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Abstract

This thesis is concerned with the pricing of emission allowance certificates in car-

bon markets. We study a stochastic model based on an FBSDE system. The forward

processes are the Demand for electricity, the fuel prices and the total greenhouse gases

emissions. The backward process is the price of the certificate. We present the con-

struction of the model that mimics the market mechanics and give the theoretical

results for existence and uniqueness of solution. We then provide a numerical algo-

rithm for the system and test it with different functions and scenarios. We end with

the inclusion of a potential policy that interferes with the market, in particular, with

the Demand process.

Keywords: Forward Backward SDE, Numerical Methods, Monte-Carlo Method,

Environmental Finance, Emission Markets
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1 Introduction

The technological advancements that humanity has achieved in the last century

have propelled it to grow, both in number and quality of life. The developments in

medicine made the life expectancy of the average person increase and, as a result, the

world population has more than doubled over the last sixty years. In parallel, the

need for technology on a daily basis implies an increase in the need for electricity. The

combination of these factors led to a surge in the demand for electric power. This, in

turn, caused a soar in the emission of greenhouse gases (GHGs).

Approaching the turn of the millennium, the Kyoto protocol was a treaty that

envisioned the sustainability of the environment through the reduction of the emissions

of such gases. In order to comply with this goal, the European Union created the EU

Emissions Trading System (EU ETS). This is a system that lays on a cap-and-trade

principle. This means that a limit is imposed on the emissions of the GHGs with the

intent of reducing the limit over time. The “trade” comes in the form of Emission

Allowances. These are certificates that represent the right to emit GHGs. In this

thesis, we study the pricing mechanism and behaviour of the Emission Allowances,

which can be seen as derivatives in that which is called the Carbon Market.

In our study, we follow the development of a model for the carbon market that

consists in a Forward Backward Stochastic Differential Equation System. We then

apply a numerical scheme and consider small modifications to the model. These mod-

ifications are based on recent political policies implemented in Spain, which affect the

Demand process.

This thesis is structured in the following way: in the second chapter, we address the

existing theory of Forward-Backward Stochastic Differential Equations and associated

numerical techniques and schemes. We also give a brief overview on the work that has

been developed for the Carbon Emissions Market. In chapter three, we describe the

Carbon Emissions Market and the EU ETS. We then proceed to construct the equa-

tions that model the market. Finally, we provide a result of existence and uniqueness

to the FBSDE system that arises. In the fourth chapter, we describe the numerical

scheme and respective algorithm that was used in the numerical simulations. We also

present the results we obtained using the algorithm on the equations proposed by the

works we followed, as well as with modifications we suggest. Lastly, we summarize all

the results, both theoretical and numerical.
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2 Literature Review

2.1 Forward-Backward Stochastic Differential Equations

A Forward-Backward Stochastic Differential Equation (FBSDE) is a system of the

type


Xt = ζ +

∫ t

t0

µ(s,Xs, Ys, Zs) ds+

∫ t

t0

σ(s,Xs, Ys, Zs) dWs

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

g(s, Ys, Zs) dWs,

where µ, σ, f and g are deterministic functions, (Wt) represents the standard Brownian

Motion and ζ and ξ are random variables, the initial and terminal condition respec-

tively. (Xt) is the forward component of the system, (Yt) is the backward component

and (Zt) is a process that is necessary to guarantee the adaptedness of the solution,

in particular of (Yt).

A Backward Stochastic Differential Equation (BSDE) is a particular case where

there is no forward process (Xt). BSDEs were first introduced in 1973 by Bismut

[4], who treated the linear case in the context of optimal stochastic control. The

general case was then studied by Pardoux and Peng [20] in 1990. The transition to

FBSDEs arises in the so called Markovian set-up, which has the terminal condition as

a function of the forward component: ξ = φ(XT ). In this case, it is also standard to

have g(t, y, z) = z.

Peng [21] was also the first to relate FBSDEs with Partial Differential Equations

(PDEs). This relation (through a Feynman-Kac type formula) has been widely used

in the field as a way to prove the existence of solution using classic PDE results and

techniques. It is also important because the two processes end up being related by

Yt = u(t,Xt),

where u is called a decoupling field (see [19]) and solves the PDE associated to the

FBSDE.

The earliest result of existence and uniqueness of solution to an FBSDE was given

in 1993 by Antonelli [1], in the small-time duration framework. Later, Ma et al. [17]

and Delarue [12] proved the existence and uniqueness in more general cases, for an
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arbitrary time duration and when the diffusion coefficient (σ) is non-degenerate (i.e.

σ 6= 0 for all of its components). In [17], the authors also present a method to obtain

the solution explicitly.

These equations arise very naturally in Finance (see [16] for example). The most

well-known example to be given is the European Option pricing problem. Generally,

this problem is modelled with Ito diffusions for the price of the underlying and the

pricing function of the option. The initial value of the underlying is known but, for the

option, we can only define the terminal value as a function of the underlying’s terminal

value. Thus, the diffusion modelling the underlying is going forward in time, while

the one modelling the option is going backward. This is an example of a decoupled

FBSDE, since the price of the underlying is independent of the value of the option,

and the functions µX and σ would not depend on Ys and Zs. Another example is given

in [10] regarding a regime switching hypothesis in the Black-Karasinski model for the

short rate.

The model considered in this thesis has two main features that come as obstacles

regarding it’s well-posedness and the existence and uniqueness of solution. The first,

is that the diffusion coefficient on the forward equation is degenerate. We consider a

four-dimensional forward component in which the last process does not depend on the

Brownian Motion. The second, and most important, is that the terminal condition

on the backward component is not a Lipschitz function. As in the European Option

pricing problem, the backward terminal condition is a function of the terminal value

of the forward diffusion. However, due to the nature of the emissions certificates, the

terminal function becomes of the type φ(e) = ΠX[Λ,+∞[(e), which has a discontinuity

at Λ. Both of these problems were treated by Carmona and Delarue in [5], where

the authors used a mollifying argument to prove existence. However, the result can

only be guaranteed for a relaxed terminal condition. We also mention another type

of discontinuity which has been studied in [10]. In this paper, the authors consider

possibly multiple, but finite, discontinuities on the drift coefficient of the forward

equation (µ) with respect to the backward variable Ys.

2.2 Numerical methods for FBSDEs

The PDE Approach

As we have mentioned in the previous section, any FBSDE problem has a corre-
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spondent PDE formulation. The literature regarding numerical methods for PDEs is

extensive and dates back to Euler. Thus, one of the methods used to solve FBSDEs

numerically is to consider their PDE representation and then use already known tech-

niques. Interestingly, Delarue and Menozzi [13] use the probabilistic representation to

solve the PDE problem.

One of the disadvantages of dealing with the PDE representation is that it might

require stricter assumptions on smoothness and other such regularity conditions. One

of the advantages is that the numerical solution is more accurate and faster to achieve.

However, as the number of dimensions increases, it becomes harder, if not impossible,

to obtain a solution. In these cases, we need to go with the probabilistic approach:

The Monte-Carlo Method.

The Monte-Carlo Approach

The Monte-Carlo Method consists in simulating a process multiple times and then

taking the average of the results. For example, if we want to determine the value

of a derivative with payoff function φ(ST ). We can simulate the trajectory of the

underlying price say, 10000 times: (Ŝit), 1 ≤ i ≤ 10000. We then consider that the

expected value of the derivative’s payoff is the average of the simulated trajectories

evaluated with φ:

E [φ(ST )] =
1

10000

10000∑
i=1

φ
(
ŜiT

)
.

This is essentially relying on brute force computer power (and on the Law of Large

Numbers) to bypass the theoretical difficulties (or impossibilities) that one might en-

counter. As we have stated, higher dimensional PDE problems become harder to treat

numerically, and thus, we turn to the Monte-Carlo solutions.

Regarding BSDEs, the most common problem is to estimate the process (Zt). In

[18] the authors propose a method for the case

Yt = ξ +

∫ T

t

f(s, Ys) ds−
∫ T

t

Zs dWs,

where the Brownian Motion is approximated by a symmetric random walk. In [24],

Zhang develops a method that aims to balance both the regularity conditions and the

convergence rate. The case considered allows for f to depend on (Zt) as well but has

ξ = φ(X), where X is a diffusion process (he also considers a decoupled FBSDE). We
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mention also the compilation of methods for BSDEs surveyed in [11].

We now turn to the Markovian case of the FBSDEs.

In a decoupled system
Xt = ξ +

∫ t

t0

µ(s,Xs) ds+

∫ t

t0

σ(s,Xs) dWs

Yt = φ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs,

the forward component is independent of the backward component. Hence, we could

simply simulate (Xt) first and then work backwards in time, since φ(XT ) would be

known as well as the values of (Xt) for µY (s,Xs, Ys, Zs). This would allow a very direct

(and easy) application of the Monte-Carlo Method, and the computational obstacles

would compare to those of BSDEs. However, our problem is not decoupled.

With a coupled system like
Xt = ξ +

∫ t

t0

µ(s,Xs, Ys) ds+

∫ t

t0

σ(s,Xs, Ys) dWs

Yt = φ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs,

a typical discretization would be

X0 = x0

Xi+1 = Xi + µ (ti, Xi, Yi) ∆ti+1 + σ (ti, Xi, Yi) ∆Wi+1

Yn = φ(Xn)

Zi =
1

∆ti+1

E [Yi+1∆Wi+1| Fti ]

Yi = E [Yi+1 + f (ti, Xi, Yi+1, Zi) ∆ti+1| Fti ] .

However, because (Xt) is discretized forwardly in time and (Yt) backwardly, the

scheme is fully implicit and becomes difficult to implement. The method developed

by Bender and Zhang in [2] is based in a Picard iteration type scheme, where the

values of the coupled process used in the forward equation come from the previous

iteration. Thus, in each iteration, we can simulate the forward process first and then

work backwards in time to reach Y0, like in a decoupled system.
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Note that the process (Zt) is never coupled in the forward SDE. This is essential

to the convergence of the method (see [2]). We describe the method fully in chapter

4.

2.3 Carbon Emissions Market

The creation of the EU ETS in 2005 and, in particular, the entrance in its second

phase, led to the growing interest in modelling the new market mechanisms. For

example, Frikha and Lemaire ([14]) model Gas and Electricity spot prices through the

empirical correlations between the two.

In Carmona et. al ([8]), the authors analyse several complex alternative schemes to

model the carbon markets. They consider multiple products causing emissions in the

production process, analyse the costs and profits of the firms and the consequences of

the emissions cap in a probabilistic scenario. They also consider tax-based schemes.

The inclusion of FBSDEs in the models came shortly after. In [7, 6], Carmona,

Coulon and Schwarz introduce a structural model (similar to the one we studied),

for pricing electricity and related derivatives. Such derivatives include the emission

certificates and spread options relating the price of electric power when produced either

with natural gas or coal. Howison and Schwarz ([22]) propose a related model, without

the inclusion of fuel prices, and focus on the PDE representation of the problem. They

also include the case of a multi period scenario. We mention as well Schwarz’s Ph.D.

thesis, ([23]) which is entirely dedicated to this topic.

Chassagneux et. al ([9]) follow the previously mentioned works and apply a version

of the already mentioned structural models to the UK Energy Market. In our study,

we implemented their model and analyse potential modifications (see chapter 4).
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3 A stochastic model for the Carbon Emissions

Market

3.1 Description of a Carbon Emissions Market

We start by describing the interactions between the electricity and emission mar-

kets. We give Portugal as the example.

In Portugal, the electricity market is open to suppliers, and these can make their

offers freely. Consumers may also change their electricity supplier as they please. An

electricity supplier may not be an electricity producer. The supplier buys electricity

from the producer and then sells it to the consumer. We focus on the producers. The

most commonly used method to produce electricity is the burning of fossil fuels. This

method causes the release of CO2 and other greenhouse gases. In view of the Kyoto

protocol, to reduce the emissions of CO2, the European Union (EU) created the EU

Emissions Trading System (EU ETS).

The EU ETS is a market mechanism based on a cap-and-trade scheme. This means

that the EU sets a limit on total CO2 emissions by allocating a limited number of

Emission Allowance Certificates per year. One allowance certificate gives the producers

the right to emit one tonne of CO2 equivalent greenhouse gases (we henceforth refer

only to CO2). At the end of the year (the compliance period), electricity producers

must present enough certificates to fully cover their emissions throughout the period.

If they have certificates to spare, they can sell them to other producers or save them

for the following year. In case of excess emissions (non-compliance), they must pay a

fine.

The limit on the total number of allowance certificates ensures that they have a

monetary value. The trading of the certificates between producers (or other emitting

entities) is called the emissions market (or carbon market). We note that in section

1 of [9], the authors argue that, under perfect information, imposing a tax on carbon

emissions is in fact equivalent to the carbon market. In this section, we present a

structural model for a simplified version of the electricity and emission markets which

aims to determine the fair price of an allowance certificate.

In this thesis, we consider the following structure for the electricity market:

• The market is open to both suppliers and consumers and, for the sake of sim-
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plicity, we consider that producers are also suppliers;

• There exists a market administrator who is in charge of matching supply and

demand. This implies that it is not the consumers who choose their suppliers,

but instead it considers that each consumer would choose their optimal supplier;

• The electricity suppliers submit their bids to the market administrator: a bid

consists in a pair of quantity (of electricity) and price (asked for that amount).

Note that a supplier can submit several bids, for example, they might be willing

to supply the first 100 megawatts for 50e but the next 100 megawatts for 60e;

• The market administrator is tasked with organizing the supply bids in merit

order, that is, he must match demand to the lowest possible current supply bid.

This results in the so-called bid stack;

• There exists a capacity limit for electricity production. Additionally, if demand

were to surpass supply, the maximum limit would be supplied. So, we also

assume that demand is bounded in the same way.

Also, for the sake of simplicity, we ignore the existence of alternative electricity

production methods, both nuclear and environmentally friendly.

Regarding the emissions market, we have the following assumptions:

• All CO2 emissions which are subjected to the cap are a consequence of the

production of one good only, this being electricity;

• There exists a market regulator who imposes a limit on CO2 emissions. This limit

is imposed through emission allowances which are allocated at the beginning of

the period (we ignore whether they are auctioned, sold or simply distributed);

• Emission allowances are tradable assets.

Additionally, we choose to work within a single compliance period, so that al-

lowances lose its transition value over multiple periods.

3.2 Construction of the Model

We follow [9, 22] concerning the construction of the model for the emissions market.

The purpose of the model is to determine the current price of an emissions allowance

when we are given the current levels of demand for electricity, the price of the used

fuels and the total cumulative emissions of CO2 for the period.

8



We start by addressing the framework regarding our probability space. As opposed

to starting to model the market under an empirical probability measure, say P, we

choose to work directly under the risk neutral measure Q. This will be useful to define

the equation governing the dynamics of the price of an allowance certificate. Thus, we

have the following assumption:

Assumption 1. There exists a probability measure, denoted by Q, under which the

discounted price of any tradable asset is a martingale.

As stated, we choose to work solely with one compliance period, represented by the

interval [t0, T ]. We consider a probability space (Ω,F ,Q) along with a natural filtration

(Ft)t0≤t≤T generated by a standard Q-Brownian Motion (Wt)t0≤t≤T and augmented by

the Q-null sets (we consider (Wt) to be n + 1 dimensional, with W 0
t representing its

first component and W n
t the other n).

We denote by (Dt) and (ξt) the processes representing the demand and supply of

electricity, measured in megawatts (henceforth, we also use the letter ξ to represent

electricity production). We assume that there exists a capacity limit for electricity

production and, by the argument above, there is a positive constant ξmax such that

0 ≤ Dt, ξt ≤ ξmax, t0 ≤ t ≤ T.

As long as Dt < ξmax, there is no need to produce excess electricity. So, as in [22],

we consider that (Dt) and (ξt) are related through a Walrasian equilibrium imposed

by the market administrator, implying

Dt = ξt, t a.s..

To characterize (Dt), we first assume that the demand for electricity is perfectly

inelastic, that is, it does not depend on the price of electricity. This is a reasonable

assumption, given that there are no simple substitute goods. Also, in [3], the authors

found that the elasticity levels between demand and price are low. In the scope of the

model, we admit the following Ito dynamics

dDt = µD(t,Dt)dt+ σD(t,Dt)dW
0
t .

We denote by (St) = (S1
t , . . . , S

n
t ), the process representing the prices of the fuels

consumed in electricity production. Similarly to Dt, we assume that St follows the Ito
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dynamics

dSt = µS(t, St)dt+ σS(t, St)dW
n
t .

We denote by (Et) the process representing the total emissions of CO2 up to time

t, measured in tonnes of CO2. Since the production level is bounded, we also have

0 ≤ Et ≤ Emax, t0 ≤ t ≤ T, Emax > 0.

Also, we have the limit on total emissions, Ecap > 0, for the duration [t0, T ] imposed

by the market regulator, satisfying

0 ≤ Ecap ≤ Emax.

We construct (Et) in the next sections.

Finally, we denote by (At) the process representing the price of an allowance certifi-

cate. The main characteristic about (At), is that its initial value is unknown. However,

its terminal value can be deduced in the following way:

At time T, any excess emissions by a firm, say K, will be penalized at the

amount Π per tonne. If another firm holds unused allowances, for positive

ε, any price of Π− ε will be favourable for firm K. Hence, under a no

arbitrage hypothesis, we make ε tend to 0, and the fair price of an

allowance should be Π at time T. In case there are no excess emissions,

there will be no demand for the certificates, meaning that their value is 0.

In other words, any firm that emits more than it can cover through allowances, should

suffer the full penalty. So, we have

AT =

0 if 0 ≤ ET < Ecap

Π if Ecap ≤ ET ≤ Emax.

Due to assumption (1), we know that the process e−r(t−t0)At is a martingale (r

stands for the risk free rate). By the martingale representation theorem, we know that

there exists an adapted process (Zt) such that

d[e−r(t−t0)At] = ZtdWt,
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which, by the Ito formula, gives

dAt = rAtdt+ e−r(t−t0)ZtdWt.

3.2.1 The bid and emissions stacks

To characterize the process (Et), we need to model the bid and emissions stacks.

We consider the superscript BAU (standing for business− as− usual) to represent a

function which is not influenced by the cap on CO2 emissions, that is, the version of

a function before imposing restrictions on emissions.

As described in section 3.1, the market administrator arranges the production bids

in increasing order (or merit order). This means that, for each level, the required

energy is supplied at the cheapest possible price. So, the BAU bid stack is given by

the function

bBAU(ξ, s) : [0, ξmax] x R+ → R+
0

where we have bBAU ∈ C1 and
∂bBAU

∂ξ
> 0. Note that, in theory, the bid stack should

be an increasing step function. However, we assume that there are enough bids to

approximate the real bid stack by a smooth function. An example bid stack function

could be

bBAU(ξ) = b+

(
b− b
ξθ1max

)
ξθ1 , θ1 > 2

as used in the test model of [22] (this paper does not consider fuel prices). Economi-

cally, we can interpret bBAU as follows:

For the given level of electricity supply ξ and fuel prices s = (s1, . . . , sn),

bBAU(ξ, s) is the cost of production of the next unit of electricity.

Similarly, we can define the marginal emissions stack through the function

e : [0, ξmax]→ R+,

with e ∈ C1. The test model of [22] used

e(ξ) = e+

(
e− e
ξθ2max

)
ξθ2 , 0 ≤ θ2 < 1.

Analogously, we can read:

11



For the given level of electricity supply ξ, e(ξ) represents the

emissions necessary to produce the next unit of electricity.

Following this definition, the market emissions rate function is naturally defined as

µBAUE (D) := κ

∫ D

0

e(x) dx, 0 ≤ D ≤ ξmax,

that is:

For the given level of electricity demand D, µBAUE (D) represents

the total emissions necessary to produce ξ = D units of electricity.

The parameter κ serves as a scale parameter.

3.2.2 The bid stack with capped emissions

We now consider the consequences of imposing a cap on total emissions. The main

obstacle is to find a suitable integration set for the equivalent definition of µBAUE . We

start with the following definitions.

Definition 3.1. For each fuel type i = 1, . . . , n, the function

bBAUi (ξ, si) : [0, ξimax] x R→ R+
0

represents the bid stack if there were only the fuel of type i available. ξimax represents

the maximum amount of electricity that can be produced using fuel i. The function

si 7→ bBAUi (·, si) should be strictly increasing.

Definition 3.2. For each fuel type i = 1, . . . , n, the function

ei(ξ) : [0, ξimax]→ R+

represents the marginal emissions stack when the fuel of type i is used to produce

electricity.

For the sequel, we assume that ei is non decreasing.

As we have mentioned before, a carbon market is equivalent to a carbon tax. This

means that we can treat the emission allowances as an added production cost. By the

definitions of bBAUi and ei, it is straightforward to define the bid stack for each fuel as

bi(ξ, s, A) = bBAUi (ξ, s) + Aei(ξ).
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This way, the excess cost of production is proportional to emissions. One could reason

that the natural bid stack would be the sum of all bi’s. However, this would leave us

without a proper integration set for µE. Hence, we need the following arguments.

Note that each bi(ξ, ·, ·) is strictly increasing, so we can consider its generalized

right-continuous inverse function

b−1
i (p, si, A) : R→ [0, ξimax]

p 7→ ξimax ∧ inf{ξ ∈ [0, ξimax] : bi(ξ, si, A) > p}.

We also denote its minimum by

bi := bi(0, si, A).

We can say that b−1
i (p, si, A) represents the total amount of electricity produced

in the market using fuel type i (for a given electricity price p and allowance price A).

Then, the total amount of electricity produced is given by

b−1(p, s, A) =
∑
i

b−1
i (p, si, A).

By the monotonicity of the individual bi’s, we can also invert p 7→ b−1(p, s, A). So, we

define the market bid stack by

b(ξ, s, A) := min
i
bi ∨ sup

{
p ∈ R+ :

∑
i

b−1
i (p, si, A) < ξ

}
.

Definition 3.3. For each fuel type i = 1, . . . , n, electricity price p and allowance price

A, we define the set of potential active generators as

Gi(p, si, A) := {ξ ∈ [0, ξimax] : bi(ξ, si, A) ≤ p}, 0 ≤ p, si, A <∞.

That is, for given electricity, fuel and allowance prices (p, si, A), Gi(p, si, A) rep-

resents the set of production levels that are still producible (using fuel i) without

incurring in losses.

We have, finally, the definition for the market emissions rate when the market

13



regulator imposes a cap on emissions through emission allowances:

µE(D, s,A) := κ
∑
i

∫
Gi

ei(x) dx, 0 ≤ A, si <∞, 0 ≤ D ≤ ξmax

where Gi := Gi(b(D, s,A), s, A).

Finally, (Et) represents the cumulative emissions over time, so we simply have

Et =

∫ t

0

µE(Ds, Ss, As)ds.

3.3 Existence and Uniqueness of Solution

We want to show that the model



dDt = µD(t,Dt)dt+ σD(t,Dt)dW
0
t

dSt = µS(t, St)dt+ σS(t, St)dW
n
t

dEt = µE(Dt, St, At)dt

dAt = rAtdt+ e−r(t−t0)ZtdWt, t0 ≤ t ≤ T

(Dt0 , St0 , Et0) = (d, s, e)

AT = ΠX[Ecap,+∞[(ET )

(1)

admits a unique solution (X stands for the indicator function). However, we will have

to settle for a relaxed terminal condition, which can be seen as an approximation.

In order to simplify the notation, because Dt and St are both non-degenerate

forward components,we define:

Xt :=

[
Dt

St

]
, µX(t,Xt) :=

[
µD(t,Dt)

µS(t, St)

]
, σX(t,Xt) :=

[
σD(t,Dt) 0

0 σS(t, St)

]
.

Following [5], under the appropriate conditions, a system of the type
dXt = µX(Xt)dt+ σX(Xt)dWt

dEt = µE(Xt, At)dt

dAt = ZtdWt, t0 ≤ t ≤ T

admits a unique solution for any initial condition (x, e) ∈ Rn x R and terminal
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condition

ΠX]Ecap,+∞[(ET ) ≤ AT ≤ ΠX[Ecap,+∞[(ET ).

Since the process At can be directly obtained from Yt = e−r(t−t0)At, we can use the

latter to solve an equivalent system by defining the following function:

f(x, y) := µE
(
x, er(t−t0)y

)
, t0 ≤ t ≤ T,

which leads to the simplified system:
dXt = µX(t,Xt)dt+ σX(t,Xt)dWt,

dEt = f(Xt, Yt)dt

dYt = ZtdWt, t0 ≤ t ≤ T.

(2)

So, we need to show that the result of existence and uniqueness still holds when

the coefficients b and σ also depend on time. Hence, we work with the following

assumption:

Assumption 2. µX : [t0, T ] x Rn+1 → Rn+1, σX : [t0, T ] x Rn+1 → R(n+1)x(n+1), f :

Rn+1 x R → R and there exist three constants, L ≥ 1, l1, l2 > 0, 1/L ≤ l1 ≤ l2 ≤ L,

such that

(i) µX and σX are L-Lipschitz continuous and of at most L-linear growth in the

spatial variable for almost every t ∈ [t0, T ], that is,

|µX(t, x1)−µX(t, x2)|+ |σX(t, x1)−σX(t, x2)| ≤ L|x1−x2|, x1, x2 ∈ Rn+1, t a.s.,

|µX(t, x)|+ |σX(t, x)| ≤ L(1 + |x|), x ∈ Rn+1, t a.s..

ii) for any y ∈ R, x 7→ f(x, y) is L-Lipschitz continuous and satisfies

|f(x, y)| ≤ L(1 + |x|+ |y|), x ∈ Rn+1.

iii) For any x ∈ Rn+1, y 7→ f(x, y) is strictly decreasing and satisfies

l1|y1 − y2|2 ≤ (y1 − y2)[f(x, y1)− f(x, y2)] ≤ l2|y1 − y2|2, y1, y2 ∈ R.

Note that y 7→ f(x, y) is decreasing if A 7→ µE(X,A) is decreasing, which is our
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case.

We follow section 2 of [5]. We aim to show that the function (t0, x, e) 7→ Y ε,t0,x,e
t0

still verifies the same PDE and a-priori estimates as in propositions 2.4, 2.6 and 2.8

of [5] (see Appendix). Hence, we start by considering a non-decreasing Lipschitz ter-

minal condition φ bounded by 0 and 1. We also consider the non-degenerate mollified

equation system: 
dXε

t = µX(t,Xε
t )dt+ σX(t,Xε

t )dWt + εdW̃t

dEε
t = f(Xε

t , Y
ε
t )dt+ εdBt

dY ε
t = Zε

t dWt + Z̃ε
t dW̃t + Υε

tdBt,

(3)

where we work in an appropriate augmented probability space. Here, (W̃t)t0≤t≤T and

(Bt)t0≤t≤T are two additional independent Brownian Motions of dimensions n+ 1 and

1 respectively and 0 < ε < 1. Also, (Zε
t , Z̃

ε
t ,Υ

ε
t)t0≤t≤T are the processes arising from

the martingale representation of (Y ε
t )t0≤t≤T with respect to (Wt, W̃t, Bt).

Section 2 in [12] allows us to suppose that the functions µD, σD, f and φ are C∞ with

bounded derivatives, as then we can construct sequences of functions that converge to

the real coefficients. By [12], for any initial condition (t0, x, e) and terminal condition

YT = φ(ET ), the system (3) admits a unique solution which we denote by

(Xε,t0,x,e
t , Eε,t0,x,e

t , Y ε,t0,x,e
t , Ẑε,t0,x,e

t )t0≤t≤T ,

with Ẑε,t0,x,e
t = (Zε,t0,x,e

t , Z̃ε,t0,x,e
t ,Υε,t0,x,e

t )t0≤t≤T . We then define the function

θε(t0, x, e) := Y ε,t0,x,e
t0 . (4)

With Lx(t) := 〈µX(t, x), ∂
∂x
〉 + 1

2
Tr
(

(σXσ
∗
X) ◦ (t, x) ∂2

∂x2

)
, we have the following

properties:

Proposition 3.4. The function θε takes values in [0, 1] only and is of class C1,2,2 on

[0, T ] x Rn+1 x R with bounded derivatives. Moreover, it satisfies the following PDE:[
∂θε

∂t
+ Lx(t)θε +

ε2

2

(
∆xxθ

ε +
∂2θε

∂e2

)]
◦ (t, x, e) + f(x, θε(t, x, e))

∂θε

∂e
(t, x, e) = 0 (5)

with terminal condition θε(T, x, e) = φ(e) for all x ∈ Rn+1.
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Proof. θε being of class C1,2,2 with bounded derivatives and solving the PDE are im-

mediate from Lemma 2.1 in [12] by noticing that the Brownian Motion coefficient is

given by the (n+ 2)x(2n+ 3) matrix

Σ :=

[
σX εIn+1 0

0 0 ε

]

and thus, the matrix a := ΣΣ∗ is obtained by augmenting σXσ
∗
X with a column and a

row of zeros and adding ε2In+2. (Ip standing for the identity matrix of order p).

We now present the desired result.

Theorem 3.5. Under Assumption (2), for any initial condition (x, e) ∈ Rn+1 x R,

problem (2) admits a unique solution (Xt, Et, Yt, Zt)t0≤t≤T satisfying the terminal con-

dition

Q{e−r(T−t0)ΠX]Ecap,+∞[(ET ) ≤ YT ≤ e−r(T−t0)ΠX[Ecap,+∞[(ET )} = 1

and the integrability condition

E
[

sup
t0≤t≤T

{
|Xt|2 + |Et|2 + |Yt|2

}
+

∫ T

0

|Zt|2dt
]
< +∞.

Consequently, problem (1) admits a unique solution when the terminal condition is

relaxed to

Q{ΠX]Ecap,+∞[(ET ) ≤ AT ≤ ΠX[Ecap,+∞[(ET )} = 1.

Additionally, there exists a continuous function θ = limε→0 θ
ε which verifies

At = θ(t,Dt, St, Et).

Proof. The proof is in all aspects similar to the proofs in section 2 of [5]. Assumption

2.i) ensures that the processes remain well-defined and that no problems of integra-

bility arise. Additionally, proposition 4.1 in [16] confirms that all processes remain

differentiable as needed. Thus, θε verifies the same a-priori estimates and the result

holds true.
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4 Numerical simulation of the model

In this section we present the numerical scheme and algorithm proposed in [2]. We

then discuss our results obtained with its application to a test model suggested by [9]

and to the model described in the previous chapter.

4.1 Numerical Scheme

Consider the FBSDE
Xt = x0 +

∫ t

t0

µX(s,Xs, Ys) ds+

∫ t

t0

σ(s,Xs, Ys) dWs

Yt = φ(XT ) +

∫ T

t

µY (s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs

(6)

with the following discretization scheme

X0 = x0

Xi+1 = Xi + µ (ti, Xi, Yi) ∆ti+1 + σ (ti, Xi, Yi) ∆Wi+1

Yn = φ(Xn)

Zi =
1

∆ti+1

E [Yi+1∆Wi+1| Fti ]

Yi = E [Yi+1 + f (ti, Xi, Yi+1, Zi) ∆ti+1| Fti ] .

(7)

The problem of applying (7) to (6) is that the scheme is fully implicit. Note that Yi

depends on Yi+1 which depends on Xi+1 which in turn depends on Yi. This turns (7)

computationally unfeasible given the dimensionality of the problem we are modelling.

We thus need to find a way to decouple the system.

The idea is the following: in many cases, the method used to prove existence and

uniqueness of solution to an equation is by using a fixed point theorem on a contraction.

In such cases, an iteration scheme would converge to the said fixed point. The method

developed in [2] decouples the FBSDE using the iteration argument.

We start with an initial trajectory of the backward process (Yt) which stands as

an initial guess of the solution. Then, we use this trajectory to simulate the forward

process (Xt). The system is now decoupled, and we can use the values of (Xt) to

compute the new trajectory of (Yt). We then repeat the same process until the scheme

converges.
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The discretization scheme proposed in [2] is



Xm
0 = x0

XΠ,m
i+1 = XΠ,m

i + µX

(
ti, X

Π,m
i , uΠ,m−1

i (XΠ,m
i )

)
∆ti+1

+σ
(
ti, X

Π,m
i , uΠ,m−1

i (XΠ,m
i )

)
∆Wi+1

Y Π,m
n = φ(XΠ,m

n )

ZΠ,m
i =

1

∆ti+1

E
[
Y Π,m
i+1 ∆Wi+1

∣∣∣Fti]

Y Π,m
i E

[
Y Π,m
i+1 + µY

(
ti, X

Π,m
i , Y Π,m

i+1 , Z
Π,m
i

)
∆ti+1

∣∣∣Fti]

uΠ,m
i = Y Π,m

i

where Π stands for the time grid. The main idea is to use a Picard iteration method

to reach an approximate solution (XΠ,M , Y Π,M , ZΠ,M). (XΠ,m) is calculated using

(Y Π,m−1, ZΠ,m−1) and (Y Π,m, ZΠ,m) using (XΠ,m). The usual assumptions stand: µX , σ,

µY , φ are Lipschitz continuous functions of linear growth. Also, it is assumed that the

drift and diffusion coefficients are uniformly Hölder-1
2

continuous w.r.t. t.

We use the following notation regarding the processes of the model:

Xt = (Dt, St, Et).

We also note that the proposed method admits the degeneracy of the σ coefficient

included in our model.

Remark 4.1. The discretization for ZΠ,m
i is not immediate, but comes from the fol-

lowing idea:

Yti ≈ Yti+1
+ µY (ti, Xti , Yti , Zti) ∆ti+1 − Zti∆Wi+1

⇔

Zti∆Wi+1 ≈ Yti+1
− Yti + µY (ti, Xti , Yti , Zti) ∆ti+1.

Multiplying both sides by ∆Wi+1 on the right and applying the conditional expectation
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on Fti results in

Zti∆ti+1 ≈ E
[
Yti+1

∆Wti+1
|Fti
]
,

given that the rest is Fti measurable and thus, the expectation is simply on the Brownian

increment which is null.

4.2 Numerical Algorithm

We now present the algorithm to employ the scheme described above. In [2, 15], the

authors’ suggestion is to calculate the conditional expectations using a least squares

regression estimator, for which we need to simulate Λ different paths for each iteration.

The algorithm is the following:

• Fix Λ and the number of time steps n and define a time grid Π = {t0 < t1 <

· · · < tn = T} (we henceforth omit the dependence of the simulation regarding

n, Π and Λ).

• Set u0
i (x) ≡ 0 for all 0 ≤ i ≤ n and choose x0.

• Simulate Λ independent Brownian Motion trajectories indexed by (W λ
t ), 1 ≤

λ ≤ Λ.

• For m = 1, . . . ,M do:

1. Simulate Λ trajectories of Xm as follows:

Xm,λ
0 = x0

Xm,λ
i+1 = Xm,λ

i + µX

(
ti, X

m,λ
i , um−1

i (Xm,λ
i )

)
∆ti+1

+σX

(
ti, X

m,λ
i , um−1

i (Xm,λ
i )

)
∆W λ

i+1

2. Choose a set of Lipschitz continuous basis functions

BKi = {pk,i(x), 1 ≤ k ≤ K}

such that {
pk,i(X

m,λ
i ), 1 ≤ k ≤ K

}
forms a subset of L2(Ω).

3. Fix umn (·) = φ(·).
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4. For i = n− 1, . . . , 1 do:

Y m,λ
i+1 = umi+1(Xm,λ

i+1 ), 1 ≤ λ ≤ Λ

vmi (x) = arg inf

{
1

Λ

Λ∑
λ=1

∣∣∣∣ 1

∆ti+1

Y m,λ
i+1 ∆W λ

i+1 − V (Xm,λ
i+1 )

∣∣∣∣2 :

V ∈ span
(
BKi
)}

Zm,λ
i = vmi (Xm,λ

i+1 )

umi (x) = arg inf

{
1

Λ

Λ∑
λ=1

∣∣∣Y m,λ
i+1 + µY

(
ti, X

Π,m
i , Y Π,m

i+1 , Z
Π,m
i

)
∆ti+1

−U(Xm,λ
i )

∣∣∣2 : U ∈ span
(
BKi
)}

5. Set

Y m,λ
1 = um1 (Xm,λ

1 )

Zm,λ
0 =

1

Λ∆t1

Λ∑
λ=1

Y m,λ
1 ∆W λ

1

Y m,λ
0 =

1

Λ

Λ∑
λ=1

[
Y m,λ

1 + µY

(
t0, x0, Y

m,λ
1 , Zm,λ

0

)
∆t1

]

Remark 4.2. Note that with our model, steps 4 and 5 are reduced to

For i = n− 1, . . . , 0 do:

Y m,λ
i+1 = umi+1(Xm,λ

i+1 ), 1 ≤ λ ≤ Λ

umi (x) = arg inf

{
1

Λ

Λ∑
λ=1

∣∣∣Y m,λ
i+1 − U(Xm,λ

i )
∣∣∣2 : U ∈ span

(
BKi
)}

Y m,λ
0 =

1

Λ

Λ∑
λ=1

Y m,λ
1

since µY ≡ 0, which leads to Zm,λ
i becoming unnecessary in umi .

As in [2, 9], for the numerical simulations, we used

BKi = BD = {1} ∪ {xd, 1 ≤ d ≤ D} ∪ {(−R) ∨ xdxq ∧R, 1 ≤ d ≤ q ≤ D}

where X takes values in RD.
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4.3 Results

In this section we present the results of our numerical experimentations of the

algorithm described above. We started by testing the algorithm with a mock system

proposed in [9] of a simple singular FBSDE. We then tested the model of chapter 3

with the dynamics and parameters estimated in [9]. The algorithm was implemented

using Python.

4.3.1 Simple singular FBSDE

Consider the following FBSDE

dXt = dWt

dEt = (Xt − Yt)dt

dYt = ZtdWt

(X0, E0) = (0, 0)

Y1 = X[0,+∞[(E1).

Our implementations had the parameters Λ = 10000, R = 10 and 101 equidistant

time-steps.

A direct application of the algorithm proved unsuccessful, as it did not converge

(on 20 iterations). This was expected, given that the terminal function is not Lipschitz

continuous. We thus considered the mollified terminal condition Y1 = φε(E1), where

φε(x) =


0 if x ≤ −ε
x+ε
ε

if − ε < x < 0

1 if x ≥ 0.

The idea was to start at some value for which the algorithm converged and then make

ε → 0. However, it did not converge for any of the following values: ε = 5, ε = 1,

ε = 0.5 and ε = 0.1 (in 50 iterations). Following the methodology of [5] which recurred

to system (3), we included a non-degenerate “small” noise term to dEt. Hence, we

22



Figure 1: Y0 for system (8) with parameters ε = 0.1 and δ = 0.01.

have 

dXt = dWt

dEt = (Xt − Yt)dt+ δdBt

dYt = ZtdWt + Z̃tdBt

(X0, E0) = (0, 0)

Y1 = φε(E1).

(8)

With ε = 0.1 and δ = 0.01 the algorithm converged in less than 10 iterations (fig.

1). For δ = 0.005 the result was the same but for δ = 0.001 the algorithm no longer

converged. Hence, we fixed δ = 0.005 and tested lower values for ε. The result stayed

unchanged for ε as low as 0.01. For ε = 0.005 the algorithm needed more iterations to

converge (approximately 25) but the value of the solution dropped around 5%.

We thus conclude that, with a Lipschitz terminal condition, the algorithm fails

with a degenerate diffusion coefficient. Also, the non-degenerate mollification cannot

be arbitrarily small.

4.3.2 Simulation with estimated functions and parameters

Our approach to simulate the model developed in chapter 3 was to use the functions

estimated in [9] for the UK Energy Market. We omit the process of estimation of

the parameters which can be found in the book. The authors suggest the following
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dynamics for the Demand and fuel price processes:

Dt = κD exp
{
hD(t) +XD

t

}
SCt = κC exp

{
hC(t) +XC

t

}
SGt = κG exp

{
hG(t) +XG

t

}
where the his represent the seasonality terms, (X i

t) are diffusion processes and the κis

are the scale parameters. The seasonality functions were given by

hD(t) = aD + bDt+ cD1 cos

(
2πt

63/252

)
+ dD1 sin

(
2πt

63/252

)
+

+cD2 cos(2πt) + dD2 sin(2πt)

hC(t) = aC + bC1 t+ bC2 t
2 + cC cos(2πt) + dC sin(2πt)

hG(t) = aG + bG1 t+ bG2 t
2 + bG3 t

3 + cG1 cos

(
2πt

63/252

)
+

+dG1 sin

(
2πt

63/252

)
+ cG2 cos(2πt) + dG2 sin(2πt).

Thus, hD and hG present annual and quarterly tendencies while hC only has annual

components.

Regarding the diffusion processes, (XD
t ) and (XC

t ) were estimated as Ornstein-

Uhlenbeck processes while (XG
t ) was assumed to have non-constant volatility. The

dynamics chosen were:

dXD
t = −λDXD

t dt+ σDdWD
t

dXC
t = −λCXC

t dt+ σCdWC
t

dXG
t = −λG(XG

t − µG)dt+
√
vG(XG

t )dWG
t

with

vG(x) =

2λG
√
δ2 + x2

(
x− βδ√

α2 − β2

)
αx− β

√
δ2 + x2

.

The numerical values estimated for the parameters are given in tables 1 and 2.
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Parameter Estimate Parameter Estimate Parameter Estimate

κD 24000 κC 0.1228 κG 0.3412

aD 3.32 aC 4.16 aG 3.88

bD -0.0867 bC1 -0.159 bG1 0.698

bC2 0.0103 bG2 -0.419

bG3 0.0587

cD1 -0.0119 cG1 -0.00613

dD1 -0.0212 dG1 0.0124

cD2 0.145 cC 0.031 cG2 0.0817

dD2 0.0301 dC -0.00615 dG2 0.1

λD 80.3 λC 10.1 λG 8.08

σD 1.32 σC 0.16 µG 0

Table 1: Estimated parameters for the Demand and fuel price processes.

α β δ

14.7 0.524 0.126

Table 2: Estimated parameters for the function vG.

Regarding the construction of the bid stack, we have

i ∈ {c, g} x ∈ [0, ξimax]

ei(x) = αiηi

bBAUi (x) = γi + δiηix

with the parameters of table 3 and ξCmax = 3.997x105, ξGmax = 5.9013x105.

αC ηC αG ηG γC δC γG δG

0.411 2.04 0.973 2.63 0 6.05x 10−6 0.178 3.73x 10−6

Table 3: Estimated parameters for the bid stack functions.
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Following the discussion in section 3.2.2, we have:

bi(x, a, si) = aαiηi + si(γi + δiηix)

b−1
i (p, a, si) = ξimax ∧

(
p− aαiηi − siγi

siδiηi

)
∨ 0,

for p ∈ [bi(0, a, si), bi(ξ
i
max, a, si)].

b(x, a, s) is the inverse of p 7→
∑

i b
−1
i (p, a, si), and the computations of µE are

reduced to

µE(x, a, s) = 252
∑
i

∫ b−1(b(x,a,s),a,si)

0

e(x)dx = 252
∑
i

[
αiηib

−1
i (b(x, a, s), a, si)

]
.

κ = 252 represents the number of trading days in one year. For the remaining param-

eters we considered Λ = 5000, T = 8 and ∆ti ≡ 0.02.

Following the same idea as in system (8), we considered the terminal condition:

φε(x) =


0 if x ≤ Ecap − ε

Π
x− Ecap + ε

ε
if Ecap − ε < x < Ecap

Π if x ≥ Ecap.

We started with ε = Ecap/10 and the non-degenerate volatility σE = 107 as in [9]. To

determine Ecap we started with the suggested value Ecap = 2.74x109. This led to a

scenario where the trajectories of (Et) never reached the limit and, therefore, Y0 would

remain always at 0. We then decided to try the approach in [9] with

Ecap = Eavg = TµE(D0, S
C
0 , S

G
0 , 0),

which is the same as assuming a constant Demand and fuel prices and a null certificate

price. However, the opposite happened, and all the trajectories surpassed Ecap making

Y0 = Π. So, we decided to make Eavg the real average of the terminal values of the

trajectories of the first iteration:

Eavg =
1

Λ

Λ∑
λ=1

E0,λ
T . (9)

This also represents the average in a scenario where there is no regulation, since the
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Figure 2: Y0 with Ecap given by (9), ε = Ecap/10, σE = 107.

trajectories in the first iteration are calculated with Yt ≡ 0. Fig. 2 shows the results

obtained at 15 iterations.

In the same reasoning as in the mock system, we then tested different values for

σE and ε. However, we could not find any other value for either parameter resulting

in the algorithm’s convergence. We note that we did not have the computer power to

test the algorithm in more ideal conditions, for example, we could increase the number

of trajectories per iteration as well as the total number of iterations.

4.3.3 Regime changes and linear reduction Demand

As part of the efforts to fight climate change, the EU has set several targets for

2030. One of those targets is to reduce the total energy consumption. To achieve

this, several countries have already started to test some options in order to do so. For

example, starting in the summer of 2022, Spain decreed that all shops must turn their

window lights off after 10 p.m.. To incorporate these actions in our simulations, we

decided to compare two different kinds of reduction methods in the Demand process.

The first method we tested was the regime changes. This is essentially adding a

sudden shock to the process at a specified time. The second method was the gradual

decay. We also tried a mixture of the two, where the gradual decay would start at a

specified time (not at the beginning). We sticked to 15 iterations.

Regime Changes

We decided to include the shock in the Demand process at the halfway mark, that

is, in the beginning of the fourth simulated year. So, we had:

Dshock
t =

{
Dt if t < 4

pDt if t ≥ 4,
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where 1− p represents the percentage of the shock (a 10% reduction means p = 0.9).

The numerical results are presented in table 4 and fig. 3.

p 1 0.9 0.8 0.7 0.6 0.5

Y shock
0 10.36 12.61 14.32 15.56 16.18 16.51

Table 4: Y shock
0 for different magnitudes of regime change at t = 4.

Figure 3: Y shock
0 for different magnitudes of regime change at t = 4.

We also tested a double shock approach, where the shocks were of similar magnitude

at times t = 4 and t = 6:

Ddouble shock
t =


Dt if t < 4

qDt if 4 ≤ t < 6

q2Dt if t ≥ 6.

The results are shown in table 5.

q 1 0.9 0.8 0.7

Y double shock
0 10.36 12.93 14.26 15.32

Table 5: Y double shock
0 for different magnitudes of regime change at t = 4 and t = 6.

We can see that for p = q = 0.9, Y double shock
0 is around 2.5% greater than Y shock

0 .

Also, for p = q = 0.8 and p = q = 0.7, we have Y shock
0 > Y double shock

0 which is

unexpected given the increasing tendency shown in the graph of fig. 3. However, the

more logical comparisons should be, for example, p = 0.8∧q = 0.9 or p = 0.5∧q = 0.7,

since, in both cases, Dshock
8 and Ddouble shock

8 would have a similar multiplier when

compared with D8. In both of these cases, the impact on Y0 of the single shock is

more accentuated.
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These observations lead us to suspect that the Demand process has greater influ-

ence on Y0 when t is closer to 0. This hypothesis will be reinforced with the results

obtained with the gradual decay method.

Gradual Decay

In order to simulate a gradual decay, we had the following:

Ddecay
t =

(
1− p t

8

)
Dt,

where p represents the target percentage reduction at t = 8. The results are presented

in table 6 and fig. 4.

p 0 0.1 0.2 0.3 0.4 0.5

Y decay
0 10.36 12.83 15.91 21.50 31.14 42.42

Table 6: Y decay
0 for different values of the decay.

Figure 4: Y decay
0 for different values of the decay.

We can see that the values of Y decay
0 are very superior to those of Y shock

0 . The graph

even becomes convex. These results support the hypothesis previously mentioned.

This method modifies Dt from the initial time forward, but the final percentage change

ends up being the same as with the shock method. However, the values of Y decay
0

escalate much higher than Y shock
0 . Thus, Dt impacts Y0 more severely earlier in time.

We also tested a scenario where the decay would start at t = 4, but there was

no significant change to the values when compared with the original Demand process.

For example, with a 50% reduction, we had Y delayed decay
0 = 12.85, which is very close

to Y shock
0 with p = 0.9.
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5 Conclusion

The objective of this thesis was to describe a pricing mechanism in the Carbon

Emissions Market through a model that has been developed over the past 15 years.

The model aims to determine the price, at the initial time, of an Emissions Certificate

Allowance, which can be seen as a derivative in this market. It features a Demand

and a multi-dimensional fuel price processes, the CO2 emissions process and the price

process of the derivative. The main idiosyncrasy of the model is that it is constructed

with a Forward-Backward SDE. This means that some processes are defined forwardly

in time, while the allowance process is defined backwardly, having a terminal instead

of initial condition.

We then presented a numerical scheme based on a Picard iteration method in

order to approximate the solution of the equation system. The high complexity of the

scheme was due to the fact that the FBSDE was coupled, that is, the forward processes

depended on the backward process. Despite the complexity, we could still describe the

scheme through a well-defined algorithm. However, given that the allowance process

had to be simulated backwardly, at each time step, we had to approximate a conditional

expected value. The approach we followed consisted in calculating the conditional

expectation via a Least Squares Method. We then tested the algorithm with a mock

equation and with a model adapted to the UK Energy market.

Finally, we tested the inclusion of potential environmental measures in the model.

We sought to understand how the initial price of the Allowance variates when the De-

mand process suffers structural changes. Our results showed that Demand has greater

impact on the initial Allowance price when time is closer to 0. That is, a small vari-

ation in the Demand process at an earlier time can be more impactful than a greater

variation later in time.

The results presented in this thesis still leave room for research. On the theoretical

framework, it would be desirable to develop a numerical method that considers the

singularity of the terminal condition. In the practical framework, it would be ideal

to apply an algorithm that could sustain the degeneracy of the forward component,

which we were unable to do. Another possible improvement would be to calibrate the

model parameters to different countries and to more recent data. A good try would be

to consider the whole Iberian Peninsula instead of just a single country like Portugal.
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[6] René Carmona , Michael Coulon & Daniel Schwarz (2012) The valuation of clean

spread options: linking electricity, emissions and fuels, Quantitative Finance, 12:12,

1951-1965, DOI: 10.1080/14697688.2012.750733.

[7] Carmona, R., Coulon, M., Schwarz, D. (2013) “Electricity price modeling and asset

valuation: a multi-fuel structural approach”, Math Finan Econ 7:167-202.

[8] Carmona, R., Fehr, M., Hinz, J., Porchet, A. (2010) “Market Design for Emission

Trading Schemes”, SIAM Review 52(3):403-452.
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Appendix

Recall the mollified equation:
dXε

t = µX(t,Xε
t )dt+ σX(t,Xε

t )dWt + εdW̃t

dEε
t = f(Xε

t , Y
ε
t )dt+ εdBt

dY ε
t = Zε

t dWt + Z̃ε
t dW̃t + Υε

tdBt.

(3)

Proposition A.1 (Proposition 2.4 of [5]). Assume that the coefficients µX , σX and f

are bounded in x. Then, for the mollified equation (3) we have:

∀(t, x, e) ∈ [0, T [ x Rd x R, 0 ≤ ∂θε

∂e
(t, x, e) ≤ 1

l1(T − t)
,

where θε = Y ε,t0,x,e
t0 and l1 is the same from Assumption (2).

Moreover, the L∞-norm of ∂θε

∂e
on the whole [0, T ] x Rd x R can be bounded in terms

of L (from Assumption (2)) and the Lipschitz norm of the terminal condition φ.

Proposition A.2 (Proposition 2.6 of [5]). Assume that the coefficients µX , σX and f

are bounded in x. Then, there exists a constant C, depending on L and T only, such

that, for any (t, x, e) ∈ [0, T ] x Rd x R, we have:

∂θε

∂x
(t, x, e) ≤ C.

As a consequence, for any δ ∈]0, T [ and any compact set K ⊂ Rd, the 1
2
-Hölder norm

of the function [0, T − δ] 3 t 7→ θε(t, x, e), x ∈ K and e ∈ R, is bounded in terms of

δ,K, L and T only; the 1
2
-Hölder norm of the function [0, T ] 3 t 7→ θε(t, x, e) (that is

the same function but on the whole [0, T ]), x ∈ K and e ∈ R, is bounded in terms of

K,L, T and the Lipschitz norm of φ only.

Proposition A.3 (Proposition 2.8 of [5]). Consider the mollified equation (3) with a

non decreasing Lipschitz smooth terminal condition φ satisfying

inf
x∈R

φ(x) = 0, and sup
x∈R

φ(x) = 1.

Then, for any ρ > 0 and q ≥ 1, there exists a constant C(ρ, q) > 0, only depending on
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ρ, L and T , such that for any t ∈ [0, T [, e, Λ ∈ R and |p| ≤ ρ, we have:

e > Λ⇒ θε(t, x, e) ≥ φ(Λ)− C(ρ, q)

(
e− Λ

L(T − t)

)−q
,

e < Λ⇒ θε(t, x, e) ≤ φ(Λ) + C(ρ, q)

(
Λ− e

L(T − t)

)−q
.

In particular, for any t < T and x ∈ Rd:

lim
e→+∞

θφ(t, x, e) = 1, lim
e→−∞

θφ(t, x, e) = 0,

θφ(t0, x, e) := Y φ,t0,x,e
t0 is the limit of θε as ε tends to 0.

34


	Introduction
	Literature Review
	Forward-Backward Stochastic Differential Equations
	Numerical methods for FBSDEs
	Carbon Emissions Market

	A stochastic model for the Carbon Emissions Market
	Description of a Carbon Emissions Market
	Construction of the Model
	The bid and emissions stacks
	The bid stack with capped emissions

	Existence and Uniqueness of Solution

	Numerical simulation of the model
	Numerical Scheme
	Numerical Algorithm
	Results
	Simple singular FBSDE
	Simulation with estimated functions and parameters
	Regime changes and linear reduction Demand


	Conclusion
	References
	Appendix

