [1998], Perlitz et al. [1999]).

Firms take advantage of their investment opportunities and try to realize the positive profits
from the real options. This flexibility protects management against downside risk but gives the
firm unlimited growth potential. Usually, real options extend financial options into investment
opportunity analysis of real assets and often assign higher value to the investment opportunity
because of time value (Hung and So [2010]).
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As referred by Dixit and Pindyck [1994], most investment decisions have three characteristics in
common. The investment is partially or totally irreversible, that is, the initial cost of the investment
is a sunk cost, at least partially sunk. The costs cannot be recovered. Therefore, if there is a change
in the decision, it is not possible to recover everything. There is also uncertainty about the future
rewards of the investment. The best alternative for the firm’s venture is to assess the probabilities
of the outcomes and see if they might mean greater or lesser profit. Finally, there is room for
manoeuvre regarding the timing of the investment. It is possible to postpone the decision to invest
and, thus have access to more information about the future, without complete certainty about it.
The firm has the opportunity to delay the investment to wait, for instance, for new information on
prices, costs and market conditions. These three characteristics are crucial for investors to be able
to make the optimal decision.

Risk is a broad, extremely important topic that greatly affects all firms. In this context, it
is possible to define risk as the expected variance in profits, losses or cash flows arising from an
uncertain event (Banks [2004]).

As Banks [2004] refers, firms are thus exposed to a wide range of risks that at any time can
have negative and sometimes irreversible effects on the firm, such as business interruption or even
property damage. These risks must be managed, for instance part of these risks can be transferred
to an insurance company. There is a transfer of risk when the firm pays the insurer an extra cost,
such as a risk premium, in exchange for covering uncertain losses. Thus, it is clear that the main
purpose of insurance is to spread risk.

Hoyt and Khang [2000] note that several factors may lead to the need for insurance, one of the
factors is the underinvestment problem, that consists in a conflict of interests between shareholders
and debtholders which makes the firm become unable to make investments in opportunities. There
are also conflicts of interests between business owners and managers, as their goals might differ,
which could lead to decisions that are not optimal. Insurers have a comparative advantage in
providing services that are risk-related, such as claims handling or loss prevention, which benefits
the firms. The effects of the firm’s expected tax liability are also a reason why companies should
get insurance, as they can get protection for the uncertain tax costs. Insurance is also beneficial
to businesses because of the costs that may come from an eventual bankruptcy. Furthermore, the
regulatory status of a firm could also be a motivation for firms to obtain insurance.

As Centeno [2003] referred, in the insurance activity, the production cycle is completely changed.
Insurance is sold upon payment of a premium and only after that, given the occurrence, or not, of
claims, the costs will be known. In order to protect itself from the risk of very serious claims, the
firm is willing to pay a price, the premium, that is higher than the average cost of the claims it
will generate. The premium associated with a particular policy is a fixed amount received by the
insurance company as a compensation for the risk assumed. The insurer will be responsible for part
of the expenses arising from the claims (the part defined in the insurance contract) as well as the
management expenses inherent to the policy. Thus, the premium associated with a policy contains,
in addition to possible taxes, a loading to offset management costs and to cope with the risk the
insurance company is undertaking.
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The pure premium is the expected value of the claim costs transferred to the insurance company.
The premium is the sum of the pure premium with the safety loading. As mentioned, the purpose of
the loading is to protect the insurer against possible random deviations of the indemnities in relation
to its average and takes the name of safety loading or loading for accident deviations. There are
several ways to compute the safety loading, denoted premium calculation principles.

As Sibindi [2015] referred, a firm has two options, it can opt for partial insurance, where there
is fractional risk coverage for a lower risk premium, or it can opt for full insurance where there is
full coverage of a risk in exchange for a higher risk premium.

Centeno [2003] referred that there are various insurance contracts that can be acquired by firms.
For instance, the proportional contract, in which the insurer is responsible for a certain percentage
of the underlying risk. Other insurance contracts include an ordinary deductible or a limit loss, or
both.

In this dissertation, we consider an investment model with two sources of uncertainty. The
firm’s future revenue is assumed to depend on a random economic indicator, following a Geometric
Brownian motion (GBM). On the other hand, unexpected adverse events, that reduce a firm’s future
revenue, are introduced out, described by a compound Poisson Process (PP).

The objective is to decide on the optimal moment for the firm to invest in the market and the
insurance contract that it wants to buy. The decision to buy an insurance contract depends on the
insurance premium and how the firm measures its risk.

To solve this optimal stopping problem the Dynamic Programming (DP) approach is applied.
Therefore, we solve a Hamilton–Jacobi–Bellman (HJB) equation in order to determine the solution
of the problem. We include insurance in this model and aim at finding the optimal insurance
contract. Thus, it was necessary to find the optimal parameters describing the insurance contract.
We choose different risk functions, premium principles and the type of insurance contracts. Without
considering the risk function, the losses are only evaluated by the firm in expected value. As the
premium of an insurance contract is always given by the expected value of the risk plus a safety
loading, which is positive. Thus, it would never be optimal to buy insurance. This study aims to
understand what a firm’s investment strategy should be if the firm considers purchasing insurance.

The dissertation is organized as follows. In Section 2 a baseline model for the optimal instant
to invest, without considering any insurance strategy, is described. Some considerations about
the economical meaning of the baseline model are discussed. The Hamilton-Jacobi-Bellman (HJB)
equation for the optimization problem, and its solution based on Björk [2006] and Touzi [2004], are
presented. In Section 3 the comparative statics are developed and analysed. In Section 4 the model
with insurance and the optimal solution to the optimal stopping problem with investment, using
different insurance contracts, premium principles and measures of risk, are deduced. The proofs of
the propositions of Section 4 can be found in Appendix A. Finally, in Section 5, numerical results
illustrating some of the several cases considered are presented. In Section 6 the main conclusions
are summarized.
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2 Baseline Model

We consider an investment model with two sources of uncertainty. Let Xt represent the firm’s
revenue at time t and let it be modeled by a GBM, satisfying the following Stochastic Differential
Equation (SDE):

dXt = µXtdt+ σtdWt,

where X0 = x represents the initial wealth, µ ∈ R is the drift, σ is the volatility, {Wt : t ≥ 0} is a
Brownian Motion.

There are adverse events that can reduce a firm’s future revenue. The times of occurrence of
such events and their severity in the revenue reduction are both random. Such events are model by
means of a compound PP. N is the number of negative occurrences, Nt is a PP (λ) which denotes
the events that can negatively affect the firm’s revenue.

First, the problem where the firm has to decide the time to invest is considered. Therefore,
the goal is to maximize the firm’s expected return choosing the optimal time to invest. The firm’s
expected profit is then given by:

J(x, τ) =Ex

∫ ∞
τ

e−rt Xt

1−
Nt−τ∑
i=0

Ui −
Nt−τ∑
i=0

f(Ui)

 dt− e−rτK


=Ex

[∫ ∞
τ

e−rt Xt

1−
Nt−τ∑
i=0

(Ui + f(Ui))

 dt− e−rτK

]

=Ex

[∫ ∞
τ

e−rt Ex(Xt) E

1−
Nt−τ∑
i=0

(Ui + f(Ui))

 dt− e−rτK

]

=Ex

[
e−rτ

{
Xτ

r − µ

(
1− λ

r − µ
(u+ E[f(Ui)])

)
−K

}]
,

(2.1)

where U is the absolute percentage lost value in each occurrence, Ui
iid∼ U a r.v, represents the

percentage value that the firm loses, with E(U) = u, r is the interest rate, K the investment
cost and f(U) is a function that represents the firm’s risk preferences and Ex is the conditional
expectation on x. The value function, J(x, τ), denotes the value of the firm when the current level
is x and we decide to take a decision at time τ . Assuming (r − µ) > λ(u+ E[f(U)]).

The optimised value of the investment, V (x), is given by:

V (x) = sup
τ∈S

J(x, τ) = J(x, τ∗).
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The model is formulated as an optimal stopping problem, so the optimization problem is solved
using a DP approach (see Touzi [2004]). To find a solution for this problem it is necessary to find
the solution of the HJB equation, which is given by:

min {rV (x)− LV (x), V (x)− g(x)} = 0,

where g(x) =
x

r − µ

(
1− λ

r − µ
(u+ E(f(U)))

)
−K. (2.2)

Here, L represents the infinitesimal generator of the process Xt. For a function f ∈ C2, the
infinitesimal generator is defined by:

Lf(x) = lim
t→0

Ex(f(Xt))− f(x)
t

= µxf ′(x) +
σ2

2
x2f ′′(x).

This means that the infinitesimal generator contains information about how the process evolves.
The infinitesimal generator is in fact a differential operator which is one member of the HJB equa-
tion. In order to solve the HJB equation, it is necessary to solve a differential equation which is
given by LV (x) = rV (x). This is an Euler-Cauchy equation and its general solution is given by:

Axβ1 +Bxβ2 , β1 6= β2,

in which β1 and β2 are the roots of the characteristic polynomial. The roots β1 and β2 are known
and given by:

β1 =
−(µ− 1

2σ
2) +

√
(µ− 1

2σ
2)2 + 2σ2r

σ2
> 1,

β2 =
−(µ− 1

2σ
2)−

√
(µ− 1

2σ
2)2 + 2σ2r

σ2
< 0.

Proposition 1. Let V be the the value function defined by:

V (x) =

{
Axβ1 , x ∈ (0, x∗)

g(x), x ≥ x∗
(2.3)

The parameter A and the threshold x∗ are given by:

x∗ =
Kβ1(r − µ)2

(β1 − 1) (r − µ)− (β1 − 1) (uλ+ E(f(U))λ)
(2.4)
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A =
(x∗)1−β1

r − µ

(
1− λ

r − µ
(u+ E(f(U)))

)
−K(x∗)−β1 (2.5)

The value function is composed by two regions, the stopping region and the continuation region.
These two complement each other, where x∗ is the threshold that determines when one region ends
and the other begins. The firm invests as soon as X reaches the stopping region. V (x) is a solution
to rv(x) − Lv(x) = 0, for x ∈ (0, x∗), i.e. V (x) = Axβ1 + Bxβ2 , for x ∈ (0, x∗), and V (x) = g(x),
for x ∈ (x∗,∞).

The general solution of the Euler-Cauchy equation is Axβ1 + Bxβ2 , in which B = 0, if it is
not like that, then limx→o+ V (x) = ±∞. To calculate the threshold x∗ and the parameter A, it is
necessary to use smooth-pasting conditions that admit that the value function of this problem is
continuous and differentiable. The smooth-pasting conditions are given by:

lim
x→x∗

V (x) = V (x∗)

lim
x→x∗

V ′(x) = V ′(x∗).

6



2.1 Comparative Statics

The comparative statics allows us to understand the impact of a parameter on the firm’s decision.
For this, we fixed all the parameters and changed only the one we intend to study to see how the
firm’s strategy changes. Here, we analyse how a change in parameters λ, σ and µ, impacts on the
optimal strategy. We assume that the parameters are exogenous, in the sense that their values are
not controlled by the firm.

The following proposition shows the impact of each one of the parameters in the investment
decision.

Proposition 2. Let x∗, the threshold of the revenue, be defined by equation (2.4). Then ∂x∗

∂σ > 0,
∂x∗

∂λ > 0 and x∗ is not monotonic with µ.

The proof of Proposition 2 can be found in Appendix 2.

The threshold x∗ increases with the market’s volatility, therefore the investment decision is
postponed if volatility increases. It also increases with the intensity of the PP, λ. Hence, if there is
an increase in the average number of occurrences, the investment decision is also postponed.

The threshold x∗ has an unusual behavior with variations in the drift µ, x∗ first decreases and
then increases as is depicted in figure 1. In this case the non monotony of x∗ can be explained by
the interaction between the PP and the GBM. When µ increases it leads to a raise in instantaneous
profit. Therefore, the firm’s decision is to anticipate the investment. However, when there is a
negative occurrence, there are also greater drops in the revenue.

-0.15 -0.10 -0.05 0.05
μ

0.2

0.3

0.4

0.5
x*

Figure 1: Monotony of x∗ with µ, where σ = 0.2, r = 0.05, λ = 0.05, u = 0.1, E(f(U)) = 0.2, K = 1.
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3 Model with insurance

Insurance contracts allow firms to mitigate the risk of occurrences that negatively impact the
firm’s revenue. By buying insurance, the firm shares its risk with an insurance company, which
requires the payment of a premium.

The objective of this model is to maximize the firm’s profits by finding the best time to invest,
and the best insurance contract, Z, knowing that the firm can purchase insurance.

Once again, we consider an investment model with two sources of uncertainty, the future revenue
which follows a GBM and adverse events that reduce a firm’s future revenue. There are events
modeled by means of a compound PP. In this case the parameters of the insurance contract are
considered, hence the firm’s expected profit is as follows:

J(x, τ, Z) = Ex

[∫ ∞
τ

e−rt Xt

(
1−

Nt−τ∑
i=0

(
Z(Ui) + f(Z(Ui)) + E(U − Z(U)) + αc

))
dt− e−rτK

]

=Ex

[
Eτ

[∫ ∞
τ

e−rt Xt

(
Nt−τ∑
i=0

(
1− f(Z(Ui)) + E(U + αc)

))
dt− e−rτK

]]

=Ex

[∫ ∞
τ

e−rt Ex(Xt) E

(
Nt−τ∑
i=0

(
1− f(Z(Ui)) + (U + αc)

))
dt− e−rτK

]

=Ex

[
e−rτ

{
Xτ

r − µ

(
1− λ

r − µ

(
u+ E(f(Z(U))) + αc

))
−K

}]
,

(3.1)

where Z(U) is the risk retained by the firm, U −Z(U) is part of the risk transferred to the insurer,
αc is the loading, it is what defines the premium principle, Ex,τ is the conditional expectation on
x, τ and f(Z(U)) is a function that measures the firm’s risk preferences given a certain insurance
contract.

Without considering the risk function, the firm would never buy insurance. If we do not include
this function in the model, then losses are only evaluated by the firm in expected value. As the
premium of an insurance contract is always given by the expected value of the risk plus a safety
loading, which is positive, it would never be optimal to buy insurance.

The value function denotes the value of the firm when the current revenue is x and it is decided to
take a decision at time τ∗, knowing that the firm buys a certain insurance contract. The optimized
value, V (x)AI , is then given by:

V (x)AI = sup
τ∈S

J(x, τ, Z) = J(x, τ∗, Z)

8



This optimization model is again solved through a DP approach (see Touzi [2004]). Therefore,
to find the solution to the problem it is necessary to solve the HJB equation which is given by:

min {rv(x)AI − Lv(x)AI , v(x)AI − g̃(x)} = 0,

where g̃(x) =
x

r − µ

(
1− λ

r − µ
(
u+ E(f(Z(U))

)
+ αc)−K

)
. (3.2)

In this equation we have L, which represents an infinitesimal generator, a differential operator
that has information about how the process evolves. In order to solve the HJB equation, it is
necessary, once again, to solve the ODE.

Proposition 3. Let V (x)AI be the value function defined by:

V (x)AI =

{
AAIx

β1 , x ∈ (0, x∗AI)

g̃(x), x ≥ x∗AI
(3.3)

The parameters AAI and the threshold x∗AI are given by:

x∗AI =
Kβ1(r − µ)2

(β1 − 1) ((r − µ)− λ(u+ E(f(Z(U))) + αc))
(3.4)

AAI =
(x∗)1−β1

r − µ

(
1− λ

r − µ
(u+ E(Z(f(U))) + αc)

)
−K(x∗)−β1 (3.5)

There are two important regions. The stopping region and the continuation region. Additionally
x∗ is the threshold that determines when one region ends and the other begins.

The firm invests as soon as the processX reaches the stopping region. In this case, V is a solution
to the ODE. In the investment region V (x)AI = g̃ and in the stopping region V (x)AI = AAIx

β1.

As already explained, the general solution of the Euler-Cauchy equation is Axβ1 + Bxβ2 , in
which B = 0, otherwise limx→o+ V (x) = ±∞. Using the smooth-pasting conditions it is possible to
find the parameter AAI and the threshold x∗AI .

So far, we have no guarantee that buying insurance is optimal. In fact, we can guess that
depending on the parameters of the model it may or may not be optimal to purchase insurance. To
proceed with this analysis we have to introduce the premium principle, the risk function and the
insurance policy.
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We fix the premium principle first and vary the measure of risk, function f , and the insurance
policy, since the goal is to understand the impact that each type of contract has on the firm’s
optimal strategy and also to understand which are the best contracts.

We use premium principles that are based on moments. These premium principles are computed
as the expected value of the risk (the pure premium) plus a safety loading which is proportional to
a moment (or a function of a moment).

First, we use the expected value premium principle, which means that a proportion of the
expected value of the loss will be added to the pure premium. Where U − Z(U) is the part of the
risk ceded to the insurer. The premium is calculated as follows:

P = E(U − Z(U)) + αE(U − Z(U)), where the loading is αE(U − Z(U)), α > 0. (3.6)

Then, we use the variance premium principle. In this case the premium depends not only on
the expectation of the ceded risk but also on its variance. Therefore, the premium is calculated in
the following way:

P = E(U − Z(U)) + αV ar(U − Z(U)), where the loading equals αV ar(U − Z(U)), α > 0. (3.7)

Finally, we consider the standard deviation premium principle. Here the premium calculation
depends not only on the expectation but also on the standard deviation of the loss. Hence the
premium principle is given by:

P = E(U − Z(U)) + α
√
V ar(U − Z(U)) where the loading equals α

√
V ar(U − Z(U)), α > 0.

(3.8)

The functions used to measure the risk are given by:

•
f(Z(U)) = ν Z(U), (3.9)

•
f(Z(U)) = ν Z(U)2, (3.10)

•
f(Z(U)) = ν Z(U)1{Z(U)>q}, (3.11)

•
f(Z(U)) = ν

√
Z(U), (3.12)

10



where ν > 0 is a positive parameter.

Regarding the insurance contract, first we used the proportional contract, a percentage of the
risk is covered by the firm and the remaining percentage is covered by the insurance company.

Note that Z(U) is the risk retained by the firm and U − Z(U) is the risk transferred to the
insurer. Therefore, the proportional contract is defined by:

Z(U) = a U, (3.13)

U − Z(U) = (1− a) U. (3.14)

Then, we consider a contract with a deductible, in which the firm cedes the risk above a certain
limit M , i.e. the insurer only covers the losses in excess of M . The expense below this limit must
be paid by the firm. Thus, the contract with a deductible is given by:

Z(U) =

{
U, U ≤M
M, U > M

, (3.15)

U − Z(U) =

{
0, U ≤M

U −M, U > M
. (3.16)

Finally, we consider a contract with a limit, in which the firm cedes the risk below a certain limit
L, i.e. the insurer only covers the losses for values smaller than L. The additional expense above
this limit must be paid by the firm. Thus, the contract with a limit is given by:

Z(U) =

{
0, U ≤ L

U − L, U > L
, (3.17)

U − Z(U) =

{
U, U ≤ L
L, U > L

, (3.18)

with a,M,L ∈ (0, 1).
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To find the optimal insurance policy for the firm, we have to proceed with the following maxi-
mization problem,

max
γ

g̃(x, γ) = min
γ

h(γ) = min
γ

{
u+ E(f(Z(U))) + αc

}
= h(γ), (3.19)

where Z(U ; γ) ≡ Z(U) and γ represents a,M or L depending on the type of contract we have.

3.1 Expected Value Premium Principle

In this subsection, we assume that the premium principle is calculated according to the expected
value principle (3.6). In the next propositions, we find the optimal contracts for each risk function.

In the next proposition we consider the risk function (3.9).

Proposition 4. Let h be the function defined as in (3.19), f defined as in (3.9), and the insurance
premium be defined as in (3.6).

• Proportional contract, h(a)

– If ν > α, the function reaches the minimum at â = 0, therefore the firm should transfer
everything.

– If ν < α, the function reaches the minimum at â = 1, in this way the firm should not
buy insurance.

• Contract with a deductible, h(M)

– If ν > α then the function reaches the minimum at M̂ = 0, the firm should transfer
everything.

– If ν < α then the function reaches the minimum at M̂ = 1, hence the firm should retain
everything.

• Contract with a limit, h(L)

– If ν > α, then the function reaches the minimum at L̂ = 1, then the firm should transfer
everything.

– If ν < α, then the function reaches the minimum at L̂ = 0, thus the firm should retain
everything.

As we can see, when the expected value premium principle is used with the risk function (3.9), in
each of the contracts, the best thing for the firm is either to insure everything or nothing, depending
on the value of the parameters ν of the risk function and α of the safety loading.
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Proposition 5. Let h be the function defined as in (3.19), f defined as in (3.10), and the premium
principle be defined as in (3.6).

• Proportional contract, h(a)

– If 1 2ν u2 − α u ≤ 0, then the function reaches the minimum at â = 1 which means the
firm should retain everything.

– If 2ν u2−α u > 0, then the function reaches the minimum at â = αu
2νu2

, and in that case
it should retain that specific amount.

• Contract with a deductible, h(M)

– If 2ν −α > 0, then the function reaches the minimum at M̂ = α
2ν , the firm should retain

up to that amount.

– If 2ν − α ≤ 0, then the function reaches the minimum at M̂ = 1, in that case the firm
should retain everything.

• Contract with a limit, h(L)

– If α − 2ν ≥ 0, the function reaches the minimum at L̂ = 0, in that case the firm should
not acquire insurance.

– If α− 2ν < 0, the function reaches the minimum at L̂ = 0 if νu2 < αu and in that case
the firm should not acquire insurance. However, if νu2 > αu, the function reaches the
minimum at L̂ = 1, in that case the firm should transfer everything.

Note that when the expected value premium principle is used with the function (3.10) for the
proportional contract and the contract with a deductible it could be optimal to insure part of the
risk but it is never optimal to insure everything.

Proposition 6. Let h be the function defined as in (3.19), f defined as in (3.11), and the premium
principle be defined as in (3.6).

• Proportional contract, h(a)

– When a ≤ q the function reaches the minimum at â = 1, therefore it should retain
everything.

– When a > q the firm should not insure values below q.

1To simplify, from now on we assume E(U2) = u2
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• Contract with a deductible, h(M)

– When α > ν there are two hypotheses. The minimum is M̂ = q when:

2ν q SU (q) > (α− ν)
∫ 1

q
SU (u) du,

in that case, the firm must retain up to the amount q. The minimum is M̂ = 1 when

ν q SU (q) < (α− ν)
∫ 1

q
SU (u) du,

in that case, the firm should retain everything.

– When α ≤ ν, the minimum is M̂ = q, therefore the firm must retain up to the amount q.

• Contract with a limit, h(L)

– In this case, the function reaches the minimum at L̂ = 1 − q, therefore the firm should
acquire that amount of insurance.

In the case of risk function (3.11) combined with the expected premium principle, we conclude
that it can be optimal for the firm to retain everything or to transfer the specific amount q in the
case of the contract with a deductible. In the case of the proportional contract it can be optimal
to retain everything or just the amount q. In the contract with a limit it is always optimal to buy
insurance.

Proposition 7. Let h be the function defined as in (3.19), f defined as in (3.12), and the premium
principle be defined as in (3.6).

• Proportional contract, h(a)

– If 3 ν
2
√
a
u3 − αu > 0, the minimum of the function is â = 0, the firm should transfer

everything.

– If ν
2
√
a
u3 −αu < 0, the minimum of the function is â =

ν2u23
α2u2

, the firm should retain that
amount.

• Contract with a deductible, h(M)

– If ν
2
√
M
> α, the minimum of the function is M̂ = 0, therefore the firm should transfer

everything.

– If ν
2
√
M

< α, the minimum of the function is M̂ = 1, therefore the firm should retain
everything.

2SU (u) is the survival function; it is related to the cumulative distribution function FU (u) in the following way:
SU (u) = 1− FU (u). Note that FU (u) = ∂fU (u)

∂u
, in which fU (u) is the probability density function.

3To simplify, from now on we assume E(
√
U) = u3
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• Contract with a limit, h(L)

– The function reaches the minimum when L̂ = ν2

4α2 , therefore the firm should buy that
amount of insurance.

In this case, it is always optimal to acquire insurance in the proportional contract and in the
contract with a limit.

3.2 Variance Premium Principle

In this subsection, we assume that the premium principle is calculated according with 3.7. In
the next propositions, we find the optimal contracts for each risk function.

In the next proposition we consider the risk function (3.9).

Proposition 8. Let h be the function defined as in (3.19), f defined as in (3.9), and the premium
principle be defined as in (3.7).

• Proportional contract, h(a)

– If ν u − 2α σ2U < 0 the function reaches the minimum at â = 1 − νu
2α σ2

U
, therefore the

firm should retain that amount of insurance.

– If ν u− 2α σ2U ≥ 0, the function reaches the minimum at â = 0, the firm should transfer
everything.

• Contract with a deductible, h(M)

– If V arU < ν u , the function reaches the minimum at M̂ = 0, therefore the firm should
transfer everything.

– If V arU > ν u , the function reaches the minimum at M̂ = 1, the firm should retain
everything.

• Contract with a limit, h(L)

– If (−ν) + 2α (1− u) < 0, then the function reaches the minimum at L̂ = 1, therefore the
firm should insure everything.

– If (−ν) + 2α (1− u) > 0, there is a minimum when
∫ L
0 SU (u) du = ν

2α in that case the
firm must insure that specific amount of insurance.

Here, note that in the proportional contract and the contract with a limit it is always optimal
to insure. However, in the contract with a deductible it can be optimal to retain or to transfer
everything, depending on the value of the parameters.
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Proposition 9. Let h be the function defined as in (3.19), f defined as in (3.10), and the premium
principle be defined as in (3.7).

• Proportional contract, h(a)

– The function reaches the minimum at â =
α σ2

U

ν u2 + α σ2
U
, therefore the firm should retain

that amount.

• Contract with a deductible, h(M)

– If ν ≥ α, then the function reaches the minimum at M̂ = 0, then the firm should transfer
everything.

– If ν < α, there are two cases, if α V arU < ν u2, the function reaches the minimum at
M̂ = 0, the firm should transfer everything as well and if α V arU > ν u2 the opposite
happens, the function reaches the minimum at M̂ = 1 thus the firm should not buy
insurance.

• Contract with a limit, h(L)

– If α ≤ ν, the function reaches the minimum at L̂ = 1, it means that the firm should
transfer everything.

– If α > ν, the function reaches the minimum when L (α− ν) = α
∫ L
0 SU (u) du, the firm

should acquire that amount of insurance.

In this case, it is always optimal to insure for both proportional contract and contract with a
limit.

Proposition 10. Let h be the function defined as in (3.19), f defined as in (3.11), and the premium
principle be defined as in (3.7).

• Proportional contract, h(a)

– If a ≤ q the function reaches the minimum at â = 1, thus the firm should retain every-
thing.

– The firm should not insure values below q.

• Contract with a deductible, h(M)

– If M >
∫ 1
M SU (u) du and ν < 2α

( ∫ 1
M SU (u) du−M

)
, the minimum is M̂ = q when

u+ ν
∫ 1
q u SU (u) du+ ν q SU (q) > u+ 2α

∫ 1
q uSU (u) du− α

( ∫ 1
q SU (u) du

)2
, in this

case the firm should retain the insurance up to amount q. The minimum is M̂ = 1 when

u+ ν
∫ 1
q u SU (u) du+ ν q SU (q) < u+2α

∫ 1
q u SU (u) du−α

( ∫ 1
q SU (u) du

)2
, in this

case the firm should retain everything.
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• Contract with a limit, h(L)

– If L >
∫ L
0 SU (u) du, the function reaches the minimum at L̂ = 1 − q, thus the firm

should buy that amount of insurance.
– If L <

∫ L
0 SU (u) du, the function reaches the minimum at L̂ = 1, thus the firm should

transfer everything.

Note that in the contract with a deductible it is never optimal to insure everything. In the
contract with the limit it is always optimal to insure.

Proposition 11. Let h be the function defined as in (3.19), f defined as in (3.12), and the premium
principle be defined as in (3.7).

• Proportional contract, h(a)

– If alpha σ2U > ν u3, the minimum is â = 1, thus the firm should retain everything.
– If alpha σ2U < ν u3, the minimum is â = 0, consequently the firm should transfer every-

thing.

• Contract with a deductible, h(M)

– If
∫ 1
M SU (u) du > M , the minimum of the function is M̂ = 0, consequently the firm

should insure everything.
– If

∫ 1
M SU (u) du < M , there are two hypotheses. When 2α V arU < 1

2ν u3, the func-
tion reaches the minimum at M̂ = 0, thus the firm should transfer everything. When
2α V arU > 1

2ν u3, the function reaches the minimum at M̂ = 1, therefore it should
retain everything.

• Contract with a limit, h(L)

– If L ≤
∫ L
0 SU (u) du, the minimum of the function is L̂ = 1, consequently the firm should

insure everything.
– If L >

∫ L
0 SU (u) du, the function reaches a minimum when 2α

(
L−
∫ L
0 SU (u) du−L

)
=

ν
2
√
L
, which means the firm should buy that specific amount of insurance.

Here, in the contract with a limit it is always optimal to insure. In the other two contracts it
can either be better to hold everything or to transfer everything, depending on the parameters.

3.3 Standard Deviation Premium Principle

In this subsection, we assume that the premium principle is calculated according with (3.8). In
the next propositions, we find the optimal contracts for each risk function.

In the next proposition we consider the risk function (3.9).
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Proposition 12. Let h be the function defined as in (3.19), f defined as in (3.9), and the premium
principle be defined as in (3.8).

• Proportional contract, h(a)

– If u ν > α σU , the function reaches the minimum in â = 0, therefore the firm should
transfer everything.

– If u ν < α σU , the function reaches the minimum in â = 1, therefore the firm should
retain everything.

• Contract with a deductible, h(M)

– The minimum is M̂ = 0 when α σU < ν u, therefore the firm should transfer everything.

– The minimum is M̂ = 1 if α σU > ν u, consequently the firm should retain everything.

• Contract with a limit, h(L)

– If α
σU

(1 − u) ≤ ν then the function reaches the minimum at L̂ = 1, therefore the firm
should transfer everything.

– If α
σU

(1−u) > ν , 0 < L̂ < 1. In this case there is no explicit expression for the minimum.

In this case, we see that in the contract with a limit, it is always optimal to insure, everything
or just part of it. In the other two contract it can either be better to hold everything or nothing,
depending on the parameters.

Proposition 13. Let h be the function defined as in (3.19), f defined as in (3.10), and the premium
principle be defined as in (3.8).

• Proportional contract, h(a)

– If 2ν u2 − α σU ≤ 0, then â = 1 is the minimum of the function, hence the firm should
retain everything.

– If 2ν u2 − α σU > 0, then the function reaches the minimum at â = α σU
2ν u2

, consequently
the firm should retain that amount.

• Contract with a deductible, h(M)

– If σUα < ν u2, the function reaches the minimum at M̂ = 0, thus the firm should transfer
everything.

– If σUα > ν u2, the function reaches the minimum at M̂ = 1, therefore the firm should
not acquire insurance.
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• Contract with a limit, h(L)

– The function reaches a minimum 0 < L̂ < 1, since 1−SU (L) > 0. which means the firm
should acquire a specific amount of insurance. In this case there is no explicit expression
for the minimum.

Here, we see that in the proportional contract it is optimal just to retain a part of the risks or
to retain it all. In the contract with a limit it is always optimal to insure.

Proposition 14. Let h be the function defined as in (3.19), f defined as in (3.11), and the premium
principle be defined as in (3.8).

• Proportional contract, h(a)

– When a ≤ q the function reaches the minimum at â = 1, thus the firm should retain
everything.

– When a > q the firm should not insure values below q.

• Contract with a deductible, h(M)

– If M >
∫ 1
M SU (u) du and ν < 2α (

∫ 1
M SU (u) du −M), the minimum is M̂ = q when

u + ν
∫ 1
q u SU (u) du + ν qSU (q) > u + 2α

∫ 1
q u SU (u) du − α (

∫ 1
q SU (u) du)2, in

this case the firm should retain up to the amount q. The minimum is M̂ = 1 when
u+ ν

∫ 1
q u SU (u) du+ ν q SU (q) < u+ 2α

∫ 1
q u SU (u) du− α (

∫ 1
q SU (u) du)2, in this

case the firm should retain everything.

• Contract with a limit, h(L)

– If L >
∫ L
0 SU (u) du, the function reaches the minimum at L̂ = 1 − q, thus the firm

should transfer that amount of insurance.

– If L <
∫ L
0 SU (u) du, the function reaches the minimum at L̂ = 1, thus the firm should

transfer everything.

In this case, it is always optimal to insure in the contract with a limit.

Proposition 15. Let h be the function defined as in (3.19), f defined as in (3.12), and the premium
principle be defined as in (3.8).

• Proportional contract, h(a)

– If α σU < ν u3, the minimum is â = 0 which means the firm should transfer everything.

– If α σU > ν u3, the minimum is â = 1 consequently the firm should not acquire insurance.
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• Contract with a deductible, h(M)

– If α σU <
1
2ν u3, the minimum is M̂ = 0 thus the firm should transfer everything.

– If α σU >
1
2ν u3, the minimum is M̂ = 1 consequently the firm should retain everything.

• Contract with a limit, h(L)

– The function reaches a minimum 0 < L̂ < 1, since 1−SU (L) > 0. which means the firm
should acquire a specific amount of insurance. In this case there is no explicit expression
for the minimum.

In the proportional contract and in the contract with a deductible it is optimal either to insure
everything, or nothing, depending on the parameters. In the contract with a limit it is always
optimal to insure a certain amount.
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4 Numerical results

In this section, we will see some numerical results. First, we consider the expected value premium
principle, defined as in (3.6) and the risk function (3.10) to understand what the firm’s strategy
should be regarding the amount of insurance it should purchase. In this analysis, we will use two
different distributions to see how the firm’s strategy changes depending on the risk distribution.
For this, we will establish the following parameters: K = 1, r = 0.05, µ = 0.01, σ = 0.2, λ = 0.05,
u = 0.1, a = 0.5, M = 0.5, L = 0.5, ν = 0.5 and α = 0.3.

Recall that K is the investment cost, r is the interest rate, µ is the drift, σ is the volatility,
lambda is intensity of the PP, u = E(U), the mean value of the r.v U, ν is the coefficient of the risk
function, α is the coefficient of the safety loading, a,M,L are the parameters of the proportional
contract, contract with a deductible and contract with a limit, respectively.

The distributions used are defined by:

• U ∼ Uniform (0, 1).

• U ∼ F (x) = x2, x ∈ (0, 1).

The function h, defined in (3.19), considering the proportional contract, is depicted in Figures
2 and 3.
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Figure 2: h function considering
the proportional contract and U ∼
Uniform (0, 1).
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Figure 3: h function considering
the proportional contract and U ∼
F (x) = x2, x ∈ (0, 1).

0.02 0.04 0.06 0.08 0.10 0.12 0.14
x

0.2

0.4

0.6

0.8

1.0

1.2

V(x)

Figure 4: Value functions consid-
ering the proportional contract for
both U ∼ Uniform (0, 1) (black
line) and U ∼ F (x) = x2, x ∈
(0, 1) (gray line).

When we minimize the function (3.19) with these parameters, it is possible to observe in the
Figure 2 that the function reaches a minimum at â = 0.03 and in Figure 3 reaches the minimum at
â = 0.0225. The amount the firm must insure is very similar on both distributions. As expected by
Proposition 5, this happens since 2ν u2−αu > 0. The firm’s investment decision changes when the
size of negative occurrences is modelled by different distributions. In Figure 4 the value functions are
depicted. We know that the firm’s investment decision is anticipated with the uniform distribution,
since the threshold of the revenue, x∗, is smaller and the risk is evenly distributed as can be seen
in Table 1.
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The function h, defined in (3.19), considering an insurance policy with a deductible is depicted
in Figures 5 and 6.

0.2 0.4 0.6 0.8 1.0
M

0.22

0.23

0.24

0.25

0.26

h(x, M)

Figure 5: h function considering
the contract with a deductible and
U ∼ Uniform (0, 1).
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Figure 6: h function considering
the contract with a deductible and
U ∼ F (x) = x2, x ∈ (0, 1).

0.02 0.04 0.06 0.08 0.10 0.12 0.14
x

0.2

0.4

0.6

0.8

1.0

1.2

V(x)

Figure 7: Value functions consider-
ing the contract with a deductible
for both U ∼ Uniform (0, 1)
(black line) and U ∼ F (x) =
x2, x ∈ (0, 1) (gray line).

We can verify that the functions present the same minimum. The minimizer is M̂ = 0.3, which
means that the firm’s strategy remains the same in both distributions. As expected by Proposition
5, this happens since 2ν − α > 0.

The firm’s investment decision will also change when the size of negative occurrences is modelled
by different distributions. In Figure 7, we see the value functions in this case. Furthermore, we know
that the firm’s investment decision is anticipated with the Uniform distribution since the threshold
of the revenue, x∗, is smaller, as you can see in Table 1.

The function h, defined in (3.19), considering an insurance policy with a limit is depicted in
Figures 8 and 9.
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Figure 8: h function considering
the contract with a limit and U ∼
Uniform (0, 1).
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Figure 9: h function considering
the contract with a limit and U ∼
F (x) = x2, x ∈ (0, 1).
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Figure 10: Value functions consid-
ering the contract with a limit for
both U ∼ Uniform (0, 1) (black
line) and U ∼ F (x) = x2, x ∈
(0, 1) (gray line).

In the contract with a limit the functions have the same minimum. The minimizer is L̂ = 1,
which means that the firm should transfer everything. As expected by Proposition 5, this happens
because ν u2 > α u.
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The value functions are depicted in Figure 10. In this case, the firm takes the decision to
anticipate the investment with U ∼ Uniform (0, 1), since it is facing a lower threshold, x∗, than
U ∼ F (x) = x2, x ∈ (0, 1) as you can see in Table 1.

Table 1: Optimal threshold: comparison between distributions for each contract.

Expected value premium principle
x∗ Proportional contract Contract with a

Deductible
Contract with a
Limit

U ∼ Uniform (0, 1) 0.124308 0.120194 0.138074
U ∼ F (x) = x2, x ∈ (0, 1) 0.134301 0.131811 0.165007

So far, we have assumed that the premium principle used by the insurance company is the
expected value premium principle. Next we will consider the standard deviation premium principle
to proceed with a comparison between the two premium principles. We decided to fix the risk
function (3.12) and the distribution U ∼ F (x) = x2, x ∈ (0, 1).

The function h, defined in (3.19), considering a proportional contract is depicted in Figures 11
and 12.
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Figure 11: h function considering
the proportional contract and the
expected value premium principle.
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Figure 12: h function considering
the proportional contract and the
standard deviation value premium
principle.
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Figure 13: Value functions consid-
ering the proportional contract and
the expected value (black line) and
the standard deviation (gray line)
premium principles.

In this case, the function reaches the minimum at â = 0 on both premium principles. As
expected in proposition 7, since ν

2
√
a
u23 > α u and in proposition 15, since α σU < ν u3. Thus the

firm should insure everything.

The firm’s investment decision will also change when the size of negative occurrences is modelled
by different premium principles. In Figure 13, both value functions are depicted. Furthermore we
know that the firm’s investment decision is anticipated with the expected value premium principle
although they do not differ much, as you can see in Table 2.
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The function h, defined in (3.19), considering an insurance policy with a deductible is depicted
in Figures 14 and 15.
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Figure 14: h function considering
the contract with a deductible and
the expected value premium prin-
ciple.
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Figure 15: h function considering
the contract with a deductible and
the standard deviation value pre-
mium principle.
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Figure 16: Value functions consid-
ering the contract with a deductible
and both expected value and the
standard deviation premium prin-
ciples.

For both cases, the minimum is M̂ = 0, as expected by Proposition 7, since ν
2
√
M
< α and by

Proposition 15, since α σU < 1
2ν u3. Therefore the firm should transfer everything.

The firm’s investment decision will also change when the size of negative occurrences is modelled
by different premium principles. In Figure 16, both value functions are depicted. In this case, the
firm’s investment decision is anticipated. The threshold of the revenue, x∗, is smaller for the expected
value as depicted in Table 2.

The function h, defined in (3.19), considering an insurance policy with a limit is depicted in
Figures 17 and 18.
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Figure 17: h function considering
the contract with a limit and the
expected value premium principle.
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Figure 18: h function considering
the contract with a limit and the
standard deviation value premium
principle.
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Figure 19: Value functions consid-
ering the contract with a limit and
both expected value and the stan-
dard deviation premium principles.

The decision of how much insurance the firm should acquire diverges a lot between the premium
principles. For the expected value the minimum is L̂ = 0.69 and for the standard deviation is
L̂ = 0.93, therefore those are the amounts bellow which the firm should insure. As expected by
Proposition 7 and in Proposition 15, both premium principles have a minimizer 0 < L̂ < 1.
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We can get a better insight into the firm’s investment decision by looking at the value function
which is depicted in Figure 19.

In this case, the conclusion is different to the previous one, we can see that the decision to invest
is anticipated for the standard deviation. The threshold, x∗, when the standard deviation is used
is smaller than the threshold, x∗, when the expected value is used, as presented in Table 2.

Table 2: Optimal threshold: comparison between premium principles for each contract.

U ∼ F (x) = x2, x ∈ (0, 1)

x∗ Proportional contract Contract with a
Deductible

Contract with a
Limit

Expected value 0.154936 0.220369 0.139679
Standard Deviation 0.160287 0.319594 0.0983574
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5 Conclusions

There are several parameters that ultimately intervene in the firm’s decision on whether and
how to buy insurance. Those are the premium used by the insurance company, the function to
measure the risk of the firm and also the type of contract acquired by the firm.

When we fix the expected value premium principle, we conclude that with the risk function
(3.12), it is always optimal to buy insurance in the case of the proportional contract and the
contract with a limit. It is also always optimal to buy insurance in the contract with a limit with
the risk function (3.11).

When we fix the variance premium principle and use the risk functions (3.9) and (3.10), it is
always optimal to insure in the case of the proportional contract and the contract with a limit.
Furthermore, when we use the risk functions (3.11) and (3.12), it is always optimal to acquire
insurance in the contract with a limit.

When we fix the standard deviation premium principle it is always optimal to insure for all risk
functions in the case of the contract with a limit.

The way risk is handled has a major impact on a firm’s strategy. When risk is treated uniformly,
with the U ∼ Uniform (0, 1) distribution compared to the U ∼ F (x) = x2, x ∈ (0, 1) distribution,
the firm’s decision is always to anticipate the investment. The threshold, x∗, is smaller in the
uniform distribution.

The firm’s investment decision will also change when the size of negative occurrences is modelled
by different premium principles. The standard deviation premium principle takes more into account
the deviations, so the tail of the distribution has more weight. In the contract with a deductible
we are ceding the tail to the insurance company. Then, the insurance is more expensive with the
standard deviation premium principle. In this way, the firm anticipates the investment with the
expected value premium principle. In the contract with a limit we are retaining the tail of the
distribution, therefore the insurance contract becomes cheaper. Consequently, the firm anticipates
the investment with the standard deviation premium principle.
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A Proofs

Proof of Proposition 1. To find the parameter A and the threshold x∗ were used the following
smooth pasting conditions to make sure the function is smooth and continuous.

{
Ax∗β1 = g(x∗)

(Ax∗β1)′ = g(x∗)′
.

The function g(x) is given by 2.2, therefore the derivatives are given by:

(Ax∗β1)′ = β1Ax
∗(β1−1),

g(x∗)′ =
1

r − µ
− u λ

(r − µ)2
− E(f(Ui)) λ

(r − µ)2
.

After solving the system of equations, it was possible to obtain the parameters A and x∗.

Proof of Proposition 2. It is possible to see the behavior of the function after there is a change
in one of its parameters, making an analysis of the sign of the first derivative in order to that
parameter. The first derivative in order to λ is given by:

∂x∗

∂λ
=

K β1 (r − µ)2 (β1− 1)
(
u+ E(f(U))

)[
(β1− 1) (r − µ)− (β1− 1)

(
λ
(
u+ E(f(U))

))]2 .
Note that β1 > 1, therefore it is possible to see that ∂x∗

∂λ > 0, since:

K β1 (r − µ)2 (β1− 1)
(
u+ E(f(U))

)
> 0[

(β1− 1) (r − µ)− (β1− 1)
(
λ (u+ E(f(U)))

)]2
> 0.

It is possible to perceive that the functions βi(σ), with i = 1, 2, are such that the function β1(σ)
is decreasing and β2(σ) is increasing. This follows in view of the following derivative:

∂βi

∂σ
= (−1)i σ βi (βi− 1)√(

u− 1
2σ

2
)2

+ 2σ2r
.
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We can write the derivative in order to σ as follows:

∂x∗

∂σ
=

K (r − µ)2 ∂β1
∂σ

(∂β1∂σ − 1) (r − µ)− (∂β1∂σ − 1)
(
λ (u+ E(f(U)))

) .
Since K (r − µ)2 ∂β1

∂σ < 0 and (∂β1∂σ − 1) (r − µ)− (∂β1∂σ − 1)
(
λ (u+ E(f(U)))

)
< 0, ∂x

∗

∂σ > 0.

Proof of Proposition 3. To find the parameter AAI and the threshold xAI were used the following
smooth pasting conditions once again to make sure the function is smooth and continuous.{

AAIx
∗(β1−1)
AI = g̃(x∗)

(AAIx
∗(β1−1)
AI )′ = (g̃(x∗))′

.

The function g̃ is given by 3.2, therefore the derivatives are as follows:

(AAIx
∗β1
AI )

′ = β1AAIx
∗(β1−1)
AI ,

g(x∗)′ =
1

r − µ
− u λ

(r − µ)2
−
E
(
f(Ui)

)
λ

(r − µ)2
.

After solving the system of equations, it was possible to obtain AAI and x∗AI .

Proof of Proposition 4. We are using the maximization problem defined as in (3.19). Note that
f is defined as in (3.9), and the premium principle is defined as in (3.6).

• Proportional contract

In this case, the contract is defined as in (3.13) and (3.14), thus ν E
(
f(Z(U)

)
= ν E(a U) =

νau and αc = α E
(
U − Z(U)

)
= α E

(
(1 − a) U

)
= α (1 − a) u. Thus, the function h

defined by (3.19) is as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+ ν a u+ α (1− a) u

}
.

The derivative of the function is as follows:

∂h

∂a
= u (α− ν).

If ν > α, the function reaches the minimum at â = 0 and if ν < α, the function reaches the
minimum at â = 1.
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• Contract with a deductible

First, note that the expected value of Z(U) and U − Z(U) is computed as follows:

E
(
Z(U)

)
=

∫ M

0
u fU (u) du+M

∫ M

0
fU (u) du

=
[
− u SU (u)

]M
0

+

∫ M

0
SU (u) du+M P (U > M)

= −M SU (M) +

∫ M

0
SU (u) du+M SU (M)

=

∫ M

0
SU (u) du.

E
(
U − Z(U)

)
=

∫ M

0
0 du+

∫ 1

M
(U −M)fU (u) du

=

∫ 1

M
u fU (u) du−M P (U > M)

=
[
− u SU (u)

]1
M

+

∫ 1

M
SU (u) du−M P (U > M))

=

∫ 1

M
SU (u) du.

In this case, the contract is defined as in (3.15) and (3.16), thus νE
(
f(Z(U))

)
= ν

∫M
0 SU (u)du

and αc = α
∫ 1
M SU (u) du. Therefore, the function h defined by (3.19) is as follows:

sup
0<a<1

h(x,M) = min
0<M<1

{
u+ ν

∫ M

0
SU (u) du+ α

∫ 1

M
SU (u) du

}
.

The derivative of the function is as follows:

∂h

∂M
= SU (M) (ν − α).

If ν > α the function reaches the minimum at M̂ = 0 and if ν < α the function reaches the
minimum at M̂ = 1.
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• Contract with a limit

In this case the insurance policy is defined as in (3.17) and (3.18), thus νE(f(Z(U))) =

ν
∫ 1
L SU (u) du and αc = α

∫ L
0 SU (u) du. Therefore it follows that:

sup
0<L<1

h(x, L) = min
0<L<1

{
u+ ν

∫ 1

L
SU (u)du+ α

∫ L

0
SU (u)du

}
.

To study the behavior of the function we calculate the derivative, which is given by:

∂h

∂L
= SU (L) (α− ν).

If α > ν the function reaches the minimum at L̂ = 0 and if α < ν the function reaches the
minimum at L̂ = 1.

Proof of Proposition 5. Note that f is defined as in (3.10), and the premium principle is defined
as in (3.6).

• Proportional contract

In this case the insurance policy is defined as in (3.13) and (3.14), thus ν E
(
f(Z(U)2

)
=

ν E(a U)2 = νa2u2, and αc = αE
(
U − Z(U)

)
= αE

(
(1 − a) U

)
= α (1 − a) u. Therefore,

the function h defined by (3.19) is as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+ νa2 u2 + alpha (1− a) u)

}
.

To find the minimum of the function we calculate the following derivative:

∂h

∂a
= 0. (A.1)

Therefore, the minimum is given by:

â =
α u

2ν u2
. (A.2)

If ∂h∂a < 0, then a < â and if ∂h∂a > 0, then a > â. Therefore, â = 1 if 2ν u2 ≤ 0 and â = α u
2ν u2

if 2ν u2 > 0.
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• Contract with a deductible

In this case, the contract is defined as in (3.17) and (3.18), thus E
(
f(Z(U)

)
= 2ν

( ∫M
0 u SU (u) du

)
and αc = α

∫ 1
M SU (u) du. Therefore, the function h defined by (3.19) is as follows:

sup
0<M<1

h(x,M) = min
0<M<1

{
u+ 2ν

(∫ M

0
u SU (u) du

)
+ α

∫ 1

M
SU (u)du

}
.

We calculated the derivative to perceive the comportment of the function:

∂h

∂M
= SU (M) (2Mν − α).

If 2ν − α > 0, then the function reaches the minimum at M̂ = α
2ν and if 2ν − α < 0, the

function reaches the minimum at M̂ = 1.

• Contract with a limit

Here, the insurance policy is defined as in (3.17) and (3.18), therefore E
(
f(Z(U)

)
=

2ν
( ∫ 1

L u SU (u) du
)
and αc = α

∫ L
0 SU (u) du. Thus, the function h defined by (3.19)

is as follows:

sup
0<L<1

h(x, L) = min
0<L<1

{
u+ 2ν

(∫ L

0
u SU (u) du

)
+ α

∫ 1

L
SU (u) du

}
.

The derivative of the equation follows from:

∂h

∂L
= SU (L) (α− 2ν L).

When α − 2ν ≥ 0, the function reaches the minimum at L̂ = 0 and when α − 2ν < 0 the
function increases and decreases so the minimum can be L̂ = 0 or L̂ = 1. So, when νu2 < αu
the minimum is L̂ = 0 and when νu2 > αu the minimum is L̂ = 1.

Proof of Proposition 6. Note that f is defined as in (3.11), and the premium principle is defined
as in (3.6).

• Proportional contract

Here, the insurance policy is defined as in (3.13) and (3.14). First, note that:

E(f(Z(U))) =E
(
νa U 1{a U> q}

)
=νa

∫ 1

0
U 1{a U> q}fU (u) du.
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To calculate the expected value of the function, were made the following steps:

1{a U > q} =

{
1, U > q

a
0, U < q

a

.

Therefore we have that:

E(ν a U 1{a U > q} =


0, a ≤ q

νa

∫ 1

q
a

u fU (u) du, a > q
.

Thus, the function h defined by (3.19) is as follows:

h(x, a) =


u+ α (1− a) u, a ≤ q

u+ νa

∫ 1

q
a

u fU (u)du+ α (1− a) u, a > q
.

When a ≤ q the function decreases since u + ∂h
∂a = −α u, therefore the function reaches the

minimum at â = 1. When a > q, ∂h
∂a = ν

( ∫ 1
q
a
u fU (u) du+ q2

a2
fU
( q
a

))
− α u.

• Contract with a deductible

Here, the insurance policy is defined as in (3.15) and (3.16). First notice that,

Z(U)1{Z(U)} = 0, when M ≤ q.

Therefore, it follows that:

Z(U)1{Z(U)>q} =


0, U < q

U, q < U < M, when M > q

M, U ≥M
.

Note that in this case, E(Z(U)) is as follows:

E(Z(U)) = E(Z(u)1{Z(U)>q}) =

∫ M

q
u fU (u) du+

∫ 1

M
M fU (u) du

=

[
− u SU (u) du

]M
q

+

∫ M

q
SU (u) du+M P (U > M)

=

∫ M

q
SU (u) du+ q SU (q).
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Thus, the function h defined by (3.19) is as follows:

h(x, a) =


u+ α

∫ 1

M
SU (u) du, M ≤ q

u+

∫ M

q
SU (u) du+ q SU (q) + α

∫ 1

M
SU (u) du, M > q

.

When M ≤ q , ∂
∂M = −α SU (M) and when M > q ∂h

∂M = SU (M)(ν − α). Therefore, there
are two hypotheses, if α > ν the function is decreasing with M and if α < ν the function is
increasing with M .

Therefore when α > ν:

– The minimum is M̂=q when :

u+ ν

∫ 1

q
SU (u) du+ νq SU (q) > u+ α

∫ 1

q
SU (u) du

⇔ ν q SU (q) > (α− ν)
∫ 1

q
SU (u) du.

– The minimum is M̂ = 1 when :

ν q SU (q) > (α− ν)
∫ 1

q
SU (u) du.

When α ≤ ν, the minimum is M̂ = q. For α = ν, the function is constant for values of
M > q.

• Contract with a limit

Here, the insurance policy is defined as in (3.17) and (3.18). First note that,

1{Z(U)>q} = 0 , q ≥ 1− L⇔ L ≥ 1− q.
Therefore, we have the following conditions:

1{Z(U)>q} =

{
0, U ≤ L+ q
1, U > L+ q

, L < 1− q.

Once U − L = q, this is equivalent to U = L+ q. So the risk function is then given by:

νZ(U)1{Z(U)>q} =

{
0, U ≤ L+ q

ν (U − L), U > L+ q
, L < 1− q.

To calculate the expected value of the risk function and the premium principle we use the
method of integration by parts as follows:
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E(Z(U)) =

∫ L+q

0
0 du+

∫ 1

L+q
(u− L) fU (u) du

=

∫ 1

L+q
u fU (u) du− L P (U > L+ q)

=

[
− u SU (du)

]1
L+q

+

∫ 1

L+q
SU (u) du− L P (U > L+ q)

=q SU (L+ q) +

∫ 1

L+q
SU (u) du.

Therefore, the function h defined by (3.19) is as follows:

h(x, L) =


u+ α

∫ L

0
SU (u) du, L ≥ 1− q

u+ α

∫ L

0
SU (u) du+ νq SU (L+ q) + ν

∫ 1

L+q
SU (u) du, L < 1− q

.

When L < 1− q the derivative of the function is as follows:

α SU (L)− ν SU (L+ q)− ν q fU (L+ q) < 0.

When L ≥ 1− q, the derivative of the function is as follows:

∂h

∂L
= α SU (L) > 0.

Furthermore, to study the function in the critical point we see the following limits:

lim
L→(1−q)+

u+ α

∫ L

0
SU (u) du

lim
L→(1−q)−

u+ α

∫ L

0
SU (u) du+ νq SU (L+ q) + ν

∫ 1

L+q
SU (u) du

= u+ α

∫ 1−q

0
SU (u) du+ ν q SU (1− q + q).

The limL→(1−q)+ = limL→(1−q)− therefore, the function is continuous.

The function decreases until L̂ = 1 − q and then it increases. Thus, the function reaches the
minimum at L̂ = 1− q.
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Proof of Proposition 7. Note that f is defined as in (3.12), and the premium principle is
defined as in (3.6).

• Proportional contract

The insurance policy is defined as in (3.13) and (3.14). Thus, the function h defined by (3.19)
is as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+
√
a ν u3 + α (1− a) u

}
.

The derivative of the function to understand how it behaves is given by:

∂h

∂a
=
ν u3√
a
− α u > 0.

The function is convex, therefore 0 < â < 1, as we can see in the following derivative:

∂2h

∂a2
= −ν u3

2a
3
2

< 0.

Thus, the minimum of the function is given by:

â =
ν2 u23
α2 u2

.

• Contract with a deductible

Here, the insurance policy is defined as in (3.15) and (3.16). Thus, the function h, defined by
(3.19) is as follows:

sup
0<M<1

h(x,M) = min
0<M<1

{
u+

1

2
ν

∫ M

0
u

−1
2 SU (u) du+ α

∫ 1

M
SU (u) du

}
.

To understand the behavior of the function, we study the derivative which is given by:

∂h

∂M
= SU (M)

(
ν

2
√
M

+ α

)
.

Thus, ∂h
∂M > 0 if ν

2
√
M

> α. Therefore the function reaches the minimum at M̂ = 0 and
∂h
∂M < 0 if ν

2
√
M
< α so the function reaches the minimum at M̂ = 1.

• Contract with a limit

Here the insurance policy is defined as in (3.17) and (3.18). Thus, the function h defined by
(3.19) is as follows:

sup
0<L<1

h(x, L) = min
0<L<1

{
u+

1

2
ν

∫ 1

L
u

−1
2 SU (u) du+ α

∫ L

0
SU (u) du

}
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To understand the behavior of the function, we study the derivative which is given by:

∂h

∂L
= SU (L)

(
α− ν

2
√
L

)
.

Note that,

(
α− ν

2
√
L

)′
= ν

4α
3
2
> 0, so we know that the function is convex, therefore 0 < L̂ < 1.

The function reaches the minimum at L̂ = ν2

4α2 .

Proof of Proposition 8. Note that f is defined as in (3.9), and the premium principle is defined
as in (3.7).

• Proportional contract

Here, the insurance contract is defined as in (3.13) and (3.14). Thus, νE(f(Z(U)) = νau
and αc = α V ar

(
(1 − a) U

)
= α (1 − a)2 σ2U . Therefore, the function h defined by (3.19) is

as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+ ν a u+ α (1− a)2 σ2U

}
.

The derivative of the function which is increasing with a:

∂h

∂a
= ν u− 2α σ2U + 2α a.

If ν u−2α σ2U < 0, then the function reaches a minimum at â = 1− ν u
2α σ2

U
and if ν u−2α σ2U >

0, then the function reaches the minimum at â = 0.

• Contract with a deductible

The insurance contract is defined as in (3.15) and (3.16). Therefore, αc = α V ar
(
U−Z(U)

)
.

Since V ar
(
U−Z(U)

)
= E

(
(U−Z(U)

)2
)−E

(
U−Z(U)

)2, E((U−Z(U))2
)
= 2

∫ 1
M SU (u) du

and E
(
U −Z(U)

)2
=
∫ 1
M SU (u) du)2, then αc = α

(
2
∫ 1
M SU (u) du−

( ∫ 1
M SU (u) du

)2). In
this way, the function h defined by (3.19) is as follows:

sup
0<M<1

h(x,M) = min
0<M<1

{
u+ν

∫ M

0
SU (u) du+α

(
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du

)2)}
.

The first derivative is as follows:

∂h

∂M
= SU (M)

(
ν+α

(
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2)−1
2
(∫ 1

M
SU (u) du−M

))
.
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The second derivative of the function is given by:

∂2h

∂M2
=− α

2

((
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2)−3
2

(
− 2M SU (M) + SU (M) 2

∫ 1

M
SU (u) du

)(∫ 1

M
SU (u) du−M

)

− α

(
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2)−1
2 (

1 + SU (M)
))

< 0.

It is known that
( ∫ 1

M SU (u) du−M
)′
= −SU (M)−1 < 0, so we need to check for both cases,

when M = 0 and M = 1.

When M = 0, the minimizer is ν + 2α
( ∫ 1

M SU (u) du −M
)
= ν + 2α E(M) > 0, therefore

this is a maximum value.

When M = 1, the minimizer is ν + 2α
( ∫ 1

M SU (u) du −M
)
= ν − 2α which is a minimum

value. Since the goal is to find a minimum value it is necessary to study this case.

If ν − 2α ≥ 0 then M = 0 and if ν − 2α < 0 then the derivative is positive in M = 0, and
negative in M = 1, therefore the monotonic derivative has a maximum.

If we minimize the function in M = 0, the function is α V arU and if we minimize the function
in M = 1 it is ν U . Therefore, if α V arU < ν u then the function reaches the minimum at
M̂ = 0 and if α V arU > ν u then the function reaches the minimum at M̂ = 1.

• Contract with a limit

Here, the policy insurance is defined as in (3.17) and (3.18). In this case, αc = V ar
(
U −

Z(U)
)
= E

(
(U − Z(U))2

)
− E

(
U − Z(U)

)2, E((U − Z(U))2
)
= 2

∫ L
0 SU (u) du and E

(
U −

Z(U)
)2

=
( ∫ L

0 SU (u) du
)2, then αc = α

(
2
∫ L
0 SU (u) du−

( ∫ L
0 SU (u) du

)2). In this way,
the function h defined by (3.19) is as follows:

sup
0<L<1

h(x, L) = min
0<L<1

{
u+ ν

∫ 1

L
SU (u) du+ α

(
2

∫ L

0
SU (u) du−

(∫ L

0
SU (u) du)

)2)}
.

The derivative of the function is given by:

∂h

∂L
= SU (L)

(
− ν + 2α

(
L−

∫ L

0
SU (u) du

))
.

Note that
(
L−

∫ L
0 SU (u) du

)′
= 1− SU (L) > 0, so the function is increasing with L.
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When L = 0 the minimizing function is given by −ν + 2α
(
L−

∫ L
0 SU (u) du

)
= −ν < 0 and

when L = 1 it is given by −ν + 2α
(
L−

∫ L
0 SU (u) du

)
= −ν + 2α

(
1− u

)
.

If it is the case that −ν + 2α
(
1 − u

)
< 0 then L = 1. If −ν + 2α

(
1 − u

)
< 0 then the

derivative is negative in L = 0 and positive in L = 1, so the function is monotonic and exists
a minimum when L−

∫ L
0 SU (u) du = ν

2α .

Proof of Proposition 9. Note that f is defined as in (3.10), and the premium principle is defined
as in (3.7).

• Proportional contract

In this case, the insurance contract is defined as in (3.13) and (3.14). Thus, νE
(
f(Z(U)2

)
=

ν E(a U)2 = ν a2 u2 and αc = α E
(
(U − Z(U))2

)
= α E

((
(1 − a) U

)2)
= α (1 − a)2 σ2U .

Thus, the function h defined by (3.19) is as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+ ν a2 u2 + α (1− a)2 σ2U

}
.

To see the behavior of the function that we want to minimize, the result of the derivative
follows as:

∂h

∂a
= 0

⇔ 2a
(
ν u2 + α σ2U

)
− 2α σ2U = 0

⇔ â =
α σ2U

ν u2 + α σ2U
.

Assuming that ν u2 + α σ2U 6= 0, we note that â is a minimum.

• Contract with a deductible

In this case, the insurance policy is defined as in (3.15) and (3.16). Therefore, E
(
f(Z(U))

)
=

2ν
( ∫M

0 u SU (u) du
)
and αc = α

(
2
∫ 1
M SU (u) du−

( ∫ 1
M SU (u) du

)2). Thus, the function
h defined by (3.19) is as follows:

sup
0<M<1

h(x,M) = min
0<M<1

{
u+2ν

(∫ M

0
u SU (u) du

)
+α

(
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du

)2)}
.

In order to see how is the behavior of the function, we have the following derivative:

∂h

∂M
= 2SU (M)

(
α

∫ 1

M
SU (u) du+M (ν − α)

)
.
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If ν ≥ α then the derivative of the minimizer is increasing so it reaches the minimum at
M̂ = 0.

If ν < α then
(
α
∫ 1
M SU (u) du+M(ν − α)

)′
= −α SU (M) + (ν − α) which is decreasing.

Therefore, the minimum can be in M = 0 or M = 1, checking both hypothesis: when M = 0,
the minimizer is α u > 0 and when M = 1, the minimizer is M (ν − α) < 0.

So the derivative increases and then decreases, so it has a maximum. The minimizer inM = 0
is u+ α V arU and the minimizer in M = 1 is u+ ν u2.

If α V arU < ν u2 then the minimum is M̂ = 0. If α V arU > ν u2 then the minimum is
M̂ = 1.

• Contract with a limit

Here, the insurance contract is defined as in (3.17) and (3.18). Thus, E(f(Z(U)) =

2ν
( ∫ 1

L u SU (u) du
)
and αc = α

(
2
∫ L
0 SU (u) du− (

∫ L
0 SU (u) du)2

)
. Therefore, the function

h defined by (3.19) is as follows:

sup
0<a<1

g(x, L) = min
0<L<1

{
u+2ν

(∫ L

0
u SU (u) du

)
+α

(
2

∫ 1

L
SU (u) du−

(∫ 1

L
SU (u) du)2

))}
.

The derivative of the function follows as:

∂h

∂L
= 2SU (L)

(
L (α− ν)− α

∫ L

0
SU (u) du

)
.

If α ≤ ν then the function reaches the minimum at L̂ = 1. If α > ν, then see that
(
L (α −

ν)− α
∫ L
0 SU (u) du

)′
= (α− ν)− α SU (L), therefore the function is increasing with L. The

function starts in −ν and it ends in (α − ν) > 0, it means that the function decreases and
then increases, therefore there is a minimum 0 < L̂ < 1 when L (α− ν) = α

∫ L
0 SU (u) du.

Proof of Proposition 10. Note that f is defined as in (3.11), and the premium principle is defined
as in (3.7).

• Proportional contract

Here, the insurance contract is defined as in (3.13) and (3.14). Thus, the function h defined
by (3.19) is as follows:

h(x, a) =


u+ α (1− a)2 σ2U , a ≤ q

u+ ν a

∫ 1

q
a

u fU (u) du+ α (1− a)2 σ2U , a > q
.
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When a ≤ q we have the following derivatives:

∂h

∂a
= −2α σ2U (1− a) < 0,

∂2h

∂a2
= α σ2U > 0.

The function reaches the minimum at â = 1.

When a > q the function is increasing since:

∂h

∂a
= ν

(∫ 1

q
a

u fU (u) du+
q2

a2
fU

(
q

a

))
− 2α σ2U (1− a).

• Contract with a deductible

Here, the insurance contract is defined as in (3.15) and (3.16). Thus, E(Z(U)) =
∫M
q SU (u) du+

q SU (q), αc = α
(
2
∫ 1
M SU (u) du−

( ∫ 1
M SU (u) du

)2). In this way, the function h defined by
(3.19) is as follows:

h(x,M) =


u+ α

(
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du

)2)
, M ≤ q

u+ ν

∫ M

q
SU (u) du+ q SU (q) + α

(
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du

)2)
, M > q

.

To understand the behavior of the function we should study the derivatives and the limits of
the function since it is not continuous.

When M ≤ q , we have the following derivative:

∂

∂M
= 2α M SU (M)

(∫ 1

M
SU (u) du−M

)
.

Therefore if M >
∫ 1
M SU (u) du, the function is decreasing with M and if M <

∫ 1
M SU (u) du,

the function is increasing with M .

When M = q


u+ α

(
2

∫ 1

q
SU (u) du−

(∫ 1

q
SU (u) du

)2)

u+ q SU (q) + α

(
2

∫ 1

q
Su (u) du−

(∫ 1

q
SU (u) du

)2) .
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Since ν q SU(q) > 0, the following holds:

u+q SU (q)+α

(
2

∫ 1

q
SU (u)du−

(∫ 1

q
SU (u) du

)2)
> u+α

(
2

∫ 1

q
SU (u) du−

(∫ 1

q
SU (u) du

)2)
.

If M >
∫ 1
M SU (u) du, ν < 2α

( ∫ 1
M SU (u) du −M) and u + ν

∫ 1
q SU (u) du + q SU (q) >

u+ α
(
2
∫ 1
q SU (u) du−

( ∫ 1
q SU (u) du

)2)) , the function reaches the minimum at M̂ = q.

If M >
∫ 1
M SU (u) du, ν < 2α

( ∫ 1
M SU (u) du −M

)
and u + ν

∫ 1
q SU (u) du + q SU (q) <

u+ α
(
2
∫ 1
q SU (u)du−

( ∫ 1
q SU (u) du

)2) , the function reaches the minimum at M̂ = 1.

• Contract with a limit

In this case, the insurance contract is defined as in (3.17) and (3.18). Thus, the function h
defined by (3.19) is as follows:

h(x, L) =



u+ ν q SU (L+ q) + ν

∫ 1

L+q
SU (u) du+

α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2)
, L < 1− q

u+ α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2)
, L ≥ 1− q

.

The derivative of the function when L < 1− q is as follows:

∂h

∂L
= 2α SU (L)

(
L−

∫ L

0
SU (u) du

)
− ν SU (L+ q)− ν q fU (L+ q).

The derivative of the function when L ≥ 1− q is as follows:

∂h

∂L
= 2α SU (L)

(
L−

∫ L

0
SU (u) du

)
.

The function decreases until L̂ = 1− q.
Therefore, if L >

∫ L
0 SU (u) du the function is increasing with L, therefore the function

reaches the minimum at L̂ = 1− q. If L <
∫ L
0 SU (u) du the function is decreasing with L,

therefore the function reaches the minimum at L̂ = 1.

Here, it is also possible to see that the function is continuous, since limL→(1−q)+ = limL→(1−q)−.
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Proof of Proposition 11. Note that f is defined as in (3.12), and the premium principle is defined
as in (3.7).

• Proportional contract

Here, the insurance contract is defined as in (3.13) and (3.14). Thus, the function h defined
by (3.19) is as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+
√
a ν u3 + α (1− a)2 σ2U

}
.

The derivative of the function to understand how it behaves is as follows:

∂h

∂a
=
ν u3
2
√
a
− 2α σ2U (1− a) > 0.

The second derivative of the function is as follows:

∂2h

∂a2
=
−ν u3
4a

3
2

+ 2α σ2U < 0.

The function has a maximum, therefore the minimum is in M = 0 or M = 1. The minimizer
in M = 0 is u+ σ2U and in M = 1 is ν u3. If σ2U > ν u3, the minimum will be M̂ = 1 and if
σ2U < ν u3, the minimum will be M̂ = 0.

• Contract with a deductible

In this case, the insurance contract is defined as in (3.15) and (3.16). Thus, the function h
defined by (3.19) is as follows:

sup
0<M<1

h(x,M) = min
0<M<1

{
u+

1

2
ν

∫ M

0
u

−1
2 SU (u) du+α

(
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2)}

The derivative of the function to understand how it behaves is as follows:

∂h

∂M
= SU (M)

(
ν

2
√
M

+ 2α

(∫ 1

M
SU (u)du−M

))
.

The function is convex, therefore the minimum is in M̂ = 0 or M̂ = 1 since the following
derivative is negative:

∂2h

∂M2
=
−ν
4M

3
2

− 2α (SU (M) + 1)).
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When
∫ 1
M SU (u) du > M , the minimum is M̂ = 0. When

∫ 1
M SU (u) du < M , note that

the function to be minimized in M = 0 is u + 2α V arU and the function to be minimized in
M = 1 is 1

2ν u3.

If u+2α V arU <
1
2ν u3, the minimum of the function is M̂ = 0 and if u+2α V arU >

1
2ν u3,

the minimum of the function is M̂ = 1.

• Contract with a limit

In this case, the insurance contract is defined as in (3.17) and (3.18). Thus, the function h
defined by (3.19) is as follows:

sup
0<L<1

g(x, L) = min
0<L<1

{
u+

1

2
ν

∫ 1

L
u

−1
2 SU (u) du+α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2)}
.

The derivative of the function to understand how it behaves is as follows:

∂h

∂L
= SU (L)

(
2α

(
L−

∫ L

0
SU (u) du

))
− ν

2
√
L

)
.

The function is convex since

(
2α

(
L−

∫ L
0 SU (u) du

)
− ν

2
√
L

)′
= 2α

(
1−SU (L))+ ν

8L
3
2
< 0

therefore 0 < L̂ < 1. There is a minimum when 2α

(
L −

∫ L
0 SU (u) du

)
= ν

2
√
L
. If

L ≤
∫ L
0 SU (u) du, the minimum is L̂ = 1.

Proof of Proposition 12. Note that f is defined as in (3.9), and the premium principle is defined
as in (3.8).

• Proportional contract

In this case, the insurance contract is defined as in (3.13) and (3.14). Thus, the function h
defined by (3.19) is as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+ νa u+ α (1− a) σU

}
.

The following derivative shows that if u ν > α σU the slope of the function is positive, therefore
the minimum is â = 0 and if uν < ασU the slope of the function is negative, therefore the
minimum is â = 1.

∂h

∂a
= ν u− α σU .
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• Contract with a deductible

In this case, the insurance contract is defined as in (3.15) and (3.16). Thus, the function h
defined by (3.19) is as follows:

sup
0<M<1

h(x,M) = min
0<M<1

{
u+ν

∫ M

0
SU (u) du+α

(
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du

)2) 1
2
}

In order to see the behavior of the function, we have the following derivatives:

∂h

∂M
= SU (M)

(
ν+α

(
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2)−1
2
(∫ 1

M
SU (u) du−M

))
.

∂2h

∂M2
=− α

2

((
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du)2

)−3
2
(
− 2MSU (M) + 2

∫ 1

M
SU (u) du SU (M)

))
(∫ 1

M
SU (u) du−M

)
− α

((
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2)−1
2 (

1 + SU (M)
))

< 0.

The function for M = 0 is ν + α
σU
u and for M = 1 we have that limM→1 g(M) = ∞.

Therefore, the derivative is positive in M = 0 and it is negative in M = 1, so it is monotonic
and 0 < M̂ < 1. When ασU < νE(ν) the function reaches the minimum at M̂ = 0 and when
ασU > νE(ν) the function reaches the minimum at M̂ = 1.

• Contract with a limit

In this case, the insurance contract is defined as in (3.17) and (3.18). Thus, the function h
defined by (3.19) is as follows:

sup
0<L<1

h(x, L) = min
0<L<1

{
u+ ν

∫ 1

L
SU (u) du+ α

(
2

∫ L

0
SU (u) du−

(∫ L

0
SU (u) du

)2) 1
2
}
.

The derivative of the function follows as:

∂

∂L
= SU (L)

(
−ν+α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (U) du

)2)−1
2
)(

L−
∫ L

0
SU (u) du

)
.

Both α
(
2
∫ L
0 u SU (u) du−(

∫ L
0 SU (u) du)2

)−1
2 > 0 and L−

∫ L
0 SU (u) du > 0 are increasing.
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Let ĥ be (−ν) + α
(
2
∫ L
0 uSU (u) du −

( ∫ L
0 SU (u) du

)2)−1
2
(
L −

∫ L
0 SU (u) du

)
, then in 1,

ĥ = (−ν) + α
σU

(1− u) and in 0, ĥ = −ν .

If α
σU

(1− u) ≤ ν, the derivative is always negative, then the function reaches the minimum at
1. If α

σU
(1− u) > ν, the derivative is negative and then positive, therefore 0 < L̂ < 1.

Proof of Proposition 13. Note that f is defined as in (3.10), and the premium principle is defined
as in (3.8).

• Proportional contract

In this case, the insurance contract is defined as in (3.13) and (3.14). Thus, the function h
defined by (3.19) is as follows:

sup
0<a<1

g(x, a) = min
0<a<1

{
u+ νa2 u2 + α(1− a) σU

}
.

The derivative of the function follows as:

∂h

∂a
= 0⇔ 2νau2 − α σU = 0⇔ a =

α σU
2ν u2

.

If 2ν u2 − α ≤ 0 then the minimum is â = 1 and if 2ν u2 − α > 0 then the minimum is
â = α σ

2ν u2
, assuming that 2ν u2 6= 0.

• Contract with a deductible

In this case, the insurance contract is defined as in (3.15) and (3.16). Thus, the function h
defined by (3.19) is as follows:

sup
0<a<1

g(x,M) = min
0<M<1

{
u+2ν

(∫ M

0
u SU (u) du+α

(
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du

)2) 1
2
)}

.

The derivative of the function is given by:

∂h

∂M
= SU (M)

(
2M ν+α

(
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2)−1
2
(∫ 1

M
SU (u) du−M

))
.

The function increases and then it decreases. In M = 0 the function is u+σU α and in M = 1
is u + ν u2. Therefore, if σUα < νu2 then the function reaches the minimum at M̂ = 0 and
if σUα > νu2 then the function reaches the minimum at M̂ = 1.
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• Contract with a limit

Here, the insurance policy is defined as in (3.17) and (3.18). Thus, the function h defined by
(3.19) is as follows:

sup
0<L<1

h(x, L) = min
0<L<1

{
u+2ν

(∫ 1

L
u SU (u) du

)
+α

((
2

∫ L

0
SU (u) du−

(∫ L

0
SU (u) du

)2) 1
2
)}

.

The derivative of the function is as follows:

∂h

∂L
= SU (L)

(
ν + α

(∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2)−1
2
(
L−

∫ L

0
SU (u) du

))
.

Note that
(
L−

∫ L
0 SU (u) du

)′
= 1− SU (L) > 0, so 0 < L̂ < 1.

Proof of Proposition 14. Note that f is defined as in (3.11), and the premium principle is defined
as in (3.8).

• Proportional contract

Here, the insurance policy is defined as in (3.13) and (3.14). Thus, the function h defined by
(3.19) is as follows:

h(x, a) =


u+ α (1− a) σU , a ≤ q

u+ ν a

∫ 1

q
a

u+ ν a

∫ 1

q
a

u fU (u) du+ α (1− a) σU , a > q
.

When a ≤ q, the function reaches the minimum at â = 1, since the derivative of the function
is decreasing,

∂h

∂a
= α σU − a α σU .

When a > q the derivative is as follows:

∂h

∂a
= ν

∫ 1

q
a

u fU (u) du+ ν
q2

a2
fU

(q
a

)
− α σU .
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• Contract with a deductible

Here, the insurance policy is defined as in (3.15) and (3.16). Thus, the function h defined by
(3.19) is as follows:

h(x,M) =


u+ α

(
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du)2

) 1
2
)
, M ≤ q

u+ ν

∫ M

q
SU (u) du+ q SU (q) + α

((
2

∫ 1

M
SU (u) du−

(∫ 1

M
SU (u) du

)2) 1
2
)
, M > q

.

We know that α
(
V ar

(
Z(U)

))′
> 0, therefore α

(
V ar

(
Z(U)

) 1
2

)′
> 0

To understand the behavior of the function we should study the derivatives and the limits of
the function since it is not continuous.

When M ≤ q we have the following derivative:

∂h

∂M
= α V ar

(
Z(U)

)−1
2 SU (M)

(∫ 1

M
SU (u) du−M

)

When M > q, the derivative of the function is given by:

∂h

∂M
= ν SU (M) + α V ar

(
Z(U)

)−1
2 SU (M)

(∫ 1

M
SU (u) du−M

)

Therefore, if M >
∫ 1
M SU (u) du, the function is decreasing with M and if M <

∫ 1
M SU (u) du,

the function is increasing with M .

If M >
∫ 1
M SU (u) du, ν < 2α

( ∫ 1
M SU (u) du −M

)
and u + ν

∫ 1
q SU (u) du + q SU (q) >

u+ α
(
2
∫ 1
q SU (u) du−

( ∫ 1
q SU (u) du

)2) , the function reaches the minimum at M̂ = q.

If M >
∫ 1
M SU (u) du, ν < 2α

( ∫ 1
M SU (u) du −M

)
and u + ν

∫ 1
q SU (u) du + q SU (q) <

u+ α
(
2
∫ 1
q SU (u) du− (

∫ 1
q SU (u) du)2

)
, the function reaches the minimum at M̂ = 1.
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• Contract with a limit

Here, the insurance policy is defined as in (3.17) and (3.18). Thus, the function h defined by
(3.19) is as follows:

h(x, L)



u+ 2

(
α

∫ L

0
u SU (u) du− α

(∫ L

0
SU (u) du

)2) 1
2

, L ≥ 1− q

u+ ν q SU (L+ q) + ν

∫ 1

L+q
SU (u) du +

α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2) 1
2

, L > 1− q

.

When L < 1− q, the derivative is as follows:

∂h

∂L
=− ν q fU (L+ q)− ν SU (L+ q) +

α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2) 1
2
(
L−

∫ L

0
SU (u) du

)
.

When L ≥ 1− q, the derivative is as follows:

∂h

∂L
= SU (L)

(
α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2) 1
2
)(

L−
∫ L

0
SU (u) du

)
.

To study the behavior of the function in the critical point, we look into the limits of the function:

lim
L→(1−q)+

u+ α

(
2

∫ L

0
SU (u) du−

(∫ L

0
u SU (u) du

)2) 1
2

lim
L→(1−q)−

u+ ν q P
(
U > 1− q + q

)
+ alpha

(
2

∫ L

0
SU (u) du−

(∫ L

0
u SU (u) du

)2) 1
2

.

Therefore the following holds:

lim
L→(1−q)+

− lim
L→(1−q)−

= 0.

The minimizer is then continuous and if L >
∫ L
0 SU (u) du, the function decreases and then

increases, therefore, it reaches the minimum at L̂ = 1 − q and if L >
∫ L
0 SU (u) du, the

function decreases and reaches the minimum at L̂ = 1.

48



Proof of Proposition 15. Note that f is defined as in (3.12), and the premium principle is defined
as in (3.8).

• Proportional contract

In this case, the insurance policy is defined as in (3.13) and (3.14). Thus, the function h
defined by (3.19) is as follows:

sup
0<a<1

h(x, a) = min
0<a<1

{
u+
√
a ν u3 + α (1− a) σU

}
.

The derivative of the function to understand how it behaves is as follows:

∂h

∂a
=
ν u3
2
√
a
− α σU > 0.

The function has the minimum at a = 0 or at a = 1, since :

∂2h

∂a2
= −ν u3

4a
3
2

.

Therefore, the minimizer in a = 0 is u+ α σU and in a = 1 is u+ ν u3. If α σU > ν u3 the
function reaches the minimum at â = 1 and if α σU < ν u3 the function reaches the minimum
at â = 0.

• Contract with a deductible

Here, the insurance policy is defined as in (3.15) and (3.16). Thus, the function h defined by
(3.19) is as follows:

sup
0<M<1

h(x,M) = min
0<M<1

{
u+

1

2
ν

∫ M

0
u

−1
2 SU (u) du+α

(
2

∫ 1

M
u SU (u) du−

(∫ 1

M
SU (u) du

)2) 1
2
}
.

The derivative of the function to understand how it behaves is as follows:

∂h

∂M
= SU (M)

(
ν

2
√
M

+α

(
2

∫ 1

M
u SU (u)du

(∫ 1

M
SU (u) du

)2)−1
2
)(∫ 1

M
SU (u) du−M

)
.

Through the derivative it is possible to understand that the function increases and then de-
creases, therefore, we know that the minimizer at M = 0 is u + α σU and in M = 1 is
u+ 1

2ν u3.

If α σU <
1
2ν u3, the minimum of the function is M̂ = 0 and if α σU >

1
2ν u3, the minimum

of the function is M̂ = 1.
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• Contract with a limit

In this case, the insurance policy is defined as in (3.17) and (3.18). Therefore, the function h
defined by (3.19) is as follows:

sup
0<L<1

h(x, L) = min
0<L<1

{
u+

1

2
ν

∫ 1

L
u

−1
2 SU (u) du+α

(
2

∫ L

0
u SU (u) du−

(∫ L

0
SU (u) du

)2) 1
2
}
.

The derivative of the function to understand how it behaves is as follows:

∂h

∂L
= SU (L)

(
− ν

2
√
L
+α

(
2

∫ L

0
u SU (u)du

(∫ L

0
SU (u) du

)2)−1
2
)(

L−
∫ L

0
SU (u) du

)
.

Since

(
L−

∫ L
0 SU (u) du

)′
= 1− SU (L) > 0, it means 0 < L̂ < 1.
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