
 

 

 

 

 
MASTER 

ACTUARIAL SCIENCE 
 
 
 

MASTER´S FINAL WORK 

INTERNSHIP REPORT 
 
 
 
 
CLIMATE CHANGE IMPACT ON NON-LIFE INSURANCE LIABILITIES: 
THE RIVER FLOOD CASE 

 
 
 
 
JOSÉ FILIPE GORDO NEVES 

 

 
 
 
 
 
 

OCTOBER - 2022 



 

 

 

 
MASTER 

ACTUARIAL SCIENCE 
 
 
 

MASTER´S FINAL WORK 
INTERNSHIP REPORT 

 
 
 
 
CLIMATE CHANGE IMPACT ON NON-LIFE INSURANCE LIABILITIES: 
THE RIVER FLOOD CASE 

 
 
 
JOSÉ FILIPE GORDO NEVES 
 
 
 
SUPERVISION: 
CARLA SÁ PEREIRA 
CARLOS MIGUEL DOS SANTOS OLIVEIRA 

 
 
 
 

OCTOBER - 2022 
 



 

 



 

i 

 

ABSTRACT 

The climate change effects on the frequency and severity of extreme weather events 

are proving to be a challenge to insurance companies. Since August 2022, the European 

Insurance and Occupational Pensions Authority (EIOPA) demands the inclusion of the 

prospective climate risks that the insurers expect to impact their businesses in the Own 

Risk and Solvency Assessment Report (ORSA) under the Solvency II directive. This 

study focuses on the assessment of the effects of climate change on the specific event of 

river flooding and the consequent impact on the property insurance portfolio of an 

insurance company in mainland Portugal. The approach is divided into two moments: (i) 

the determination of the probability of occurrence of flooding events under three climate 

scenarios (RCP 2.6, 4.5 and 8.5) and for three time periods (2022-2032, 2032-2050, 2050-

2100), using the public data from the Copernicus program; (ii) and the estimation of the 

vulnerability to floods for the different geographical areas, using data from the 

Environmental, Planning, Investigation and Cartography WebGIS freely available spatial 

data infrastructure. The probability of occurrence is given by the variation of the joint 

return period of precipitation and river discharge for future scenarios based on historical 

data. The joint probability is investigated by fitting the Clayton, Frank and Gumbel 

copulas to the data where the margins follow mainly Gamma, Weibull and Generalized 

Pareto distributions. The analysis shows an expected increase in the probability of 

occurrence of floods under the RCP 2.6 scenario while decreasing for the other scenarios. 

The classification random forest algorithm is applied to explain the vulnerability of an 

area to floods based on the historically flooded areas and their geographical 

characteristics. According to the computed Gini Importance, elevation and slope are the 

most important characteristics. The product of the probabilities of occurrence, 

vulnerability to floods and the sum insured of the property portfolio constitutes the 

measure of risk to which each area is exposed. Each area is identified by the first two 

digits of the zip code. The zip codes in proximity to the main Portuguese rivers are the 

ones that experience a greater risk of losses. 

KEYWORDS: Climate Change; Floods; Vulnerability; ORSA; Copulas; Random 

Forest. 
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RESUMO 

Os efeitos das alterações climáticas na frequência e magnitude em eventos climáticos 

extremos estão a revelar-se um desafio para as companhias de seguros. Desde agosto de 

2022, a European Insurance and Occupational Pensions Authority (EIOPA) exige a 

inclusão dos riscos climáticos que as seguradoras esperam que tenham impacto nos seus 

Own Risk and Solvency Assessment Report (ORSA) ao abrigo da Directiva Solvência II. 

Este estudo centra-se na avaliação dos efeitos das alterações climáticas sobre o evento 

específico das inundações fluviais e consequente impacto na carteira de seguros de 

propriedade de uma companhia de seguros em Portugal Continental. A abordagem está 

dividida em dois momentos: (i) a determinação da probabilidade de ocorrência de 

inundações em três cenários climáticos (RCP 2.6, 4.5 e 8.5) e por três períodos (2022-

2032, 2032-2050, 2050-2100), utilizando os dados públicos do programa Copernicus; (ii) 

e a estimativa da vulnerabilidade às inundações para as diferentes áreas geográficas, 

utilizando a infraestrutura de dados espaciais disponíveis gratuitamente na 

Environmental, Planning, Investigation and Cartography WebGIS. A probabilidade de 

ocorrência é dada pela variação do período de retorno conjunto de precipitação e descarga 

fluvial para os cenários climáticos futuros, com base nos dados históricos. A 

probabilidade conjunta foi determinada para as cópulas de Clayton, Frank e Gumbel em 

que as margens seguem principalmente distribuições Gama, Weibull e Pareto 

Generalizado. A análise mostra um aumento da probabilidade de ocorrência de cheias no 

cenário RCP 2.6, enquanto diminui para os outros cenários. O algoritmo de classificação 

de floresta aleatória é aplicado para explicar a vulnerabilidade de uma área a inundações 

com base nas áreas históricas inundadas e suas características geográficas. De acordo com 

a importância de Gini, a elevação e a inclinação são as características mais importantes. 

O produto das probabilidades de ocorrência, vulnerabilidade a inundações e a soma dos 

montantes segurado da carteira constitui a medida do risco a que cada área está exposta. 

Cada área é identificada pelos dois primeiros dígitos do código postal. Os códigos postais 

na proximidade dos principais rios portugueses são os que apresentam maior risco de 

perdas. 

PALAVRAS-CHAVE: Alterações Climáticas; Cheias; Vulnerabilidade; ORSA; Cópulas; 

Florestas Aleatória. 
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1 INTRODUCTION 

Natural disasters are regular consequences of the dynamics of the Earth's systems. 

Events such as earthquakes, heat waves, hurricanes, floods, volcanic eruptions and others 

have required individuals and communities throughout history to adapt to avoid losing 

their peers and the fruits of their daily labor. While some of these events are particularly 

uncertain, the current IPCC Sixth Assessment Report (IPCC (2022)) acknowledges with 

an elevated level of confidence that climate change is having a major impact on the 

frequency and severity of climate-related events such as heat waves, floods and 

hurricanes, mainly due to human activity. According to the same report, the effects are 

far-reaching, more severe in the long term, and depend on actions taken by people, 

governments and businesses to reduce their footprint. Some consequences of such 

phenomena are loss of biodiversity, especially for more vulnerable ecosystems; water 

scarcity due to high snow melt rates, low rainfall rates, agriculture, hydropower and 

consumption; health problems due to heat waves, diseases related to poor food and water 

quality, and spread of pathogens; and economic damage to cities, towns and infrastructure 

(IPCC (2022)).  

The insurance sector is particularly exposed to these effects as it covers damages that 

have been increasing in recent decades. According to the Centre for Research on the 

Epidemiology of Disasters (CRED (2022)), economic losses worldwide in 2021 alone 

exceeded aggregate losses for the period 2001-2020. Floods were particularly impactful, 

with 223 events, and with average losses of USD 74.4 billion, primarily due to incidents 

in Germany and China (CRED (2022)). Accordingly, efforts have been undertaken by the 

industry and the academic community to predict and assess damage (e.g. Laudan et al 

(2017)), prevent losses (e.g. Messner & Meyer (2006)), create new products (e.g. Baskot 

& Stanic (2020)) and appraise the best risk transfer mechanisms (e.g. Franzke (2017)). 

Indeed, such solutions include approaches such as the one suggested by Turner et al 

(2014), which focuses on the growing demand for microinsurance for rare flood events, 

especially among individuals who have suffered losses in previous events. In Europe, the 

examination of insurance losses advises the consideration of pooled reinsurance 

purchasing and shared risk for certain clusters of countries like Austria, Portugal and 

France, where the first two alone require a high amount of capital for loss cover, but 
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together significantly reduce this figure (Prettenthaler et al (2017)). The study of flood 

characteristics has evolved towards the application of new and more accurate analysis 

and forecasting methods, helping not only insurers but also governments and businesses 

(see for example Lee et al (2017) and Vojtek & Vojteková (2019)). 

Portugal has been particularly affected by climate change due to its geographical and 

climatic characteristics (IPCC (2022)). Intense wildfires, prolonged dry spells, strong 

winds and floods have been the predominant phenomena (Zêzere et al (2006)). Over the 

last 40 years, weather events have generated damages of about €7.6 billion, but only 9% 

of these were covered by available insurance contracts (ECO Seguros (2021)). A number 

of studies have been carried out on flooding in Portugal and the incorporation of climate 

change. For example, the Portuguese Foundation for Science and Technology, funded in 

2010 the DISASTER project which compiles in a historical geographical dataset the 

hydromorphological phenomena for the period 1865-2010, observing an increase in the 

frequency of events for the Lisbon, Coimbra and Porto areas (Carvalho et al (2014)). Da 

Cunha et al (2007) compiles data from six climate models to perform the forecasts of 

temperature, precipitation and runoff, for the years 2050 and 2100, finding that during the 

periods of spring, autumn and summer there is a reduction in the value of runoff for 

Portuguese rivers. 

The estimation of the impact of these events in the insurance contracts has been 

recently investigated in Portugal (Leal et al (2022)). This thesis intends to further explore 

the effects of these natural disasters, namely floods, on a property insurance portfolio of 

an insurance company amid the increasing effects of climate change (IPCC (2022)). 

This study will address this issue in two parts: (i) the estimation of the probability of 

flood occurrence and (ii) the analysis of the flood vulnerability of the regions where 

properties are insured. The probability of occurrence of a flood event will be calculated 

under three climate scenarios, scaled by temperature increase, as reported in van Vuuren 

et al. (2011) and detailed in Appendix A. The estimate will be made under three periods 

for this century: short term (2022-2032), medium term (2033-2050), and long term (2050-

2100), each compared to historical data (1970-2005). Precipitation is the main factor 

influencing the volume of water flowing through the riverbed and heavy precipitation is 

expected in Europe under climate change (Seneviratne et al. (2021)). Therefore, the 
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relationship between precipitation and river discharge will enable the recognition of the 

levels of both variables which may constitute a flood. Despite variations in probability, 

the vulnerability of each geographical area depends on hydrological and soil 

characteristics. From Jacinto et al. (2015) approach, features such as distance to the river, 

slope, elevation, land use and permeability are going to allow the classification of 

territories by flood susceptibility. Due to its high accuracy and the extent of the data 

considered (Breiman (2001)), the random forest algorithm will be the method applied for 

categorization. The fitting of the distributions and the application of the random forest 

algorithm were performed in R. 

The outline of this thesis is as follows. In Chapter 2, we present the framework and 

regulations in force and anticipated to be applied to insurance companies regarding 

climate change. In Chapter 3, the climate change scenarios are introduced based on 

existing literature, the available data for estimating their effects is described and methods 

for predicting their impact on flood frequency are presented. Afterwards, in Chapter 4, 

the vulnerability to river overflow of the different geographical areas of Portugal is 

investigated, on the basis of the physical characteristics of the region. In Chapter 5, the 

flood risk related to the amounts insured in specific regions of mainland Portugal for a 

given insurance company is calculated. The conclusions of this study are set out in 

Chapter 6. 
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2 SOLVENCY II AND CLIMATE CHANGE 

The Solvency II Directive was introduced in 2009 and became fully applicable on 

January 1st, 2016. It aims to provide a harmonised, sound, and robust framework for 

insurance firms in the European Union (EU). Such framework lays on three pillars. Pillar 

I regards the quantitative requirements for the valuation of assets and liabilities, mainly 

the methods for calculation of capital requirements and establishment of the eligible own 

funds to cover such capital requirements. Pillar II concerns the risk management and 

governance systems. Pillar III addresses the supervisory reporting and public disclosure 

(European Parliament, 2009). The European Insurance and Occupational Pensions 

Authority (EIOPA) is responsible for the design of such directives and regulation, not 

only at EU level, but also at a national level, along with their review according to the 

sector and overall economic status  (European Parliament, 2009). The first amendments 

were performed on March 8th, 2019, with the objective of promoting the investment on 

EU scale, for small and medium size companies, and target market deficiencies, through 

changes in the calculation of certain risks (European Parliament, 2019). The increased 

significance of events such as windstorms, earthquakes, floods, hail and subsidence were 

considered due to some contractual policy conditions and early climate change awareness  

(European Parliament, 2019). 

Driven by the COVID-19 crisis and the objectives set by the European Green Deal in 

2020, a new revision has been suggested by EIOPA to maintain a sound solvency position 

and allow for long-term investments that prioritize environmental, social and governance 

factors. The changes include: (1) a modification of the risk-free discount rate, (2) a new 

approach to calculate the volatility adjustment, (3) the change in interest rate shocks and 

their correlation with other market risks, (4) the reduction of the risk margin through the 

change in the cost of capital charge, and (5) the inclusion of climate change scenarios in 

the Own Risk and Solvency Assessment (ORSA) (EIOPA, 2019). 

 

 

 



   

10 

 

2.1 Own Risk and Solvency Assessment 

The ORSA specifies how the insurer should meet its future solvency needs in line with: 

(1) its current business and risk profile, (2) the outlined strategy for the company to 

achieve its management objectives and (3) the economic, social and environmental 

context in which it operates. The ORSA policy should establish the rules for assessing 

the consequences of the business strategy and its risks. The latter include: (i) the risk 

tolerance limits, (ii) the timing and frequency of reporting, (iii) the stress and sensitivity 

tests used for the solvency and financial structure of the company and (iv) information on 

the quality of the data used for such assessment (Prudential Regulation Authority, 2016).  

The inclusion of climate change in the calculation of capital requirements is undertaken 

partially in the standard formula under life, health and non-life risks and for one year. 

However, the impact of climate change is only observable considering the medium and 

long-term outlook. In contrast, the current temporal structure of ORSA only considers 

projections over a maximum timeframe of 5 years. Therefore, consistent with the 

approach adopted by the Intergovernmental Panel on Climate Change (IPCC), ORSA can 

consider three periods depending on their temporal proximity: short-term (5-10 years), 

mid-term (up to mid-century) and long-term (up to the end of the century) (EIOPA 

(2022)). 

2.2 Climate Change Risks 

Climate variability is a natural consequence of the Earth's rotation and orbit, 

feedbacks on the climate system and random fluctuations on physical and chemical 

factors. However, human influence on climate is now more certain than ever, with 

numerous studies and people's experiences proving that the frequency and severity of 

climate phenomenon is increasing (IPCC (2022)). Accordingly, efforts have been made 

by governments, businesses and citizens to reduce the impact of human activities on the 

environment (IPCC (2022)). Climate change risks constitute the elements of climate 

change that introduce uncertainty into insurance companies' assumptions when assessing 

the materiality of such risks to their business (EIOPA (2022)). Consistent with the nature 

of the risks, they can be classified into 2 types: transition risks and physical risks. 

Transition risk is one of the drivers of climate risk comprising the uncertainty 

associated with the efforts of governments and businesses to move the economy towards 
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decarbonization and resilience to climate change. This includes political, legal, 

technological, market and reputational risks (EIOPA (2021)). Greenhouse gas emissions-

related businesses are especially susceptible to this type of risk and insurers should be 

especially cautious in assessing the impact of transition on assets and liabilities. 

Deterioration of investor and other counterparty confidence in carbon-intensive 

companies leads to loss of value of their assets and financing difficulties as their 

stakeholders shift to greener activities (EIOPA (2021)). On the liability side, underwriting 

insurance to 'brown' companies might lead to impaired trust in the insurer and in the 

expected value of claims, driving up premiums as well. 

The predominant part of climate change risk is physical risk. These risks translate the 

physical effects of the associated extreme events in terms of property damage, business 

interruption, decreased profitability and increased mortality (EIOPA (2021)). Physical 

risks are classified into 2 groups: (1) acute risks, related to one-time events such as storms, 

floods, fires and droughts which cause high damage and temporary disruption of 

activities; (2) chronic risks related to long-term exposure to climate change, such as 

general temperature increase, water scarcity, loss of biodiversity, etc. (EIOPA (2021)). 

Due to the potential magnitude of the damages, physical risks are those of greatest 

concern to supervisors and whose impact is projected to increase (EIOPA (2022)). 

In this work, we will focus on the assessment of the physical impacts of climate 

change on flooding for mainland Portugal and its effects on a property portfolio of an 

insurance company. 

 

3 FLOOD FREQUENCY PREDICTION 

Different approaches to the effect of climate change on the flood frequency and 

severity trends identification are observed for both historical data and projections of river 

flow and/or rainfall behaviour. Madsen H. et al. (2014) revisit studies on flood frequency 

in Europe and conclude a general increase in extreme precipitation and flows in some 

river basins. Through methods such as linear regression, positive trends are observed, and 

the effects of climate change are expected to have an even greater impact on this trend. 

For future projections, the predominant approach focuses on the calculation of the return 

period. The return period of a given event is given by the average time between two 
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consecutive occurrences of the same event (Gumbel (1941)). A flood occurs when the 

river discharge exceeds a certain threshold. Hence, the flood return period will be the 

mean time between two instances when this threshold is exceeded. Anandalekshmi et al 

(2018) employ return periods to examine the effect of extreme rainfall on reservoir 

storage during three periods: 2005-2010, 2010-2015 and 2015-2018. The observed return 

periods were 96, 102 and 289 years, demonstrating a decrease in the impact of extreme 

rainfall on reservoir overflow, mainly because of the effectiveness of controlled release 

of excess water. 

Despite the empirical nature of flood data, fitting continuous distributions is a 

commonly used approach to better capture the dynamics of the variables being studied 

(Singh (1998), Saf (2009) and Yin et al. (2018)). The adjustment methods employed are 

the method of moments, the maximum likelihood estimator, the maximum entropy 

principle as proposed by Singh (1998) or the L-moments method (Saf (2009)). The most 

commonly used distributions include Gamma, Gumbel, Extreme Value, Pearson III, Log-

Pearson III, Lognormal and Generalised Pareto. The goodness of fit is usually evaluated 

using the mean squared error criterion and Akaike information (e.g. Yin et al. (2018)) or 

via conduction of tests such as Kolmogorov-Smirnov test, Chi-square test (e.g. Karmakar 

and Simonovic (2009)). 

The evaluated factors include precipitation, river flow, duration, volume and intensity 

of the flood. The identification of the distribution that best represents the behaviour of 

each variable and, thereafter, of the joint distribution of these variables, provides a better 

description of the phenomenon. For example, Correia (1987) looked at the three flood 

characteristics: duration, volume, and flood peak, for a set of Portuguese rivers located in 

the northern part of the country. Following the fitting of a set of distributions, Correia 

concludes that the assumption of the independence between rivers for the main factors 

that influence the river volume, even if they are connected, is applicable to most 

Portuguese rivers. These assumptions will also be considered in the present study. 

The individual evaluation of the variables being investigated is possible (e.g. Gumbel 

(1971)), however these variables are dependent on each other. Therefore, joint analysis is 

an appropriate approach. The interaction between variables was tackled by Yue (2001), 

who evaluates the behavior of these same characteristics for the time series of river flow 
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in the Harracana basin, Quebec, Canada. The Gumbel Logistic Model, a joint cumulative 

function of two variables assumed to follow a Gumbel-type marginal distribution, was 

considered. Given the complexity of estimating a joint probability function, Salvadori and 

De Michele (2004) gives an intensive review of the concept of copula, the different forms 

of presenting the return period and its applications in different studies for pairs of flood 

features. By accounting for only two features, their graphical presentation is possible, 

thus bivariate analysis is prevalent in the literature. Nevertheless, the capabilities of 

copulas allow for the inclusion of a larger number of features. For example, Zhang and 

Singh (2007) proposed a trivariate Gumbel-Hougaard copula. The copula parameters are 

estimated using the maximum pseudo-probability estimator, the maximum likelihood 

estimator, and the method of moments (e.g., Klein et al. (2010)). The goodness-of-fit 

measures are in the multivariate case similar to those used in the univariate case 

(Karmakar and Simonovic (2009), Zhang and Singh (2007)). 

The choice of the appropriate copula is a delicate process given the spatial constraints 

of each and the suitability in terms of tail dependence, as highlighted by Chowdhary et 

all (2011).  For the universe of 29 copulas, the admissibility intervals for Kendall's tau 

and tail dependence coefficients were analyzed and concluded that the Ali-Mikhail-Haq, 

Clayton, Frank, Galambos, and Gumbel-Hougaard copulas would be the best fit. Some 

novel approaches, such as the one proposed by Wen et al. (2019), extend the copula 

concept by introducing a time-varying term where the parameters of the marginal 

distributions and the copula itself are described as one dependent variable of a linear 

regression.  

To include the effect of climate change, sophisticated climate and hydrological 

models can be used to project the different factors, including global/regional circulation 

models and a range of climate scenarios (Yin et al. (2018)).  

In this thesis, the variable pair of daily mean river discharge1 and daily mean 

precipitation data is considered. Historical data is outlined, and future projections for 

three climate scenarios are elaborated. In the following section, the mathematical 

framework for the study of marginal and joint variables is presented, as well as the study 

of return period adjustment. 

 
1 volume rate of water flow transported through a given river cross-sectional area (Berg et al. (2021b)) 
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3.1 Copulas and Return Period 

Let  𝑈1, 𝑈2, … , 𝑈𝑑 be continuous random variables uniformly distributed over the 

interval [0,1]. The copula 𝐶: [0,1]𝑑 → [0,1] is a joint distribution function such that (see 

for instance Nelsen (2006)): 

 

 𝐶(𝑢1, 𝑢2, … , 𝑢𝑑) = Pr (𝑈1 ≤ 𝑢1, 𝑈2 ≤ 𝑢2, … , 𝑈𝑑 ≤ 𝑢𝑑)  

 

Also, let 𝑋1, 𝑋2, … , 𝑋𝑑 be the marginal continuous random variables with distribution 

functions 𝐹1, 𝐹2, … , 𝐹𝑑. Then, by Sklar’s theorem, for any distribution function H, there 

exists a copula C such that (see for instance Nelsen (2006)): 

 𝐻(𝑥1, 𝑥2, … , 𝑥𝑑) = Pr(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, … , 𝑋𝑑 ≤ 𝑥𝑑)

= Pr(𝐹1(𝑋1) ≤ 𝐹1(𝑥1), 𝐹2(𝑋2) ≤ 𝐹2(𝑥2), … , 𝐹𝑑(𝑋𝑑) ≤ 𝐹(𝑥𝑑))

= Pr(𝑈1 ≤ 𝐹1(𝑥1), 𝑈2 ≤ 𝐹(𝑥2), … , 𝑈𝑑 ≤ 𝐹(𝑥𝑑))

= C(u1, 𝑢2, … , 𝑢𝑑) 

 

 

The copulas to be considered in this study are part of a class called Archimedean 

copulas. Let 𝜑: 𝐼 → [0, +∞] be a strictly decreasing continuous function such that 

𝜑(1) = 0, where 𝐼 is the domain of 𝜑. Let 𝜑[−1] be the pseudo-inverse function of 𝜑 

defined in Equation 1.  

 
𝜑[−1](𝑡) = {

𝜑−1(𝑡), 0 ≤ 𝑡 ≤ 𝜑(0)

0, 𝜑(0) ≤ 𝑡 ≤  +∞
 

(1) 

 Then an Archimedean copula 𝐶: 𝐼𝑑 → 𝐼 is defined as (Nelsen (2006)): 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑑) = 𝜑[−1](𝜑(𝑢1) + 𝜑(𝑢2) + ⋯ + 𝜑(𝑢𝑑)) 

 

 

Where 𝜑 is denoted the generator function. The generator functions for the copulas 

applied to this work are presented in Appendix B. In this study, the analysis will focus on 

the Clayton, Frank, and Gumbel copulas. 
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The parameters are estimated by means of the Inverse Kendall's Tau method, which 

like the method of moments, considers this dependence measure as consistent estimator 

for copula parameter (Nelsen (2006)). For this method, the theoretical Inverse Kendall's 

Tau for the copula of the population is given by the one of a sample of such population. 

Let (𝑋1, 𝑋2) e (𝑋1
∗, 𝑋2

∗)  be the pairs of random variables with the same marginals 𝐹1(𝑥1) 

and 𝐹2(𝑥2), the Kendall's Tau correlation coefficient measures the level of correlation 

between these pairs of variables: 

 𝜏𝑘(𝑋1, 𝑋2) = Pr[(𝑋1 − 𝑋1
∗)(𝑋2 − 𝑋2

∗) > 0] − Pr[(𝑋1 − 𝑋1
∗)(𝑋2 − 𝑋2

∗) < 0]

= 𝐸[𝑠𝑖𝑔𝑛((𝑋1 − 𝑋1
∗)(𝑋2 − 𝑋2

∗))]

= 4 ∫ ∫ 𝐶(𝑢, 𝑣) 𝑑𝐶(𝑢, 𝑣)
1

0

1

0

− 1 

 

 

The quality of adjustment of the copula is determined by the Akaike Information 

Criteria (AIC). The lower the value of the statistic, the better the quality of adjustment. 

In its copula version, the AIC is described as follows (see for instance Ko et al. (2019)): 

 
𝐴𝐼𝐶 = 2𝑘 − 2 ∑ ln(𝑐(𝐹𝑋(𝑥𝑖), 𝐹𝑌(𝑦𝑖))𝑓𝑋(𝑥𝑖)𝑓𝑌(𝑦𝑖))

𝑛

𝑖=1

 
 

 

Where 𝑐 is the copula density function, 𝑛 is the size of the sample and 𝑘 is the number 

of parameters.  

 

One of the methods for copula fitting requires the determination of distribution 

function of the marginals, which can change the dynamics of the interaction between the 

variables under study. For instance, the prior analysis of the tail behaviour of hydrological 

variables such as river discharge allows for the evaluation of the potential magnitude of 

flooding events in a certain area. In accordance with the literature, the distributions to be 

fitted to individual precipitation and river discharge are as outlined in Appendix C, where 

location, scale, and shape are the parameters of the functions.  

To adjust the marginals, traditional methods are used: the method of moments, the 

maximum likelihood estimator, and the L-moments method, derived from weighted 
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moments in which, instead of considering the order statistics individually, linear 

combinations of these statistics are considered (Saf (2009)). 

The quality of fit is measured by four statistics: Akaike Information Criterion, Chi-

Square Test, Cramer von Mises and Kolmogorov-Smirnov, are described in Table I. In 

all cases, the lower the value of the statistic, the better the fit of the distribution: 

 

Table I: Margins’ Goodness-of-Fit Statistics 

Goodness-of-fit 

Tests 

Statistic Distribution 

Akaike Information 

Criterion 
𝐴𝐼𝐶 = 2𝑘 − 2 ∑ ln 𝑓(𝑥𝑖)

𝑛

𝑖=1

 
 

Chi-square Test 
𝑋2 = ∑

(𝑥𝑖 − 𝑛𝑝𝑖)2

𝑛𝑝𝑖

𝑛

𝑖=1

 𝜒2
(𝑛−1) 

Cramer von Mises 
𝑇 =

1

12𝑛
+ ∑ (

2𝑖 − 1

2𝑛
− 𝐹(𝑥𝑖))

2𝑛

𝑖=1

 𝜔𝑛
2 = 𝑛 ∫ {𝐹𝑛(𝑥) − 𝐹(𝑥)}2 𝑑𝐹(𝑥)

∞

−∞

 

Kolmogorov-

Smirnov 

𝐷𝑛 = sup
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)| 
√𝑛𝐷𝑛 → sup

𝑥
|𝐵(𝐹(𝑥))| 

𝑛: sample size, 𝑘: number of parameters estimated, 𝑓(𝑥): probability function, 𝑝𝑖: expected probability, 𝐹(𝑥): cumulative distribution 

function,  𝐹𝑛(𝑥): empirical distribution function, B(t): Brownian bridge 

 

Note that despite the test results, graphical observation of the distribution against the 

empirical distribution and expert opinion may suggest a different adjustment from the one 

statistically accepted.  

Let 𝐹(𝑥) be the cumulative distribution function of the random variable X, the return 

period corresponds to the average number of trials, 𝑇(𝑥), that must be made for the 

realization of X to be greater than or equal to a given value 𝑥. Let 𝜇𝑇 be the time unit of 

the considered observations, which for annual values is 1 (Salvadori and De Michele 

(2004), Gumbel (1941)), then: 
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 𝑇(𝑥) =
𝜇𝑇

1 − 𝐹(𝑥)
  

 

Each variable has a different behavior described by its cumulative distribution 

function. So individually, the return periods will be different. In the bivariate case, the 

interaction between the two variables is considered to change the pattern of the return 

period. Joint return periods, modeled by copulas, describe the joint dependence of the 

characteristics of interest (Salvadori and De Michele (2004), Anandalekshmi et al. 

(2019)). Two types of joint return periods are considered, based on the realizations of X 

and Y. In the AND case (∧), the return period is given by the average number of trials 

between two events where X exceeds a certain threshold and, at the same time, Y exceeds 

a threshold befitting Y's behavior. For example, a scenario of high precipitation and high 

river discharge is more prone to flooding, since precipitation levels are the main driver of 

river overflow (Salvadori and De Michele (2004)). The joint return period AND is 

presented in Equation 2: 

𝑇𝑋∧𝑌(𝑥, 𝑦) =
𝜇𝑇

Pr (𝑋 > 𝑥 ∧ 𝑌 > 𝑦)
=

𝜇𝑇

1 − [𝐹𝑋(𝑥) + 𝐹𝑌(𝑦) − 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))]
 

 

(2) 

In the OR case (∨), the return period is calculated between two events where X or Y 

exceed the respective thresholds. Precipitation and river discharge alone do not set up a 

river flood situation since high precipitation levels alone cannot cause flooding due to 

dams and other flood prevention mechanisms (Anandalekshmi et al. (2019)). This case is 

applied to other extreme weather events like storm surges (Salvadori and De Michele 

(2004)). The joint return period OR is presented in Equation 3: 

 

   

 𝑇𝑋∨𝑌(𝑥, 𝑦) =
𝜇𝑇

Pr (𝑋 > 𝑥 ∨ 𝑌 > 𝑦)
=

𝜇𝑇

1 − 𝐶(𝐹𝑋(𝑥), 𝐹𝑦(𝑦))
 (3) 
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Thus, the assessment of the joint behavior of the variables under study is important 

when modeling flood risk. This study will focus on the joint return period AND, since a 

combined scenario of extreme precipitation and high river discharge is more prone to 

flooding. 

3.2 Data 

In this section, we will describe the data used to assess the probability of fluvial flood 

occurrence for three climatic scenarios and for three time periods. The data was collected 

from the Copernicus program for the mainland Portugal area and confirmed with data 

from the the Sistema Nacional de Informação de Recursos Hídricos (SNIRH). 

The Copernicus program, developed by the European Union in partnership with the 

other European agencies, seeks to process and analyze real-time data from atmosphere, 

land and oceans through dedicated satellite systems and local meteorological and 

hydrological stations (Berg et al. (2021a), Berg et al. (2021b)). Towards the analysis of 

flood phenomena in Europe, Copernicus provides historical data (1971-2005) and future 

projections (2006-2100), according to three climate scenarios, for precipitation, measured 

in millimeters per day and river discharge, the volume of water flowing through the 

channel of a river, measured in cubic meters per second. 

Until the IPCC Fourth Assessment Report (AR4), the literature included about 300 

climate scenarios, considering or not the possibility of stabilisation of emissions (Moss et 

al. (2008)), so the IPCC decided to compile the information from all these studies into 

four trajectories according to the emission and concentration of greenhouse gases and 

other pollutants in the atmosphere and land use: the Representative Concentration 

Pathways (RCPs). Details of emission quantities and other characteristics can be found 

in Appendix A. Following van Vuuren et al. (2011), of these, the three scenarios 

considered will be (1) RCP 2.6, representing a mitigation scenario, which leads to a 

decrease in global temperature; (2) RCP 4.5, a medium stabilisation development; and 

(3) RCP 8.5, a very high emissions scenario, corresponding to continued fossil fuel 

consumption and no cooperation between countries. 

The data provided by Copernicus extends over mainland Portugal with a resolution of 

5 km, according to a Lambert azimuthal and rotating grid (Figure 1). A set of 3550 points 

is available, combining the Hadley Centre Global Environment Model version 2 
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(HadGEM2-ES), developed by the Met Office, and the local information obtained by the 

RACMO version 2.2e (RACMO22E), from the Koninklijk Nederlands Meteorologisch 

Instituut (KNMI), duly corrected for bias. 

 

 

Figure 1 – Copernicus grid points 

The precipitation is the deposition of water in the form of rain, snow, ice, or hail, 

expressed in kilograms per square meter per second (𝑘𝑔 𝑚−2𝑠−1) (Berg et al. (2021a)). 

However, in most local stations, an instrument called a pluviometer measures the amount 

of liquid precipitation over a unit area, usually expressed in millimeters per unit of time. 

On the other hand, historically, snow, ice and hail are not that expressive in the Portuguese 

territory, therefore the pluviometer units are the ones used hereafter. Considering that one 

kilogram of rainwater spread over one square meter of surface is one millimeter in 

thickness and that there are 86400 seconds in a day, then 1 𝑘𝑔 𝑚−2𝑠−1 is equivalent to 

86400 mm/day. Therefore, all precipitation data multiplies by a factor of 86400. The river 

discharge units are in 𝑚3𝑠−1 and represent the volume rate of water flow transported 

through a given cross-sectional area per second (Berg et al. (2021b)). Further details on 

the data are presented in Appendix B. 
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3.3 Methodology and Results 

According to the expectations of the ORSA reports for coming years, the three climate 

scenarios are divided by three periods: short term (2022-2032), medium term (2032-2050) 

and long term (2050-2100). Recognizing the best distribution for each grid point is 

essential to obtain a proper fit of the copula and subsequent determination of the joint 

return period. For each statistical test presented in section 3.1, the two distributions with 

the lowest statistical value are selected across all estimation methods and from these the 

one with the best fit is selected. For precipitation, the best distributions are primarily the 

Gamma, Generalized Logistic and Weibull. For river discharge, apart from the Gamma 

and Weibull distributions, the Generalized Pareto is one that presents the best fit.  

Among the parameter estimation methods, the L-moments method performs better for 

selected best distributions. Figure 2 shows the fitting of the three methods compared to 

the empirical distribution function for one of the historical data points with coordinates 

(8.63ºW, 39.29ºN) corresponding to a grid point near the Tejo river: 

 

 

Figure 2 – Distribution functions for the three estimation methods: method-of-moments, 

maximum likelihood estimator and L-moments 

 

After recognizing the best distributions and its parameters for both precipitation and 

river discharge, the copula functions must be adjusted. The best copula is identified by 
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means of the Akaike Information Criteria. The best fitting copula out of the three 

considered for most of the grid points was the Gumbel copula. The Gumbel copula is 

characterized by having upper tail dependence, i.e, when one of the variables attains large 

values, the other has a high probability of presenting a large value as well. In the context 

of flooding, this property is desirable since it expresses a positive correlation between the 

variables and, especially, in a combined scenario of heavy precipitation and high river 

discharges, the one that causes floods. The empirical and fitted copulas for the grid point 

of coordinates (8.63ºW, 39.29ºN) are presented in Figure 3: 

 

 

Figure 3 – Empirical and Fitted Copulas 

 

After determining the best fitting copula, we proceed to the calculation of the joint 

AND periods for the considered climate scenarios and periods. Recalling the concept of 

return period, the higher the return period, the less likely is for the variable being tested 

to exceed the given threshold. For example, a precipitation value with 100-year return 

period means that the probability that the threshold is exceeded is of 1%. This does not 

mean that such precipitation values will be observed in periods of 100 years. They may 

be observed twice in the same year, but with reduced probability. Therefore, the 

combination of precipitation and river discharge to cause a flooding event is expected to 

have a high return period.  
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In line with the approaches found in the literature and the properties of the return 

period, the following procedure was considered to determine the variation on potential 

flood events: 

(1) Calculate the joint return period AND for the historical data. For each grid point, 

consider the best fitting copula determined before. Since the copula is a function 

of the distributions functions and their domain is in the interval [0,1], then by 

considering the combinations of values in this range, a matrix of the possible 

return periods is obtained. Computationally, vectors of length 1000 out of this 

interval are considered.  

(2) Inspect the pairs of values with the following return periods: 100, 1000 and 10000. 

Notice that a one million return period implies that the values for precipitation and 

river discharge, together, expected to exceed the threshold one out of one million 

times.  

(3) Determine the precipitation and river discharge quantiles for the values 

determined in step 2 by using the best fitted margins for each grid point. 

(4) For the different climate scenarios and time periods, calculate the return period 

for the quantiles determined in step 3. 

The inverse of the difference between the return periods obtained for the different pairs 

(climate scenario, time period) for the historical data quantiles and the respective return 

period considered in the calculation of such quantiles (100, 1000 and 10000 years) gives 

the probability of occurrence of river flooding for each point in the grid. 

For example, a decrease in the return period suggests an increase in the probability of 

occurrence of the precipitation and river discharge values relative to a historical 

exceedance probability of 1%, 0.01% and 0.0001%. Figure 4 classifies the grid points 

according to the sign of the return period variation. The variations that are infinite are 

removed from the analysis since they are negligible (the exceedance probability is 0%): 
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Figure 4 – Return Period Variation for 100-year, 1000-year and 10000-year historical 

precipitation and river discharge under the RCP 2.6 short term scenario 

 

4 ESTIMATING THE VULNERABILITY TO FLOODS IN PORTUGAL 

The extent of damage caused by these phenomena is heterogeneous, so the distribution 

of benefits payable to policyholders and the insurance premium collected can be adjusted 

by the insurer to minimize their losses. The degree of heterogeneity of damage depends 

on the vulnerability of the geographical area. The definition of vulnerability to natural 

disasters varies between authors and organizations. Attempts have been made to 

incorporate all the indicators that can influence the harmful consequences of disasters and 

it depends on (1) the type of study, (2) the objective of the results to be obtained, (3) the 

type of hazard, (4) the geographical area to be considered and (5) the time horizon 

(Barroca et al. (2006)). 

Blaikie et al. (1994) define vulnerability to hazards as the ability (or inability) of a 

given population to anticipate, withstand and recover from a natural disaster and all events 

or series of events associated with it. Adger (2006) defines it as the susceptibility to 

environmental and social change due to inability to adapt and describes the linkages 

between humans and the environment and our role in managing such interactions. The 

above concepts of vulnerability are relatively vague as they cover a range of indicators 

that may be inadequate. Numerous authors have therefore sought to define vulnerability 

as a function of other, simpler concepts (Adger (2006), Rehman et al. (2019)). UNESCO, 



   

24 

 

in its flood vulnerability index, whose purpose is to facilitate decision making for policy 

makers and investors, sets out the following equation in which the relationship between 

the concepts can be observed (Rehman et al. (2019)): 

 

 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒  

 

In this study, UNESCO’s approach will be one to considered. Exposure stands for the 

people, goods and structures potentially subject to damage due to a natural hazard, which 

in this thesis is given by the sum insured for each geographical area. Susceptibility is the 

predisposition of an area to be affected by such hazard, which will be measured by 

classification of each geographical area, according to its probability to flooding, 

considering the landscape, soil and waterflow conditions of the area. The procedure is 

detailed in the next sections. Resilience is the capacity of a system to resist the hazard and 

return to an acceptable state of organization and functioning (Rehman et al. (2019)), 

which will not be considered in this study. Several methods are available for the 

measurement of these concepts (e.g., Kazakis et al. (2015) and Samanta et al. (2018)) and 

some will be described in the next section. 

According to the nature of the variables considered, vulnerability to floods is divided 

in four types (Chan et al. (2021)):  

(1) Physical vulnerability poses the natural structures and indicators that influence 

the flow of fluids such as air and water towards an area. Factors such as elevation, 

proximity to river, the normalized differential vegetation index, slope, flow 

accumulation and permeability are considered. The authors conclude that the 

proximity to the river, elevation and slope are the most crucial factors (Vojtek and 

Vojteková (2019)) 

(2) Environmental vulnerability encompasses the ecological footprint that these 

events cause in the ecosystems and the potential of the system for regeneration 

depending on characteristics such as the soil, species that inhabit the area and the 

level of organization in terms of the food chain (Williams and Kapustka (2000)).  

(3) Social vulnerability addresses the impacts and ability of the individuals and 

communities to overcome the damages imposed by a natural disaster. The factors 
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that influence such ability include socioeconomic status, gender, age, commercial 

and industrial development, employment loss, infrastructures, occupation and 

others (Boruff et al. (2003)).  

(4) Economic vulnerability which concentrates on the ability of private and public 

infrastructures to withstand impacts (Woodruff et al. (2018)). Fatemi et al. (2020) 

addresses the interaction between physical vulnerability, flood response and 

adaptability strategies for Dhaka city in Bangladesh considering variables like the 

main construction material of the roof, walls and floor, the height and age of the 

building, and the presence of flood protection measures in the building, 

concluding that older, fragile, and lower buildings experience higher damage.  

The data available to proceed to the evaluation of the vulnerability areas to flood in 

mainland Portugal is mostly related to physical vulnerabilities except for the land use 

which can be considered an economic vulnerability factor. A further interpretation of the 

variables used is detailed on chapter 4.2. 

 

4.1 Measurement Methods 

The identification of flood prone areas is carried out after these events happen which 

can be hard, costly and time consuming. Therefore, the prior modelling of the 

vulnerability of each region is a valuable tool for prevention and protection against major 

damage (Kho et al. (2018)). The models available differ in accuracy, data used, structure 

and processing time (Shafizadeh-Moghadam et al. (2018)). Each model has its advantages 

and disadvantages so there is no consensus on which models to choose (Khosravi et al. 

(2018)). Four approaches to modelling flood can be considered (Olowe (2021)):  

(1) Hydrological approach refers to models that gather flood and landscape data and 

through hydrodynamics equations assess the impacts in the several areas, mainly 

around the river. Despite their accuracy, the data collection can be costly and time 

consuming. Abdulkareem et al. (2018) review 70 studies conducted for Malaysia, 

concluding that 60% percent of them applied hydrological models. 

(2) Qualitative approaches attempt to consider expert knowledge and decision-

based techniques to relate independent flood characteristics. The main techniques 

used are the Analytical Hierarchy Process (AHP) (e.g., Kazakis et al. (2015)), 



   

26 

 

Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) (e.g. 

Lee et al. (2013)), Simple Additive Weighting (SAW), and other multi-decision 

criteria methods (e.g., Malekian and Azarnivand (2016)).  

(3) Statistical approaches presume the calculation of statistics which range of values 

allows for the identification and classification of an area. The most common 

practices are the frequency ratio (e.g., Samanta et al. (2018)), logistic regression 

(e.g., Shafapour et al. (2019)), weight of evidence (e.g., Khosravi et al. (2016)) 

and entropy (e.g., Siahkamari et al. (2018)).  

(4) Machine Learning Methods are becoming more popular for pattern recognition, 

prediction, and classification, due to the increase in computational power and the 

developments in artificial intelligence (Olowe (2021)). There are several 

algorithms available under the machine learning umbrella which for flood 

vulnerability include (boosted-)decision trees (e.g., Lee et al. (2017)), support 

vector machines (SVM) (e.g., Tehrany et al. (2014)), artificial neural network 

(ANN) (e.g., Falah et al. (2019)), generalized linear models (GLM) (e.g., El-

Haddad et al. (2021)) and random forests (RF) (Lee et al. (2017)).  

In this study, random forests were considered due to their high accuracy. In the random 

forest methods estimates are performed variable importance and the substitution of 

missing values is carried out according to the values in its neighbourhood (Breiman 

(2001)), which also make this methodology appealing. 

 

4.1.1 Random Forests 

The random forest methodology encompasses a group of algorithms where for each 

random vector generated from the training data, a hierarchical tree structure is applied so 

that the child nodes are a result of a set of constrains established according to the nature 

of the variables included in the analysis (Breiman (2001)). Random forests are used for 

both regression and classification and the general algorithm can be described as follows 

(Hastie et al. (2009)): 
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1. For b from 1 to B: 

a) Randomly generate one bootstrap sample of size N out of the training data. 

b) Grow a random forest, Tb , splitting each node by picking the best variable 

or split point out of a set of m variables from the original variables.  

(This procedure will be detailed later) 

Repeat the process until the minimum node size is reached,  

where the minimum node size is 10.  

 

2. Output the forest, i. e. , the group of B trees. 

 

The prediction of a new point using random forests depends on whether they are used 

for regression analysis or classification, that is, to assess the impact of a set of variables 

into a dependent variable. In regression analysis, the prediction is given by the average 

of the values obtained for each tree that presents the same characteristics as the new point. 

For classification, it is given by the majority vote out of the trees with random vector like 

the new point (Hastie et al. (2009)). 

In the context of flood vulnerability, rather than a binary classification of the areas, the 

determination of the probability of belonging to each group allows the ranking of the 

likelihood of such event to happen. Malley et al (2012) propose the estimation of the 

conditional probability function for a binary outcome by means of machine learning 

methods, like random forests, which are proved to perform well for non-parametric 

regressions. Therefore, the classification random forest is first applied and then the 

expected value of the dependent variable, given the feature vector for the different trees, 

is determined.  

Let Y be the binary variable under study and X the explanatory variables, the 

conditional probability of the characteristic being observed (𝑃(𝑌 = 1|𝑋)) is equivalent 

to the expected value of Y conditional on X, which is a Bernoulli random variable. 
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Therefore, the probability estimation problem can be resumed to the following non-

parametric regression: 

 �̂�(𝑌 = 1) = 𝐸(𝑌|𝑋 = 𝑥)  

 

The consistency of this approach has been proved for the random forest classification 

by observing the convergence of the mean squared error (MSE) and if the bagging method 

is used (Malley et al (2012)). According to Breiman (2001), bagging consists in growing 

a tree by using a new training set from the resampling with replacement of the original 

dataset and with a random selection of the explanatory features. The error rate on the 

training set is considered as measure for the quality of the random forest model used 

(Breiman (2001)). This approach is the one considered in this study. 

Since the true probability of flooding is not available and the consistency of the 

classification random forest has been proved, the Brier score can be used instead as an 

error quantifier. Let 𝑁 be the training sample size and 𝑦𝑖 the observed dependent variable, 

then the Brier score (BS) is given by: 

 

𝐵𝑆 =
1

𝑛
∑(𝑦𝑖 − �̂�(𝑌𝑖 = 1))2

𝑁

𝑖=1

 

 

The Brier score is equivalent to the mean squared error but for predicted probabilities. 

The score’s aim is to penalize inaccurate predictions and varies between 0 and 1. For 

instance, in this study, if for a certain geographical area, the historical indicates that 

flooding event happened, but the prediction model suggests the opposite, then the 

expected score for that observation will be high. The lower the score, the better the 

predictions.  

The criteria for splitting the nodes and pruning the tree differs on the type of model 

and is based on the calculation of the impurity of the nodes. In classification analysis, the 

misclassification error, Gini importance and cross-entropy are the most used. In this 

study, the Gini importance is the one considered (Hastie et al. (2009)).  

Let (𝑥𝑖, 𝑦𝑖) be the observations of the variables X and Y and consider a partition of the 

sample space (𝑥𝑖, 𝑦𝑖) into M regions 𝑅1, 𝑅2, … , 𝑅𝑀. The Gini index 𝑄𝑚(𝑇) for the tree T 

and node m is defined as follows (Hastie et al. (2009)): 
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𝑄𝑚(𝑇) = ∑ 𝑝𝑚�̂�

𝐾

𝑘=1

(1 − 𝑝𝑚�̂�) 

 

Where  𝑝𝑚�̂� is the number of class k observations in node m, with 𝑘 ∈ 1, … , 𝐾, where 

𝐾 the number of classes of the dependent variable considered. Let 𝑅𝑚 be a particular 

region and 𝐼(𝑦𝑖 = 𝑘) the indicator function which is one when the observed dependent 

variable is equal to the considered class k: 

 

𝑝𝑚�̂� = ∑ 𝐼(𝑦𝑖 = 𝑘)

𝑥𝑖∈𝑅𝑚

 

 

This is also used in the assessment of importance of each independent variable. The 

higher the Gini importance, the more significant is the variable (Hastie et al. (2009)). 

 

4.2 Spatial Datasets 

In this section, we present the variables chosen for the classification of the 

vulnerability to flood of mainland Portugal. 

The dependent variable is given by the geographical areas where floods with 

considerable damage and loss of human lives were historically observed. Therefore, it 

can be represented as a binary variable and the random forest classification is adequate. 

The data is available at the Agência Portuguesa do Ambiente (APA) portal and embraces 

the studies, reports, news and articles on floods, hidrological information and planning 

out of the Sistema Nacional de Informação de Recursos Hídricos (SNIRH). 

Regarding the independent variables, these were selected according to the indicators 

usually considered in the literature and out of the Environmental, Planning, Investigation 

and Cartography WebGIS (EPIC WebGIS) freely available spatial data infrastructure. 

The EPIC WebGIS developed as part of the PTDC/AUR-URB/102578/2008 – National 

Ecological Network – a proposal of delimitation and regulation (EPIC WebGIS Portugal 

(2022)).  The datasets considered are the following: current permeability, elevation, and 

slope. The distance to the river is determined by calculating the distance of the 

geographical areas to the main rivers and lakes in mainland Portugal. The ArcGIS Pro’s 

tool Euclidean Distance allows for the creation of a spatial dataset with such distances. 
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The water bodies extent is accessible at the APA portal. The last indicator, the Land Use, 

is provided by the Direção Geral do Território, in its 2018 Soil Usage and Occupation 

Cartography. Only elevation and distance to river are continuous variables while the 

remaining are categorical. Table II summarizes the explanatory variables used in this 

study (EPIC WebGIS Portugal (2022)): 

 

Table II – Explanatory Variable Details 

Explanatory 

Variable 
Description 

Scale/ Spatial 

Resolution 
Classification 

Elevation 
Terrain altitude with 

respect to the sea level 
25m Continuous Variable 

Slope 
Degree of inclination 

of a surface 
25 m 

From flat areas to very hilly areas, seven 

classes: 0-3%, 3-5%, 5-8%, 8-12%, 12-

16%, 16-25%,> 25%. 

Current 

Permeability 

Qualitative assessment 

of water infiltration 

capacity of the soil 

1:100000 

Seven classes: Low, Low to Medium, 

Medium, High, Very High, Water Plains 

and Urban Areas 

Distance to 

River 

Shortest distance 

between a water body 

(river or lake) and 

spatial pixel 

25m Continuous Variable 

Land Use 

Cartographic 

information of the 

usage and occupation 

of the soil 

20m 

10 classes: Artificialized territories, 

Agriculture, Pastures, Agro-Forestry areas, 

Forests, Bushland, Open spaces or 

sparcely vegetated areas, Wetlands and 

Surface water bodies 
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4.3 Methodology and Results 

The application of the random forest algorithm requires the rasterization2 of all the 

datasets for the same resolution and the pixels must match each other. Since the original 

resolution and pixel positioning is different for the considered datasets, a resampling of 

the datasets through bilinear interpolation was required. The bilinear interpolation 

determines the value of the new cell by the weighted distance average of the four nearest 

input cells. The considered resolution is 25 meters. The maps presented in Appendix E 

represent the final raster version of each variable. 

Following the approach described in chapter 4.1, the probability of each pixel being a 

flooded area is determined by the computation of a classification random forest algorithm, 

considering the historical flooded areas in mainland Portugal, after rasterization, as the 

dependent variable. The independent variables are the ones described in Table II, each 

one following the same rasterization as the dependent variable. The estimation of the 

probability is automatically done by the R tool used. According to the good practices in 

machine learning (Hastie et al (2009)), out of the original data, a training set of 70% of 

the observations is selected and the tree is grown. The remaining 30% are used as test set 

and the prediction error is estimated according to the Brier score. The score obtained was 

of 1.52%, which is relatively small suggesting a proper fit of the probability function to 

the data and, consequently, of the classification forest. 

The importance of each variable according to the Gini importance is presented in 

Figure 5. Similar to the approaches presented in chapter 4.1, the low elevation and low 

slope areas are more prone to floods. 

 
2 Process of converting an image described in a vector graphics format (shapes) and converting it into 

a raster image (series of pixels with the same resolution) (Worboys and Duckham (2004)) 
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Figure 5 – Importance of each independent variable by Gini importance 

Given the high accuracy of the model, the predictions for the probability for original 

data were mapped for mainland Portugal in Figure 6. In the interest of simplicity, the 

probabilities were classified into 5 categories by Jenks natural breaks optimization: Very 

Low, Low, Medium, High and Very High.  

 

 

Figure 6 – Flood vulnerability map 
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5 CLIMATE CHANGE IMPACT ON THE LIABILITIES 

The European Union Flood Directive defines flood risk as the convolution of the 

probability of flood event and the potential harmful consequences to the environment, 

economy and human beings and states. The Directive also states that the Member States 

must be coordinated to prevent, protect, and mitigate such effects by the development of 

effective tools for hazard and flood mapping. A solidary fund for quick financial aid and 

management plans is suggested (European Parliament (2019)).  

Several approaches are available for the calculation of flood risk which combine the 

concepts defined before. Cançado et al. (2008) consider the risk as a product of hazard 

and vulnerability where indexes are calculated for both according to the natural, 

economic, and social variables. Kron (2005) includes the value of humans, items and 

buildings which considers that, along with hazard and vulnerability, are increasing 

demanding for the intervention of the people affected, public authorities and insurance 

companies for risk reduction. Other approaches consider the interaction between hazard, 

either through classification or just the assessment of the probability of occurrence, and 

its consequences usually measured in loss of lives and/or the monetary value of structures 

and items (Meyer et al. (2013)). The hazard mapping is respected as being the most 

important factor and the other terms are usually included in a broader class which can be 

identified as the consequences (Klijn et al. (2015)).  

In this study, the calculation of the risk is managed by the Equation 4 (Kron (2005)): 

 

 𝑅𝑖𝑠𝑘 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑉𝑎𝑙𝑢𝑒 (4) 

 

The value of endangered buildings, items and people is given by the sum insured of 

the insurance company considered in this study. The sum insured is the total of benefits 

that the insurance company agrees to pay to its policyholder in the event of a natural 

disaster or other cause that results in major damage, here secured by property insurance 

contracts. The contracts are grouped in geographical areas to facilitate the calculation of 

the capital requirements demanded by the Solvency II directive. For Portugal, the division 

is done by the first two digits of the zip code, which is constituted by 7 digits in the form 
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XXXX-XXX. The first four digits identify the parish and, the last three identify the street 

and the building location. This basis was set prior to the parish administrative 

reorganization (Reorganização Administrativa do Território das Freguesias – Diário da 

República (2013)), occurred in 2012, therefore current parishes may present two or more 

4-digit different combinations. Considering the data for the addresses available at the 

Portuguese post office service (CTT portal) and the Official Administrative Charter of 

Portugal from 2011, the following map in Figure 7 was obtained: 

 

 

Figure 7 - 2-Digit Zip Code Division 

 

For the purpose of addressing the probability of occurrence for different areas under 

the 2-digit postcode division, the average of the estimated return period variations is 

calculated for the all the grid points in each area and considering the 100-year historical 

data thresholds. The use of the 100-year historical data thresholds is used in a number of 

studies to determine the variation of hydrological variables (Anandalekshmi et al. (2018)) 

and includes the other two historical thresholds calculated in section 3.3. Then, the 

probability of incidence of precipitation and river discharge is given by the inverse of the 

return period, as introduced in section 3.1. A decrease in return period implies an increase 

in the flood occurrence likelihood because lower return periods correspond to a short 
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average time between realizations. The probabilities of occurrence for each scenario and 

climate period are presented in Appendix F.  

For all climate scenarios, the average expected increase in the probability of flood 

occurrence is around one percent, which implies a doubling of the probability of fluvial 

flood occurrence, given that a return period of 100 years was considered. For the RCP 2.6 

scenario, the most probable outcome given the current level of human activity and land 

system dynamics, the river overflow is projected to rise until mid-century, but then 

decline. The RCP scenarios 4.5 and 8.5 exhibit lower values for the chance of flooding, 

which can be explained by the higher global temperatures that are expected to be 

observed. Although, the evaporation enhancement may lead to higher precipitation levels, 

the high temperatures lead to prolonged dry periods, decreasing the river discharge values 

to a state where precipitation will only cover the water shortage enforced in those periods.  

The geographical areas where the main Portuguese rivers flow are those where this 

natural disaster is most frequently anticipated to occur. For instance, in the short-term for 

the RCP 2.6 scenario, the highest probabilities of overflowing correspond to the rivers 

Douro, Mondego, Vouga and Lima, located in the northern part of the country, where 

precipitation levels are higher. Other large rivers with a history of flooding seem to be 

safer in the next 100 years, such as the Tejo and the Guadiana. For the other climate 

scenarios, the northern rivers' regions remain those where floods will be prevalent, but 

with decreased probability. Furthermore, the geographic areas affected by floods appear 

to change for the different climate developments. For example, in the long term, the RCP 

8.5 projections indicate that the Lisbon metropolitan region (areas 11, 12, 13, 14 and 19) 

will be among those where flooding will occur. However, in the remaining two scenarios, 
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the forecasts for this region even consider a decrease in these events. This behaviour can 

be observed in Figure 8: 

 

   

 

 

 

 

 

 

Analogously, the vulnerability to flooding is given by the average of the raster cells in 

each geographic area. As a result of applying the random forest algorithm to the 

explanatory variables, as described in section 4.2, regions with low elevation and slopes 

are more prone to fluvial flooding. A particular landscape where these two characteristics 

are observed is found in a river estuary. In mainland Portugal, the main rivers originate 

in mountainous areas located in the interior of the country (where overflow is not possible 

due to high slopes) and flow on the Atlantic coast. From Figure 9, the Aveiro, Coimbra, 

Figure 8 - Probability of occurrence under the RCP 2.6, 4.5 and 8.5 short term scenarios 

for the different geographical areas 
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Porto and Santarem areas are those where river floods are most likely to occur, supporting 

what was observed for the climate scenarios. 

 

 

Figure 9 – Mean Flood Probability for the different geographical areas 

 

Following the approach suggested by UNESCO, the flood risk for each geographic 

area is the product of these estimated probabilities with the value of the properties in the 

insurer's portfolio. This risk measure allows the insurer to present in its ORSA report, the 

impact of river flooding on its portfolio, pointing out the areas where losses are expected 

to be the highest, in addition to the consideration of different climate scenarios that may 

be experienced until the end of the century. In the specific case of this property insurance 

portfolio, the insured capital is concentrated in the regions of Aveiro, Coimbra, Lisbon 

and Porto. The distribution of the insured capital across mainland Portugal is presented 

in Figure 10: 
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Figure 10 – Exposed insured capital for the different geographical areas 

From the findings presented above, these are the areas where fluvial flooding is most 

likely to occur, and the geographic characteristics render them most vulnerable. Details 

of the risk for each 2-digit zip code region are presented in Appendix F.  

The summary of the flood risk to which the property insurance portfolio is exposed in its 

full extent is resumed in Table III: 

 

Table III – Risk exposure under the three climate scenarios 

 

 Probability of Occurrence 

Vulnerability Value 

Risk 

  
Short 

Term 

Mid 

Term 

Long 

Term 

Short 

Term 

Mid 

Term 

Long 

Term 

RCP 2.6 0,88% 1,23% 1,03% 

4,92% 
1 637 207 

813,35 

712 293,81 991 887,47 829 270,16 

RCP 4.5 1,15% 0,75% 0,51% 925 876,79 600 377,07 410 679,29 

RCP 8.5 0,68% 0,92% 0,22% 544 609,04 742 325,67 175 369,39 

 

Regardless of the climate scenario, the impact of river floods on the portfolio is small 

when compared to the total amount insured. However, given the uncertain behaviour of 

natural catastrophes like floods, the estimates provided may understate the real impact of 

these phenomena. Climate change plays a key role in the frequency and severity of natural 

catastrophes, and the losses for insurers are greater than ever before (CRED (2022)). This 

approach establishes a first basis for an insurance company to assess how significant these 

risks might be to its business. 
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6 CONCLUSION 

The river flooding phenomenon in Portugal is particularly rare but the increasing 

pressure of the regulators to address the effects of climate change in the insurers’ business 

demands the analysis of all possible disasters adjacent to extreme weather events. In this 

study, the risk was assessed by relating two concepts: expected probability of occurrence 

of the phenomena under the possible climate scenarios and the vulnerability of different 

regions in mainland Portugal to such events. Based on historical and future data, the 

variables precipitation and river discharge were considered first individually and then 

correlated by the usage of copulas. The Gumbel copula due to its upper tail dependency 

is the one that best describes this interaction. The calculation of the variation of the return 

period based on historical data are particularly valuable to understand the likelihood of 

such flood prone conditions ever happening in the future. The RCP 2.6 scenario, the 

closest scenario to what is being experienced today, suggests an increase in flooding 

specially for longer terms which may help the insurers to adapt their portfolios. If the 

other scenarios prove to be the trajectory of the Earths systems, the frequency is expected 

to decrease. 

The application of the random forest classification algorithm to the physical 

characteristics of the Portuguese territory can serve as a basis for the construction of a 

flood vulnerability map. Areas with low elevation and slope seem to be the most 

vulnerable. District capitals such as Aveiro, Coimbra and Oporto, due to their location on 

the margin of three of the main Portuguese rivers, concentrate valuable goods and items.  

The results obtained allow for the determination of the risk level to which the insurer may 

be exposed in the future. For this insurer, the insured capitals are mainly concentrated in 

Lisbon and Oporto, one less susceptible than the other. 

This approach can be further extended to other weather-related disasters if the data 

considered is not sparse and the correct variables are considered. 
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APPENDICES 

 

A - Representative Concentration Pathways 

 

Scenario Radiative Forcing Concentration Pathway 

RCP 2.6 Peak in radiative forcing1 at 

~3 W/m2 before 2100 and 

then decline (the selected 

pathway declines to 2.6 

W/m2 by 2100) 

peak at ~490 ppm 

CO2 eq before 2100 

and then decline 

Peak and decline 

RCP 4.5 ~4.5 W/m2 at stabilization 

after 2100 

~650 ppm CO2 eq at 

stabilization after 

2100 

Stabilization 

without overshoot 

RCP 6 ~6 W/m2 at stabilization 

after 2100 

~850 ppm CO2 eq at 

stabilization after 

2100 

Stabilization 

without overshoot 

RCP 8.5 >8.5 W/m2 by 2100 > ~1370 ppm CO2 

eq by 2100 

Rising 

1 Change on the amount of downward-directed radiant energy impinging upon Earth’s surface due to 

anthropogenic climate change factors. Is measured in watts per square metre (W/m2). 

 

B - Archimedean Copulas Generator Functions 

 

Copula Generator 𝜑(𝑡) 

Ali-Mikhail-Haq 𝜑(𝑡) =
1 − 𝜃

exp(𝑡) − 𝜃
 , 𝜃 ∈ [0,1[ 

Clayton 𝜑(𝑡) = (1 + 𝑡)−
1
𝜃 , 𝜃 ∈ [0, ∞[ 

Frank 
𝜑(𝑡) = −

log(1 − (1 − exp(−𝜃)) exp(−𝑡)

𝜃
  

 𝜃 ∈ ]0, ∞[ 
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Gumbel 𝜑(𝑡) = exp(−𝑡
1
𝜃) , 𝜃 ∈ [1, ∞[ 

Joe 𝜑(𝑡) = 1 − (1 − exp(−𝑡))
1
𝜃, 𝜃 ∈ [1, ∞[ 

 

 

C – Margins’ Density Functions 

Distribution Probability Density Function 

Exponential 

𝑓(𝑥) =
1

𝑠𝑐𝑎𝑙𝑒
∗ exp (−

𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
) 

𝑟𝑎𝑡𝑒 =
1

𝑠𝑐𝑎𝑙𝑒
 

Gamma 
𝑓(𝑥) =

(
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

)
𝛼−1

exp − (
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

)

scale ∗ Γ(𝛼)
 

𝛼 = 𝑠ℎ𝑎𝑝𝑒 , 𝛽 =
1

𝑠𝑐𝑎𝑙𝑒
 

Generalized 

Logistic 
𝑓(𝑥) = 𝑐

1

𝑠𝑐𝑎𝑙𝑒

exp (−
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

)

(1 + exp (−
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

))
𝑐+1 

Generalized 

Pareto 

𝑓(𝑥) =
1

𝑠𝑐𝑎𝑙𝑒
∗ (1 + 𝑐 (

𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
))

−1−
1
𝑐

 

𝑐 = 𝑠ℎ𝑎𝑝𝑒 

Generalized 

Extreme Value 

𝑓(𝑥) =
1

𝑠𝑐𝑎𝑙𝑒
exp [− (1 − 𝑐 (

𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
))

1/𝑐

] ∗ (1 − 𝑐 (
𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
))

1
𝑐

−1

 

𝑐 = 𝑠ℎ𝑎𝑝𝑒 

Gumbel 𝑓(𝑥) =
1

scale
exp (− (

𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
+ exp (−

𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
))) 

Lognormal 
𝑓(𝑥) =

1

𝑠 (
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

) √2𝜋
exp (

log2 (
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

)

2𝑠2 ) 

𝑠 = 𝑠ℎ𝑎𝑝𝑒 

Normal 
𝑓(𝑥) =

exp (−0.5 (
𝑥 − 𝑙𝑜𝑐
𝑠𝑐𝑎𝑙𝑒

)
2

)

𝑠𝑐𝑎𝑙𝑒 ∗ √2𝜋
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Pearson III 

𝑓(𝑥) =
1

𝑠𝑐𝑎𝑙𝑒

|𝛽|

Γ(𝛼)
[𝛽 ((

𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
) − 𝜁)]

𝛼−1

∗ exp (−𝛽 ((
𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
) − 𝜁)) 

𝜅 = 𝑠ℎ𝑎𝑝𝑒, 𝛽 =
2

𝜅
, 𝛼 = 𝛽2 =

4

𝜅2 , 𝜁 = −𝛽 

Weibull 
𝑓(𝑥) =

1

𝑠𝑐𝑎𝑙𝑒
𝑐 (

𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
)

𝑐−1

exp (− (
𝑥 − 𝑙𝑜𝑐

𝑠𝑐𝑎𝑙𝑒
)

𝑐

) 

𝑐 = 𝑠ℎ𝑎𝑝𝑒 

 

D – Copernicus Data Details 

• Precipitation – deposition of water to the Earth’s surface in the form of rain, snow, 

ice or hail: 

- Units: kg m-2 s-1 

- Projection: Lambert azimuthal equal area and rotated grid 

- Resolution: 5km x 5km 

- Temporal coverage: Daily data from 1971-2100 

- Climate scenarios: Historical (1971-2005), RCP 2.6 (2005-2100), RCP 4.5 

(2005-2100), and RCP 8.5 (2005-2100) 

 

• River Discharge – Volume rate of water flow that is transported through a given 

cross-sectional area: 

- Units: m3 s-1 

- Projection: Lambert azimuthal equal area and rotated grid 

- Resolution: 5km x 5km 

- Temporal coverage: Daily data from 1971-2100 

- Climate scenarios: Historical (1971-2005), RCP 2.6 (2005-2100), RCP 4.5 

(2005-2100), and RCP 8.5 (2005-2100) 
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E - Spatial datasets for flood vulnerability probability estimation 
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F - Risk Factors under the Climate Scenarios 

The highlighted probabilities of occurrence refer to areas not covered by the grid points. 

An average of the probability for the surrounding areas was considered. 

 

RCP 2.6 

Areas 

Probability of Occurrence 

Vulnerability Value 

Risk 

Short 

Term 
MidTerm 

Long 

Term 

Short 

Term 
Mid Term 

Long 

Term 

10 -0,31% -0,59% 1,62% 2,97% 
113 500 

991,05 
-10556,76 -20056,61 54685,27 

11 1,26% 1,29% 1,27% 13,70% 
64 443 

223,06 
111357,51 113692,79 112287,16 

12 1,23% 1,21% 1,34% 8,95% 
67 743 

672,59 
74557,20 73614,15 81507,74 

13 1,23% 1,21% 1,34% 8,54% 
23 562 

602,76 
24754,82 24441,70 27062,57 

14 1,33% 1,32% 1,37% 8,40% 
11 288 

421,35 
12612,24 12544,05 12967,83 

15 1,51% 1,09% 1,35% 1,96% 
18 193 

985,11 
5370,94 3893,93 4788,01 

16 -0,57% -1,10% 1,39% 2,76% 
36 582 

259,17 
-5722,29 -11090,38 14055,33 

17 -0,06% -0,09% 1,85% 2,52% 
20 103 

197,49 
-300,02 -460,38 9367,00 

18 1,26% 2,77% 0,62% 21,17% 
14 424 

274,90 
38593,69 84712,60 18909,17 

19 1,26% 1,29% 1,27% 24,46% 
25 033 

741,82 
77215,57 78834,86 77860,19 

20 -0,03% 0,57% 4,00% 15,30% 
11 903 

812,21 
-612,32 10424,86 72790,70 

21 0,71% -3,99% 3,49% 10,60% 
17 553 

681,75 
13265,39 -74326,41 64990,82 

22 -0,16% -1,16% 0,54% 1,45% 
3 039 

646,47 
-69,48 -510,68 237,85 

23 0,83% -3,79% 2,11% 3,78% 
6 305 

625,05 
1971,27 -9038,51 5033,37 

24 3,87% 3,17% 1,30% 3,09% 
69 082 

702,58 
82595,96 67668,21 27830,17 

25 1,38% -2,19% 0,52% 6,21% 
30 746 

427,34 
26341,87 -41863,19 9998,51 

26 1,44% 6,80% -0,72% 16,91% 
108 803 

304,15 
264680,75 1250280,48 -133041,54 

27 2,41% 1,62% 0,73% 2,40% 
173 928 

789,08 
100609,25 67471,02 30494,03 

28 0,08% 0,46% 2,44% 19,11% 
47 351 

179,33 
6919,33 41660,64 221138,50 

29 -0,05% -0,58% 0,94% 7,83% 
21 162 

334,99 
-753,60 -9591,76 15503,59 

30 3,39% 1,50% 1,69% 8,69% 
26 043 

221,51 
76584,47 33916,79 38286,19 

31 -3,73% 3,16% 2,03% 6,89% 
8 374 

801,92 
-21542,57 18259,31 11687,06 

32 0,86% 3,04% 0,19% 0,26% 
5 868 

329,21 
128,61 454,96 28,96 

33 1,96% -0,02% 0,21% 0,10% 
1 236 

919,95 
24,41 -0,20 2,62 

34 3,02% -1,32% 1,18% 0,23% 
8 060 

041,32 
569,60 -248,83 223,68 

35 3,59% 2,12% 0,96% 0,18% 
8 745 

608,18 
565,27 334,23 151,57 
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36 2,77% 2,90% 1,46% 0,12% 
5 250 

839,44 
174,50 182,33 91,58 

37 0,46% 1,56% -3,78% 3,04% 
25 556 

734,36 
3553,18 12084,02 -29386,34 

38 3,12% 1,62% 1,06% 24,49% 
27 605 

346,78 
211163,04 109268,94 71528,70 

40 1,92% 2,22% 3,09% 2,43% 
40 903 

849,20 
19030,16 22097,49 30656,88 

41 1,92% 2,22% 3,09% 5,94% 
30 562 

312,78 
34745,24 40345,58 55973,30 

42 1,92% 2,22% 3,09% 1,68% 
9 953 

119,19 
3206,72 3723,59 5165,91 

43 -1,35% 1,84% 3,45% 4,00% 
2 384 

212,39 
-1289,07 1757,93 3287,08 

44 1,92% 2,22% 3,09% 6,14% 
124 356 

525,14 
146304,29 169886,03 235690,81 

45 3,29% 1,53% 1,82% 0,96% 
44 452 

951,08 
14094,42 6563,10 7772,10 

46 3,02% 2,09% -8,97% 0,29% 
14 569 

072,39 
1269,43 877,16 -3768,72 

47 3,43% 1,72% -0,93% 3,26% 
89 040 

683,89 
99787,91 49927,13 -27147,76 

48 2,03% 2,17% 3,77% 0,88% 
25 000 

041,81 
4436,37 4759,00 8254,17 

49 0,23% 1,67% 1,33% 2,88% 
17 673 

224,83 
1159,82 8498,37 6761,26 

50 1,94% 1,21% 1,01% 0,17% 
5 375 

072,49 
177,06 110,89 92,01 

51 1,46% 3,25% 1,02% 0,19% 
4 700 

199,73 
129,13 287,42 90,05 

52 -5,10% 1,52% 1,45% 0,19% 
1 907 

460,69 
-189,75 56,38 53,99 

53 1,90% 5,72% 0,98% 0,06% 
3 985 

400,31 
44,77 134,88 23,15 

54 2,09% 2,17% 0,69% 0,22% 
7 447 

977,04 
340,79 354,01 113,09 

60 1,71% 0,71% 0,98% 0,30% 
5 019 

973,78 
255,47 106,16 146,36 

61 1,33% -3,07% -0,78% 0,08% 
2 097 

878,81 
22,25 -51,37 -13,02 

62 3,77% 2,67% 0,54% 0,20% 
5 194 

922,20 
387,16 274,11 55,81 

63 1,83% 2,01% 2,14% 0,34% 
2 711 

768,29 
167,88 184,40 196,74 

64 1,58% 1,36% 1,93% 0,26% 580 527,01 24,23 20,84 29,45 

70 0,61% 6,07% -3,04% 0,55% 
8 937 

517,84 
303,06 3003,62 -1502,17 

71 1,23% 7,15% 0,09% 0,33% 
1 829 

822,15 
74,47 433,00 5,28 

72 0,88% 1,77% 3,78% 0,66% 903 045,44 52,76 106,27 226,65 

73 1,09% 1,01% 0,91% 0,61% 
3 792 

942,38 
250,44 231,89 210,45 

74 -0,99% 0,44% 1,66% 0,45% 
2 044 

023,78 
-90,37 40,49 152,43 

75 0,05% -1,20% 1,34% 2,77% 
11 693 

922,84 
173,67 -3882,46 4329,89 

76 3,12% 1,14% 1,66% 1,07% 
1 796 

719,08 
597,51 218,95 318,48 

77 -0,40% 0,50% -1,04% 0,35% 
1 103 

085,21 
-15,29 19,25 -40,29 

78 1,80% 0,27% 0,49% 0,78% 
5 602 

875,18 
790,34 119,66 215,59 

79 0,52% -0,12% -0,29% 1,25% 
4 718 

964,70 
307,82 -71,67 -173,06 

80 -4,37% 0,32% 4,01% 19,40% 
11 401 

536,28 
-96724,38 7149,53 88786,86 
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81 1,02% -1,20% 3,24% 1,98% 
52 129 

387,79 
10532,41 -12400,05 33484,29 

82 2,62% -0,50% 3,57% 8,19% 
25 870 

547,09 
55513,98 -10606,62 75562,80 

83 -0,19% -0,79% 1,59% 3,72% 
12 122 

808,10 
-862,13 -3582,64 7174,98 

84 -2,81% 5,08% 1,53% 7,08% 
12 568 

098,21 
-25053,54 45254,93 13604,02 

86 -1,92% 3,43% -6,85% 4,41% 
21 644 

520,99 
-18334,15 32778,65 -65414,05 

87 -1,27% -0,18% 1,24% 17,00% 
6 774 

300,91 
-14678,07 -2123,41 14320,40 

88 -4,93% -1,92% -2,76% 4,03% 
6 460 

750,46 
-12849,86 -5012,00 -7181,95 

89 -0,74% 1,19% 2,38% 3,06% 
6 400 

056,95 
-1453,59 2340,66 4673,28 

 

RCP 4.5 

Areas 

Probability of Occurrence 

Vulnerability Value 

Risk 

Short 

Term 
MidTerm 

Long 

Term 

Short 

Term 
Mid Term 

Long 

Term 

10 -0,38% -0,33% 0,67% 2,97% 
113 500 

991,05 
-12907,46 -10999,22 22657,70 

11 1,40% 1,39% 1,37% 13,70% 
64 443 

223,06 
123489,02 122370,59 121146,25 

12 1,26% 1,27% 1,32% 8,95% 
67 743 

672,59 
76578,78 77222,67 79986,45 

13 1,26% 1,27% 1,32% 8,54% 
23 562 

602,76 
25426,03 25639,82 26557,47 

14 1,55% 1,52% 1,51% 8,40% 
11 288 

421,35 
14748,06 14425,29 14341,44 

15 0,20% 2,98% 0,09% 1,96% 
18 193 

985,11 
695,46 10604,03 307,29 

16 -0,50% -0,58% -0,14% 2,76% 
36 582 

259,17 
-5008,43 -5859,75 -1392,90 

17 -0,27% -0,07% 1,48% 2,52% 
20 103 

197,49 
-1363,34 -363,91 7498,25 

18 -1,01% -0,21% 0,84% 21,17% 
14 424 

274,90 
-30876,15 -6459,89 25682,08 

19 1,40% 1,39% 1,37% 24,46% 
25 033 

741,82 
85627,59 84852,07 84003,10 

20 6,62% -0,59% -0,35% 15,30% 
11 903 

812,21 
120564,78 -10678,02 -6447,43 

21 2,80% -2,89% 2,16% 10,60% 
17 553 

681,75 
52018,15 -53774,74 40160,26 

22 -3,60% -2,34% 1,51% 1,45% 
3 039 

646,47 
-1590,28 -1032,09 664,26 

23 -0,56% -0,63% 3,45% 3,78% 
6 305 

625,05 
-1331,57 -1489,83 8233,09 

24 -0,18% 8,25% -0,92% 3,09% 
69 082 

702,58 
-3857,90 176225,63 -19695,71 

25 0,54% -1,85% 0,27% 6,21% 
30 746 

427,34 
10271,60 -35259,83 5192,21 

26 -1,32% -0,43% 0,41% 16,91% 
108 803 

304,15 
-242630,49 -78286,22 74639,49 

27 -1,45% -0,14% 0,64% 2,40% 
173 928 

789,08 
-60284,93 -5725,30 26556,80 

28 -0,49% -0,93% 0,31% 19,11% 
47 351 

179,33 
-44573,29 -83877,02 28256,01 

29 3,27% -0,86% 0,06% 7,83% 
21 162 

334,99 
54196,20 -14180,03 1068,83 

30 4,74% 1,61% 6,02% 8,69% 
26 043 

221,51 
107230,07 36489,25 136120,33 

31 0,85% 1,75% -0,59% 6,89% 
8 374 

801,92 
4881,91 10123,01 -3401,80 
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32 0,17% 0,81% 1,71% 0,26% 
5 868 

329,21 
25,43 122,07 255,70 

33 2,74% 1,48% -1,68% 0,10% 
1 236 

919,95 
34,08 18,43 -20,91 

34 6,10% 6,68% 1,92% 0,23% 
8 060 

041,32 
1151,44 1262,37 362,86 

35 1,91% 4,44% 2,23% 0,18% 
8 745 

608,18 
300,12 699,74 350,96 

36 3,42% 2,66% 3,24% 0,12% 
5 250 

839,44 
215,00 167,63 203,80 

37 4,37% 2,85% 5,32% 3,04% 
25 556 

734,36 
33934,14 22142,64 41299,53 

38 5,08% 0,61% 4,01% 24,49% 
27 605 

346,78 
343181,88 41344,55 270878,91 

40 2,95% 2,36% -0,34% 2,43% 
40 903 

849,20 
29311,75 23402,18 -3347,18 

41 2,95% 2,36% -0,34% 5,94% 
30 562 

312,78 
53517,36 42727,67 -6111,28 

42 2,95% 2,36% -0,34% 1,68% 
9 953 

119,19 
4939,24 3943,44 -564,02 

43 -0,11% -0,47% -0,74% 4,00% 
2 384 

212,39 
-102,88 -448,91 -708,35 

44 2,95% 2,36% -0,34% 6,14% 
124 356 

525,14 
225349,40 179916,50 -25733,21 

45 1,43% -1,01% 1,56% 0,96% 
44 452 

951,08 
6103,72 -4337,52 6697,52 

46 3,00% 2,95% 2,07% 0,29% 
14 569 

072,39 
1260,51 1238,13 870,07 

47 0,61% 6,58% -0,49% 3,26% 
89 040 

683,89 
17615,44 191091,29 -14202,82 

48 6,39% 0,36% -7,85% 0,88% 
25 000 

041,81 
13984,14 796,96 -17177,89 

49 4,06% 2,80% 0,88% 2,88% 
17 673 

224,83 
20668,71 14281,42 4483,26 

50 2,09% 1,24% 3,92% 0,17% 
5 375 

072,49 
190,90 113,70 358,45 

51 1,84% 1,32% 1,25% 0,19% 
4 700 

199,73 
162,55 116,85 110,35 

52 2,30% -0,75% -0,57% 0,19% 
1 907 

460,69 
85,43 -27,94 -21,35 

53 2,10% -0,09% 0,44% 0,06% 
3 985 

400,31 
49,50 -2,01 10,34 

54 2,71% 2,24% 2,31% 0,22% 
7 447 

977,04 
441,73 365,72 377,55 

60 0,80% 0,07% 0,17% 0,30% 
5 019 

973,78 
119,85 10,10 24,88 

61 2,01% -0,90% 0,12% 0,08% 
2 097 

878,81 
33,67 -15,14 2,05 

62 0,86% 1,39% -2,65% 0,20% 
5 194 

922,20 
88,51 142,49 -272,53 

63 0,15% 0,16% -0,84% 0,34% 
2 711 

768,29 
13,37 14,37 -77,25 

64 4,24% 3,14% 4,41% 0,26% 580 527,01 64,77 48,01 67,39 

70 -0,58% -4,18% 0,00% 0,55% 
8 937 

517,84 
-288,56 -2068,52 0,65 

71 -1,83% -0,87% -0,25% 0,33% 
1 829 

822,15 
-110,76 -52,48 -14,90 

72 -0,18% 0,55% 0,03% 0,66% 903 045,44 -10,62 32,80 1,54 

73 0,04% -3,57% -0,35% 0,61% 
3 792 

942,38 
8,24 -823,38 -80,57 

74 0,32% 7,45% 0,29% 0,45% 
2 044 

023,78 
29,01 682,04 26,23 

75 -0,19% 0,43% -0,17% 2,77% 
11 693 

922,84 
-600,22 1389,94 -537,97 

76 -0,41% -1,30% -0,16% 1,07% 
1 796 

719,08 
-78,22 -248,67 -29,88 
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77 -0,81% -0,36% -0,22% 0,35% 
1 103 

085,21 
-31,30 -13,89 -8,49 

78 0,34% 1,10% 0,42% 0,78% 
5 602 

875,18 
150,99 484,00 181,98 

79 -3,26% 2,75% 0,33% 1,25% 
4 718 

964,70 
-1929,54 1624,84 196,49 

80 3,04% -0,17% 0,45% 19,40% 
11 401 

536,28 
67245,92 -3842,98 10053,99 

81 0,10% -0,60% -0,92% 1,98% 
52 129 

387,79 
1014,94 -6160,10 -9492,75 

82 -0,41% -4,95% -7,13% 8,19% 
25 870 

547,09 
-8656,72 -104881,51 -151146,56 

83 -0,16% -1,68% -2,25% 3,72% 
12 122 

808,10 
-712,22 -7595,73 -10150,69 

84 -0,26% -0,53% 3,38% 7,08% 
12 568 

098,21 
-2314,89 -4717,10 30056,69 

86 -3,06% -0,26% -0,20% 4,41% 
21 644 

520,99 
-29270,63 -2445,54 -1869,76 

87 -0,28% -0,13% -0,33% 17,00% 
6 774 

300,91 
-3275,28 -1518,03 -3766,42 

88 -0,23% -0,33% -0,28% 4,03% 
6 460 

750,46 
-610,09 -871,68 -720,18 

89 -0,10% -0,23% -0,13% 3,06% 
6 400 

056,95 
-193,17 -444,81 -260,40 

 

RCP 8.5 

Areas 

Probability of Occurrence 

Vulnerability Value 

Risk 

Short 

Term 
MidTerm 

Long 

Term 

Short 

Term 
Mid Term 

Long 

Term 

10 1,51% 0,69% -1,02% 2,97% 
113 500 

991,05 
50980,98 23397,58 -34448,73 

11 1,15% 1,21% 2,01% 13,70% 
64 443 

223,06 
101575,14 106769,86 177870,97 

12 1,45% 1,20% 2,08% 8,95% 
67 743 

672,59 
88189,05 72716,36 126069,85 

13 1,45% 1,20% 2,08% 8,54% 
23 562 

602,76 
29280,93 24143,62 41858,28 

14 1,26% 1,30% 2,18% 8,40% 
11 288 

421,35 
11960,10 12320,96 20669,33 

15 1,38% -1,50% 0,38% 1,96% 
18 193 

985,11 
4924,19 -5321,18 1358,49 

16 1,30% 1,39% -0,70% 2,76% 
36 582 

259,17 
13114,39 14032,93 -7072,36 

17 1,72% 0,00% -1,34% 2,52% 
20 103 

197,49 
8726,91 -11,88 -6793,79 

18 1,06% 3,67% -0,57% 21,17% 
14 424 

274,90 
32474,19 111952,54 -17269,42 

19 1,15% 1,21% 2,01% 24,46% 
25 033 

741,82 
70432,45 74034,48 123336,17 

20 -6,23% 0,44% -0,25% 15,30% 
11 903 

812,21 
-113458,59 8104,78 -4566,59 

21 0,44% 1,58% -0,14% 10,60% 
17 553 

681,75 
8253,56 29489,60 -2569,29 

22 2,87% 2,26% -0,04% 1,45% 
3 039 

646,47 
1265,35 999,10 -19,15 

23 1,61% 1,48% -0,23% 3,78% 
6 305 

625,05 
3835,17 3526,88 -542,63 

24 1,40% -7,08% -0,23% 3,09% 
69 082 

702,58 
29919,21 -151150,26 -4983,34 

25 0,50% 4,70% -0,36% 6,21% 
30 746 

427,34 
9558,89 89817,55 -6810,84 

26 0,42% 2,36% -0,18% 16,91% 
108 803 

304,15 
76777,91 433950,66 -32379,56 

27 1,05% 8,64% -0,18% 2,40% 
173 928 

789,08 
43783,88 360457,63 -7467,53 
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28 1,21% 4,61% -0,33% 19,11% 
47 351 

179,33 
109641,93 417444,09 -30064,40 

29 5,07% 3,58% -0,18% 7,83% 
21 162 

334,99 
84070,33 59355,14 -2922,60 

30 7,54% -3,00% -2,39% 8,69% 
26 043 

221,51 
170662,64 -67767,09 -53985,37 

31 1,31% 5,06% -2,05% 6,89% 
8 374 

801,92 
7585,27 29193,85 -11823,35 

32 2,19% 0,17% -2,27% 0,26% 
5 868 

329,21 
327,61 24,90 -340,77 

33 -0,28% -0,37% -2,89% 0,10% 
1 236 

919,95 
-3,44 -4,59 -35,96 

34 -0,86% -3,60% 1,60% 0,23% 
8 060 

041,32 
-161,56 -680,77 301,72 

35 2,57% 1,76% 1,33% 0,18% 
8 745 

608,18 
404,03 277,27 209,69 

36 3,76% 2,00% 1,00% 0,12% 
5 250 

839,44 
236,39 125,84 62,76 

37 2,45% 6,56% 1,67% 3,04% 
25 556 

734,36 
19034,45 50986,55 12992,96 

38 2,43% -1,33% 2,15% 24,49% 
27 605 

346,78 
164099,99 -89779,86 145183,55 

40 -6,14% -0,37% 1,52% 2,43% 
40 903 

849,20 
-61005,00 -3678,06 15115,77 

41 -6,14% -0,37% 1,52% 5,94% 
30 562 

312,78 
-111382,87 -6715,40 27598,35 

42 -6,14% -0,37% 1,52% 1,68% 
9 953 

119,19 
-10279,79 -619,78 2547,12 

43 -0,13% -0,79% -0,78% 4,00% 
2 384 

212,39 
-119,90 -757,82 -746,71 

44 -6,14% -0,37% 1,52% 6,14% 
124 356 

525,14 
-469007,88 -28277,01 116210,37 

45 0,46% 0,09% 1,95% 0,96% 
44 452 

951,08 
1989,97 400,76 8336,04 

46 2,50% 3,66% 1,53% 0,29% 
14 569 

072,39 
1051,34 1538,55 643,26 

47 1,59% -1,22% 1,52% 3,26% 
89 040 

683,89 
46199,30 -35370,71 44192,29 

48 2,32% -2,38% 1,59% 0,88% 
25 000 

041,81 
5075,95 -5210,13 3488,49 

49 0,13% -3,87% 1,62% 2,88% 
17 673 

224,83 
674,68 -19718,88 8228,51 

50 -1,17% 1,51% 0,31% 0,17% 
5 375 

072,49 
-106,52 137,93 28,05 

51 1,01% 0,67% -0,18% 0,19% 
4 700 

199,73 
89,66 58,83 -16,04 

52 0,63% -1,30% -0,10% 0,19% 
1 907 

460,69 
23,36 -48,18 -3,60 

53 1,67% 1,51% -1,03% 0,06% 
3 985 

400,31 
39,47 35,64 -24,22 

54 1,97% 1,84% -0,39% 0,22% 
7 447 

977,04 
320,97 299,63 -63,93 

60 -0,14% 0,96% -0,38% 0,30% 
5 019 

973,78 
-20,27 143,87 -56,29 

61 1,92% 8,07% -0,61% 0,08% 
2 097 

878,81 
32,14 135,12 -10,28 

62 1,59% 5,48% 0,05% 0,20% 
5 194 

922,20 
162,91 563,42 5,32 

63 2,74% 0,60% -0,34% 0,34% 
2 711 

768,29 
251,58 55,42 -31,54 

64 1,96% 1,33% 0,97% 0,26% 580 527,01 29,90 20,34 14,86 

70 -1,80% -0,30% -0,72% 0,55% 
8 937 

517,84 
-892,28 -146,70 -355,01 

71 -4,67% 3,22% -0,29% 0,33% 
1 829 

822,15 
-283,29 195,27 -17,61 

72 -0,65% -4,71% 0,08% 0,66% 903 045,44 -38,77 -282,38 4,90 
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73 6,13% 4,38% -3,69% 0,61% 
3 792 

942,38 
1412,79 1008,78 -851,16 

74 -1,90% 5,20% 5,59% 0,45% 
2 044 

023,78 
-174,40 476,02 512,10 

75 -0,05% 4,09% 0,00% 2,77% 
11 693 

922,84 
-152,48 13235,43 12,08 

76 0,78% -1,09% -0,09% 1,07% 
1 796 

719,08 
150,44 -209,71 -16,62 

77 1,09% -1,56% 0,10% 0,35% 
1 103 

085,21 
42,23 -60,27 3,73 

78 3,27% -0,99% 0,28% 0,78% 
5 602 

875,18 
1433,62 -431,90 123,47 

79 0,05% 7,72% 2,64% 1,25% 
4 718 

964,70 
28,13 4566,82 1560,87 

80 -4,97% 1,74% -0,13% 19,40% 
11 401 

536,28 
-109920,67 38514,22 -2876,08 

81 -3,27% -0,87% -0,16% 1,98% 
52 129 

387,79 
-33769,52 -8971,66 -1634,36 

82 0,54% -3,44% -0,29% 8,19% 
25 870 

547,09 
11418,09 -72926,01 -6251,62 

83 -0,95% 0,37% -0,07% 3,72% 
12 122 

808,10 
-4274,38 1664,77 -333,78 

84 2,70% -0,95% -0,26% 7,08% 
12 568 

098,21 
24067,24 -8416,19 -2332,68 

86 6,42% 0,81% -0,05% 4,41% 
21 644 

520,99 
61349,66 7783,34 -452,45 

87 1,63% 4,18% -0,11% 17,00% 
6 774 

300,91 
18721,95 48109,86 -1257,13 

88 -0,23% -7,28% -2,93% 4,03% 
6 460 

750,46 
-599,00 -18953,99 -7635,82 

89 4,47% -2,73% -0,05% 3,06% 
6 400 

056,95 
8769,48 -5352,96 -94,38 

 

 

 

 

 

 

 

 

 


