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ABSTRACT 

Simulation schemes to estimate volatility from high frequency data lead some authors 

to start studying local volatility models, where the local volatility of the stock varies with 

the stock price and the stock price is itself stochastic. Hence, in local volatility models, 

volatility is stochastic, but only because it is a function of the stochastic stock price. This 

typically produces a skew in implied volatility (known as volatility smile), which can also 

be obtained by using stochastic volatility models (like, for example, the Heston stochastic 

volatility model), where the constant volatility of the Black-Scholes model is replaced by 

a stochastic process driven by a random factor correlated with the random factor that 

drives the price of the underlying asset.  

Recently, Bayer et al. in [1] have gone a step further from local and stochastic 

volatility modelling, proposing rough fractional stochastic volatility (RFSV) models 

stating that log-volatility behaves as a fractional Brownian motion with Hurst exponent 

H less than 0.5, which is essentially a non-Markovian process with stationary but not 

independent increments. As a particular case for the RFSV model, these authors proposed 

the so-called rough Bergomi (rBergomi) model. In this dissertation, the rBergomi model 

is implemented by using the hybrid scheme proposed by Bennedsen et al. in [3], and the 

implied volatility smiles over the SPX options are estimated for different maturities. 

Finally, as the model depends only on three parameters: H, η (related to increments of 

log-volatility) and ρ (correlation factor), these were calibrated to market data.  
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1. INTRODUCTION 

Pricing financial derivatives, such as options, can be a thorough empirical task to 

mirror the trends of the option prices with the minimal error, but simulating schemes to 

estimate volatility of the options seeking for the market observed skew, known as 

volatility smile [5], is far more arduous. One of the first attempts to uniquely estimate the 

option prices was the Gaussian model first introduced by Fischer Black and Myron 

Scholes, and later developed by Robert Merton, widely known as the Black-Scholes 

model. The tractability of the model and the closed-form formula for the option price 

produced its popularity among market and academic users. However, in the Black-

Scholes model the volatility is a given parameter and is assumed to be constant over time. 

This is not suitable to account for the estimation of observed implied volatility over 

different maturities and strikes (we would not achieve any volatility skew), therefore this 

aspect led us to consider more sophisticated approaches. 

One of the first standard approaches, firstly introduced in [6] and then subsequently 

developed in [8] and [5], for modelling implied volatilities from high frequency data lead 

authors to start studying local volatility models where the local volatility of the stock 

varies with the stock price, and the stock price is stochastic by itself. Hence, in local 

volatility models, volatility is stochastic, but just because it is a function of the stochastic 

stock price, which it is fully correlated. In the real markets, implied and realized volatility 

tend to be somehow correlated with either stock price or an index, but the correlation is 

not complete.  

Other authors went one step further following the essence within stochastic volatility 

models, and proposed models where the volatility parameter is replaced by a stochastic 

process which in turn is correlated with the stochastic process that drives the underlying 

asset. Within these approaches we can encounter models such as the Extended Black-

Scholes (Hull White model) or the Heston model (see [12] and [11] respectively), where 

the volatility of the stock is set to be independently stochastic and mean-reverted. 

Up until this point, one could think the studied field to be this type of stochastic 

volatility models as their advantages are evident in the numerous research in terms of 

tractability (efficiency in computation) and implied volatility surface modelling, but 

regarding accuracy of the simulated volatility smile over long and short maturities, one 

can go a step further seeking for a more accurate approach. 
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In general, the majority of stochastic volatility models can fit reasonably well the 

observed implied volatility for long expirations but the fit for short expirations is 

something that can be improved. The fractional Brownian motion (fBm) described in [15] 

was taken as a departure point. It is a centred Gaussian process whose increments, driven 

by the Hurst parameter 𝐻 ∈ (0,1) , are stationary but not independent except in the 

standard Brownian case (when H=1/2) and it is a process that is neither a semimartingale 

nor a Markov process. Therefore, the process in a future time 𝑡 does not depend only on 

present observation 𝑡0. After taking that in consideration, the Rough Fractional Stochastic 

Volatility model (RFSV) was proposed in [1] and [9].  

The approach of the RSFV model leads naturally to the Rough Bergomi (rBergomi) 

model. In the rBergomi model, the log-volatility behaves as a fBm, so the volatility 

process becomes non-Markovian with stationary but not independent increments. 

Moreover, the change of measure from ℙ to the equivalent martingale measure ℚ is 

assumed to be deterministic. In [9], the authors showed that the RFSV model generates 

data remarkably consistent with empirical financial time series data. Moreover, in [1], the 

authors show how to use the rBergomi model to price contingent claims on the underlying 

asset and integrated variance. They also show that the rBergomi model fits the SPX index 

volatility better than Markovian stochastic volatility models using fewer parameters. 

The goals of this dissertation are to discuss the main aspects of stochastic volatility 

and rough volatility modelling, in particular in the case of the rBergomi model. In 

addition, by using the hybrid scheme as in [3], the rBergomi model is computationally 

implemented using Python and we calibrate the model to real market data in order to 

evaluate if the model reproduces well the volatility smiles observed in the market.  

This dissertation is organized as follows. In Chapter 2 will introduce preliminary 

theory concepts such as stochastic volatility models, the concept of the volatility smile 

and rough volatility models, considering some of their properties. In particular, we will 

discuss the rBergomi model. In Chapter 3, we present the main equations and describe 

the numerical methods applied in the simulation of the rBergomi model, after considering 

a change of measure from ℙ to ℚ. Moreover, we present some results of the simulations 

and compare these results with real market volatility smiles. In Chapter 4, we present a 

calibration procedure, we calibrate the main parameters to real market data and we 

compare the volatility smiles generated by the model with the real data volatility smiles. 

In Chapter 5 we summarize the main conclusions extracted from the whole dissertation.  
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2.  PRELIMINARY THEORY 

 

2.1  Background 

 

In our financial market model, the randomness is modelled by a probability space 

(Ω, ℱ, ℙ ) equipped with a filtration 𝔽 = {ℱ𝑡 , 𝑡 ≥ 0}.  The underlying stock price process 

𝑆 = {𝑆𝑡 , 𝑡 ≥ 0}   is assumed to be an adapted and continuous stochastic process defined 

on (Ω, ℱ, ℙ , 𝔽). 

Before the stock market crash on the 19th of October of 1987 (known as Black 

Monday), the Black-Scholes model was widely used in financial institutions for pricing 

and hedging options. In this market model, based upon the Geometric Brownian Motion 

(GBM), we have the dynamics of the underlying stock price (𝑆𝑡) characterized by the 

following stochastic differential equation (SDE) 

   𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 +  𝜎𝑆𝑡𝑑𝑊𝑡,         (1) 

where 𝑊 = {𝑊𝑡 , 𝑡 ≥ 0} is a Wiener process or standard Brownian motion, 𝜇 is the drift 

and 𝜎 the volatility of the stock returns. In this model, both 𝜇 and 𝜎 are assumed to be 

constant and therefore the only source of uncertainty is 𝑊. By Itô stochastic calculus, we 

know the solution to the SDE above is 

   𝑆𝑡 = 𝑆0 exp ( 𝜎𝑊𝑡 + (𝜇 −
1

2
𝜎2)  𝑡).          (2) 

This solution, 𝑆𝑡, has lognormal distribution for every 𝑡 > 0. 

Assuming a plain vanilla option with price given by 𝐶 = 𝐶(𝑆, 𝑡), as a function of 

stock price and time, if we apply Itô’s lemma on 𝐶, we have that 

 
𝑑𝐶 =

𝜕𝐶

𝜕𝑡
𝑑𝑡 +

𝜕𝐶

𝜕𝑆
(𝑆, 𝑡)𝑑𝑆 +

1

2

𝜕2𝐶

𝜕𝑆2
(𝑆, 𝑡) 𝑑𝑆2. 

      (3) 

We can consider a self-financing portfolio based on the underlying asset and the option, 

such that this portfolio has zero risk. In order to exclude arbitrage opportunities, the rate 

of return of this portfolio must be equal to the risk-free interest rate 𝑟. Considering this 

portfolio and the previous equation, we obtain that (see [2] for details) 
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 𝜕𝐶

𝜕𝑡
(𝑆, 𝑡) +

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
(𝑆, 𝑡) = 𝑟 (𝐶 − 𝑆

𝜕𝐶

𝜕𝑆
) . 

 (4) 

In essence, by rearranging the terms, we have the famous Black-Scholes pricing equation 

Recalling that a Call Option on a particular stock with a maturity 𝑇 and strike price 𝐾 has 

a payoff of 

 𝐶(𝑆, 𝑇) = (𝑆𝑇 − 𝐾)+    (6) 

and therefore, we can use this condition as the boundary condition. 

After the stock crash happened, traders generally became more and more downside-

risk averse as the general belief was that the probability of large downward movements 

was higher than having upward movements. This, among other reasons, lead to a 

skewness in short and long maturity options, where the implied volatility for low strike 

options (in the money calls and out the money puts) is higher than the implied volatility 

for high strike options (out the money calls and in the money puts). Therefore, it was 

observed that market participants have been willing to pay more for downside protection 

relative to equidistant out of the money upside exposure. Although this does not lead to a 

perfect smile with the ∪ shape, when implied volatilities and strikes are compared, the 

concept of “volatility smile” is widely used between practitioners to refer to this volatility 

skewness. 

All these events could not be reconciled with the Black-Scholes constant volatility 

assumptions, independently of the strike and time to expiration of any option on that 

stock. As a consequence, local volatility models began to be studied.  

 

2.2  Local volatility models  

As a starting point, the local volatility market model was proposed by Bruno Dupire 

[6]. This one-factor type of model for the stock price (𝑆𝑡 , 𝑡 > 0) is defined as: 

 
            

𝑑𝑆𝑡

𝑆𝑡
= 𝑟𝑑𝑡 +  𝜎(𝑡, 𝑆𝑡)𝑑𝑊𝑡 , 𝑆0 > 0     ,         (7) 

 
      

𝜕𝐶

𝜕𝑡
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
+

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
− 𝑟𝐶 = 0.   

  

(5) 
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where W is a standard Brownian motion, 𝑟 is the risk-free interest rate, taken as a constant 

in this particular case and the dividend rate 𝑞 = 0. The diffusion coefficient 𝜎 depends 

on stock price and time in this case. The issue of not capturing the skewness (the volatility 

smile) in the Black-Scholes pricing model trigger Bruno Dupire to extend its reasoning 

by stating that given a surface of European call prices 𝐶 = 𝐶(𝐾, 𝑇) with maturity T and 

strike price K, it exists the following function 𝜎(𝑡, 𝑆) such that is capable to match out 

those prices exactly:      

 

 𝜎 (𝑡, 𝑆)2 = 2  

𝑑𝐶
𝑑𝑇

 +  𝑟𝐾 
𝑑𝐶
𝑑𝐾

𝐾2  
𝑑2𝐶
𝑑𝐾2

 | 𝐾=𝑆
𝑇=𝑡

  .   (8) 

Equation (8) expresses the local volatility as a function of derivatives of call option prices 

and contains a one-dimensional Markov representation in terms of (𝑡, 𝑆𝑡). Historically, 

the local volatility model has been presented as a variant of the Black-Scholes model such 

that the instantaneous volatility is a deterministic function of (𝑡, 𝑆). Therefore, the pricing 

equation is identical to the Black-Scholes case, only with the 𝜎(𝑡, 𝑆𝑡) distinction 

 𝜕𝐶

𝜕𝑡
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
+

1

2
𝜎(𝑡, 𝑆)2𝑆2

𝜕2𝐶

𝜕𝑆2
− 𝑟𝐶 = 0 

 (9) 

This equation is the Black-Scholes partial differential equation with the constant 

volatility 𝜎 replaced by the function 𝜎(𝑡, 𝑆𝑡). The equation can be solved by traditional 

numerical methods such as Monte Carlo simulation or finite difference methods, among 

others. By following this procedure, the calibration would be completed and therefore the 

local volatility model provides arbitrage-free option values.  

As it was explained, the advantages of the model are its similarities to the original 

Black-Scholes model and its dynamics. Those resemblances with the Black-Scholes 

model go to an extent that, as it was shown in [5], the Black-Scholes implied volatility 

for a standard option can be viewed as the approximate average of the local volatility 

between the current stock price and the option’s strike at expiration. 

Although, local volatility models are not perfect, and as a matter of fact they have 

some disadvantages. For example, initially the local volatility function is calibrated at 𝑡 =

0 over the market skew and kept frozen from 𝑡 onwards. As time goes by and the stock 

prices fluctuate, the market trading practitioners need to systematically recalibrate the 
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local volatility function on a regular basis in order to price the options with the minimal 

error. 

In a nutshell, the local volatility model only uses prices at time 𝑡 and makes no 

assumptions about their behaviour across a time frame. The model is actually is able to 

fit the smile at today prices, but the model returns an almost constant smile for long 

maturities, leading to a flat forward smile. Therefore, it leads to unreasonable skew 

dynamics and underestimates the volatility of volatility. This goes far from reality, 

especially for exotic options which depend on the forward smile such as cliquet options 

and other forward starting options [10].  

In contrast, to overcome the issue of behaviour of the local volatility models in a 

consistent and time-invariant way, the stochastic volatility models are time-

homogeneous. Future skews and future volatilities of volatilities (generated by the model) 

are determined by the model’s parameters set up at inception. 

 

2.3  Stochastic volatility models 

Fundamentally, a stochastic volatility model differs from the local volatility model in 

the sources of randomness. In local volatility, the only source of randomness was the 

stock price whereas in stochastic volatility models, apart from the stock price, the 

volatility is stochastic by itself (by definition).  

Probably the most famous stochastic volatility model is the Heston model [11], where 

it is assumed that the dynamics of stock price is given by     

 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑𝑊𝑡
𝑆 ,  (10) 

and the dynamics of the instantaneous variance is 

 𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 +  𝜉√𝑣𝑡𝑑𝑊𝑡
𝑣,  (11) 

being 𝑊𝑆 and 𝑊𝑣  Wiener processes correlated by 𝜌, 𝑣0 is the initial volatility, 𝜃 is the 

long variance, 𝜅 is the rate at which 𝑣𝑡 reverts to 𝜃 and 𝜉 the volatility of volatility. 

The Heston model is quite tractable in computations but the volatility smile fit, crucial 

topic of research and main target of this dissertation, can be improved. For long 

expirations, it is known that the Heston model performs really well in the volatility smile 
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modelling [8], but for short maturities, slightly more sophisticated approaches can be 

followed for the optimal fit.  

 

2.4  rBergomi model 

One of the models that improves the approaches considered in the previous sections 

is the rBergomi model, derived from the RFSV model. This model starts by considering 

a fractional Brownian motion (fBm) (see [15]). 

The fBm is a generalisation of the more well-known process of Brownian motion. It 

is a centred Gaussian process with stationary increments. However, the increments of the 

fractional Brownian motion are not independent, except in the standard Brownian case. 

The structure dependence of the increments is modelled by the Hurst parameter 𝐻 ∈ [0,1] 

and is defined as follows. 

A centered Gaussian process 𝑊𝐻 = {𝑊𝑡
𝐻 , 𝑡 ≥ 0} is called a fractional Brownian 

motion (fBm) with Hurst parameter 𝐻 ∈ [0,1] if it has the covariance function 

 
         𝑅𝐻(𝑡, 𝑠) = 𝐸[𝑊𝑡

𝐻  𝑊𝑠
𝐻] =

1

2
(𝑠2𝐻 + 𝑡2𝐻 − |𝑡 − 𝑠|2𝐻)     𝑠, 𝑡 ≥ 0. 

 (12) 

For a Gaussian process, its distribution is uniquely determined by its mean and covariance 

function. Therefore, the distribution of a fBm is uniquely specified by the above 

definition. 

As explained in [15], Equation (12) is a homogeneous function of order 2𝐻. From this 

property, it can be deduced that fBm is 𝐻 self-similar, which means that, for 𝛼 > 0, 

{𝑊𝛼𝑡
𝐻 , 𝑡 ≥ 0} has the same distribution as {𝛼𝐻𝑊𝑡

𝐻 , 𝑡 ≥ 0}. From Equation (12), we can 

deduce that 

         𝐸[|𝑊𝑡
𝐻− 𝑊𝑠

𝐻|2] = |𝑡 − 𝑠|2𝐻 ,     𝑠, 𝑡 ≥ 0,  (13) 

which implies that fBm has stationary increments. 

The rBergomi model starts by setting the increments of the log-volatility (realized 

variance) in a time interval of size Δ as 

   𝑙𝑜𝑔 𝜎𝑡+∆ − 𝑙𝑜𝑔 𝜎𝑡  = 𝜈 (𝑊𝑡+∆
𝐻 − 𝑊𝑡

𝐻),                  (14) 

being 𝑣 a positive constant. Here, 𝜎 = {𝜎𝑡 , 𝑡 ≥ 0} denotes the volatility process, 𝑙𝑜𝑔 𝜎𝑡 

differences are the observations of the log-volatility process on a time grid with Δ ∈ [0, 𝑇] 
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and 𝑊𝐻 is the fBm with Hurst parameter 𝐻. In [9], the authors show that for time scales 

of interest in finance (ranging from one day to some years), the realized variance time 

series are consistent with the Equation (14). In particular, they show that Equation (14) 

holds for all 21 equity indices in the Oxford-Man database.  

Additionally, rough volatility models are consistent with the so called “term structure 

at the money volatility skew”: 𝜓(𝜏) = |
𝜕

𝜕𝑚
𝜎𝐵𝑆(𝑚, 𝜏)|m=0. Here, 𝑚 = 𝑙𝑜𝑔

𝐾

𝑆0
  is the log-

moneyness and τ is the time to expiry. Empirical data shows that 𝜓(𝜏) = 𝜏−𝛼 , for some 

𝛼 > 0 and the rBergomi model is consistent with this (see [1]). In contrast, conventional 

stochastic volatility models are not. On top of that, some microstructural studies of the 

market also showed that typical behavior of market participants at the high-frequency 

scale generate rough volatility [7]. 

Hence, we consider the Mandelbrot-Van Ness representation of fBm 𝑊𝐻 in terms of 

Wiener integrals, which is given by: 

 

𝑊𝑡
𝐻 = 𝐶𝐻 {∫

𝑑𝑊𝑠
ℙ

(𝑡 − 𝑠)𝛾

𝑡

−∞

− ∫
𝑑𝑊𝑠

ℙ

(−𝑠)𝛾

0

−∞

} ,   (15) 

where 𝛾 = 1 2⁄ − 𝐻 and the parameter 𝐶𝐻 has the form of 

 

𝐶𝐻 = √
2 𝐻 Γ (3 2⁄ − 𝐻)

Γ (𝐻 + 1 2⁄ )Γ (2 − 2H)
, 

  (16) 

which ensures that Equation (12) is satisfied. Then, taking into consideration that 𝑣𝑡 =

𝜎𝑡
2 and substituting Equation (15) in Equation (14) under the measure ℙ, we have that 

 𝑙𝑜𝑔 𝑣𝑢 − 𝑙𝑜𝑔 𝑣𝑡    

= 2 𝑣 𝐶𝐻 {∫
𝑑𝑊𝑠

ℙ

(𝑢 − 𝑠)𝛾

𝑡

−∞

− ∫
𝑑𝑊𝑠

ℙ

(𝑡 − 𝑠)𝛾

0

−∞

} 

= 2 𝑣 𝐶𝐻 {∫
1

(𝑢 − 𝑠)𝛾

𝑢

𝑡

 𝑑𝑊𝑠
ℙ 

+ ∫ [
1

(𝑢 − 𝑠)𝛾

𝑡

−∞

−
1

(𝑡 − 𝑠)𝛾
] 𝑑𝑊𝑠

ℙ} 

=: 2 𝑣 𝐶𝐻 {𝑀𝑡 (𝑢) + 𝑍𝑡 (𝑢)} . 

 

  

 

 

 

 

(17) 
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Note that 𝑍𝑡(𝑢) is ℱ𝑡 -measurable, whereas 𝑀𝑡 (𝑢) is independent of ℱ𝑡 , and Gaussian 

with mean zero and variance (𝑢 − 𝑡)2𝐻 2𝐻⁄ . We introduce the process 

 

�̃�𝑡
ℙ(𝑢) ∶= √2𝐻 ∫

𝑑𝑊𝑠
ℙ

(𝑢 − 𝑠)𝛾

𝑢

𝑡

,   (18) 

which has the same properties as 𝑀𝑡 (𝑢), with the nuance of having the variance 

(𝑢 − 𝑡)2𝐻. With 𝜂: =  2 𝑣 𝐶𝐻 2𝐻⁄  we have that 2 𝑣 𝐶𝐻 𝑀𝑡 (𝑢) = 𝜂�̃�𝑡
ℙ(𝑢) and therefore 

 

𝔼ℙ[𝑣𝑢|ℱ𝑡] = 𝑣𝑡 𝑒𝑥𝑝 {2 𝑣 𝐶𝐻 𝑍𝑡 (𝑢) +
1

2
𝜂2𝔼|�̃�𝑡

ℙ(𝑢)|
2

} .   (19) 

Consequently, using the Wick stochastic exponential for a zero mean Gaussian random 

variable 𝜆 , defined by 

we have that 

After these considerations, we need to take into account a few aspects: the non-

Markovian nature of 𝑣𝑢 is hidden in Equation (21) in the dependence of  𝑍𝑡(𝑢) on the full 

history of 𝑊ℙ and the conditional distribution of 𝑣𝑢 depends of ℱ𝑡  only through the 

instantaneous variance estimates 𝔼ℙ[𝑣𝑢|ℱ𝑡], 𝑢 > 𝑡. 

If the log-volatility of Equation (14) is modelled as a fractional Ornstein - Uhlenbeck 

process, we obtain a more general model: the so-called rough fractional stochastic 

volatility model (RFSV) model, which has the following dynamics:  

          𝑑𝑋𝑡  =  𝜈 𝑑𝑊𝑡
𝐻  −  𝛼 (𝑋𝑡 −  𝑚) 𝑑𝑡,                                          (22) 

           𝜎𝑡  =  𝑒𝑥𝑝(𝑋𝑡),    𝑡 ∈ [0, 𝑇],                  (23)  

which means that the model depends only on 5 parameters:  𝐻, 𝛼, 𝑚, 𝑋0 and 𝑣.  Note that 

in the rBergomi model, we consider the particular case of  𝛼 =  0.  

Finally, as a particular case for the RFSV model, the authors in [1] propose the 

dynamics of the underlying stock price 𝑆𝑢  and the instantaneous variance 𝑣𝑢 under the 

physical probability measure as 

ℰ𝑊(𝜆): = 𝑒𝑥𝑝 (𝜆 −
1

2
𝔼[|𝜆|2]) ,           (20) 

𝑣𝑢  = 𝑣𝑡 exp  { 𝜂 �̃�𝑡
ℙ(𝑢) +  2 𝑣 𝐶𝐻  𝑍𝑡(𝑢) } 

=  𝔼ℙ[𝑣𝑢|ℱ𝑡] ℰ (𝜂  �̃�𝑡
ℙ(𝑢)) . 

 

           (21) 
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defined in terms of two standard Brownian motions 𝑍𝑢
ℙ and 𝑊𝑢

ℙ being the parameters the 

correlation 𝜌, 𝐶𝐻 and η. The stochastic process 𝜇𝑢 is a suitable drift term.  

However, for option pricing on the underlying SPX at fixed time 𝑡, this has to be 

based on an equivalent martingale measure EMM ℚ, that is, ℚ ∼ ℙ on [𝑡, 𝑇] such that 

the discounted asset price process �̃�𝑡 is a martingale under ℚ (by Girsanov theorem). In 

order to have a simple notation, we consider that the risk-free interest rate is 𝑟 = 0 and 

therefore �̃�𝑡 = 𝑆𝑡 . Therefore, under the measure ℚ, we have a price dynamics given by  

𝑑𝑆𝑢

𝑆𝑢
= √𝑣𝑢𝑑𝑍𝑢

ℚ ,   𝑡 ≤ 𝑢 ≤ 𝑇, 

considering a change of measure of the type 

𝑑𝑍𝑢
ℚ = 𝑑𝑍𝑢

 ℙ +
 𝜇𝑢

√𝑣𝑢

𝑑𝑢,   𝑡 ≤ 𝑢 ≤ 𝑇. 

Recall that the Volterra process in Equation (18) was defined in terms of  𝑊ℙ, which 

is a Brownian motion correlated with 𝑍 ℙ, according to Equation (26). Note also that the 

components of the vector of processes (𝑍ℙ, �̅�ℙ)  are independent standard Brownian 

motions.  A general change of measure for the second component �̅�ℙ of Equation (26) is 

of the form 

𝑑�̅�𝑢
ℚ = 𝑑�̅�𝑢

ℙ + 𝛾𝑢𝑑𝑢,  (27) 

where 𝛾𝑢, for 𝑡 ≤ 𝑢 ≤ 𝑇, is an adapted process called, as in [1], market price of volatility 

risk. Consequently,  

                𝑑𝑊𝑢
ℚ = 𝑑𝑊𝑢

ℙ + [𝜌 𝜇𝑢/ √𝑣𝑢 + �̅� 𝛾𝑈]𝑑𝑢,    𝑡 ≤ 𝑢 ≤ 𝑇, 

 

(28) 

which can be expressed as 

               𝑑𝑊𝑠
ℙ  = 𝑑𝑊𝑠

ℚ + 𝜆(𝑠)𝑑𝑠 .  (29) 

 

 
𝑑𝑆𝑢

𝑆𝑢
 =  𝜇𝑢𝑑𝑢 + √𝑣𝑢 𝑑𝑍𝑢

ℙ, (24) 

 𝑣𝑢  = 𝑣𝑡 exp  { 𝜂 �̃�𝑡
ℙ(𝑢) +  2 𝑣 𝐶𝐻𝑍𝑡(𝑢) } , (25) 

 𝑊ℙ = 𝜌 𝑍ℙ + �̅� �̅�ℙ,      𝜌2 + �̅�2 = 1. (26) 



 

 11 

The so-called rough Bergomi (rBergomi) model is obtained if we consider that the 

process 𝜆(𝑠) in Equation (29), driving the change of measure, is a deterministic function. 

Summarizing, the dynamics of the rBergomi model under the equivalent martingale 

measure ℚ are given by (see [1] for more details): 

 𝑑𝑆𝑢

𝑆𝑢
 = √𝑣𝑢 𝑑𝑍𝑢

ℚ,           𝑡 ≤ 𝑢 ≤ 𝑇, (30) 

 𝑍𝑢
ℚ = 𝜌𝑊𝑢 + √1 − 𝜌2 𝑊𝑢

⊥,  

 
 𝑣𝑢 =  𝔼ℙ[𝑣𝑢|ℱ𝑡] ℰ (𝜂 �̃�𝑡

ℚ(𝑢)) 

× exp  { 𝜂 √2 𝐻  ∫
1

(𝑢 − 𝑠)𝛾

𝑢

𝑡

  𝜆(𝑠) 𝑑𝑠}

= 𝜉𝑡(𝑢) ℰ (𝜂 �̃�𝑡
ℚ(𝑢)), 

(31) 

 

𝜉𝑡(𝑢) = 𝔼ℙ[𝑣𝑢|ℱ𝑡] exp  { 𝜂 √2 𝐻  ∫
1

(𝑢 − 𝑠)𝛾

𝑢

𝑡

  𝜆(𝑠) 𝑑𝑠} , (32) 

where 𝜌 is the correlation between volatility moves and price moves, 𝜆(𝑠)  is a 

deterministic function which specifies a deterministic change of measure and 𝜉𝑡(𝑢) is the 

forward variance curve. The processes 𝑊 and 𝑊⊥ are independent standard Brownian 

motions. This rBergomi model is non-Markovian in the instantaneous variance 𝑣𝑢  but is 

Markovian in the (infinite-dimensional) state vector 𝔼ℚ[𝑣𝑢|ℱ𝑡] = 𝜉𝑡(𝑢).  

Assuming the deterministic change of measure between ℙ and ℚ specified by the 

deterministic function 𝜆(𝑠), we have defined the rBergomi model. This model depends 

only on the forward variance curve 𝜉𝑡(𝑢) and the three parameters H, η and ρ. Our goal 

is to simulate the rBergomi model in order to price options and obtain the volatility smile.  
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3.    SIMULATION AND NUMERICAL METHODS 

In this Chapter, our goal is to incorporate and apply numerical methods, using the 

hybrid scheme proposed in [3], to the rBergomi model discussed in Chapter 2 and see if 

the model can produce volatility smiles that are qualitatively similar to the smiles 

observed in real market data.  

As a departure point for our rBergomi model simulation algorithm, let 𝑛 be the 

number of time steps and 𝑁 the number of simulations. We define the Volterra process 

𝑊𝛼 and the Brownian motion 𝐵 (before was Z ). In order to relate these processes with 

the ones defined in the previous chapter, see Equation (18) and (30)-(32).  

 

𝑊𝑡
𝛼 ∶= �̃�0

ℚ(𝑡) = √2𝐻 ∫
𝑑𝑊𝑢

(𝑡 − 𝑢)𝛾

𝑡

0

= √2𝛼 + 1 ∫ (𝑡 − 𝑢)𝛼𝑑𝑊𝑢

𝑡

0

 (33) 

  𝐵𝑢 ∶= 𝑍𝑢
ℚ = 𝜌𝑊𝑢 + √1 − 𝜌2 𝑊𝑢

⊥,  (34) 

where 𝛼 = 𝐻 − 1/2.  

In order to simulate the Volterra process of Equation (33), we consider the first order 

variant (𝑗 = 1) of the hybrid scheme developed in [3], to capture the explosion of the 

kernel function close to zero. We start by considering a Brownian semi-stationary process 

of the type: 

                      𝑋(𝑡) ∶= ∫ 𝑔(𝑡 − 𝑢) 𝜎(𝑢)𝑑𝑊𝑢

𝑡

−∞

,           𝑡 𝜖 ℝ (35) 

where 𝜎 is an {ℱ𝑡}𝑡 𝜖 ℝ-predictable process with locally bounded trajectories and 𝑔 is a 

Borel-measurable kernel function. In order to ensure that the process in Equation (35) is 

well defined, we assume that the kernel function 𝑔 is square-integrable, meaning that 

∫ 𝑔(𝑥)2∞

0
𝑑𝑥 < ∞. Apart from this assumption, further secondary technical 

considerations need to be taken into account, as explained in [3]. 

Under this scheme, we approximate 𝑔 using an appropriate power function near zero 

and a step function elsewhere. The subsequent discretization scheme can be realized as a 

linear combination of Wiener integrals with respect to the driving Brownian motion 𝑊  

and a Riemann sum. This is precisely the reason why we call it a hybrid scheme. By 

applying the hybrid scheme to Equation (35), we have  
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                 𝑋(𝑡) = ∑ ∫ 𝑔(𝑡 − 𝑢) 𝜎(𝑢)𝑑𝑊𝑢

𝑡−𝑘/𝑛+1/𝑛

𝑡−𝑘/𝑛

        

∞

𝑘=1

    

≈  ∑ 𝜎 (𝑡 − 
𝑘

𝑛
) ∫ 𝑔(𝑡 − 𝑢) 𝑑𝑊𝑢    

𝑡−𝑘/𝑛+1/𝑛

𝑡−𝑘/𝑛

∞

𝑘=1

. 

 

 

(36) 

If k is small, then consider the approximation 

                             𝑔(𝑡 − 𝑢) ≈ (𝑡 − 𝑢)𝛼  𝐿𝑔 (
𝑘

𝑛
),    (𝑡 − 𝑢) 𝜖 [

𝑘 − 1

𝑛
,
𝑘

𝑛
] \{0}, (37) 

where 𝐿𝑔 is a function varying less than the power function 𝑥 ↣ 𝑥𝛼 close to zero. If 𝑘 is 

large, or at least 𝑘 ≥ 2, then choosing 𝑏𝑘 ∈  [𝑘 − 1, 𝑘] provides the approximation 

                      𝑔(𝑡 − 𝑢) ≈ 𝑔 (
𝑏𝑘

𝑛
),    (𝑡 − 𝑢)  ∈  [

𝑘 − 1

𝑛
,
𝑘

𝑛
] . (38) 

Hence, ultimately we have 

𝑋(𝑡) ≈ ∑ 𝐿𝑔 (
𝑘

𝑛
) 𝜎 (𝑡 −  

𝑘

𝑛
) ∫ 𝑔(𝑡 − 𝑢)𝛼𝑑𝑊𝑢

𝑡−𝑘/𝑛+1/𝑛

𝑡−𝑘/𝑛

𝑗

𝑘=1

+    ∑ 𝑔 (
𝑏𝑘

𝑛
) 𝜎 (𝑡 − 

𝑘

𝑛
) ∫ 𝑑𝑊𝑢

𝑡−𝑘/𝑛+1/𝑛

𝑡−𝑘/𝑛

∞

𝑘=𝑗+1

. 

 

 

(39) 

After developing the basic steps within the hybrid scheme, as stated before, this 

method is used to simulate the Volterra process (Equation 33). In order to proceed with 

the simulation of the Volterra process 𝑊𝑡
𝛼, we consider the first order variant (𝑗 = 1) of 

the hybrid scheme adapted to Equation (33). The scheme is specified by 

      𝑊𝑡𝑖
𝛼 ≈ √2𝛼 + 1 (∫ (

𝑖

𝑛
− 𝑢)

𝛼

𝑑𝑊𝑢

𝑖
𝑛

 𝑖−1
𝑛

 

+     ∑ (
𝑏𝑘

𝑛
)

𝛼

(𝑊𝑖−(𝑘−1)
𝑛

− 𝑊𝑖−𝑘
𝑛

)

𝑖

𝑘=2

) , 

 

 

 

(40) 

with 

                 𝑏𝑘 ∶= (
𝑘𝛼+1 − (𝑘 − 1)𝛼+1

𝛼 + 1
)

1
𝛼

    , 

 

(41) 
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which minimizes the asymptotic mean square root, as explained in [4]. The points 𝑡𝑖 =
𝑖

𝑛
. 

are the points of our time grid in the simulation: {
𝑖

𝑛
, 𝑖 = 0,1,2, … , [𝑇𝑛]}. The increments 

of the standard Brownian motion are simulated by generating appropriate normal random 

variables.  

From Equation (33) it is clear that 𝐸[𝑊𝑡
𝛼] = 0 and 𝑉𝑎𝑟[𝑊𝑡

𝛼] = 𝑡2𝛼+1. Some 

examples of sample paths, the expected value and variance graphical representations can 

be seen in Figure 1 for a couple of maturities.  

  

Figure 1: Examples of sample paths of Volterra processes, its expected values and variances for maturities T=0.425 and 

T=1.0. 

After simulating the Volterra process 𝑊𝑡
𝛼, we use the values obtained in order to 

calculate the variance process. We set up the variance process 𝑣 = {𝑣𝑡 , 𝑡 ≥ 0}, given by 

(see Equation (31)) 

𝑣𝑡 = 𝜉0(𝑡) 𝑒𝑥𝑝 (𝜂 𝑊𝑡
𝛼 −

𝜂2

2
𝑡2𝛼+1) , 

 (42) 

which depends on the forward variance curve 𝜉0(𝑡) which is considered flat, consistently 

with [1] (𝜉0(𝑡) = 𝜉 = 0.055). The remaining parameters 𝜂 > 0 and 𝜌 ∈ [−1,1] can be 

deliberately chosen. The variance process is simulated just by using the simulated values 

of the Volterra process 𝑊𝑡
𝛼. In Figure 2, we present trajectories of variance processes, 

their variances and the constant expectation.  

 



 

 15 

  

Figure 2: Examples of sample paths of Variance processes, its expected values and variances for maturities T=0.425 and 

T=1.0. 

Then we consider the price process 𝑆 = {𝑆𝑡 , 𝑡 ≥ 0}, given by (see Equation (30)) 

 

𝑆𝑡 ∶= 𝑆0 𝑒𝑥𝑝 {∫ √𝑣𝑢

𝑡

0

𝑑𝐵𝑢 −
1

2
∫ 𝑣𝑢𝑑𝑢

𝑡

0

} ,   (43) 

which depends on 𝑆0 , which is the initial price value. In order to simulate the price 

process, we consider a simple Euler scheme corresponding to the stochastic differential 

equation (Equation (30)):  

 𝑆𝑡𝑖
= 𝑆𝑡𝑖−1

+ √𝑣𝑡𝑖−1
   𝑆𝑡𝑖−1

 (𝜌(𝑊𝑡𝑖
− 𝑊𝑡𝑖−1

) + √1 − 𝜌2( 𝑊𝑡𝑖
⊥ −  𝑊𝑡𝑖−1

⊥ )), 

where the increments of the Brownian motion processes are generated by appropriate 

normal random variables. Note that the increments of the Brownian motion 𝑊 are the 

same that were used in the simulation of the Volterra process (see Equation (40)). Again, 

the points 𝑡𝑖 =
𝑖

𝑛
. are the points of our time grid in the simulation: {

𝑖

𝑛
, 𝑖 = 0,1,2, … , [𝑇𝑛]}. 

 

In our examples, we will set 𝑆0 to be equal to the S&P 500 price on the 25/06/2021 

(4280.7 USD). From Equation (43) it is clear that 𝐸[𝑆𝑡] = 4280.7 as it is shown in Figure 

3, with a couple of simulated random price processes. 
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Figure 3: Examples of sample paths of Price processes and its expected values for maturities T=0.425 and T=1.0. 

As a test for the price and variance processes and, following the approach in [3], we 

consider a log-price process representation  

which, as can be seen in Figure 4, enables us to cross-check the start and finish points of 

expected log prices, for random samples of log-prices. 

  

Figure 4: Examples of Log Price processes and its expected values for maturities T=0.425 and T=1.0. 

Once the price process is set, we can pass to option pricing representation. Recall that 

an European call/put option with maturity 𝑇 and log strike 𝑘 is defined by the payoff:  

                     (𝑆𝑇 − 𝑒𝑘)+ ≔ max( 𝑆𝑇 − 𝑒𝑘 , 0),   (45a) 

                        (𝑒𝑘 − 𝑆𝑇)+ ≔ max( 𝑒𝑘  −  𝑆𝑇 , 0).  

 

 (45b) 

Let 𝐶(𝑆, 𝑇) and 𝑃(𝑆, 𝑇) be the Black-Scholes call and put option prices for non-

dividend paying stock options. Assuming 𝑟 = 0, we have the following Black-Scholes 

formulas:  

 

  −2𝔼[𝑙𝑜𝑔 𝑆𝑡] = ∫ 𝔼[𝑣𝑢]
𝑡

0

𝑑𝑢−2𝑙𝑜𝑔 𝑆0 = 𝜉𝑡−2𝑙𝑜𝑔 𝑆0,           

(44) 
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                                        𝐶(𝑆, 𝑇) ≔ 𝑆𝒩(𝑑1) − 𝑒𝑘𝒩(𝑑2),          (46a)    

                                 𝑃(𝑆, 𝑇) ≔ 𝑒𝑘𝒩(−𝑑2) − 𝑆𝒩(−𝑑1),    

 

      (46b)    

where 𝒩(·) represents the Gaussian cumulative distribution function and 𝑑2 and 𝑑1 are 

established as  

 

                                 𝑑1 ≔
1

𝜎√𝑇
 [ 𝑙𝑛 (

𝑆

𝑒𝑘
) + 𝑇 (

𝜎2

2
)] ,        (47a)         

                            𝑑2 ≔ 𝑑1 − 𝜎√𝑇.  

 

      (47b)         

Hence, the observed rBergomi prices for call and put options are defined respectively 

as follows: 

Then the implied volatilities 𝜎𝐵𝑆(𝑘, 𝑡) for the observed prices are calculated by 

inverting the appropriate Black-Scholes formula 

Graphically, in Figure 5 we can glimpse the implied volatilities (volatility smiles) for 

random samples of options with the calibrated parameters in Chapter 4. 

                𝐶𝐵𝑒𝑟𝑔(𝑘, 𝑇) = 𝔼[(𝑆𝑇 − 𝑒𝑘)+] ≈
1

𝑁
∑(𝑆𝑇

𝑖

𝑁

𝑖=1

− 𝑒𝑘)+,       (48a)         

              𝑃𝐵𝑒𝑟𝑔(𝑘, 𝑇) = 𝔼[(𝑒𝑘 − 𝑆𝑇)+] ≈
1

𝑁
∑(𝑒𝑘 − 𝑆𝑇

𝑖

𝑁

𝑖=1

)+.     (48b)         

                   𝜎𝑘
𝐵𝑒𝑟𝑔

(𝑇) = 𝐵𝑆−1(𝐶𝐵𝑒𝑟𝑔(𝑘, 𝑇)),       (49a)         

                 𝜎𝑘
𝐵𝑒𝑟𝑔

(𝑇) = 𝐵𝑆−1(𝑃𝐵𝑒𝑟𝑔(𝑘, 𝑇)).      (49b)         
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Figure 5: Examples of Implied volatilities (volatility smiles) for maturities T=0.425 and T=1.0. 

Even though the parameters can be guessed in practice, in this case the parameters 

chosen for the simulation were the ones used by Bayer et al. (2016) in [1]: 𝛼 = −0.43, 

𝜂 = 1.9 and 𝜌 = −0.9. The decision was consistently made as their behaviour in the 

mentioned study was quite accurate and the stock price was the same (SPX), even though 

the dates were different.  

Summarizing, the simulation of the rBergomi model is based on the equations in this 

Chapter and, more particularly, depends on the three parameters set in the paragraph 

above. Each parameter has its own function within the model: the volatility smile depends 

fundamentally on 𝜂, the skewness on 𝜌 and the explosion, of both smile and skew, on 𝛼. 

In order to start running the simulation process, we have to take into account a few 

considerations in terms of space and time. We consider maturities (𝑇) from a week of 

time (𝑇 = 0.022) up to a year and a half (𝑇 = 1.564), for granularity we set up the 365 

days of a year (𝑛 = 365), 30000 paths (𝑁 = 30000) and log-moneyness 𝑘, with its range 

adjusted depending on each maturity in order to capture the smile.  

The real implied volatilities correspond to the SPX options of the 28/06/2021 

extracted from Yahoo Finance. On that day the stock market closed at 4280.7 USD. From 

those real values of the options, some measures are also taken. For instance, options with 

implied volatilities close to zero and strike prices over a range of 50% up and down the 

stock price defined above, were excluded from the database and were not taken into 

account in the approach. After that, in order to be able to compare the real data with the 

estimated implied volatilities, the real strike prices were standardized by taking the 

logarithm of the strike prices over the initial value of the underlying asset (index value), 

i.e., the log-moneyness. 
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After those considerations, we run the code in Python (adapted from [14]) to calculate 

all the steps within the rBergomi model and ultimately estimate the implied volatilities 

for each maturity (Tmat in the figures) and type of option: Calls and Puts. In the following 

figures it is shown the real volatilities (in multicolour dots) and estimated implied 

volatilities (in black line), for 3 different maturities. 

In Figure 6 it is shown a sample of the rBergomi estimated implied volatilities versus 

the SPX real implied volatilities for call options. Overall, the model was capable to draw 

the volatility smile. Nevertheless, it can be seen that the model was able to capture the 

pronounced skewness, although in the area around the vertex the estimation could be 

more accurate. As maturities get larger, the volume data decreases and the shape is 

captured but the implied volatilities were slightly overestimated. 

 

 

 

   

                 

Figure 6: Sample of SPX Calls vs rBergomi implied volatilities 

     In Figure 7 it is shown a sample of rBergomi estimated implied volatilities versus the 

SPX real implied volatilities for put options. Same as what happened with the calls, in 

general the model was capable to draw the volatility smile but in this case the approach 

was more accurate. Nevertheless, it can be seen for lower maturities the model was able 

to capture the pronounced skewness, although it was still unable to estimate with high 

accuracy in the area around the vertex. For longer maturities, even though the volume 

data decreases as maturities go by, the approach is considerably more accurate than in 

calls as the shape and skewness reflected very precisely the profile of the real data. 
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Figure 7: Sample of SPX Puts vs rBergomi implied volatilities 

We can conclude that the qualitative features of the volatility smiles are captured by 

the model for all the maturities, but it is quite clear that the fit was more accurate for the 

puts rather than the calls. 
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4.    CALIBRATION 

After the simulation of the implied volatilities with the parameters and assumptions 

considered in Chapter 4 and after plotting them with the actual SPX Call option data, it is 

clear that exists a margin of improvement in the approach. The improvement on the 

accuracy to fit better the market data, starts by considering different values in the 

parameters to see if with the new values the result gets more precise.  

The goal now is to minimize the differences between the rBergomi and the real 

implied volatilities, a standard procedure usually applied in these kind of studies. If we 

consider the model’s dependency on just three parameters (𝐻, 𝜂, 𝜌) and the implications 

on the implied volatilities, when the parameters change (explained at the end of Chapter 

3), we could adjust the parameters for the optimal fit. 

In the calibration procedure, as it was done in [4], the following objective function 

was considered, and the target was to minimize the sum of the squared differences 

between rBergomi generated implied volatilities and real implied volatilities:  

                                           ∑ (𝜎𝑘
𝐵𝑒𝑟𝑔(𝐻, 𝜂, 𝜌) − 𝜎𝑘

𝑅𝑒𝑎𝑙)
2

𝑘 .       (50) 

The simulation procedure started by setting up a range and a distance step in each 

parameter of the model (see Diagram 1) as well as the full set of 10 maturities with a 

decent amount of real data (from 0.022 up to 1.564), and across all the possible 

combinations between them, assuming constant the forward variance 𝜉0(𝑡) = 𝜉 = 0.055. 

These ranges were set based on previous numerical calibrations presented in the literature 

(see for instance [1])  

 

    {
𝐻 ∈ (0, 0.2] ;                 
𝜂 ∈ [1 , 7] ;                    

 𝜌 ∈ [−0.999 , −0.8] ; .
  

 Diagram 1: Considered ranges for the parameters in calibration  

Once the simulation is finished, the optimal parameters that were able to minimize 

the function in Equation (50) were extracted and saved for the parametrization and 

comparison criteria. The optimal parameters that minimized Equation (50) were 𝐻 =

0.1  𝜂 = 3.5  and 𝜌 = -0.995. To see visually the optimal fit of the parameters, in Figure 

7 can be seen the SPX implied volatilities and the rBergomi generated volatilities for the 

range of maturities proposed before.  
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By comparing Figure 8 with Figure 6 it is clear that for those three maturities, the 

new parameters improved the fit into the real implied volatilities data, especially for 

medium maturities, possibly because the volume of the real SPX data is more 

concentrated in the medium maturities and, therefore the rBergomi estimation and 

subsequent calibration is more accurate. Nonetheless, this optimization does not only 

apply only for the maturities considered in Figure 6, it is applied for all of the maturities.  
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Figure 8: Optimal calibrated rBergomi vs SPX Call volatility smiles 

 

A reason that might be the cause of the weak calibration results for very short and 

large maturities is the performance of the objective function in those maturities. Perhaps 

the function has different local minima and we are obtaining a local minimum and not the 

global one.  The calibration procedure can also be substantially improved by considering 

sophisticated algorithms for minimizing the objective function, such as the algorithm 

implemented in Python by scipy.optimize.least_squares, which solves a nonlinear least-

squares problem with bounds on the variables. These issues may justify the problem that 

for some maturities the quantitative values of the volatility smiles is improvable as there 

are significative deviations from the real data, even though qualitatively the shape is 

achieved. One could also consider the flat forward variance 𝜉0(𝑡) = 𝜉 as another 

parameter of the model to be calibrated by minimizing the objective function. This would 

improve substantially the quality of the fit into the market data.  
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With the analysis and optimization carried out in this chapter, the revised conditions 

should be taken into consideration for future parametrization criteria with other option 

data. Whenever option data changes in terms of type, index or day among others, it 

immediately requires a recalibration of the model for the optimal approach. 
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5.    CONCLUSIONS 

In this master thesis we have studied the rBergomi model fundamentals and its practical 

application (using the hybrid scheme developed by [3]) to real market data in order to evaluate 

how well the model describes the SPX implied volatility smiles. Following the previous 

approaches in [1] and [9] by assuming a change of measure between physical probability 

measure  ℙ to the equivalent martingale measure ℚ, we confirmed that simulated data using 

the rBergomi model showed a decent fit into the SPX implied volatility data.  

The tractability of the model, understood as the capacity of the user to modify the standard 

parameters; the robustness, understood as the lack of breaks in the simulations and the 

flexibility of the model enabled the calibration of the parameters (𝐻, 𝜂, 𝜌), in order to improve 

the fit in the SPX call options by minimizing the difference between the real and simulated 

implied volatilities. As a result, the model is capable of reproducing the shape and skewness of 

the real data over a range of different maturities. The volatility smiles produced by the model 

can reproduce the qualitative shape of the real market volatility smiles. However, for some 

maturities, the quantitative values of the implied volatilities were not very accurate. There is 

some margin for improvement in the calibration procedure by using more sophisticated least 

squares minimization algorithms. One could also consider the flat forward variance curve as 

another parameter of the model that should be calibrated by minimizing the objective function.  

As we showed in this dissertation, with the rough Bergomi model, practitioners with some 

knowledge of simulation methods can estimate implied volatilities for a specific option, as well 

as stock prices, variance processes or option prices, just by applying the formulas presented in 

Chapter 3 in a programming tool such as Python.  

The characteristics of the model and the implied volatility simulation allow the user to 

explore future applications of the rBergomi model, for instance, by changing the index or stock 

option or the option trading type.  

Other more sophisticated rough volatility models can also be used in order to fit the SPX 

volatility smile, such as stochastic Volterra models or rBergomi models with a regime 

switching change of measure (stochastic change of measure). The joint calibration problem of 

these models to the SPX volatility smile and the VIX index volatility smile is also an important 

research open problem that can be studied in the future.  
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