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RESUMO 

O Sudoku é um puzzle popularmente conhecido, com aplicações em diversas áreas 

que se estendem desde a Criptografia à Medicina. Por ser um problema NP-completo, a 

maior parte dos esforços para o resolver focam-se em heurísticas e não em métodos 

exatos. Exemplo destes últimos são as estratégias humanas. A proposta deste Trabalho 

Final de Mestrado (TFM) consiste no desenvolvimento de um Sudoku Solver, em VBA. 

O solver desenvolvido é um algoritmo de duas fases que incorpora estratégias humanas 

(Fase 1) e backtracking (Fase 2). A Fase 2 só é executada se, terminada a Fase 1, não for 

encontrada uma solução admissível. 

Foi conduzida uma experiência computacional para testar a performance do solver 

para puzzles 9 × 9 de três níveis de dificuldade: fácil, moderado e difícil. Das 230 

instâncias testadas, aproximadamente 55% foram resolvidas. O tempo máximo de 

resolução foi de 6,813 segundos, o tempo mínimo foi de 0,309 e a média do tempo total 

foi de 2,525 segundos. 

 

 

PALAVRAS-CHAVE: Sudoku; Estratégias Humanas; Backtracking; Dancing-Links; 

Algoritmo X. 
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ABSTRACT 

Sudoku is a popular puzzle, with applications in several areas ranging from 

Cryptography to Medicine. Because it is an NP-complete problem, most efforts to solve 

it focus on heuristics and not on exact methods. Examples of the latter are human 

strategies. The proposal of this Master’s Final Work (MFW) is the development of a 

Sudoku Solver, in VBA. The developed solver is a two-phase algorithm that incorporates 

human strategies (Phase 1) and a backtracking procedure (Phase 2). Phase 2 is only 

executed if a feasible solution has not been found after Phase 1 ends. 

It was conducted a computational experience to test the solver performance for 9 × 9 

puzzles with three difficulty levels: easy, moderate, and hard. Among the 230 instances 

tested, approximately 55% were solved. The maximum running time was 6.813 seconds, 

the minimum time was 0.309, and the average total time was 2.525 seconds. 

 

KEYWORDS: Sudoku; Human Strategies; Backtracking; Dancing-Links; Algorithm X.
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1. INTRODUCTION 

Sudoku is a puzzle consisting of a 𝑛 × 𝑛 grid, where 𝑛 = √𝑚 and  𝑛, 𝑚 ∈ ℤ+. The 

game begins with some numbers already in place (fixed cell). The objective is to fill the 

empty cells in the grid with integers from 1 to 𝑛 in such a way that no number is repeated 

in each row, column, and mini-grid. A solution satisfying these conditions is called a 

feasible solution. A given sudoku might have several, none, or a unique feasible solution. 

As proven by McGuire et al. (2014), having at least 17 fixed cells is a necessary - but not 

sufficient – condition to ensure the uniqueness of the solution of any 9 × 9 puzzle. 

 

Figure 1: An example of a 9 × 9 Sudoku puzzle. 

Sudoku was proved to be a NP-complete problem by Colbourn et al. (1984), which 

means that if the 𝑃 ≠ 𝑁𝑃 conjecture is true, there is no polynomial-time algorithm that 

can solve all its instances. Hence, so far, the efforts to solve large-size sudokus focus 

mainly on developing and improving algorithms that are able to provide a solution close 

to a feasible one, without compromising neither on speed nor on generality1. Such 

algorithms include the genetic algorithm, simulated annealing, particle swarm 

optimization, ant colony, artificial bee colony, and variable neighbourhood search. [See 

Table 1 in Sevkli & Hamza (2019) for more information.] Furthermore, the difficulty of 

                                                 
1 Generality is the algorithm’s capacity to accommodate all possible inputs of the computational 

problem. 
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solving a sudoku puzzle is not only associated with the dimension of the grid (value of 𝑛) 

but also with the number of empty cells in the initial grid and the relative positioning of 

the fixed cells. 

These puzzles can be modeled as constraint satisfaction problems (CSPs) that consist 

in assigning a value, within a finite domain, to each variable while ensuring that a set of 

restrictions is not violated. From an operations research perspective, the CSPs resulting 

from sudoku puzzles are similar to CSPs associated with different problems like 

assignment problems (assigning people to jobs, colors to a map, jobs to machines, etc.), 

protein folding (Strokach et al., 2020), and the ground-state problem (Ercsey-Ravasz & 

Toroczkai, 2012). Other applications include the fields of Cryptography (Rubinstein-

Salzedo, 2018) and Steganography (Hong et al., 2008). 

The wide range of practical applications resulting from sudoku puzzles combined 

with my interest for the game and the scarce exploration of exact algorithms to solve it 

were the most determinant factors for the choice of this Master’s Final Work (MFW). 

This MFW proposes the development, in Visual Basic for Applications (VBA), of a 

sudoku solver mainly constructed on a human rule-based approach. The aim of this work 

is to generate feasible solutions while trying to mitigate the use of the far disclosed 

heuristics and minimize the time-consuming characteristic of these algorithms. The 

proposed solver will perform a backtracking algorithm, in case the human strategies 

executed reveal to be insufficient to reach a feasible solution. The backtracking algorithm 

choice is related to its efficiency for sudoku solving when compared to constraint 

programming as the results in Coelho and Laporte (2014) reveale. 

The rest of the MFW is organized as follows. In Section 2, a summary of the exact 

algorithms used to solve sudoku puzzles is presented. In the subsequent section are 

introduced the human strategies intended to be implemented and it is detailed the 

functioning of Algorithm X. Section 4 deepens the way the solver algorithm procedures 

interact. The computational experience is reported and discussed in Section 5. Finally, 

Section 6 states the main conclusions of this work. Improvement points and future 

research directions are also discussed in this section. 
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2. LITERATURE REVIEW 

The existing sudoku solvers are based on either exact or heuristic algorithms. The 

fundamental difference between them is that exact algorithms aim to provide a feasible 

solution to a given problem and not an approximation to it. For this reason, the heuristic 

algorithms - genetic algorithm, particle swarm optimization, ant colony optimization, and 

artificial bee colony optimization, just to mention a few - will not be the subject of study 

of this MFW. [For more details on this matter see Mishra et al. (2018).] Instead, the focus 

of this project will be on the cursory explored exact algorithms. 

This section briefly describes prior works based on exact approaches related to the 

current study2. 

2.1 Human Strategies 

“Human strategies” is a term used to describe a series of deductions that human 

players created to solve a sudoku puzzle. According to the difficulty of the puzzle, it 

might be required to perform strategies with different degrees of complexity to obtain a 

feasible solution. Some of these strategies are basic, such as naked single and hidden 

single – we will delve into these further ahead -, and others are more elaborate, like X-

Wing and Swordfish. Nevertheless, the application of pure human strategies to solve these 

puzzles inherits the weaknesses of its creators: they might not be enough to find a feasible 

solution or take a lot of time to do so, especially as the search domain becomes much 

larger. Hence, the human strategy approach can be vastly improved with the conjunction 

of other techniques that mitigate its limitations. 

Eppstein (2005) showed how his path and cycle finding algorithm complements the 

solvability capacity of basic human solver strategies. A bilocation graph of a partially 

completed sudoku puzzle is constructed: first, it is drawn a vertex for each blank cell of 

the grid; then if two vertices lie in the same row, column or mini-grid and if within that 

row, column, or mini-grid they are the only ones that can contain the integer 𝑥, such 

vertices are connected with an edge labelled with the integer 𝑥. The path or cycle formed 

                                                 

2
 Have in mind that there are other exact approaches to solve sudoku puzzles like, for example, 

constraint programming (Simonis, 2005). 
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either indicates the possible values to be placed in the vertices or enables the deduction 

of a unique value that can be placed in a particular vertex. It also points out the 

consequences of such placements for the remaining vertices of the chain. 

Another method is brought by Deodhare et al. (2014) that presented a computation 

model to solve sudokus inspired in biological processes: the P system. A set of rules is 

applied randomly in an attempt to find a unique candidate to fill a blank cell. If it fails to 

do so, it tries to remove candidate options through human solver strategies until there is 

only one candidate left. At this point, if there are still several options to fill the cell, a 

brute-force algorithm is applied. 

2.2 Backtracking 

The typical backtracking algorithm visits the blank cells in a predefined order and 

places a number from the solution space of that particular cell on it, having in 

consideration the numbers on the already filled cells and the sudoku’s rules. If the current 

number fails to satisfy the constraints of the problem, it is removed from the cell along 

with the subsequent choices of placements in other cells that derived from it. In such 

circumstance, another number is tried and this process is repeated until a feasible solution 

is found or it is concluded that no solution exists. 

This procedure entails large running times because a huge tree of possibilities needs 

to be examined given that it runs through all elements of the domain. However, the 

general mechanism of doing and undoing can be improved through adaptations that have 

into account the specificities of the problem we are trying to solve. These might include: 

i) sequential comparisons in an appropriate step of the algorithm to avoid auxiliary data 

structures that require several accesses to the memory of the computer to update and 

downdate them; ii) allowing every branch of the tree to choose the next blank cell and the 

integer to place on it in any order (instead of the common left-right and top-bottom search 

in the grid), in an attempt to obtain a better pruning of the search tree. Next are mentioned 

two clever ways to deal with this in the specific case of sudoku solving. 

Jana et al. (2015) applied a backtracking algorithm to columns instead of individual 

cells, reducing the number of variables from 𝑛2 to 𝑛. They started by constructing a tree 

for the column that has the maximum number of filled cells. Such tree has the valid 
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permutations of numbers for the blank cells. From there, they attempted to build a solution 

incrementally, column by column, and backtracking whenever necessary. 

A similar way to reduce computational time and redundancy is to perform 

backtracking on mini-grids. Maji and Pal (2014) began by constructing a tree for each 

mini-grid containing all its valid permutations. Then, a valid option for a mini-grid is 

chosen and the numbers are placed. Next, the algorithm searches for permutations in the 

adjacent mini-grids’ trees to see if it can find a valid one that respects the restrictions 

imposed by the new filled cells. If so, it repeats the process just described. Otherwise, it 

backtracks to the prior mini-grid and selects another valid option. 

 

 

 

  



DANIELA PAIS  SUDOKU SOLVER BASED ON HUMAN STRATEGIES 

6 

3. UNDERSTANDING THE SOLVER PHASES 

The sudoku solver developed in this MFW is a two-phase algorithm that incorporates 

human strategies (Phase 1) and backtracking (Phase 2), which we shall go into further 

detail in the next section. For now, it will be explained their operating mechanisms and 

introduced key concepts. 

3.1 Terminology 

A sudoku puzzle consists of a 𝑛 × 𝑛 grid, where 𝑛 = √𝑚 and  𝑛, 𝑚 ∈ ℤ+. As 

exemplified in Figure 1, each grid is formed by 𝑛2 cells that can be aggregated in 

different components: row, column, and mini-grid. Each component must contain all 

integer numbers from 1 to 𝑛 exactly once, and this defines the constraints of the problem. 

Rows, columns, and mini-grids are labelled with integer numbers from 1 to 𝑛 in an 

ascending order, from top-bottom, right-left, and top-bottom and right-left, respectively. 

Thereby, cells are identified by a row-column coordination system: [𝑖, 𝑗] with 𝑖, 𝑗 ∈

{1, 2, … , 𝑛}, where 𝑖 represents the row number and 𝑗 represents the column number. Cells 

initially filled with specific values are referred to as fixed cells and the remaining ones 

are named blank cells. The values that can be placed in each blank cell - satisfying the 

constraints of the problem - are called candidates. 

3.2 Human Strategies 

As stated in Section 2.1, human strategies are a series of deductions that human 

players created to solve a sudoku puzzle. After identifying the candidates for each blank 

cell, the human strategies described below can be employed: 

1) Naked Single: for a specific cell, only one number fits. This number can be 

removed from the list of candidates of the other cells belonging to the same 

components (row, column, and mini-grid). See Figure 2. 

2) Naked Pair: two cells sharing at least one component have the same set of two 

candidates. These numbers can be removed from the list of candidates of the cells 

that belong to the components that the two cells have in common. See Figure 2. 
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3) Hidden Single (or Lone Ranger): a number that is one of multiple candidates 

for a cell appears only once as a candidate in a row, column, or mini-grid. This 

number is the solution to that cell. See Figure 2. 

 

Figure 2: Naked Single: in cell [9,1] only fits the number 8, then the number 8 can be removed from 

cells [7,1], [8,1], [9,5], and [9,8]. Naked Pair: cells [8,8] and [9,8] both have the numbers 2 and 8 as 

candidates, and they belong to the same mini-grid and column. This means that the number 2 can 

be eliminated from the candidates of cell [3,8]. Hidden Single: in cell [9,4] can be placed the number 

5, because despite the fact that there are two candidates, for that mini-grid, it is the only cell where 

the number 5 can be positioned. 

4) Hidden Pair: two cells sharing at least one component, have two numbers in 

common from their respective list of candidates. These numbers appear only in 

those cells within the limit of their common components. The other candidates 

can be removed from the referred two cells, leaving them with a naked pair. See 

Figure 3. 

5) Locked Candidate (or Pointing Pairs/Triplets): a mini-grid has two/three 

occurrences of the same number and they are aligned on a single row or column. 

That number cannot fit in any other cell outside the mini-grid on that row or 

column. See Figure 4. 



DANIELA PAIS  SUDOKU SOLVER BASED ON HUMAN STRATEGIES 

8 

 

Figure 3: Hidden Pair: in mini-grid 6, the numbers 3 and 7 appear only in cells [5,7] and [6,7]. 

The numbers 6 and 9 can be eliminated from cell [5,7] and the numbers 1, 5, and 9 can be 

eliminated from cell [6,7]. Another hidden pair is highlighted in cells [4,3] and [5,3]. 

6) Mini-grid/Line Reduction: a column or row has the same number only in cells 

that belong to the same mini-grid. That number cannot fit in any other cell of that 

mini-grid. See Figure 4. 

 

Figure 4: Locked Candidate: in mini-grid 9 the number 4 can only be placed in cells [7,7] and 

[7,9]. The number 4 can be removed from the cells of row 7 that do not belong to mini-grid 9. The 

number 4 can be eliminated from cells [7,5] and [7,6]. Mini-grid/Line Reduction: in column 8, the 

number 4 can either be placed in cell [1,8] or [2,8], that are both part of mini-grid 3. Thus, the 

number 4 can be excluded from the other cells of that mini-grid, namely cells [2,7], [2,9], and 

[3,9]. 
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3.3 Backtracking with Algorithm X 

Let us introduce some concepts related to backtracking. When dealing with 

backtracking algorithms, search trees are commonly used to display all possibilities of 

number placements depending on the sequential choices made. Each blank cell 

corresponds to a tree level. Every time a level is created, the candidates that can be 

positioned in the cell corresponding to that level are updated, regarding the selected 

candidates on the previous levels (Figure 5). 

 

Figure 5: Example of a search tree for a simple backtracking algorithm trying to solve a sudoku puzzle. 

The initial candidates on cell [1,1] are {1,5,6,7} and on cell [1,2] are {1,2,6,7,9}. If the number 1 is placed 

on cell [1,1], then cell [1,2] loses one of its initial candidates. If instead, the number 5 had been placed on 

cell [1,1], then the five initial candidates of cell [1,2] would have remained on level 1. 

In a broader outlook, the backtracking algorithms operating steps are: 

1st) Start at level 0 by choosing a blank cell. 

2nd) Place a valid number on the chosen blank cell. 

3rd) Update the other blank cells candidates. 

4th) Go to the next level: 

 If there are still blank cells: 

 If a blank cell has no candidates, this means that at least one number 

was incorrectly placed in a previous blank cell (level). Delete the 

preceding placed numbers in reverse order (go back to prior levels) until 

reaching a level with more than one candidate. Then go back to the 2nd 

step, but this time choose a different valid number. 

 If all blank cells have candidates, choose a new blank cell and go to the 

2nd step. 

 If all cells are filled, then terminate. 

An efficient backtracking algorithm is the Algorithm X (Knuth, 2019). To understand 

its mechanisms, let us reframe the sudoku problem. 
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Exact Cover Problem 

 The sudoku can be viewed as an exact cover problem. To better comprehend this 

concept and given the complexity of such endeavor, consider from now on the matrix 

below: 

       𝒂    𝒃     𝒄    𝒅    𝒆     𝒇   𝒈

𝐴 =

(

  
 

0 0 1
1 0 0
0 1 1
1 0 0
0 1 0
0 0 0

    

0 1 0
1 0 0
0 0 1
1 0 1
0 0 0
1 1 0

    

0
1
0
0
1
1

  

)

  
  

Source: Knuth, 2019, p.64 

 For this particular case, the exact cover problem could be stated as follows: the 

objective is to cover all seven columns/items - named a, b, c, d, e, f, g - with disjoint 

rows/options – {𝑐, 𝑒}, {𝑎, 𝑑, 𝑔}, {𝑏, 𝑐, 𝑓}, {𝑎, 𝑑, 𝑓}, {𝑏, 𝑔}, and {𝑑, 𝑒, 𝑔}. 

 Every sudoku is an exact cover problem (see Appendix A) whose disjoint options 

are the possible positioning of numbers for each cell, that cover all constraints of the 

problem. In the next paragraph, these notions are detailed. To do so, have in mind that 

 𝑟𝑖𝑐𝑗#𝑘 with  𝑖, 𝑗, 𝑘 ∈ {1, … , 𝑛} corresponds to the cell with row 𝑖 and column 𝑗, where it 

can be placed candidate 𝑘. 

 At most, there are 𝑛3 disjoint options (or rows) - 𝑛2 cells multiplied by 𝑛 possible 

values to fill them. Therefore, if the cell [𝑖, 𝑗] is a fixed cell filled with number 𝑘, then the 

only option to that cell is simply 𝑟𝑖𝑐𝑗#𝑘, but if it is a blank cell, then the options are  𝑟𝑖𝑐𝑗#1,

𝑟𝑖𝑐𝑗#2, … , 𝑟𝑖𝑐𝑗#𝑛. The sudoku problem has 4 × 𝑛 × 𝑛 constraints (or columns/items) - 4 

types of constraints: the first type ensures that each cell contains exactly one of 𝑛 options 

to fill it and the other three types ensure that each row, column, and mini-grid contains 

one of each integer from 1 to 𝑛. To clarify to what correspond the 4 types of constraints, 

here is their representation using the previous notation: 

 Cell constraints: [1,1], … , [1, 𝑛], [2,1], … , [2, 𝑛], … , [𝑛, 1], … , [𝑛, 𝑛] 

 Row constraints: 𝑟1#1, … , 𝑟1#𝑛,   𝑟2#1, … , 𝑟2#𝑛, … , 𝑟𝑛#1, … , 𝑟𝑛#𝑛   

 Column constraints: 𝑐1#1, … , 𝑐1#𝑛,  𝑐2#1, … ,  𝑐2#𝑛, … , 𝑐𝑛#1, … , 𝑐𝑛#𝑛 

 Mini-grid constraints: 𝑚1#1, … ,𝑚1#𝑛, 𝑚2#1, … ,𝑚2#𝑛, … ,𝑚𝑛#1, … ,𝑚𝑛#𝑛 
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Since matrices of 0s and 1s used to represent exact cover problems are usually 

extremely sparse [particularly in the case of the sudoku problem where in each row there 

are four 1s and (4 × 𝑛 × 𝑛 − 4) 0s], they can be transposed to a more constrict data 

structure – a matrix of nodes -, without losing information. The matrix of nodes is 

constructed by adding one node for each 1 in the binary matrix. 

To solve the exact cover problem, the matrix of nodes will have to be manipulated. 

The coming subsection presents a technique that does this manipulation without loss of 

information and that is remarkably efficient when applied to backtracking algorithms. 

Dancing Links 

 During a backtracking procedure, it is necessary to have a way of updating and 

downdating the data structure that supports the procedure efficiently. Therefore, instead 

of copying the information of all ancestors of the current node in the search tree every 

time a new level is entered (so that previous decisions can be reversed), Donald E. Knuth 

developed a much easier and faster technique. It is called dancing links (DL) and 

deletes/undeletes an item from a data structure without copying it, but only by modifying 

it. It works as follows: 

 Suppose there is a double-linked list, like the one in Diagram 1. As explained in 

Knuth (2019), let 𝐿[𝑥] and 𝑅[𝑥] be, respectively, the predecessor and the successor of 

node 𝑥. Node 𝑥 can be deleted from the list by setting: 

𝑅[ 𝐿[𝑥] ] ← 𝑅[𝑥],  𝐿[ 𝑅[𝑥] ] ← 𝐿[𝑥], 

and undeleted, through: 

𝑅[ 𝐿[𝑥] ] ← 𝑥,  𝐿[ 𝑅[𝑥] ] ← 𝑥, 

after restoring the nodes eliminated since node 𝑥 deletion, in reverse order. 

Diagram 1: An example of a Dancing Links diagram. 

 

 Linked data structures are connected by pointers that represent the address of a 

location in memory, as illustrated in Figure 6 (a). For example, imagine that we start with 

a linked data structure identical to the one in Figure 6 (a) and we delete node 3, and then 

node 1 – Figure 6 (c) captures these links transformations. To restore node 3, it would be 
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necessary to first undelete node 1 - obtaining Figure 6 (b) -, and only then undelete node 

3 – reestablishing the initial links of Figure 6 (a). 

 
(a)                                  (b)                                 (c) 

Figure 6: (a) Initial links of Diagram 1; (b) Links after deletion of node 3; (c) Links after deletion of nodes 

3 and 1, in that order. 

The main advantage of using a linked data structure as opposed to a continuously-

allocated structure (such as arrays and matrices) is that changing pointers is easier and 

faster than moving items, particularly when dealing with large records. And backtracking 

algorithms require exactly that since they enumerate all solutions to a given set of 

constraints. Besides, and as clarified by Skiena (2008), the other benefit of linked data 

structures is that overflow occurs only when the memory is full. 

Algorithm X’s Data Structure 

Algorithm X, by the same author of the DL technique (Knuth, 2019), visits all 

solutions to a given exact cover problem using a data structure that has embedded DL to 

easily add back nodes removed. Its data structure is a matrix of nodes that forms a doubly-

linked list horizontally and vertically. Diagram 2 represents a doubly-linked list which 

derives from matrix A (presented above). 

Diagram 2: Double-linked list – the data structure for matrix A, based on Knuth, 2019, p.65. 
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 The vertical entries (the header) correspond to the items (a, b, c, d, e, f, and g) – for 

the sudoku problem the header corresponds to the constraints previously mentioned in the 

Exact Cover Problem Section - and the horizontal entries correspond to the disjoint 

options. The nodes represent the current candidates which can be part of the solution (in 

Diagram 2 these are nodes 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, and 

29). The nodes of the header (numbered from 0 to 7) are connected with left and right 

pointers, and the remaining nodes are linked with up and down pointers. The header has 

an extra node (node 0), the root, which is reciprocally connected to the header last node 

(node 7) and it works as an entry point to the data structure. Each node of the header 

establishes also reciprocal links with the last candidate below it. In order to navigate the 

list in both directions, spacer nodes (nodes 8, 11, 15, 19, 23, 26, and 30) are inserted in 

the beginning and in the end of each horizontal entry. 

 Furthermore, the header’s nodes have a size and name properties that indicate, 

respectively, the amount of nodes under them - the number of candidates left in the 

constraint, in case of the sudoku problem - and their denomination – the sudoku 

constraints denomination. The other nodes have a top property that tells what is the header 

of the vertical list of which they belong, with the exception of the spacer nodes, whose 

top field is represented with a negative integer. The way this data structure was 

constructed erases the inefficient random access to its elements that is common in linked 

lists, because it is not required to start from the root when searching for any node. 

Algorithm X’s Functioning 

 After constructing the doubly-linked list, the Algorithm X is executed. This 

algorithm is composed by the functions 𝑐𝑜𝑣𝑒𝑟, 𝑢𝑛𝑐𝑜𝑣𝑒𝑟, ℎ𝑖𝑑𝑒, and 𝑢𝑛ℎ𝑖𝑑𝑒. We are now 

going to analyse their behaviour by using an example that intends to give an intuition of 

how they change the data structure. 

 Consider the Diagram 2. The list of available options comprises: {𝑐, 𝑒}, {𝑎, 𝑑, 𝑔}, 

{𝑏, 𝑐, 𝑓}, {𝑎, 𝑑, 𝑓}, {𝑏, 𝑔}, and {𝑑, 𝑒, 𝑔}. Assume that we want to cover item 𝑎. We choose 

option {𝑎, 𝑑, 𝑔} - the row that contains node 12 - to cover it. This option cannot be chosen 

again, so it is scratched from the list of options - the nodes of the row that contains node 

12 will be “removed” (Diagram 3). The other options that cover item 𝑎 can also be 

scratched, because they can no longer be chosen. In this case, there is only the option 
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{𝑎, 𝑑, 𝑓}, so the nodes of the row that contains node 20 will be “removed” (Diagram 4). 

Since the option {𝑎, 𝑑, 𝑔} covers items 𝑑 and 𝑔, this process of making disappear, among 

the remaining options of the list, the options that have these items will be repeated. Then, 

because there are still uncovered items, we choose one to cover and do it all over again. 

Diagram 3: An intuitive illustration of function ℎ𝑖𝑑𝑒(12) behaviour changes Diagram 2. 

 

Diagram 4: An intuitive illustration of function ℎ𝑖𝑑𝑒(20) behaviour, after the alterations caused in 

Diagram 3 

 

 The real changes that happen in the doubly-linked list of the example shown before 

are represented in Diagram 5, Diagram 6, and Diagram 7, in that order. To clarify these 

changes, we shall henceforward conduct an accurate description of the four functions. 

The cover and uncover functions change the horizontal links (Diagram 7). Inside these 

resides, respectively, the hide and unhide functions. When the hide function operates on 

a node 𝑥, it hides the disjoint option that contains node 𝑥 (Diagram 5 and Diagram 6), 

by changing the vertical links. This vertical links change consists of “removing” the nodes 

of the option that contains node 𝑥. The unhide function does the reverse: changes the 
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vertical links by “inserting” the previously hidden nodes. After hiding the option that 

contains node 𝑥, the cover function forces to hide the options that have nodes below the 

nodes of the just-hidden option, which for this reason are not future viable options. 

Diagram 5: 𝐻𝑖𝑑𝑒(12) – the first vertical links changes to cover item 𝑎, originating from Diagram 2. 

 

Diagram 6: 𝐻𝑖𝑑𝑒(20) – the second vertical links changes to cover item 𝑎 originating from Diagram 5.

 

Diagram 7: Horizontal links changes to cover item 𝑎, originating from Diagram 6. The function 𝐶𝑜𝑣𝑒𝑟(1), 

meaning to cover item 𝑎, is terminated. 

  



DANIELA PAIS  SUDOKU SOLVER BASED ON HUMAN STRATEGIES 

16 

 The following is the terminology established for the next pseudocodes: 

𝑹[𝒙] = successor of node 𝒙 U[𝒙] = first node above 𝒙 

𝑳[𝒙] = predecessor of node 𝒙 D[𝒙] = first node below 𝑥 

𝒕𝒐𝒑(𝒙) and 𝒔𝒊𝒛𝒆 (𝒙) properties are above described. 

 In the cover function, the while cycle hides all the nodes of the option that contains 

the first node below item 𝑖 (the item we intend to cover) - line 2 of Function 1. After 

finishing the cycle, the horizontal links are altered. 

Function 1: Pseudocode for the cover function 

1: 𝑐𝑜𝑣𝑒𝑟(𝑖) = 

2:   𝑝 ← 𝐷[𝑖] 
3:    Do while 𝑝 ≠ 𝑖 
4:    ℎ𝑖𝑑𝑒(𝑝) 
5:    𝑝 ← 𝐷[𝑝] 
6:   Loop 

7:   𝑙 ← 𝐿[𝑖] 
8:   𝑟 ← 𝑅[𝑖] 
9:   𝑅[𝑙] ← 𝑟 
10:   𝐿[𝑟] ← 𝑙 

Note: Adapted from Knuth, 2019, p.66. 

 The uncover function does precisely the opposite (Function 2): first re-establishes 

the horizontal links and then, unhides the nodes. 

Function 2: Pseudocode for the uncover function 

1: 𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑖) = 

2:   𝑙 ← 𝐿[𝑖] 
3:   𝑟 ← 𝑅[𝑖] 
4:   𝑅[𝑙] ← 𝑖 
5:   𝐿[𝑟] ← 𝑖 
6:   𝑝 ← 𝑈[𝑖] 
7:    Do while 𝑝 ≠ 𝑖 
8:    𝑢𝑛ℎ𝑖𝑑𝑒(𝑝) 
9:    𝑝 ← 𝑈[𝑝] 
10:   Loop 

Note: Adapted from Knuth, 2019, p.67. 

The hide function (Function 3) goes through the nodes of the option of which node 

𝑝 belongs, and changes these nodes’ vertical links. It is just like we saw before in 

Diagram 5 to hide node 𝑝 = 12: the vertical links of nodes 13 and 14 were altered, then 
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there is a spacer (node 15), whose top property is smaller than zero (lines 4 and 6 of 

Function 3), so the structure of control “If” knows that it arrived at the end of the option 

and changes the variable 𝑞 to node 12 (line 7 of Function 3); because 𝑞 is back to the 

beginning of the option, the while cycle terminates. A similar process is used to unhide 

nodes (Function 4). 

Function 3: Pseudocode for hide function 

1. ℎ𝑖𝑑𝑒(𝑝) = 

2.   𝑞 ← 𝑝 + 1 

3.    Do while 𝑞 ≠ 𝑝 

4.    𝑥 ← 𝑡𝑜𝑝 (𝑞) 
5.    𝑢 ← 𝑈[𝑞] 
6.    If 𝑥 < 0 Then 

7.      𝑞 ← 𝑢 

8.    Else 

9.     𝑑 ← 𝐷[𝑞] 
10.     𝐷[𝑢] ← 𝑑 

11.     𝑈[𝑑] ← 𝑢 

12.     𝑠𝑖𝑧𝑒 (𝑥) ← 𝑠𝑖𝑧𝑒(𝑥) − 1 

13.     𝑞 ← 𝑞 + 1 

14.    End If 

15.   Loop 

Note: Adapted from Knuth, 2019, p.67. 

Function 4: Pseudocode for unhide function 

1: 𝑢𝑛ℎ𝑖𝑑𝑒(𝑝) = 

2:   𝑞 ← 𝑝 − 1 

3:    Do while 𝑞 ≠ 𝑝 

4:    𝑥 ← 𝑡𝑜𝑝 (𝑞) 
5:    𝑑 ← 𝐷[𝑞] 
6:    If 𝑥 < 0 Then 

7:     𝑞 ← 𝑑 

8:    Else 

9:     𝑢 ← 𝑈[𝑞] 
10:     𝐷[𝑢] ← 𝑞 

11:     𝑈[𝑑] ← 𝑞 

12:     𝑠𝑖𝑧𝑒 (𝑥) ← 𝑠𝑖𝑧𝑒(𝑥) + 1 

13:     𝑞 ← 𝑞 − 1 

14:    End If 

15:   Loop 

Note: Adapted from Knuth, 2019, p.67. 

 Procedure 1 gives an overview of how Algorithm X solves an exact cover 

problem via dancing links. Algorithm X starts by choosing the uncovered item 𝑖 with the 



DANIELA PAIS  SUDOKU SOLVER BASED ON HUMAN STRATEGIES 

18 

fewest number of nodes occurring in a column. If no option covers it and all viable 

combinations of options have been tried, there is no solution, and the algorithm 

terminates. Otherwise, it covers 𝑖, meaning that: 

1st) It selects an option that covers 𝑖 to be part of the solution 

2nd) It hides all the options that cover 𝑖 

3rd) It deletes item 𝑖 from the list of uncovered items 

4th) It covers, one at a time, each uncovered item 𝑗 ≠ 𝑖 that is part of the just-

selected option. 

This process is repeated until either: 

 a feasible solution is reached (line 8 of Procedure 1 – all items are covered; the 

root node is connected to itself) 

 the sequence of selected options does not lead to a feasible solution (line 18 of 

Procedure 1 – the node of the item that it is being covered is connected to itself; 

there are no option nodes below it) and it was not tried every viable combination 

of options. 

In the second case, this process is reversed prior to a moment when a different option 

could have been chosen to be a part of the solution and this possibility (or branch of the 

search tree) has yet not been tried. It is important to have in mind that items are uncovered 

in the opposite order in which they were covered. The same principle applies to unhide 

options. 

Check Appendix B to see how Algorithm X would solve the exact cover problem 

represented by matrix A, step by step. 

Procedure 1: Pseudocode of Algorithm X 

1: [X1 – Initialize] 

2:  Input the initial content of the Sudoku grid in a double-linked list like the one 

previously described. 

3:  Let T be an array large enough to accommodate each node pointers of an option 

selected to be part of the solution. 

4: Let 𝑥0, … , 𝑥𝑇  be the node pointers for backtracking. 

5: Let Z be the last spacer address. 

6: 𝑙 ← 0 

7: [X2 – Enter level 𝑙] 
8:  If 𝑅[0] = 0 Then 

9:    Visit the solutions that is 𝑥0𝑥1…𝑥𝑙−1 
10:   Go to X8 

11:  End if 
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12: [X3 – Choose constraint 𝑖, not yet covered] 

13:  Minimum Remaining Value (MRV) heuristic selects the first constraint 𝑖 with 

the fewest options. 

14: [X4 – Cover 𝑖] 
15:  𝑐𝑜𝑣𝑒𝑟(𝑖) 
16:   𝑥𝑙 ← 𝐷[𝑖] 
17: [X5 – Try 𝑥𝑙] 
18:  If 𝑥𝑙 = 𝑖 Then 

19:   Go to X7 

20:  Else 

21:    𝑝 ← 𝑥𝑙 + 1 

22:   Do while 𝑝 ≠ 𝑥𝑙 
23:    𝑗 ← 𝑡𝑜𝑝(𝑝) 
24:    If 𝑗 ≤ 0 Then 

25:     𝑝 ← 𝑈[𝑝] 
26:    Else 

27:     𝑐𝑜𝑣𝑒𝑟(𝑗) 
28:     𝑝 ← 𝑝 + 1 

29:    End If 

30:   Loop 

31:   𝑙 ← 𝑙 + 1 

32:   Go to X2 

33:  End if 

34: [X6 – Try again] 

35:   𝑝 ← 𝑥𝑙 − 1 

36:  Do while 𝑝 ≠ 𝑥𝑙 
37:   𝑗 ← 𝑡𝑜𝑝(𝑝) 
38:   If 𝑗 ≤ 0 Then 

39:    𝑝 ← 𝐷[𝑝] 
40:   Else 

41:    𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑗) 
42:    𝑝 ← 𝑝 − 1 

43:   End If 

44:  Loop 

45:   𝑖 ← 𝑡𝑜𝑝(𝑥𝑙) 
46:  𝑥𝑙 ← 𝐷[𝑥𝑙] 
47:  Go to X5 

48: [X7 – Backtrack] 

49:  𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑖) 
50: [X8 – Leave level 𝑙] 
51:  If 𝑙 = 0 Then 

52:   Terminate 

53:  Else 

54:   𝑙 ← 𝑙 − 1 

55:   Go to X6 

56:  End If 

Note: Adapted from Knuth, 2019, p.67.  
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4. TWO-PHASE ALGORITHM 

 The developed solver is a two-phase algorithm that operates as follows: during Phase 

1, it tries to solve the sudoku puzzle through human strategies; if after that a solution was 

not found, then Phase 2 starts and performs a backtracking procedure. 

The combination of the two phases intends to merge their advantages. In the event of 

Phase 1 failing to find a solution, at least it may have eliminated candidates from some 

cells, pruning down the search space of Phase 2. In the worst-case scenario, the latter has 

to try all possible assignments on the initial blank cells until either a solution is found or 

the possibilities are expired. 

 The initialization of the Phase 1 algorithm consists of storing the trivial candidates 

for each blank cell by taking into account the fixed numbers and not including those in 

the list of candidates of cells that belong to the same row, column, or mini-grid. The 

pseudocode for each human strategy will not be detailed as there are several ways of 

implementing them and Section 3.2 already provides an explanation of how the human 

strategies operate. Nevertheless, it was tried to use as little access to memory as possible, 

since it has an impact on the running time. 

 The Phase 1 algorithm (Procedure 2) goes through the human strategies – ordered 

from the more basic to the more complex ones –, one by one. It executes each human 

strategy repeatedly until no more candidates are eliminated. At this point, the algorithm 

moves to the next human strategy and proceeds the exact same way. After executing the 

last human strategy (the more complex one), the algorithm will return to the first human 

strategy (the more basic one) and do this all over again, until there are no more blank cells 

or no human strategy is capable of reducing cells’ candidates. 

Procedure 2: Pseudocode for Phase 1 

1: At any moment, if 𝑓𝑖𝑙𝑙𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 =  𝑛2, then the procedure terminates immediately. 

2: [Beginning] 

3:  Do while 𝑓𝑖𝑙𝑙𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 <  𝑛2  

4:   Do  

5:    𝑁𝑎𝑘𝑒𝑑 𝑆𝑖𝑛𝑔𝑙𝑒  

6:   Loop until 𝑛𝑜 𝑛𝑎𝑘𝑒𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 

7:  

8:   Do  

9:    𝑁𝑎𝑘𝑒𝑑 𝑝𝑎𝑖𝑟  
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10:   Loop until 𝑛𝑜 𝑛𝑎𝑘𝑒𝑑 𝑝𝑎𝑖𝑟 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 

11:  
12:   Do  

13:    𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑖𝑛𝑔𝑙𝑒  

14:   Loop until 𝑛𝑜 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑖𝑛𝑔𝑙𝑒 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 

15:  
16:   Do  

17:    𝐻𝑖𝑑𝑑𝑒𝑛 𝑝𝑎𝑖𝑟  
18:   Loop until 𝑛𝑜 ℎ𝑖𝑑𝑑𝑒𝑛 𝑝𝑎𝑖𝑟 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 

19:  
20:   Do  

21:    Locked candidate  

22:   Loop until 𝑛𝑜 𝑙𝑜𝑐𝑘𝑒𝑑 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 

23:  
24:   Do  

25:    𝐿𝑖𝑛𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

26:   Loop until 𝑛𝑜 𝑙𝑖𝑛𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 

27:  

28:   If no candidates were eliminated Then 

29:    Go to Line 32 

30:   End if 

31:  Loop 

32: [Ending of human strategies] 

To start Phase 2, it is necessary to transform the current sudoku - which hopefully 

has less candidates than the initial ones due to Phase 1 performance - into an exact cover 

problem and then convert it to a doubly-linked structure. Only then the Algorithm X 

operates (Procedure 3). 

Procedure 3: Pseudocode for the Two-Phase Algorithm 

1:  Call Phase 1 algorithm 

2:  

3:  If 𝑓𝑖𝑙𝑙𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 =  𝑛2 Then 
4:   Terminate 

5:  Else 

6:   Call Algorithm X 

7:  End If 
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5. COMPUTATIONAL EXPERIENCE 

This section starts by describing what the application developed can do and how it 

interacts with the user. Afterwards, the solver’s performance will be tested and the results 

will be interpreted. 

5.1 Application Functioning 

The Sudoku solver implemented in Excel VBA opens a page with a 9 × 9 grid where 

the user can introduce a sudoku puzzle (Figure 7). Then, the user decides between seeing 

the puzzle solution (by pressing “Solve it.”) or trying to find it himself (by pressing “Let’s 

Play!”). Regardless of the choice, the grid is formatted – all cells are configured with the 

same font and size, the filled cells are colored red, and the mini-grids are alternately 

shaded with white and grey - and the program checks if the initial filled cells respect the 

problem constraints. If that is not the case, then the solver signals the error and stops 

running (Figure 8). 

 

Figure 7: Sudoku application - home page. 
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Figure 8: Sudoku application – initial problem constraints check. 

If the user only wants to see the sudoku solution, the two-phase algorithm described 

in Section 4 is executed and an outcome similar to the one seen in Figure 9 is displayed. 

 

Figure 9: Sudoku Application - solution exhibited if button “Solve it.” is pressed. 

If the user wants to play, the two-phase algorithm is also executed but the solution is 

not shown, it just serves to alert the player when a number is misplaced. After the solution 

is determined, a new sheet is opened, where two grids are presented (Figure 10). In the 

game grid (on the left), the user can select cells to place numbers, while the rest of the 

sheet is blocked. The candidates’ grid (on the right) shows, for each blank cell, the 
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possible numbers that can be placed on it. This grid is automatically updated every time 

a cell in the game grid is filled or a human strategy is executed. 

 

Figure 10: Sudoku application - game page. 

The player is invited to select one cell (Figure 11). After doing it, the program 

verifies if only one cell was selected and if it was a blank cell (Figure 12). Granted that 

both these conditions are verified, the program authorizes to write the value the player 

wants to insert on the selected cell (Figure 11). Before placing the number in the game 

grid, it is confirmed if such number is an integer between 1 and 9 and if it is the correct 

number for the chosen cell. If these conditions do not hold, the solver provides three 

alternatives: to go through the same process of choosing a cell and filling it with a value, 

to quit the game, or to ask for a hint (Figure 13). 

     

Figure 11: Sudoku application – On the left is a box to input one cell coordinates and on the right is a box 

to enter a value on the previously selected cell. 
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Figure 12: Sudoku application – The two types of error message that might appear after inputting a cell 

coordinates. 

         

Figure 13: Sudoku application – On the left, a message box that allows to opt between selecting one blank 

cell, quitting the game or requesting a hint. If the button “NO” is pushed, the message box on the right is 

displayed so that the user can choose if he/she wants a hint or wants to quit the game. 

Every time a hint is requested, the human strategies are performed following the 

sequence presented in Procedure 2. When a human strategy leading to a reduction of 

candidates or to the definition of the value of a blank cell is identified, a message box 

explains the reasoning behind it and tells the changes caused in the candidates’ grid 

(Figure 14). Then the candidates’ grid is updated and the first message box of Figure 13 

pops-up again. Occasionally, the game grid might also be modified. When no human 

strategy can provide a new clue, the player is informed (Figure 15). 

 

Figure 14: Sudoku application - example of a hint. 
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Figure 15: Sudoku application – Message box that notifies the player for the absence of clues. 

The solver terminates whenever the 81 cells are filled or the player decides to quit 

the game. 

5.2 Experiments and Results 

The algorithm presented in the previous section has been coded in VBA. All tests 

were performed using the same hardware and software setup for more reliable results, 

with only the Excel VBA running. The computer has a CPU Intel® Core™ i3-3120M @ 

2.50 GHz and 4.00 GB of RAM. 

Data Sources 

To conduct the experiment, datasets from three different sources were used: 

 the “250 Sudoku” published by Edigrama, a hobby book whose puzzles difficulty 

level for humans is scaled between 4 and 7 by this editor. For the experiment, a 

sample of 40 puzzles - 10 puzzles of each level – was used (Appendix C); 

 the Magictour-top953, a list of 95 puzzles considered moderately hard. All the 95 

puzzles were used in the experiment; 

 the HardestDatabase1106264, a collection of 376 puzzles claimed to be hard by 

different known rating programs. The first 95 puzzles were used in the 

experiment. 

From now on, these datasets will be named Easy, Moderate, and Hard, respectively, 

as a reference to their difficulty rank. Table 1 displays relevant information about the 

three datasets characteristics. 

                                                 
3   Retrieved from: magictour.free.fr/top95 (Accessed: September 7th, 2022) 
4 Available at: http://forum.enjoysudoku.com/the-hardest-sudokus-new-thread-t6539.html#p65791 

(Accessed: September 7th, 2022) 
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Table 1: Description of the datasets used for the computational experience. 

 Easy Moderate Hard 

Number of instances 40 95 95 

Number of initial filled cells [20, 28] [17, 26] [20, 23] 

Average number of initial filled cells 24 21 21 

Number of initial candidates [170, 263] [209, 313] [228, 264] 

Average number of initial candidates 217 264 248 

Type of grid 9 × 9 

Experiments and Results 

The main goal of this experiment is to analyse the performance of the two-phase 

algorithm for puzzles with distinct difficulty solving levels, circumscribed by the three 

datasets above. Several quantitative metrics - divided in global and group metrics- were 

collected. The global metrics provide a macro view of the solver performance. The group 

metrics allow a more thorough evaluation for each dataset, by providing insights about 

which phase of the two-phase algorithm was necessary to execute to solve the puzzles. 

The global indicators (Table 2) proposed include the percentage of puzzles that the 

algorithm was able and unable to solve. For both situations, it is calculated the average 

percentage of candidates eliminated by human strategies. For the puzzles solved, it was 

also computed the average total time needed to get to a solution. 

Table 2: Global indicators of the solver performance. 

 Easy Moderate Hard 

Percentage of solved puzzles 95 50.53 42.11 

Average percentage of candidates eliminated 

during Phase 1 of solved puzzles 
100 63.67 2.04 

Average total time of solved puzzles (in seconds) 0.689 1.176 2.525 

Percentage of unsolved puzzles 5 49.47 57.89 

Average percentage of candidates eliminated 

during Phase 1 of unsolved puzzles 

38.44 26.08 2.32 

The takeaways provided by Table 2 confirm some suspicions: the resolution speed 

of the two-phase algorithm is lower the easier the puzzles and the percentage of unsolved 
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puzzles is higher the harder the puzzles – for the moderate and hard datasets the solver 

was unable to solve approximately 50% and 58% of the puzzles, respectively. The solver 

cannot find a solution only due to overflow. The overflow error occurs in Phase 2 when 

the solver tries to use more memory space than the one available. This happens because 

it calls the functions 𝑐𝑜𝑣𝑒𝑟, 𝑢𝑛𝑐𝑜𝑣𝑒𝑟, ℎ𝑖𝑑𝑒, and 𝑢𝑛ℎ𝑖𝑑𝑒 recurrently. In general, the 

solver is fast for 9 × 9 puzzles – the highest total time of resolution of all 230 instances 

tested was 6.813 seconds and the lowest was 0.309 seconds. The maximum average total 

time across various difficulty levels is below 3 seconds (2.525 seconds). 

The puzzles solved can be separated in three groups (Table 3): 

 Group 1 - puzzles solved using exclusively human strategies  

 Group 2 - puzzles solved with resort to backtracking only 

 Group 3 - puzzles solved with a combination of both human strategies and 

backtracking. 

Table 3: Unfolding of the percentage of solved puzzles. 

 Easy Moderate Hard 

Percentage of Group 1 puzzles 95 25.26 0 

Percentage of Group 2 puzzles 0 0 16.84 

Percentage of Group 3 puzzles 0 25.26 25.26 

Percentage of solved puzzles 95 50.53 42.11 

 When applied alone, the human strategies were able to completely solve puzzles 

from the easy and moderate datasets: 95% of the easy dataset puzzles and 25.26% of the 

moderate ones. They provided, on average, a residual decrease of the initial number of 

candidates of a few puzzles of the hard dataset (Table 2). Besides that, the percentage 

gap of unsolved puzzles between the hard and moderate datasets is small (57.89% −

49.47% = 8.42%) due to the Algorithm X efficiency. Algorithm X complemented the 

Phase 1 algorithm in 25.26% of the puzzles from both the moderate and hard datasets. 

The Phase 2 algorithm solved alone puzzles exclusively from the hard dataset (Table 3). 
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 The following criteria were used to compare the solver performance at a group level. 

It was obtained, with respect to: 

 Group 1, the average number of eliminated candidates via human strategies and 

the average time needed to fill all cells, per blank cell. 

 Group 2, the average number of eliminated candidates through backtracking and 

the average time needed to fill all cells, per blank cell. 

 Group 3, the average number of eliminated candidates per phase and the average 

total time the two-phase algorithm took to fill each blank cell. 

 Every group, the average total time to reach a solution. 

In relation to Group 1 - puzzles solved using exclusively human strategies -, 

information in Table 4 reveals that the Phase 1 algorithm is fast. As expected, when 

comparing the moderate instances with the easy ones, the results show that, on average, 

the former need more total time to reach a solution, but that difference is not significant - 

on average, the human strategies solved the easy puzzles in less than 0.7 seconds and the 

moderate puzzles in about 1 second. It is important to recall that all instances of the 

moderate dataset have a superior number of initial candidates, which corresponds to the 

number of candidates eliminated in case of Group 1 puzzles. Despite this, the average cell 

filling time by blank cell of the moderate dataset is, on average, 40 times smaller. 

Table 4: Group 1 indicators of the solver performance. Results concerning solved puzzles. 

 Easy Moderate Hard 

Average number of candidates eliminated 216 289 - 

Average time needed to fill all cells, per blank 

cell (in seconds) 
0.689 0.017 - 

Average total time (in seconds) 0.689 1.038 - 

When analysing the results of Group 2 – puzzles solved using exclusively Algorithm 

X -, it is reinforced the efficiency of the backtracking algorithm implemented (Table 5). 

In spite of the exhaustive search intrinsic to backtracking procedures and the average 

number of candidates eliminated - which is equal to the average number of initial 

candidates of the hard solved puzzles – being very high, the average cell filling time by 

blank cells is rather small. 
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Table 5: Group 2 indicators of the solver performance. Results concerning solved puzzles. 

 Easy Moderate Hard 

Average number of candidates eliminated - - 243 

Average time needed to fill all cells, per blank 

cell (in seconds) 
- - 0.104 

Average total time (in seconds) - - 6.183 

The average cell filling time by blank cell for instances of Group 3 - puzzles solved 

with a combination of both human strategies and backtracking - is around the same 

magnitude as the prior (Table 6). For the moderate puzzles, the average percentage of 

candidates eliminated during Phase 1 and Phase 2 is, respectively, 27.34% and 72.66%. 

For the hard puzzles that percentage is 3.40% (an average of 8 candidates eliminated in 

Phase 1) and 96.60% (on average, 239 candidates eliminated in Phase 2), as can be 

examined below. 

Table 6: Group 3 indicators of the solver performance. Results concerning solved puzzles. 

 Easy Moderate Hard 

Average number of candidates eliminated 

during Phase 1 
- 73 8 

Average number of candidates eliminated 

during Phase 2 
- 183 239 

Average time needed to fill all cells, per blank 

cell (in seconds) 
- 0.105 0.108 

Average total time (in seconds) - 6.224 6.435 

In some situations, across the three datasets, the solver would be unable to solve an 

instance and would solve another one that had the same (or similar) number of initial 

filled cells, initial candidates, and candidates after the human strategies being executed. 

There were also cases where the solver was able to solve instances with a superior number 

of remaining candidates after Phase 1 than the one existing in puzzles where the overflow 

error occurred. This can be explained by several factors: i) the relative positioning of the 

filled cells, ii) the values placed on the filled cells, iii) the vertical location of the correct 

option to be part of the solution of the first item that is covered after the double-linked 

list is constructed, and iv) the number of levels that the algorithm has to backtrack when 

hits a not feasible solution and how many times it repeats this backtracking process.  
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6. CONCLUSION 

In this MFW it was proposed the implementation, in VBA, of a sudoku solver which 

has a two-phase algorithm embedded. Phase 1 performs human strategies and Phase 2 

runs a backtracking procedure whenever necessary.  

Any backtracking procedure is naturally computationally heavy. Therefore, it is 

crucial to use efficient data structures when implementing these kinds of algorithms. In 

this MFW, the support of the developed backtracking algorithm is a double-linked list, 

which is one of the most efficient (and complex) structures to implement backtracking 

algorithms. Moreover, the backtracking algorithm selected to be implemented, Algorithm 

X (created by Donald E. Knuth), is outstandingly efficient. A great contribution of this 

MFW is a thorough clarification of how Algorithm X operates and how to construct its 

data structure, which requires to transform a sudoku puzzle into an exact cover problem 

and only then into a matrix of nodes that forms a doubly-linked list horizontally and 

vertically. 

The application created allows the user to see the solution of a particular 9 × 9 

sudoku puzzle directly or to play the game by solving the sudoku step by step. In the last 

case, the player can request clues and insert values in cells. The application provides 

explanatory messages for values misplaced or invalid, for details of the logic behind the 

human strategies used, among others. 

It was conducted a computational experience to test the performance of the two-phase 

algorithm. To do so, 230 instances were tested: 40 ranked as easy, 95 ranked as moderate, 

and 95 ranked as hard. The solver revelled to solve the puzzles fast, regardless of the level 

of difficulty of the sudoku. It solved 95% of the instances of the easy dataset, 50.53% of 

the moderate one, and 42.11% of the hard one. The solver was incapable to reach a 

solution for a substantial number of instances of the moderate and hard datasets, due to 

overflow errors that are innate to backtracking algorithms - especially when applied to 

problems (like the sudoku), which have a wide searching domain. 

In addition, it was investigated the solver performance depending on the dataset 

difficulty ranking, for three different groups. It is important to point out the experimental 

findings for Group 1, because it provides insights particularly about the Phase 1 - the 

subject of interest - , which obtained positive performance results in the case of the easy 
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and moderate instances solved. The solver successfully reached a solution, by executing 

exclusively human strategies, for 95% of the easy puzzles and 25.26% of the moderate 

puzzles. When analysing these percentages, it has to be highlighted that all instances of 

the moderate dataset have a superior number of initial candidates. Besides, while the 

average cell filling time by blank cell of the easy dataset is near 0.7 seconds, the one of 

the moderate dataset is close to zero – both encouraging results. 

Our intentions for the future are the implementation of more human strategies and to 

test, using the same database, the impact of such addition on the solver performance. It 

would be interesting to also do the same experience, but this time with the human 

strategies sorted differently. Another potential future study would be to investigate the 

changes in the two-phase algorithm solver capacity if the human strategies were 

implemented inside other human strategies, instead of the current independent execution. 

For example, every time a locked candidate is found, the algorithm should explore if 

among the affected blank cells there are cells where the set of candidates was reduced to 

a single candidate (naked single), and then, it would continue to search for locked 

candidates. 
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APPENDICES 

Appendix A: Example of an exact cover problem matrix for a 4 × 4 sudoku puzzle - [1,1] is a fixed cell filled with the number 1 and [1,2] is a blank cell. 

 

 

 [1,1] [1,2] … 𝑟1#1 𝑟1#2 𝑟1#3 𝑟1#4 … 𝑐1#1 𝑐1#2 𝑐1#3 𝑐1#4 𝑐2#1 𝑐2#2 𝑐2#3 𝑐2#4 … 𝑚1#1 𝑚1#2 𝑚1#3 𝑚1#4 … 

𝑟1𝑐1#1 1 0  1 0 0 0  1 0 0 0 0 0 0 0  1 0 0 0  

𝑟1𝑐2#1 0 1  1 0 0 0  0 0 0 0 1 0 0 0  1 0 0 0  

𝑟1𝑐2#2 0 1  0 1 0 0  0 0 0 0 0 1 0 0  0 1 0 0  

𝑟1𝑐2#3 0 1  0 0 1 0  0 0 0 0 0 0 1 0  0 0 1 0  

𝑟1𝑐2#4 0 1  0 0 0 1  0 0 0 0 0 0 0 1  0 0 0 1  

…                       
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Appendix B: Solving steps using Algorithm X to resolve the exact cover problem 

proposed in Knuth, 2019, p.64. 

X1: 𝑙 = 0 Initialize 

X2: Enter level 𝑙 = 0 

X3: Choose 𝑖 = 1 Apply MRV: 

 Items 𝑎, 𝑏, 𝑐, 𝑒, and 𝑓 have 

two option 

 Items 𝑑 and 𝑔 have three 

options 

Select the first item with less 

options (item 𝑎). 

X4: 𝐶𝑜𝑣𝑒𝑟(1) 
              𝐻𝑖𝑑𝑒(12): “remove” (vertical re-link) 

                                 node 13 and 14 

              𝐻𝑖𝑑𝑒(20): “remove” node 21 and 22 

       𝑥0 = 𝐷[1] = 12 

Choose the option that contains 

node 12 (2𝑛𝑑 option) to cover 

item 𝑎. The 4𝑡ℎ option is no longer 

viable because it also covers 

item 𝑎 and so it is hidden. 

X5: 𝐶𝑜𝑣𝑒𝑟(4) 
              𝐻𝑖𝑑𝑒(27): “remove” node 28 and 29 

       𝐶𝑜𝑣𝑒𝑟(7) 
              𝐻𝑖𝑑𝑒(25): “remove” 24 

       𝑙 = 1 

The 2𝑛𝑑 option already covers 

item 𝑑, therefore option 6𝑡ℎ (at this 

point, the only option with a node 

under 𝑑) can no longer be selected. 

The same happens with item 𝑔 and 

option 5𝑡ℎ. 

X2:  Enter level 𝑙 = 1 

X3: 𝑖 = 2 Apply MRV: 

 Items 𝑏, 𝑒, and 𝑓 have one 

option 

 Item 𝑐 has two options 

X4: 𝐶𝑜𝑣𝑒𝑟(2) 
              𝐻𝑖𝑑𝑒(16): “remove” node 17 and 18 

       𝑥1 = 16 

The only option remaining that 

covers item 𝑏 is the 3𝑟𝑑 option (the 

one containing node 16). 

X5: 𝐶𝑜𝑣𝑒𝑟(3) 
              𝐻𝑖𝑑𝑒(9): “remove” node 10 

       𝐶𝑜𝑣𝑒𝑟(6) 
       𝑙 = 2 

By choosing the 3𝑟𝑑 option to be 

part of the solution, items 𝑐 and 𝑓 

are automatically covered. This 

means that the 1𝑠𝑡 option can be 

dismissed since 𝑐 was already 

covered. 

X2: Enter level 𝑙 = 2 

X3: 𝑖 = 5 Apply MRV. 

X4: 𝐶𝑜𝑣𝑒𝑟(5) 
       𝑥2 = 5 

At this point, there is no other 

option available that covers item 𝑒. 

As a result, everything covered 

and hidden has to be undone in 

reverse order, until a point where it 

X5: 

X7: 𝑈𝑛𝑐𝑜𝑣𝑒𝑟(5) 
X8: 𝑙 = 1 
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X6: 𝑈𝑛𝑐𝑜𝑣𝑒𝑟(6) 
       𝑈𝑛𝑐𝑜𝑣𝑒𝑟(3) 
              𝑈𝑛ℎ𝑖𝑑𝑒(9): “insert” (restore vertical  

                                   links) node 10  

       𝑖 = 2 

       𝑥1 = 2 

can be chosen a different option to 

be part of the solution. 

 

 

 

 

 

 

 

 

 

Instead of choosing the 2𝑛𝑑 option 

to cover item 𝑎, which does not 

lead to a feasible solution, it is 

chosen the 4𝑡ℎ option (the one 

containing the node 20). 

X5: 

X7: 𝑈𝑛𝑐𝑜𝑣𝑒𝑟(2) 
              𝑈𝑛ℎ𝑖𝑑𝑒(16): “insert” node 18 and 17. 

X8: 𝑙 = 0 

X6: 𝑈𝑛𝑐𝑜𝑣𝑒𝑟(7) 
              𝑈𝑛ℎ𝑖𝑑𝑒(25): “insert” node 24 

       𝑈𝑛𝑐𝑜𝑣𝑒𝑟(4) 
              𝑈𝑛ℎ𝑖𝑑𝑒(27): “insert” node 29 and 28 

       𝑖 = 1 

       𝑥0 = 20 

X5: 𝐶𝑜𝑣𝑒𝑟(4) 
              𝐻𝑖𝑑𝑒(27): “remove” node 28 and 29  

       𝐶𝑜𝑣𝑒𝑟(6) 
              𝐻𝑖𝑑𝑒(18): “remove” node 16 and 17 

       𝑙 = 1 

The 4𝑡ℎ option covers items 𝑎, 𝑑 

and 𝑓. Hence, 6𝑡ℎ and 3𝑟𝑑 options 

are excluded. The 2𝑛𝑑 option, that 

also covers items 𝑎, had been 

previously hidden, so we do not 

have to do anything about it. 

X2: Enter level 𝑙 = 1 

X3: 𝑖 = 2 Apply MRV. 

X4: 𝐶𝑜𝑣𝑒𝑟(2) 
              𝐻𝑖𝑑𝑒(24): “remove” node 25 

       𝑥1 = 24 

The only option remaining that 

covers item 𝑏 is the 5𝑡ℎ option (the 

one containing node 24). 

X5: 𝐶𝑜𝑣𝑒𝑟(7) 
       𝑙 = 2 

The 5𝑡ℎ option also covers item 𝑔. 

X2: Enter level 𝑙 = 2 

X3: 𝑖 = 3 Apply MRV. 

X4: 𝐶𝑜𝑣𝑒𝑟(3) 
              𝐻𝑖𝑑𝑒(9): “remove” node 10 

       𝑥2 = 9 

The 1𝑠𝑡 option is chosen to cover 

item 𝑐. 

X5: 𝐶𝑜𝑣𝑒𝑟(5) 
       𝑙 = 3 

The latter option also covers 

item 𝑒. 

X2: 𝑅[0] = 0 

       𝑙 = 0 

Are part of the solution the options 

that contain the nodes 𝑥0 = 20, 

𝑥1 = 24 and 𝑥2 = 9. 

X8: Terminate.  
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Appendix C: Samples of the “250 Sudoku” hobby book published by Edigrama, from 

levels 4 to 7. 

The 81 cells of each sudoku puzzle are represented in a line and should be read as cells 

of a 9 × 9 grid from left to right and from top to bottom. For a particular cell position in 

the line: if it has a number, then the referred cell is a fixed cell whose value is that number; 

if it has a dot, then the referred cell is a blank cell. 

 

Level 4 instances: 

6.......87..259..4..9...1...2..8..1....3.5....4..6..5...4...8..8..914..52.......3 

9...6...7.8.....3....219.....84719....1...4....48235.....654....2.....6.4...3...5 

3.......25..8.3..6.9.....7...9.1.2....45298....1.3.5...4.....5.9..2.7..81.......4 

...439...6.......1..9...5...21...79..6.198.2..85...41...3...1..7.......4...671... 

...921....3.....7...6...5..26..4..98...296...79..3..61..9...6...1.....4....572... 

9.......15.1...3.2...413....6.5.2.8..8.....2..7.3.9.1....976...7.6...2.84.......9 

...615....1.....7...9.7.1..1.6...7.48..7.9..19.....2.8..5.2.8...3.....4....358... 

...8.3....5..6..2...74.23..2...9...58.......45...2...7..61.98...1..8..9....7.5... 

..3...7.....823....1.....5..9.3.2.4.3.8...9.6.7.1.6.8..4.....3....561.....6...8.. 

.8.165.4...6...7.....7.8...5...1...47...5...39...4...2...9.3.....2...3...1.624.5. 

 

Level 5 instances: 

3.......5..93.81.....6.9....7..8..3..26.7.84..4..9..2....9.2.....27.56..7.......2 

...543...5.......6..2.9.3...5.4.7.2..7.....8..1.8.9.7...3.7.9..7.......1...634... 

...759.....4...9..2...6...5.19...34....321....72...81.1...4...8..6...4.....982... 

..56.87..49.....18....9....6..5.7..91.......27..1.4..6....6....92.....63..73.92.. 

...8.4.....9...7..12.....35.5..9..6.9..716..3.6..4..1.59.....46..3...5.....9.5... 

.8..6..4.5...3...6...192.....1...3...6.3.4.2...2...7.....917...6...4...7.3..5..9. 

.1.....9...59.84.....536...5..8.1..49.......64..2.7..1...642.....31.95...4.....2. 

.6..3..4..7.....5.8...9...1..38.41....2...8....63.54..9...4...3.3.....9..4..6..1. 

...2.6....4..1..6.1.......2..6.4.7...1256398...5.3.3..9.......8.7..3..4....7.9... 

..2...1..8.9...7.6...927......1.5...36.....57...4.6......862...7.8...9.1..3...8.. 
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Level 6 instances: 

.32..4.....4..25........6..35..........7........6...2798..3..........4.15...8.... 

.....5.1.5...9..6.4.3.......7........9......8....46..3......15....93....8.24..... 

...78........9...4492......5...68...8....5.3.........2...5..38...6....7...961.... 

...5...21..9.3....4.6.7.......71.....9......5.8......2.....9.....4..86..3.1...4.. 

.2....63.8......1....94............736..........15...4..5.2......4..9........328. 

...5..47.84.........5....6....17......3....982...5......9........6..43.......31.4 

4............5......2...3.6..3......6.4...1.3...79.....7.8...9..8...6..4.....2.5. 

2...4...94.9.2.3.....1...5..6..........8...........472..2...9....1..8......5.7... 

6........8...4..76....159....1.3.....32.9..........5.8.9.8........4.9.........1.5 

...5.4....4..9..........2.6....31.....2...7.5..8.2....4......1.91.....5....6.2..9 

 

Level 7 instances: 

..42.9.8.6...........18..2....5.4...1.2............4.3.7........8..97.....3...51. 

.......9...3.18.....5.6....72...5......8.3...4.....2...4......1......348...6.2... 

......29....91....8.5.......76...........3..2.......743....58..28....9.....67.... 

68........1....9.....2.4......563........974.1......9.....7......5....32..2.8...6 

...5......8..1.....6....2.8.59...8....17.4.........31.....3...57.54.........8..46 

......27..3..8....91.............7.2...91...43..8...........5....2..4.....6..28.1 

83...........2...........4..1.37.......8..4....5...9...2...1..338.....57.7...6... 

...7..38.....9..5..17..3...5..........9...1.38..2.......4..1....9..47.........62. 

1..62.......93..........2.9....9...723........4..1..3.......34...5..8.....1..67.. 

4...6.7.81...........92......9.........8.1..7..2....3..5......18.....5.4....36... 


