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Abstract

Tropical cyclones have enormous destructive potential. In 2018 continental Por-
tugal has been affected by hurricane Leslie, the weather-related event having the
highest impact ever on the property portfolio of the portuguese insurance company
Fidelidade, causing several millions euros of losses. The fear is that, in the near
future, the occurrence of this type of events increases in intensity and frequency, as
a consequence of the climate change due to the warming of the planet. Quantifying
the potential loss to which the property portfolio of Fidelidade could be subject
to, helps in approximately determining premiums and capital reserves, as well as in
defining the coverage to be provided.
In this work, an approach to model the costs caused by a tropical cyclone extreme
event is presented. The model is based on the losses incurred by the property port-
folio of Fidelidade due to hurricane Leslie. By using the estimated models, it is
possible to produce cost estimates for different scenarios of interest for the com-
pany. The estimated models are also used to build a risk map for the councils of
continental Portugal.
The results obtained indicate that the councils with the estimated higher average
cost ratio are all located along the coast of the country.

Keywords - Property Insurance; Tropical Cyclones; Claims; Cost; Regression Tree;
Random Forest; Logistic Regression; Multiple Linear Regression; Risk Map
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Resumo

Ciclones tropicais têm um enorme potencial de destruição. Em 2018, Portugal con-
tinental foi atingido pelo furacão Leslie, que constituiu o fenómeno metereológico de
maior impacto, até à data, no portfólio da companhia de seguros Fidelidade, cau-
sando milhões de euros em perdas. De facto, os ciclones tropicais têm um enorme
potencial de destruição. A preocupação é que, em breve, a ocorrência deste tipo de
fenómenos aumente em intensidade e frequência, como consequência das mudanças
climáticas provocadas pelo aquecimento global. Quantificar a potencial perda à qual
a companhia Fidelidade pode estar sujeita ajuda a determinar aproximadamente os
prémios e provisões, assim como a definir a cobertura a ser providenciada.
Neste trabalho, é apresentada uma abordagem para modelar os custos causados
por um ciclone tropical extremo. O modelo é baseado nas perdas provocadas ao
portefólio da Fidelidade pelo furacão Leslie. Ao usar os modelos, é posśıvel produzir
custos estimados para diferentes cenários de interesse da companhia. Os modelos
estimados são também utilizados para construir um mapa de risco para os conselhos
de Portugal continental.
Os resultados obtidos indicam que os conselhos com a maior taxa média de custos
estimada estão localizados ao longo da costa do páıs.

Palavras-chave - Seguro Multi-Risco; Ciclones Tropicais; Sinistros; Custos; Árvore
de Regressão; Floresta aleatória; Regressão Loǵıstica; Regressão Linear Multipla;
Mapa de Risco
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All models are wrong, but some are useful
George Box
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1 Introduction

Many studies have addressed the impact of natural catastrophes on economic losses,
which include events like earthquakes, heath waves, hurricanes, floods and so on.
As [14] reports, there is evidence that the amount of the losses caused by natural
catastrophes has increased every year since 1980. Also [14] reports that the increase
is predominantly attributable to weather-related events like storms and floods.
Nevertheless, [14] explains that part of the increase in the losses is caused by socio-
economic/demographic factors, such as population growth, ongoing urbanization
and increasing property and material values being exposed in hazard-prone areas.
Because of such factors influencing the loss trends, it is very difficult to attribute at
least part of the effect to global warming, and so to climate change. So, while there
is evidence for increases in economic losses related to natural hazards, it is uncertain
whether this is due to an increase in the number and intensity of extreme events, or
if it can be attributed to socio-economic changes [8].
Natural hazards can represent a serious risk for the insurance sector. For example,
only in the first half of 2021, the global insured losses from natural disasters have
been of 42 billion dollars, 39% higher than the 21st Century average, which was 30
billion dollars, as reported by [1]. Among these disasters, major storms in western
and central Europe in June 2021 caused at least 4.5 billion dollars in insured losses
[1].
Hurricanes, which belong to the family of tropical cyclones, are among the most
costly natural hazards [16]. As reported by Muncih Re [16], hurricane Katrina,
which hit New Orleans in 2005, was the most costly natural disaster of all time for
the insurance sector, with losses totalling more than 60 billion dollars. In 2017, the
hurricanes Harvey, Irma and Maria caused record insured losses for more than 90
billion dollars within just four weeks. Tropical cyclones can be active for several
weeks and can stretch across a large area, while wind speeds can reach more than
250 km/h and in some cases even exceeding 300 km/h [16].
Tropical cyclones occasionally affect Western Europe (1 storm in 1 or 2 years) [12,
15]. Since 1995, The National Oceanic and Atmospheric Administration (NOAA)
has documented 6 tropical cyclones affecting continental Portugal.
In 2018 and in 2020, Portugal has been affected by two tropical cyclones called
respectively hurricane Leslie and subtropical storm Alpha. The first caused to Fi-
delidade several millions of losses, while the second one caused approximately 20
times less costs than hurricane Leslie.
The fact of having observed two events of tropical origin in the past three years,
leads the insurance company to be concerned in modelling accurately the expected
loss that could derive from these type of events. Also, climatology studies based on
model simulations, like [11], show an increase of hurricane-force storms of tropical
origin over Western Europe during early autumn (Aug-Oct), as a consequence of
the greenhouse warming. Thus, being able to quantify the potential losses due to
these severe storms to which the portfolio of an insurance company could be subject
to is crucial for insurers.
One possible approach to quantify the expected cost is to assess different scenarios
to obtain estimates of the average loss expected from events of this type.
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One method to quantify the loss is to use the damage function, which is a mathe-
matical relation between the magnitude of a natural hazard and the average damage
caused on a specific item (building, person, etc.) or portfolio of items [20].
In [21] the employed damage functions are calibrated against the daily insurance
loss data due to storms affecting the residential buildings in Germany from 1997 to
2007. As measure of the intensity of the storm, the daily maximum wind gust data
by the German weather service and from the ERA-Interim reanalysis project 1 for
the period 1997 to 2007, are employed. In [6], the same insurance loss data and
the daily maximum wind gust data from ERA-Interim reanalysis are considered but
the damage function is calibrated considering just the significant losses related to
large scale winter storms for the period 1997 to 2007. In both approaches damage
functions that take as input the wind velocity to estimate the damage caused by the
storm are employed. However these events can also bring heavy rains, which can
produce floods. Because of this, also the rain amount should be considered as input
for the damage function. In [20], alternative damage functions are studied, in order
to assess the damage deriving not only from extreme winds, but also from floods
and, for life-insurance applications, heath-related deaths.
Applying these methods, requires a solid base of historical losses and meteorological
data, which are not always available. Without these data it is difficult, if not impos-
sible, the calibration and evaluation of the damage functions. For this reason, it can
be useful to develop an approach to estimate the losses for the company in different
scenarios which does not require daily meteorological data or loss data relative to
multiple severe past events to calibrate a damage function.
In this work a different approach to estimate the average costs caused by a hurricane-
force tropical cyclone over the territory of continental Portugal is applied to the
property insurance portfolio of the portuguese company Fidelidade. With this ap-
proach the insurer is able to estimate, without using damage functions, the average
cost incurred by each policy in the portfolio, in the scenario where the event under
study would affect a given part of continental Portugal. Finally, by simulating many
different scenarios and averaging the cost estimates obtained, it is possible to define
a risk map for continental Portugal.
The results obtained indicate that if hurricane Leslie would have affected the areas
of Lisbon or Porto, the company would have incurred in approximately the double
of the costs observed by the company in continental Portugal and due to Leslie.
Instead, if it would have affected the area of Faro, the expected costs would be
of approximately the half. On average, if hurricane Leslie would affect continental
Portugal, the company might expect a 1.14 times higher cost than the one observed
when Leslie affected Figueira da Foz.
The outline of this thesis is a follows: in Chapter 2 are discussed the difficulties that
we can encounter when dealing with climate data and insurance loss data; after-
wards the characteristics of the tropical cyclones that affected continental Portugal
since 1995 and the loss data employed in this work are briefly described; in Chapter
3 the models used to describe the behaviour of hurricane Leslie are presented, in
Chapter 4 3 different scenarios of interest for the insurance company are analyzed

1For more infromation about the Era Interim dataset consult https://www.ecmwf.int/en/

forecasts/datasets/reanalysis-datasets/era-interim
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while in Chapter 5 it is described how to employ the model estimated in Chapter 3
inside an algorithm to estimate the average exposure of each council when an event
like hurricane Leslie affects continental Portugal. Conclusions are drawn in Chapter
6.
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2 Climate Data and Loss Data

A damage function is defined as the mathematical relation between the magnitude
of a natural hazard and the average damage caused on a specific item, such as build-
ings or a person, or portfolio of items [20]. Damage assessment typically relies on
damage functions that translate the magnitude of extreme events to a quantifiable
damage [20]. Damage functions need meteorological data about the magnitude of
the natural hazard under study in order to be estimated.
The high spatial variability of phenomenon like weather-related natural hazards,
makes it really difficult to capture the real magnitude of the hazard in each location
of interest. This means that the correlation between the magnitude of the event and
the damage observed could be weak. In the case of observations coming from mete-
orological stations, the researcher also needs to handle situations like missing values
and possible erroneous observations. There are also situations where meteorological
data do not exist or are not publicly available for the area under study.
In the case of our study, the meteorological observations recorded by the Portuguese
Institute for Sea and Atmosphere (IPMA) relative to those days of interest for this
study, are not easily available and can be obtained only under previous request.
Two sources of climate data which are publicly and easily available, and widely
used in the study of losses produced by meteorological events [20, 6, 21], are the
ERA-Interim and ERA-5 reanalysis2 weather data from the ECMWF (European
Center for Medium-Range Weather Forecasts). We compared the losses incurred
by the property portfolio of the company due to hurricane Leslie, which occurred
on 13 October 2018, with the ERA-5 reanalysis data for the same day. The daily
maximum wind gust and the total daily precipitation are the quantities considered.
The daily maximum wind gust is equal to the maximum value of the hourly 10 meter
wind gust and has been computed for each of the 142 locations showed in Figure
1. The total daily precipitation instead is equal to the sum of the 1-hourly total
precipitation amount and has been computed for each of the 142 locations showed
in Figure 1.
It was observed that the mentioned meteorological variables were not compatible
with the amount of losses registered by the company. Indeed the reanalysis values
shown in Table 1 are too low to provoke the observed amount of losses. Also, [19]
reports that a wind gust of 176 km/h was recorded in Figueira da Foz, and this is
not in line with the values reported in Table 1.
Problems related to the calibration of a damage function can also be related to the
loss data of the insurance company. Calibrating a damage function requires having
enough severe losses due to extreme meteorological events, but the company may
not have these data. This might happen if the company is a new player on the
market or when the natural hazard under study occurs with low frequency.
In our case, the losses incurred by Fidelidade due to extreme meteorological events
were available just from 2012. This is because in that year the company started to
label those claims due to specific weather-related hazards, making them distinguish-
able from the claims due to different reasons.

2For more infromation about the Era 5 dataset consult https://www.ecmwf.int/en/

forecasts/datasets/reanalysis-datasets/era5
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Figure 1: Grid points of the ERA-5 reanalysis dataset

Grid
Point

Number

10m Maximum
Wind Gust (Km/h)

Range of values

Total Daily
Precipitation (mm)

Range of values
1 - 8 49.34 - 60,58 0,71 - 28,40
9 - 20 41.47 - 69.70 0.04 - 25.41
21 - 31 40.06 - 67.23 0.03 - 24.48
32 - 42 41.61 - 69.29 0.02 - 24.62
43 - 52 41.86 - 75.69 0.02 - 27.55
53 - 61 44.26 - 81.56 0.03 - 26.02
62 - 70 39.75 - 84.70 0.28 - 22.99
71 - 80 42.81 - 88.00 0.50 - 24.96
81 - 90 49.15 - 84.82 0.06 - 28.53
91 - 100 53.21 - 80.85 0.00 - 28.89
101 - 110 59.70 - 80.15 0.00 - 28.89
111 - 120 61.52 - 89.99 0.01 - 27.00
121 - 131 60.04 - 85.33 0.00 - 20.49
132 - 142 59.31 - 81.35 0.00 - 10.05

Table 1: Wind and Rain magnitude measures considered and obtained using the
ERA-5 reanalysis values for the 13/10/2018

Finally, even if both meteorological and loss data were available, the meteorological
data relative to the magnitude of the events under analysis should be in line with
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the amount of losses observed. As mentioned, this is not the case with hurricane
Leslie, at least for the climate data available.
Because of all reasons mentioned above, we develop an approach, to estimate the
costs provoked by an hurricane-force tropical cyclone, that does not require meteo-
rological data related to the magnitude of the event. Given the loss data available,
we will use the loss data related to hurricane Leslie.

2.1 Data on Tropical Cyclones

The occurrence of tropical cyclones affecting continental Portugal is documented
since 1995 by The National Oceanic and Atmospheric Administration (NOAA).
NOAA is the U.S federal agency specialized in the study of the tropical cyclones
in the Atlantic and produces every year, since 1995, the Tropical Cyclone Report.
It contains comprehensive information on each tropical cyclone, including synoptic
history and the post-analysis best track (six-hourly positions and intensities). The
tracking charts of those years, since 1995, where at least a tropical cyclone affected
continental Portugal, are presented in Appendix A.
The information provided by the following reports of NOAA [18, 7, 19, 2, 3, 5],
has been reported in Table 2. In that table the names of the events, the dates of
occurrence and the maximum wind velocity registered over continental Portugal for
each of the 6 cyclones, are reported.

Name From - To
Max. wind speed obs.

in cont. Portugal
(km/h)

Jeanne 21/9 - 30/9/1998 56
Vince 8/10 - 11/10/2005 56
Rafael 12/10 - 17/10/2012 56

Joaquin 27/9 - 7/10/2015 65
Leslie 23/9 - 13/10/2018 176
Alpha 17/9 - 19/10/2020 102

Table 2: Tropical cyclones reaching continental Portugal since 1995

It is interesting to notice that all these 6 events happened between September and
October. Indeed tropical cyclones develop over tropical waters and the most active
period of the year where the majority of tropical storms and hurricanes develop
worldwide is between August and October, as shown in Table 3.
From Table 2 we also notice that not all tropical cyclones reached continental Por-
tugal with extreme wind velocities. In fact, tropical cyclones include depressions,
storms and hurricanes. The depressions have maximum sustained surface winds of
61 km/h, the storms between 62 and 119 km/h and the hurricanes of more than 119
km/h. This means that only some types of tropical cyclones can represent a serious
risk for the properties insured by the company.
As already mentioned, the company loss data regarding the events in Table 2 prior
to 2012 are not available. Anyway, for both tropical cyclone Jeanne and Vince, as
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Month Total Tropical Storms Total Hurricanes
January 3 2
February 1 0

March 1 1
April 2 0
May 22 4
June 92 33
July 120 55

August 389 245
September 584 404
October 341 205

November 91 59
December 17 6

Table 3: Total number of tropical cyclones registered worldwide by month
(1851-2017) [17]

reported respectively by [18] and [7], there were no known casualties or damages re-
ported. For the other 4 events, the total losses incurred by the company are reported
in Table 4.

Event Total cost Total claims
Rafael < 0,053x < 0,026y

Joaquin < 0,104x < 0,079y
Leslie > x > y
Alpha ≈ 0,049x ≈ 0,059y

Table 4: Total costs and claims incurred by Fidelidade’s property portfolio in
Portugal and due to tropical cyclones since 2012, relative to the total cost (x) and

total number of claims (y) due to hurricane Leslie

Among the 6 events that affected continental Portugal since 1995, hurricane Leslie
was by far the strongest in intensity, as reported in Table 2, and caused the highest
total costs to the company, as we can see from Table 4. In fact, just before making
its landfall in Figueira da Foz, Leslie was labelled as hurricane. It maintained hur-
ricane force winds also when it made its landfall over Figueira da Foz, as reported
by [19].
Since the company is interested in estimating the average costs provoked by a
hurricane-force tropical cyclone over the territory of continental Portugal, only the
loss data relative to hurricane Leslie has been used. The results in this work are ob-
tained analyzing the property portfolio of the company over the area of continental
Portugal for the year of 2018.
We exclude from our analysis the records of the portfolio that don’t belong to conti-
nental Portugal or for which we don’t know the council they belong to. The records
not considered represent the 5,22% of the total portfolio of the company in Portu-
gal. The property loss dataset that will be used in the analysis consists of more
than 1 million policies. For each policy, information about the council of belonging,
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the cost incurred by the company if the policy incurred in a claim, the structural
characteristics of the property and many more are available (consult Appendix B
for the list of the variables considered).
The variable cost, in the case of records with claim incurred, represents the sum of
all the expenses that the company had to face for that policy, from the payment of
the sum covered by the policy to all the other expenses related to the administration
of the claim.
To each property in the dataset, the coordinates of the main city of the council to
which the property belongs, are assigned. This assumption, other than favouring
the computing speed in the algorithm introduced in Chapter 5, is reasonable since
we can assume that the company has most of its exposure, in each council, around
the main city.

13



3 Using Actuarial Loss data to model the storm

The purpose of the models discussed in [21, 6, 20] is to find the damage functions
that best fit the observed damage in the area under study. But, as already said, those
models require both reliable past meteorological observations and enough insurance
losses due to extreme-weather events, in order to calibrate the damage functions.
The convenience of those approaches is that with damage functions the researcher
can decide the magnitude of the meteorological event he wants to simulate. For
example, using damage functions one can arbitrarily choose the speed of the surface
wind over different locations of the area under study, and obtain estimates of the
relative damage. Subsequently the insurance company, from the estimated damage,
estimates the cost for the portfolio.
In our study, using the damage function approach was not possible. As already
pointed out in the previous chapter, the climate data from the IPMA’s meteorologi-
cal stations can be obtained only under previous request, while the ERA-5 reanalysis
data on wind and rain amounts for the day of 13 October 2018 were not compatible
with the observed size of the losses.
The approach used in this work permits to obtain estimates of the expected cost
due to an extreme meteorological event affecting a certain region of interest, but
does not require the use of damage functions. Because of this, our method models
directly the costs incurred by the company using the loss data. We model the costs
provoked by a single hazard with a huge impact, like hurricane Leslie, and then
apply the model calibrated on that specific event to other regions. In this way, we
estimate the costs that the same event would have produced if it would have affected
another area.
Since this method does not require any meteorological data, is possible to apply it
when the climate data are not available or are not reliable, as discussed in Chapter
2.
To obtain the final model for the expected costs, first we compute the trajectory
followed by the cyclone after its landfall. By trajectory we refer to the imaginary
line around which the observed claims are distributed. Thus the trajectory is the
line that passes through the councils affected by the event, and it is obtained using
the least squares method.
It is important to notice that, in those cases where the observed losses do not dis-
tribute around an imaginary line, a clear path followed by the storm could be difficult
to infer. For this reason, this approach is recommended for events that produce lo-
calized damages, where the term ”localized” is relative to the size of the area under
study. After having obtained the path followed by the event, the claim frequency
and the average cost of the policies affected by the hazard are modelled.
With this approach we are able to estimate the expected costs incurred by the in-
surer in the scenarios where an event of the same type does its landfall in a different
point and with a different angle. Also, by simulating many different scenarios and
averaging their cost estimates, we are able to define the areas and the classes of
policies which have the higher risk, in terms of expected costs, for the company.

14



3.1 Modeling the storm path

Knowing the distribution of the claims and costs provoked by the event at the level of
a unitary region allows a better understanding of the behaviour of the event over the
area under analysis. In the case of Portugal, we decide to analyze these quantities
at the council level. Two measures are introduced, the cost ratio by council, here
denoted by CRi and defined in Equation (1), and the ratio of affected buildings [13],
here denoted by RABi and defined in Equation (2). For both the cost ratio and the
ratio of affected buildings the subscript i refers to the council.

CRi =
Loss in i

Total Amount Insured in i
(1)

RABi =
Claims in i

Total Number of Properties Insured in i
(2)

The CR allows to clearly define the cost level incurred in the different councils.
For example, 1 million AC of total cost in a relatively small council (in terms of
exposure) like Pinhel represents a higher level of destruction rather than 1 million AC
in the council of Lisbon. Moreover, using a relative measure, minimizes the inflation
problem (that is the rise of price levels), making comparable the costs incurred by
the company in different epochs. The RAB represents the relative frequency of
claims in each council, and also in this case it has the advantage of being a measure
comparable in different epochs, when, for instance, the exposure of the company in
a certain council has changed. Figure 2 displays the observed CR by council, due to
hurricane Leslie, over the territory of continental Portugal. In Figure 2 the CRs of
the councils are merged in 8 groups, which have been defined based on the deciles
of the CR distribution.
From Figure 2 we can infer the path of hurricane Leslie through the north east of
Portugal, and its weakening along this path, reflected by the lower CRs observed as
the hurricane moved away from the point of landfall. It is also clear from Figure 2
that the event affected just the Central and North regions, while it did not impact
the councils in the Alentejo and the Algarve regions.
It is also clear from Figure 2 that the most affected councils have been the ones
facing the coast. Table 5 reports the CR in the 5 most impacted councils. All of
them are located in the center of the country and close to the cost.

Council Region CR
Montemor o Velho Center 0,0047268

Soure Center 0,0033196
Figueira da Foz Center 0,0032859

Cantanhede Center 0,0014495
Pombal Center 0,0014305

Table 5: CR of the 5 councils in continental Portugal most affected by hurricane
Leslie

To estimate the trajectory followed by the hurricane, we plotted in Figure 3 the
coordinates of the main cities of those councils which reported damages due to

15



Figure 2: Distribution of the observed CRs due to hurricane Leslie over continental
Portugal

hurricane Leslie. We consider the main city of each council as representative of the
location of most of the claims in the council, since it’s reasonable to assume that
the company has most of its exposure around the main city of the council.

Figure 3: Coordinates of the main cities of those councils that reported at least
one claim due to hurricane Leslie
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The least square method constrained to the condition in Equation (3), has been used
to obtain the red line showed in Figure 4, which represents the trajectory of the hur-
ricane. The constraint guarantees that the trajectory passes through the council of
Figueira da Foz. The choice of imposing the trajectory passing through Figueira da
Foz is based on [19], which reports that hurricane Leslie made its landfall in this
council. Figueira da Foz is also where the highest wind gust has been registered the
13 October 2018 [19]. Based on this, we assume that the main city of Figueira da
Foz council, which is Figueira da Foz, is the landfall point of hurricane Leslie.

Minimize
n∑
i=1

(LATITUDEi − (α + βLONGITUDEi))
2

constrained by:

α = LATITUDEFig.daFoz − βLONGITUDEFig.daFoz (3)

Figure 4: Coordinates of the main cities of those councils that reported at least
one claim due to hurricane Leslie and inferred trajectory of the hurricane

The part of the trajectory line going from Figueira da Foz until the furthest coun-
cil in the north-east of the country that reported claims, which is Bragança, has a
length of approximately 260 km. This means that the hurricane caused losses to the
company for at least 260 km travelling inland.
We do not have information available about the damages caused outside the bor-
ders of continental Portugal, but, for prudence reasons, we decide to assume that
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the event could produce damages for 300 km before dissipating. Because of this,
in the simulations performed in Chapters 4 and 5, the trajectory length is always
assumed equal to 300 km.
After having obtained the trajectory, two variables, called D1 and D2, are com-
puted. D1 represents the distance of the object insured from the point where the
storm makes its landfall (also called “entrance point”). Recall that in the case of
hurricane Leslie, the entrance point is Figueira da Foz. D2 represents the perpen-
dicular distance of the object insured from the trajectory.
The computation of the variable D1 is justified by the decrease of the observed CR
by council along the trajectory line, starting from the landfall point, as showed in
Figure 2. The computation of the variable D2 is instead justified by the fact that
the councils affected are closely distributed around the trajectory line, as showed in
Figure 4.
At this point, we would like to have a descriptive model that permits us to un-
derstand how the variables D1 and D2 relate to the observed RAB and CR of the
councils. A regression tree model is able to set simple rules to describe the observed
RAB and CR for different values of D1 and D2. The tree-based methods consider
a partition of the feature space into a set of rectangles, and then fit a simple model
(like a constant) in each one [9].
We use the CART method for tree-based regression and classification which we de-
scribe in the following [9]. Let us consider a regression problem with continuous
response variable Y and inputs X1 and X2, each taking values in the unit interval.
We first split the space into two regions, and model the response by the mean of
Y in each region. We choose the variable and split-point to achieve the best fit.
Then one, or both, of these regions are split into two more regions. This process is
continued, until some stopping rule is applied.

Figure 5: Example of a partition
of a two-dimensional feature
space performed by CART

method
Figure 6: Tree corresponding to

the partition in Figure 5

For example, in Figure 5, we first split the region at X1 = t1. Then the region X1 ≤
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t1 is split at X2 = t2 and the region X1 > t1 is split at X1 = t3. Finally, the region
X1 > t3 is split at X2 = t4. The result of this process is a partition of the space of
(X1,X2) into the five regions R1, R2, . . . , R5 shown in Figure 5. This partition of
the space can also be represented through a tree graph, as in Figure 6.
The corresponding regression model predicts Y with a constant cm in region Rm,
that is:

Y = f̂(X1,X2) =
5∑

m=1

cmI{(X1,X2) ∈ Rm} (4)

Let us see now how to grow a regression tree. The purpose is that the algorithm
automatically provides the splitting variables and split points, and also what topol-
ogy (shape) the tree should have. Consider p inputs and a response, for each of N
observations: that is, (xi,yi) for i = 1,2,....,N, with xi = (xi1,xi2,....,xip). Suppose
first that we have a partition into M regions R1, R2, . . . , RM , and we model the
response as a constant cm in each region:

f(x) =
M∑
m=1

cmI{x ∈ Rm} (5)

If we adopt as minimization criterion the sum of squares
∑

(yi − f(xi))
2, it is easy

to see that the best ĉm is just the average of yi in region Rm:

ĉm = ave(yi|xi ∈ Rm) (6)

To find the best binary partition in terms of minimizing the sum of squares, we
start by considering all the data. Then, we consider a splitting variable, j, and split
point, s, and define the pair of half-planes:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} (7)

Then, we seek the splitting variable j and split point s that solve

min
j,s

= [min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2] (8)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)) (9)

For each splitting variable j, the determination of the split point s can be done very
quickly and, hence, by scanning through all of the inputs, the determination of the
best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting regions and
repeat the same splitting process on each of the two regions, and so on.
The question that arises is: how large should we grow the tree?. Clearly a very
large tree might overfit the data, while a small tree might not capture the important
structure. The preferred strategy to obtain the optimal tree size is to grow a large
tree T0, stopping the splitting process only when some minimum node size (say 5)
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is reached. A node is comprised by the elements of Y which belong to the subset of
the feature space defined by the corresponding splits of the input variables. Then
this large tree is pruned using cost-complexity pruning, which we describe in the
following.
We define a subtree T ⊂ T0 to be any tree that can be obtained by pruning T0, that
is by collapsing any number of its internal (non-terminal) nodes. We index terminal
nodes by m, with node m representing region Rm. Let |T | denote the number of
terminal nodes in T . Letting

Nm = #{xi ∈ Rm}, ĉm =
1

Nm

∑
xi∈Rm

yi, Qm(T ) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2 (10)

we define the cost complexity criterion

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T | (11)

The idea is to find, for each α, the subtree Tα ⊆ T0 to minimize Cα(T ). If the target
is a classification outcome taking values 1, 2, . . . , K, the only changes needed in the
tree algorithm pertain to the criteria for splitting nodes and pruning the tree. For
the regression we consider the squared-error node impurity measure Qm(T ) defined
in Equation (10). However this is not suitable for classification. For this reason, let
us consider, in a node m representing a region Rm with Nm observations, the next
quantity

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k), (12)

which represents the proportion of class k observations in node m. We classify the
observations in node m to class k(m) = arg maxk p̂mk, which is the class that has
most observations in node m.
A measure of Qm(T ) node impurity used in the CART algorithm is the Gini index:∑

k 6=k′
p̂mkp̂mk′ (13)

Figures 7 and 8 report the two regression trees obtained for, respectively, the RAB
and the CR of the affected councils (the ones which reported at least 1 claim) against
the variables D1 and D2. To obtain both trees, the complexity parameter α has been
set to -1, to ensure that the trees are fully grown, and 20 has been set as the smallest
number of observations that are allowed in a terminal node.
In this case, the CART algorithm has divided the feature space in 5 regions, and the
values predicted for each region, together with the percentage of councils belonging
to that region, are reported in the blue squares of Figures 7 and 8 which represent
the final nodes of the trees.
As already said, the purpose of these regression trees is not to predict, but to de-
scribe the effect of the variables D1 and D2 on the RAB and CR observed.
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Figure 7: Tree corresponding to the partition of the feature space defined by the
variables D1 and D2 performed by the CART method applied to the observed

RAB of the councils hit by hurricane Leslie

The terminal nodes of the two regression trees in Figures 7 and 8, are obtained by
partitioning the feature space defined by the two variables D1 and D2 as described
in the CART algorithm. We use the splitting rules employed by that algorithm,
that are the conditions by which the intermediate nodes are split, to build two fac-
tor variables called intensity and intensity2 which are described in Appendix B. The
splitting rules are the numerical conditions displayed in Figures 7 and 8. In this way
intensity and intensity2 capture the combined effect of D1 and D2 on the different
magnitudes of the CR and the RAB observed. These variables will be used later
in this chapter and in Chapter 4 as predictors in the models and also as a tool to
analyze the results of the simulated scenarios.

3.2 Modelling the claims and costs of the affected councils

As Figure 2 shows, hurricane Leslie affected mainly the central and north part of
the country. In order to obtain useful information about the characteristics of those
policies which reported a claim when affected by the hurricane, we consider only
those councils which have actually been affected.
The first model we introduce, has thus the purpose to predict, based on the tra-
jectory of the hurricane, which councils will be affected and which will not. For
this task, variables D1 and D2 can be used as input variables to predict a binary
outcome, 1 or 0, if, respectively, the council is affected or not.
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Figure 8: Tree corresponding to the partition of the feature space defined by the
variables D1 and D2 performed by the CART method applied to the observed CR

of the councils hit by hurricane Leslie

Since the purpose of the model is to predict rather than explain, a machine learning
approach is preferred over a regression based approach. In this work, a Random
Forest model for classification is used. After having introduced the concept of re-
gression and classification tree algorithm, let us introduce the concept of bagging.
Suppose we fit a model to our training data, which is a sample of the data that we
use to fit our model. The training data are Z = {(x1, y1), (x2, y2), ......, (xN , yN)} and
we use them to obtain the prediction f̂(x) at input x. The bootstrap aggregation,
also called bagging, averages this prediction over a collection of bootstrap samples.
A bootstrap sample is a sample of the same size of the training data (also called
training set) obtained by sampling with replacement from the training data. By
the bootstrap aggregation we can thereby reduce the variance of the prediction, as
shown in [9]. For each bootstrap sample Z∗b, b = 1, 2, . . . , B, we fit our model
obtaining the prediction f̂ ∗b(x). The bagging estimate is defined by:

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x) (14)

Random forests [4] is a substantial modification of bagging that builds a large col-
lection of de-correlated trees, and then averages them. Algorithm 1 shows how the
Random Forest work.
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Algorithm 1 Random Forest for Regression or Classification.

1. For b = 1 to B:
(a) Draw a bootstrap sample Z∗ of size N from the training data.
(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeat-
ing the following steps for each terminal node of the tree, until the minimum node
size Nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1

To make a prediction at a new point x:

Regression: f̂Brf (x) = 1
B

∑B
b=1 Tb(x)

Classification: Let Ĉb(x) be the class prediction of the bth random-forest tree.
Then ĈB

rf (x) = majority vote {Ĉb(x}B1

3.2.1 Modelling the affected councils

The dataset we use for estimating which councils will be affected, is comprised by the
278 councils of continental Portugal. For each council three features are reported:
the distance from the landfall point D1, the distance from the trajectory D2, and the
number 1 or 0 respectively if the council has been affected or not by the hurricane.
It is important to highlight that among the 278 councils in continental Portugal, the
company had losses caused by Leslie in 136 of them. This means that our dataset
is not imbalanced and so we don’t have to be concerned about this affecting the
estimates of the model. Since the size of this dataset is considered to be relatively
small, to evaluate the predictive ability of the model, a 10-fold cross validation
method is employed.
In a k-fold cross-validation, the original sample is randomly partitioned into k equal
size subsamples. Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k-1 subsamples are used as training
data. The cross-validation process is then repeated k times (the folds), with each of
the k subsamples used exactly once as the validation data. In this experiment, to
produce a final estimate of the performance, the mean and variance of the sensitivity
3 (15) and specificity 4 (16) indexes have been computed. The results are reported
in Table 6.

Sensitivity =
Number of True Positives

Number of True Positives + Number of False Negatives
(15)

3The sensitivity is also denoted true positive rate
4The specificity is also denoted true negative rate
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Specificity =
Number of True Negatives

Number of True Negatives + Number of False Positives
(16)

Random Forest
E(Sensitivity) 0,8593

Var(Sensitivity) 0,0049
E(Specificity) 0,8121

Var(Specificity) 0,0139

Table 6: Mean and variance of the sensitivity and specificity indexes computed for
the Random Forest model on 10 different folds

The performance of the model is good, we obtain an average of 86% of true positive
rate and an average of 81% of true negative rate. Later in this work, we will refer
to the the Random Forest model calibrated on the dataset comprised by the 278
records as ”RF Model”.

3.2.2 Modelling the claim frequency

We want to model now the average claim frequency for those policies that are af-
fected by hurricane Leslie. For calibrating purposes, we take into consideration only
the policies which belong to the councils affected. Calibrating the model on the
whole portfolio would lead to biased estimates. For instance, let us consider that
the policies regarding properties in the area affected by hurricane Leslie, are mainly
single-family houses, while in the non-affected parts of the country the majority of
the policies correspond to apartments. Then, it is probable that our model would
assign to the single-family houses a higher probability of having a claim than to the
apartments, but only because the latter category has not being subjected to the
magnitude of the meteorological event. For this reason it is important to calibrate
the model considering only the area actually affected by the hazard.
Since the company is interested in having a functional relation between the predicted
probabilities of claims and the characteristics of the policies, a regression based ap-
proach is employed. The logistic regression [10] is used to model the probability
of the binary event, i.e 0 = claim does not happen or 1 = claim happens. Two
logistic regression models, defined in Equations (17) and (18), have been considered
as possible candidates. The most significant explanatory variables, from a statistical
view point, that are included in the models are characteristics related to the insured
property itself, like for instance the type of property and the year of construction.
Characteristics related to the location of the property, like the altitude and the terri-
torial type 5 have also been included. For a complete description of all the variables
employed refer to Appendix B.
The main difference between the two regression models (17) and (18), is how the

5for a detailed description of the variables Forest Area, Bush Area and Urban Area please refer
to Appendix B
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effect of D1 and D2 on the independent variable is expressed. In regression (17),
the factor variable intensity is used. While in regression (18), the variables D1 and
D2 are included in the model as numeric variables and an interaction term is also
considered.

log(
p

1− p
) = β0 + β1Type of Property + β2Year of Construction

+ β3Framing of the Housing + β4Type of Housing + β5Altitude

+ β6Type of Floor + β7Forest Area + β8Bush Area + β9intensity (17)

log(
p

1− p
) = β0 + β1Type of Property + β2Year of Construction

+ β3Framing of the Housing + β4Type of Housing + β5Altitude

+ β6Type of Floor + β7Forest Area + β8Bush Area + β9D1 + β10D2 + β11D1 ∗ D2

(18)

To validate the adjustment of the two models, the 10-fold cross validation method
is performed for each model using the dataset composed by the policies that be-
long to the councils affected by hurricane Leslie. The dataset is composed by more
than 800.000 policies and, in order to compare the performance of the two regres-
sions (17) and (18), we first decided to transform the estimated probabilities into
outcomes 0 or 1. In this case 2 methods have been compared. The first, that we
will call Method 1, consists in setting a cutoff value in such way that the num-
ber of estimated claims in the training set is as close as possible to the number of
observed claims. The second method, called Method 2, consists in sampling out-
comes 0 or 1 for each record, from a Bernoulli distribution using the probabilities
estimated through the logistic regression. The analysis of the two models and the
two cut-off methods, is performed on the test set by assessing two metrics: i) the
weighted correlation (W.Corr) between the predicted and the observed number of
claims in each risk class, weighted by the number of unit risks belonging to the
class, and ii) the root mean squared error (RMSE) between predicted and observed
values in each risk class. The risk classes are composed by the intersection of the
levels of the explanatory variables which models (17) and (18) have in common.
The variables are: Type of Property, Year of Construction, Framing of the Housing,
Type of the Housing, Altitude, Type of Floor, Forest Area and Bush Area. Table 7
gives an example of how a risk class is made.

Type of
Prop.

Year of
Constr.

.......
Unit
Risks

Observe Predict

Content ]1992;2002] ..... 4783 120 101

Table 7: Example of a risk class

The models are evaluated based on their ability to predict the number of claims for
a certain risk class, and not on their ability to predict if an individual policy will
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have a claim or not. In an insurance context, we are interested in predicting the
average claim frequency for a class rather than for an individual policy.
The results obtained from the 10-fold cross validations applied to the combinations
of the two different models and methods are reported in Table 8.

Reg.(17) M. 1 Reg.(17) M. 2 Reg.(18) M. 1 Reg.(18) M. 2
E(W.Corr) 0,6478 0,8483 0,7162 0,8703

SD(W.Corr) 0,0383 0,0260 0,0228 0,0226
E(RMSE) 4,8790 1,1211 3,0240 1,0707

SD(RMSE) 0,1873 0,0815 0,1396 0,0613

Table 8: Mean and standard deviation of the weighted correlation and RMSE
indexes of the regressions in Equations (17) and (18) and cut-off methods (M.) 1

and 2 on 10 different folds

In addition, in order to offer a visual comparison of the two methods and models
to the reader, we randomly divided the dataset into training set and test set, in
a proportion of 80% and 20%. Figures 9 to 12, display the predicted versus the
observed values in the test set for the risk classes obtained using each of the two
cut-off methods and models described before.

Figure 9: Number of claims predicted by regression in Equation (17) and cut-off
Method 1 for different risk classes versus the observed values

From a visual inspection it is clear that the cut-off Method 2 leads to better pre-
dictions than the cut-off Method 1. The coefficient of correlation and the RMSE
among the risk classes are reported in Table 8, for the 2 regression models and the
2 cut-off methods.
Results in Table 8 confirm that for both regression models in Equations (17) and
(18), Method 2 performs better than Method 1. However the model in Equation
(18) with cut-off Method 2 has a slightly higher weighted coefficient of correlation
and slightly lower RMSE than the model in (17). The levels of the variable intensity
indicate the extent of the areas over which the hurricane has a certain probability of
causing a claim. This information is useful for the analysis that is performed later
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Figure 10: Number of claims predicted by regression in Equation (17) and cut-off
Method 2 for different risk classes versus the observed values

Figure 11: Number of claims predicted by regression in Equation (18) and cut-off
Method 1 for different risk classes versus the observed values

in this work. Also, the effect of the variables D1 and D2, in regression model (17),
is captured in just 1 factor variable, instead of 3 numeric variables. In regression
model (18), the interaction between the variables D1 and D2 is represented with the
product of both variables. Although the interaction term is statistically significant,
its interpretation is not immediate. For all the previous reasons, in the following of
this work, we consider regression model (17) and the cut-off Method 2 to predict
the claim frequency.
Now, to build the final model to be employed in the simulations of Chapters 4 and
5, we calibrate regression (17) on the whole dataset, since the more data we use,
the more likely it is to generalise well. Table 9 refers to regression (17) calibrated
on the whole dataset of policies in those councils affected by hurricane Leslie.
The coefficients estimated for regression (17) are all statistically significant at a

27



Figure 12: Number of claims predicted by regression in Equation (18) and cut-off
Method 2 for different risk classes versus the observed values

Coefficient Estimate
Std.

Error
z

value
p

value
Signif.
code

(Intercept) -2.03009 0.04181 -48.553 < 2e-16 ***
T.o.P Content -2.35047 0.04111 -57.180 < 2e-16 ***
Y.o.C LEV2 0.09722 0.03597 2.703 0.006875 **
Y.o.C LEV3 0.13160 0.03513 3.746 0.000180 ***
Y.o.C LEV4 0.26766 0.03445 7.771 7.82e-15 ***

Framing semi-det -0.43324 0.03462 -12.514 < 2e-16 ***
Framing other -0.10034 0.04487 -2.236 0.025326 *

Type single-fam 0.67367 0.03321 20.285 < 2e-16 ***
Type other 0.34408 0.05098 6.749 1.49e-11 ***

Altitude LEV2 -0.34458 0.03101 -11.112 < 2e-16 ***
Altitude LEV3 -0.61717 0.05267 -11.719 < 2e-16 ***
intensity LEV2 -2.19481 0.04816 -45.577 < 2e-16 ***
intensity LEV3 -3.37780 0.07508 -44.992 < 2e-16 ***
intensity LEV4 -4.33357 0.11695 -37.055 < 2e-16 ***
intensity LEV5 -5.29454 0.06855 -77.241 < 2e-16 ***

T.o.F LEV2 0.25213 0.07144 3.529 0.000416 ***
T.o.F ND 0.18343 0.03350 5.475 4.38e-08 ***

Bush Area LEV2 -0.28077 0.02480 -11.324 < 2e-16 ***
Forest Area LEV2 -0.55605 0.02629 -21.152 < 2e-16 ***

Table 9: Summary of the coefficients estimated for regression (17)

significance level of 0.05 6. We can analyze the marginal effect of any explanatory
variable of regression (17) on the odds of having a claim, by simply using the formula
defined in Equation (19). If we consider a logistic regression model with independent
variable Y and a vector of explanatory variables X, then the marginal effect of

6for the significance codes, refer to Table 22 in Appendix B
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the categorical variable Xk on the odds(Y = 1|X,Xk = 1) against the odds(Y =
1|X,Xk = 0) is:

odds(Y = 1|X,Xk = 1)

odds(Y = 1|X,Xk = 0)
= eβk (19)

By applying Equation (19) to the results in Table 9, we can see that the odds of
having a claim are 96% higher for the single-family houses than for the apartments.
Another interesting result is that the odds of having a claim are almost 90% lower
for the policies that are located in the area defined by the second level of the variable
intensity, with respect to those located at level one. This means that the proper-
ties located at a distance inferior to 54 km from the landfall point of the hurricane
have 90% higher odds of having a claim compared to those at a distance comprised
between 54 and 78 km. Also the coefficients estimated for the levels of the variable
intensity, tend to decrease from the first level to the fifth meaning that the propen-
sity of the hurricane to cause claims decreases by moving away from the landfall
point and the center of the trajectory.

3.2.3 Modelling the claim severity

Next, we aim at modelling the average cost for a claim. The number of policies in
continental Portugal that incurred in a claim due to hurricane Leslie, and thus rep-
resented a cost for the company, was approximately the 1 % of the portfolio of the
company in the councils affected by the event. If we consider the cost distribution
relative to the whole portfolio over the affected councils, the distribution is highly
right skewed, with most of its mass concentrated in 0. If instead we consider the
cost distribution relative to those policies which incurred in a claim, the distribution
is also highly right skewed, but there is no probability mass concentrated in 0. In
the latter case, we were able to log-transform the cost distribution and observed
that the log-cost distribution was well-approximated by a normal distribution. This
permits us to utilize a multiple linear regression model [10] to predict the average
log-cost. Two multiple linear regression models, defined in Equations (20) and (21),
have been considered. The explanatory variables employed in both models are char-
acteristics of the property insured, like the type of property, the amount of capital
insured and the type of housing, as well as characteristics of the area where the
property is located. For the complete description of the variables refer to Appendix
B.
The main difference between the two multiple linear regression models considered
is how the effect of the variables D1 and D2 is included. Similarly to what was
done in regression models (17) and (18) for the claim frequency, in the regression
model (20) the factor variable intensity2 is used, while in the regression model (21),
the variables D1 and D2 are included in the model as numeric variables, and an
interaction term is also added.
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log(Cost | Cost > 0) = β0 + β1Type of Property + β2Capital Insured

+ β3Type of Housing + β4Urban Area + β5intensity2 (20)

log(Cost | Cost > 0) = β0 + β1Type of Property + β2Capital Insured

+ β3Type of Housing + β4Urban Area + β5D1 + β6D2 + β7D1 ∗ D2 (21)

Since the dataset comprised by the policies which had a claim only has 8.487 records,
we evaluate the prediction ability of the two models (20) and (21) on a 10-fold cross
validation. The performance of the two models is evaluated assessing two metrics:
the weighted correlation between the total cost predicted and the one observed in
each risk class, weighted by the number of unit risks belonging to the class, and the
RMSE between predicted and observed values in each risk class. The risk classes are
formed by the intersection of the levels of the explanatory variables which models
(20) and (21) have in common. The variables are: Type of Property, Capital Insured,
Type of the Housing and Urban Area. Also in this case we evaluate the prediction
capacity of the models for a risk class, instead of doing it for the expected cost
of an individual policy. Modelling the logarithm of the cost poses the problem
of transforming the estimated expected log-cost back to expected cost. To do so,
the Duan’s smearing factor (DSmear) [10] is estimated, using the residuals of the
regression, and employed, as shown in Equation (22), to estimate the expected cost.

E(y|x) = eE(log(y|x))DSmear

(22)

The mean and standard deviation of the weighted coefficient of correlation, and the
RMSE for the total cost predicted versus the one observed for each risk class, are
reported in Table 10 for the 2 considered models.

Regression (20) Regression (21)
E(Corr) 0,9841 0,9845

SD(Corr) 0,0173 0,0173
E(RMSE) 10370,34 10231,79

SD(RMSE) 6597,22 6584,81

Table 10: Mean and standard deviation of the weighted coefficient of correlation
and RMSE indexes computed for the regressions in Equations (20) and (21) on 10

different folds

The weighted coefficient of correlation of regression (21) is 0,04% higher than that
of regression (20), while the average RMSE is 1,34% lower than regression (20).
Regression (21) performs slightly better but regression (20) has the advantage of
being easier to interpret than regression (21). The levels of the variable intensity2
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indicate the extent of the areas over which the hurricane has the power of causing
higher costs, and this information is useful for the analysis that is made later on.
Also, the effect of the variables D1 and D2, in regression (20), is captured in only 1
factor variable instead of 3 numeric variables, like in regression (21). In regression
(21), the interaction between the variables D1 and D2 is represented by the prod-
uct of both variables. Although the interaction term is statistically significant, its
interpretation is less intuitive. Hence, regression (20) is the model we use to predict
the expected cost incurred by a policy, given that the policy has a claim.
Now, to build the final model, we calibrate regression (20) on the dataset comprised
by those policies which reported a claim and represented a cost for the company.
The estimated coefficients are reported in Table 11.

Coefficients Estimate
Std.

Error
z

value
p

value
signif.
code

(Intercept) 5.94432 0.03175 187.214 < 2e-16 ***
T.o.P Content -0.43345 0.04606 -9.411 < 2e-16 ***
Cap. Ins LEV2 0.12030 0.03327 3.616 0.000301 ***
Cap. Ins LEV3 0.30771 0.03441 8.942 < 2e-16 ***
Cap. Ins LEV4 0.53860 0.03487 15.447 < 2e-16 ***
Type single-fam 0.67329 0.02694 24.993 < 2e-16 ***

Type other 0.48910 0.03829 12.774 < 2e-16 ***
intensity LEV2 -0.25639 0.04639 -5.527 3.35e-08 ***
intensity LEV3 -0.17290 0.07146 -2.419 0.015564 *
intensity LEV4 -0.59452 0.13755 -4.322 1.56e-05 ***
intensity LEV5 -0.40922 0.06332 -6.463 1.08e-10 ***

Urban Area LEV2 -0.20916 0.03763 -5.559 2.79e-08 ***
Urban Area LEV3 -0.35671 0.02711 -13.159 < 2e-16 ***

Table 11: Summary of the coefficients estimated for regression (20)

We can compute the percentual change in the cost due to the marginal effect of
any explanatory variable by using the expression in (23). If we consider a multiple
linear regression model with independent variable log(Y ) and a vector of explanatory
variables X, then the percentage change on Y due to the factorial variable xk is:

100(eβk − 1) (23)

By applying the expression in (23) to the results in Table 11, it is interesting to see
that the average cost for a single-family home is 96% higher than for an apartment.
Another interesting result is that the average cost decreases by 23% between the
policies located in the area defined by the first level of the variable intensity2 and
the ones located in the area defined by the second level of the same variable. This
means that the properties located at a distance inferior to 54 km from the landfall
point of the hurricane have, on average, 23% higher costs compared to the ones
located at a distance comprised between 54 and 78 km. From Table 11 we can also
see how the average cost tends to decrease as the concentration in the council of
urban areas increases.
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3.2.4 Modelling the claims and their costs

Finally we aim to evaluate the prediction ability of regressions (17) and (20) com-
bined. To evaluate the models, the dataset relative to the portfolio of the company in
the councils affected by hurricane Leslie is divided in training and test sets. The eval-
uation of the performance of the two models on the test set, for the number of claims
and their severity, is again performed by assessing two metrics: the weighted corre-
lation between the predicted and observed total costs, in each risk class, weighted
by the number of unit risks belonging to the class, and the RMSE between predicted
and observed values in the risk classes. The risk classes in the test set are composed
by the intersection of the levels of the explanatory variables of the regression models
(17) and (20) which are: Type of Property, Year of Construction, Capital Insured,
Framing of the Housing, Type of the Housing, Altitude, Type of Floor, Forest Area,
Bush Area, Urban Area, intensity and intensity2. The dataset is divided in training
set and test set in a proportion of 60% and 40%, in order avoid having too few
policies belonging to each risk class in the test set. We calibrate regression (17)
on the training set and then regression (20) on the subset of the training set com-
posed by all the policies with a claim and that represented a positive cost for the
company. After having estimated the two models, we apply regression (17) and the
cut-off Method 2 to the test set, to predict which policies will have a claim and, for
each of these policies, we apply regression (20) to predict the average cost. Figure
13 displays the predicted versus observed cost for each risk class, while Table 12
reports the weighted coefficient of correlation between predicted and observed costs
and also the RMSE.

Figure 13: Costs predicted by the regressions in Equation (17) and (20) for
different risk classes versus the observed values

The performance of the 2 regressions combined is good, with a high correlation
between the predicted and observed values for each risk class.
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Model
Weighted

Correlation
RMSE

Regressions (17) and (20) 0,76 3894,91

Table 12: Weighted coefficient of correlation and RMSE indexes computed for the
total costs predicted by the regressions in Equation (17) and (20) for different risk

classes

4 Case scenarios in continental Portugal

In this chapter we estimate the expected cost for the company in the simulated
scenarios where, a hurricane-force storm like Leslie, affects continental Portugal but
in a different part of the country and with a different trajectory. These simulated
scenarios are used afterwards to build a risk map for events of this type in continen-
tal Portugal.
First, we have to trace the trajectory of the storm. Since we assume that Leslie
caused damages inland along 300 km, the length of the trajectory over land is fixed
at 300 km. The user can choose the angle of the trajectory and the landfall point
over continental Portugal. The initial point of the trajectory of the hurricanes will
always be set in those councils that have a direct exposition to the ocean. This
assumption is due to the fact that, as shown in Appendix A, tropical cyclones turn
northeastward when moving from the tropics to the midlatitudes. This implies that
all the “coast councils” that go from Vila Real de Santo Antonio in the district of
Faro, along the south and west coast of Portugal, until the council of Caminha,
in the district of Viana do Castelo, are possible points of entrance for the simu-
lated hurricane. It is also important to remark that, for the sake of computational
simplicity, we assume that the exact point where the hurricane landfalls has the
coordinates of the main city of the council itself. Also, for the same reason, the
coordinates of each policy are assumed to be the coordinates of the main city of the
council where the policy belongs to. This implies that each policy belonging to a
certain council has the same values of D1 and D2. Once the trajectory is drawn,
the variables D1 and D2, and subsequently intensity and intensity2, are obtained
for each policy. The RF Model is firstly employed to simulate which councils are
affected by the hurricane, based on the values of the variables D1 and D2. After the
affected councils have been selected, regression (17) is applied to the policies which
belong to the affected councils, to estimate the probability of incurring in a claim
during the extreme event. Then the cut-off Method 2 is applied to the probabilities
estimated by regression (17) to simulate the occurrence, or not, of a claim. After
this, regression (20) is applied to the subset comprised by the records which are
predicted having a claim, to estimate the average log-cost incurred by the company.
This quantity is then transformed in average cost using the Duan’s smearing factor,
as described in Equation (22), which has been estimated using the residuals of re-
gression (20) calibrated on the dataset comprised by those policies that had a claim
due to Leslie.
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4.1 Lisbon and Porto Metropolitan Areas and Algarve Re-
gion

In the first simulation, Cascais is choosen as entrance point. The choice is due to
the fact that it is one of the councils that belongs to the Lisbon Metropolitan Area,
which is a region of great exposure for the company and it is directly exposed to the
ocean, and so to the cyclones.
It is assumed a linear trajectory with 45 degrees. The results obtained for this
simulation, which are reported in Table 13 are: number of estimated claims and
total costs respectively 3,22 and 2,08 times higher than in Figueira da Foz. The
distribution on the map of the estimated CR for each council, together with the
trajectory of the hurricane, are shown in Figure 14.

Figure 14: CR map of continental Portugal obtained for the simulated scenario of
hurricane Leslie entering in Cascais with a trajectory of 45 degrees

It is now necessary to understand if the estimates obtained are reasonable. It is
reasonable that, in this scenario, our model estimates higher number of claims and
higher total costs, compared to the ones due to hurricane Leslie, since the Lisbon
Metropolitan Area is the largest urban area of the country. As reported in Tables
14 and 15, respectively, the number of properties insured by the company in an area
of 54 km around the point of entrance of the storm is 3.9 times higher in Cascais
than in Figueira da Foz. Also, the amount of capital insured in the same area is
3.8 times higher in Cascais. We will refer often to the value of 54 km. This value
corresponds to the first level of the variables intensity and intensity2. In regression
(17), the coefficient estimated for the first level of intensity is the highest among
all the other levels of this variable and the same is valid for regression (20) and the
variable intensity2, as shown in Tables 9 and 11. This means that, those policies
located at a distance inferior to 54 km from the point of landfall of the hurricane,
have the higher probability of having a claim and also the higher average cost for
the company.
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As shown in Table 13, the mean cost per claim, here denoted by MCC, and defined
in Equation (24), in this scenario is 0,65 times the one observed in Figueira da Foz.

MCC =
Total Cost

Total Number of Claims
(24)

A lower mean cost per claim in this scenario, when compared with Figueira da
Foz, is justified by the different characteristics of the portfolio of the company over
the areas affected by the hurricane. Among the predictors of regressions (17) and
(20) that are characteristics of the property insured, the Type of Housing is the
variable with the largest estimated coefficients. As seen in Chapter 3, regression
(17) estimates that a single-family house has 90% higher odds of incurring in a
claim than an apartment, and regression (20) estimates that the average cost for
a single-family house is 96% higher than for an apartment. Table 16 presents the
percentage of single-family houses, apartments and other types of housing in the
area of 54 km around the entrance point of the hurricane. The concentration of
single-family houses around Cascais is 37% lower than that of Figueira da Foz, while
the concentration of apartments is 36% higher. The lower MCC can be partially
explained by the different concentration of single-family houses in the two areas.
For the second simulation, Porto is choosen as entrance point of the hurricane in
Portugal. This choice is due to the fact that the Metropolitan Area of Porto is
the second largest in the country, regarding population, after Lisbon, representing
a major area of exposure for the company in the north of the country. In this
simulation the degree of the trajectory is assumed to be of 330 degrees. As reported
in Table 13, the results obtained for this simulation are: number of estimated claims
and total costs respectively 1,99 and 2,62 times higher than in Figueira da Foz. The
estimated CR distribution over continental Portugal, together with the trajectory
of the hurricane, are shown in Figure 15.

Figure 15: CR map of continental Portugal obtained for the simulated scenario of
hurricane Leslie entering in Porto with a trajectory of 330 degrees

It is reasonable that the simulated number of claims and total costs are higher than
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in Figueira da Foz, since the Porto Metropolitan Area, is the second largest urban
area of the country. As reported in Tables 14 and 15, respectively, the number of
properties insured by the company in an area of 54 km around the entrance point of
the storm is 3.1 times higher in Porto than in Figueira da Foz. Also, the amount of
capital insured in the same area is 2.9 times higher in Porto region than in Figueira
da Foz. As shown in Table 13, the MCC is 0,76 times the one observed in Figueira
da Foz.
Although Porto has less properties and capital insured than Cascais, the number
of claims and the total costs estimated are very similar. This is explained by the
different concentration of apartments and single-family houses in these two areas.
Table 16 reports the concentration of the categories of the variable Type of Housing
for the policies in the portfolio located in an area of 54 Km around Porto. The
concentration of single-family houses is 25,5% higher around Porto than around
Cascais.
In the last case scenario, Faro is choosen as entrance point of the storm in Portugal.
The choice is due to the fact that Faro is the largest city in Algarve, representing
a major area of exposure for the company in the south of the country. In this
simulation the degree of the trajectory is assumed to be of 60 degrees. As reported
in Table 13, the results obtained for this simulation are the following: number of
estimated claims and total costs respectively 0,51 and 0,45 times the ones observed
in Figueira da Foz.
The estimated CR distribution and the trajectory of the hurricane, are shown in
Figure 16.

Figure 16: CR map of continental Portugal obtained for the simulated scenario of
hurricane Leslie entering in Faro with a trajectory of 60 degrees

It is reasonable that the simulated number of claims and total costs are now lower
than in Figueira da Foz. As reported in Tables 14 and 15, respectively, the number
of properties insured by the company, and also the amount of capital insured in an
area of 54 km around Faro, is approximately half of that in Figueira da Foz. As
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shown in Table 13, the MCC is 0,87 times the one observed in Figueira da Foz. The
fact that the MCC is similar in Faro and Figueira da Foz is expectable since one can
notice that, the number of properties insured and capital insured in Faro, are almost
proportional to the ones in Figueira da Foz. The difference in the MCC in these
two scenarios can be explained by the fact that the concentration of single-family
houses is 20% lower around Faro than around Figueira da Foz.

Landfall Point Total Cost (AC) Total Numb.of Claims MCC (AC)
Figueira da Foz x y z

Cascais 2,08x 3,22y 0,65z
Porto 1,99x 2,62y 0,76z
Faro 0,45x 0,51y 0,87z

Table 13: Total cost, Total Number of Claims and MCC for the cases of Figueira
da Foz (benchmark), and the simulated scenarios of Cascais, Porto and Faro

Landfall Point Numb. Prop. Insured in i
Numb. Prop. Insured in Fig.da Foz

Figueira da Foz 1
Cascais 3,9
Porto 3,1
Faro 0,55

Table 14: Table of the ratios between the number of properties insured in a radius
of 54 km around the landfall point i and the number of properties insured in the

same area around Figueira da Foz

Landfall Point Amount Capital Insured in i
Amount Capital Insured in Fig.da Foz

Figueira da Foz 1
Cascais 3,8
Porto 2,9
Faro 0,54

Table 15: Table of the ratios between the total amount of capital insured in a
radius of 54 km around the landfall point i and the total amount of capital insured

in the same area around Figueira da Foz
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Landfall Point
Type of Housing

apartment single-family house other
Figueira da Foz 33,95 % 51,98 % 14,07 %

Cascais 69,99 % 14,94 % 15,06 %
Porto 43,96 % 40,46 % 15,58 %
Faro 56,33 % 31,52 % 12,15 %

Table 16: Concentration of the variable Type of Housing for those policies located
in an area inferior to 54 km around the landfall point

5 Assessing the average loss over continental Por-

tugal

The interest of the insurance company is to mutualize the loss deriving from extreme
events, like hurricane-force tropical cyclones, among the members of the portfolio.
Nevertheless, if the company had to perform the mutualization based on its past
experience, the properties insured in the area of Coimbra and Figueira da Foz (the
ones mainly affected by hurricane Leslie in 2018) would be penalized by an exces-
sive premium. The random nature of meteorological extreme events, encourages the
insurer to look for solutions that mutualize the expected loss among other locations
that could be affected in the future. The simulations in Chapter 4, used to pro-
duce estimates for the expected cost under different scenarios, can be repeated a
large number of times selecting each time (i) a different point of entrance, and (ii)
a different trajectory for the hazard. Afterwards all the estimates produced can be
averaged to obtain the average expected loss in each council in continental Portugal.
At each iteration of the process, the entrance point and the degree of the trajectory
are randomly sampled from a probability distribution arbitrarily assigned. As al-
ready said in the previous chapter, any council on the coast can be a possible point
of entrance of the hurricane.
The coast of Portugal is divided in 4 zones and to each zone is assigned a probability
of being the entrance point of the hurricane. The first zone goes from Vila Real de
Santo Antonio to Vila do Bispo, representing the coast of the Algarve region. The
second zone goes from Aljezur to Alcacer to Sal, representing the coast of Alentejo
region. The third zone goes from Setubal to Vagos, representing the coast of the
center of Portugal. The fourth zone goes from Ilhavo to Caminha, representing
the coast of the north region. Then, a probability distribution is assigned over the
councils belonging to each of the four zones. The degree of the trajectory is also
randomly sampled after the algorithm has randomly selected both the zone and the
council. Since it is assumed that the hurricane moves eastward, the possible range
of degrees is set between 270 and 90 degrees, if it affects the west coast, and between
0 and 90 degrees if affects the south coast.
The iterative process described before is shown in the Algorithm 2.
By using this strategy, at each iteration we can save the estimates obtained for
each scenario and eventually average all of them to compute important quantities,
such as the total cost distribution, the average CR for each council and the risk
premium for the policies belonging to the risk classes we are interested to analyze.
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Algorithm 2

1. For i = 1 to N:
(a) sample a Zone;
(b) sample a Council;
(c) sample a degree of the trajectory;
(d) draw the trajectory and compute D1, D2, intensity and intensity2;
(e) use RF Model, regression (17) and regression (20) to estimate respectively
which councils will be affected, which policies will have a claim and its cost.

A risk class is formed by the intersection of the levels of the variables that define
the characteristics of the policies. To estimate the average risk premium for a policy
belonging to a certain risk class i, as defined in Equation (25), it is only necessary to
divide the average cost predicted for the class, which is equal to the sum of the total
costs predicted for the class i in each simulated scenario j divided by the number of
simulations N, by the number of policies belonging to the class.

5.1 Building a risk map

The information provided by the tracking charts in Appendix A is not enough to
infer which part of the coast of continental Portugal has higher risk of being hitted
by a tropical cyclone. But it helps in choosing which probability distribution assign.
From the inspection of the tracks of the 6 tropical cyclones, 5 of them affected the
west coast of Portugal and 1 the south coast. Also, out of the 5 events which landfall
in the west coast, just Joaquin, in 2015, affected the Alentejo region. The other 4
events, instead, landfall in the part of the coast defined by the zones 3 and 4. Based
on this, the probabilities assigned to the 4 zones in which the coast of Portugal
is divided, are reported in Table 17. The probabilities in Table 17 are conditional
probabilities since they represent the probability of being hit by the hurricane given
that continental Portugal is affected by it.

Zone Description of the zone Probability
1 from Vila Real de Santo Antonio to Vila do Bispo 1/6
2 from Aljezur to Alcacer to Sal 1/6
3 from Setubal to Vagos 2/6
4 from Ilhavo to Caminha 2/6

Table 17: Probabilities assigned to the 4 zones in which the coast of continental
Portugal is divided

Then to each of the councils belonging to one of the four zones, the same probability
of being the point of entrance of the hurricane is assigned. This choice is due to
the lack of any specific information that could lead to assign more weight to some
council, rather then another. Among the 6 tropical cyclones that affected continental
Portugal since 1995, the part of the trajectory which is over land of 4 of these
cyclones, points northward. So, we can consider that the cyclone’s trajectory, in
those cases, had a positive degree. Based on this, we want to assign more weight
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to the positives trajectories. We decided to sample the angle of the trajectory from
a uniform distribution between 0 and 90 degrees, if the point of entrance of the
storm is a council in zone 1 (Algarve coast), and from a triangular distribution
between 270 and 90 degrees with mode 45 degrees, if the point of entrance of the
storm is a council in zones 2, 3 or 4 (west coast). The triangular distribution has
been choosen because it is a bounded distribution and allows to easily set its mode.
The value of 45 degrees has been choosen to give more probability to the positive
angle trajectories, as mentioned before. The following results are relative to 1000
iterations of Algorithm 2.
Table 18 displays how many times each zone has been sampled in the process.

Zone Frequency
1 0,18
2 0,16
3 0,33
4 0,33

Table 18: Frequency with which each of the zones has been selected by the
algorithm in the simulation

Table 19 displays the distribution of the total costs. It is interesting to notice that
in 30% of the scenarios, a hurricane with the power of Leslie would cause a total loss
smaller or equal to half of the total loss that Leslie caused to the company. Also, in
56% of the simulated scenarios, a hurricane of this magnitude would have caused a
higher loss for the company. Also from the simulation, the estimated average cost
for a hurricane of the magnitude of Leslie affecting continental Portugal, is 1,14
times higher than the one due to Leslie in Figueira da Foz, while the maximum cost
estimated is 2,32 times higher.

Total Cost (TC) Percentage
TC < 0,5 30 %

0,5 ≤ TC < 1 14,1 %
1 ≤ TC < 1,5 21,8 %
1,5 ≤ TC < 2 20,4 %

TC ≥ 2 13,7 %

Table 19: Distribution of the Total Cost, relative to the total cost due to Leslie, for
1000 different simulated scenarios over continental Portugal

ˆAverage Costi =

∑N
j=1

ˆTotal Costij

N
, RiskPremiumi =

ˆAverage Costi
#policies in class i

(25)

Table 20 reports the average risk premium for the policies belonging to the classes ob-
tained intersecting the different categories of the variables Type of Property, Year of
Construction, Capital Insured, Type of Framing, Type of Housing and Region7.

7defined in Appendix B
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T.o.P Y.o.C
Cap.
Ins.

Type T.o.F Region
Risk
prem.

Building ]2002;2018] > 165.000 single-fam res.cluster ALGARVE 58,93
Building ]2002;2018] > 165.000 single-fam other ALGARVE 55,15
Building ]1992;2002] > 165.000 single-fam res.cluster ALGARVE 53,75
Building ]1982;1992] > 165.000 single-fam res.cluster ALGARVE 53,11
Building ]1992;2002] > 165.000 single-fam other ALGARVE 51,01

Table 20: The 5 highest estimated risk premiums for those risk classes of policies
given by the intersection of the levels of the variables Type of Property, Year of

Construction, Capital Insured, Type of Framing, Type of Housing and Region

As we would expect from the coefficients estimated for regressions (17) and (20)
reported in Tables 9 and 11, the higher risk premiums are estimated for the single-
family houses with capital insured higher than 165.000 AC. Also, from the simulation,
the higher risk premiums are obtained for those policies located in the Algarve
region. This result can be explained by the high concentration of single-family
houses in that area. Figure 17 reports the distribution of the average CR estimated
for each council, while Table 21 reports the 5 councils with the highest estimated
average CRs.

Figure 17: Distribution of the CR by council over continental Portugal due to a
hurricane-force tropical cyclone

As expected, the councils with the higher CRs are the ones close to the coast. Also
those in the central region of continental Portugal are the ones with higher CRs.
This result can partially be explained by the higher probability assigned to the zones
3 and 4 of being affected and also to the high concentration of single-family houses
in those regions.
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Council Region Average CR
Murtosa Center 0.0005621
Estarreja Center 0.0004930

Vagos Center 0.0004647
Montemor-o-Velho Center 0.0004134

Ovar Center 0.0003515

Table 21: Councils of continental Portugal with the highest estimated CR due to a
hurricane-force tropical cyclone

6 Conclusions

The lack of long series of data regarding insurance losses due to weather-related
events and of meteorological variables regarding the magnitude of these hazards,
makes the estimation of the losses due to this type of events a difficult challenge for
the insurer.
This work describes an alternative approach to model the damages caused by an
extreme meteorological hazard which does not require the use of climate data or
the use of the losses caused by other extreme events. Nevertheless we can not
estimate the expected costs related to an event with different magnitudes of the one
observed. Also, this approach requires the damages produced by the natural hazard
to be relatively localized over the area under analysis, and distributed around an
imaginary line, called trajectory.
Based on the loss data due to hurricane Leslie, we used a logistic regression to model
the probability for a policy of having a claim and a multiple linear regression to model
the average cost when a claim happens. The results obtained from the analysis of
the coefficients of the two regressions, give interesting results which indicate to the
insurer which policies carry the higher risk when affected by this type of events.
The approach used in this work to model the costs provoked by hurricane Leslie is
easily applicable to any other location in continental Portugal, through simulation,
and enables to quickly estimate the expected losses in many different scenarios.
This allows the company to build a risk map for the occurrence of extreme tropical
cyclones in continental Portugal. We provide an algorithm to do that.
The results obtained allowed to define the total cost distribution, the average risk
premium for the policies belonging to the risk classes of interest, and the average
cost ratio for the councils of continental Portugal.
Since the estimated models have been calibrated on the losses provoked by a single
event, in order to have more reliable results, the information obtained from the losses
due to other extreme meteorological events, should be considered by the insurer in
his final evaluations.
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A Tracking Charts

NOAA Tropical cyclones tracking charts of the years where, at least a tropical cy-
clone, affected continental Portugal (Images provided by the NOAA/ESRL Physical
Sciences Laboratory, Boulder Colorado from their web site at https://www.psd.noaa.gov/):
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Figure 18: 1998 North Atlantic Hurricane Season Track Map

Figure 19: 2005 North Atlantic Hurricane Season Track Map
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Figure 20: 2012 North Atlantic Hurricane Season Track Map

Figure 21: 2015 North Atlantic Hurricane Season Track Map
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Figure 22: 2018 North Atlantic Hurricane Season Track Map

Figure 23: 2020 North Atlantic Hurricane Season Track Map
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B Variables

The variables provided by the company are:

• Type of Property (T.o.P) with levels:

– Content

– Building

• Year of Construction (Y.o.C) with levels:

– LEVEL 1 if the year of construction ≤ 1982

– LEVEL 2 if 1982 < year of construction ≤ 1992

– LEVEL 3 if 1992 < year of construction ≤ 2002

– LEVEL 4 if the year of construction > 2002

• Framing of the Housing (Framing) with levels:

– Residential Cluster

– Semi-detached house

– Other

• Type of Housing (Type) with levels:

– Apartment

– Single-family house

– Other

• Type of Floor (T.o.F) with levels:

– LEVEL 1 = sub cave or ground floor or first floor or intermediate floor

– LEVEL 2 = last floor

– Not defined

• Capital Insured (Cap. Ins) with levels:

– LEVEL 1 if capital insured ≤ 80000 AC

– LEVEL 2 if 80000 AC < capital insured ≤ 120000 AC

– LEVEL 3 if 120000 AC < capital insured ≤ 165000 AC

– LEVEL 4 if capital insured > 165000 AC

The variables obtained through public available information are:

• Intensity with levels

– LEVEL 1 if D1 < 54 Km

– LEVEL 2 if 54 km ≤ D1 < 78 Km
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– LEVEL 3 if 78 Km ≤ D1 < 107 Km

– LEVEL 4 if D1 ≥ 107 Km and D2 < 44 Km

– LEVEL 5 if D1 ≥ 107 Km and D2 ≥ 44 Km

• Intensity 2 with levels

– LEVEL 1 if D1 < 54 Km

– LEVEL 2 if 54 km ≤ D1 < 78 Km

– LEVEL 3 if 78 Km ≤ D1 < 107 Km

– LEVEL 4 if D1 ≥ 107 Km and D2 < 25 Km

– LEVEL 5 if D1 ≥ 107 Km and D2 ≥ 25 Km

• Altitude is the height over the sea level, has levels:

– LEVEL 1 if altitude ≤ 90 m

– LEVEL 2 if 90 m < altitude ≤ 200 m

– LEVEL 3 if altitude > 200 m

The quotients of location 8 (Q.L) for each council, of the variables Forest Area,
Bush Area and Urban Area, have been obtained from the report 9 of 2018
from the INE (Instituto Nacional de Estatistica).

• Forest Area represents the Q.L of the forest area in the council. Has levels:

– LEVEL 1 if Q.L ≤ 1,45

– LEVEL 2 if Q.L > 1,45

• Bush Area represents the Q.L of the bush area in the council. Has levels:

– LEVEL 1 if Q.L ≤ 0,19

– LEVEL 2 if Q.L > 0,19

• Urban Area represents the Q.L of the urban area in the council. Has levels:

– LEVEL 1 if Q.L ≤ 2,12

– LEVEL 2 if 2,12 < Q.L ≤ 3,35

– LEVEL 3 if Q.L > 3,35

8the ratio between the proportion of each class of use and occupation of the territory in that
specific council and the respective proportion in the continent

9The full report can be consulted at https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=
ine_destaques&DESTAQUESdest_boui=435668469&DESTAQUESmodo=2

48

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=435668469&DESTAQUESmodo=2
https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=435668469&DESTAQUESmodo=2


• Region 10 with levels:

– North

– Center

– Metropolitan Area of Lisbon (MAL)

– Alentejo

– Algarve

Significance codes:

Significance code p-value
*** [0, 0.001]
** (0.001, 0.01]
* (0.01, 0.05]
. (0.05, 0.1]

(0.1, 1]

Table 22: Significance codes Table

10continental Portugal has been divided in 5 regions as done in the NUTS II https://www.

pordata.pt/en/What+are+NUTS
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