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ABSTRACT

In this work, we seek to optimise surplus reinsurance, which is a type of proportional
reinsurance where proportions vary with the sum insured, based on a retention line and
on a reinsurance policy limit. Optimisation is done on a portfolio which is based on

real-life fire insurance policies.

We perform this optimisation by resorting to three different optimality criteria, which are
based on the expected utility, the standard deviation and the Value-at-Risk of the insurer’s
wealth. Where we found it to be possible, expressions were derived which can be solved
to find the optimal reinsurance contract. However, the difficulty in solving them
analytically leads us to optimise them numerically. Where we could not derive such
expressions, we resorted to simulations in order to find the optimal reinsurance contract.
Such optimisations are carried out under different reinsurance commissions and different

premium principles for the primary policies.

Our findings suggest at least four possible conclusions. Firstly, none of the three
optimality criteria used is clearly better than the other ones, although the expected utility
criterion tends to yield more risk-averse results. Secondly, usage of the standard deviation
as the primary premium principle generally provides better results — with higher
expected values by comparison to the standard deviations, as well as more favourable
Values-at-Risk — than the expected value and the variance principles. Thirdly, our results
highlight the importance that the reinsurance commission provide a reasonable cover for
the expenses of the insurer, in order to produce acceptable outcomes. Lastly and perhaps
more interestingly, we conclude that the optimal surplus reinsurance contract will, at least
quite frequently, feature a reinsurance policy limit low enough to not fully cover the
highest risks.

KEYWORDS: Reinsurance; Optimal reinsurance; Proportional reinsurance; Surplus

reinsurance; Numerical optimisation; Simulation.
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RESUMO

Neste trabalho, procura-se optimizar o resseguro de surplus, que é um tipo de resseguro
proporcional em que as propor¢des variam com o capital seguro, com base numa linha de
retencdo e num limite a apolice de resseguro. A optimizacao é efectuada numa carteira

baseada em apolices reais de seguro de incéndio.

Realiza-se esta optimizacdo com recurso a trés diferentes critérios de optimalidade,
baseados na utilidade esperada, no desvio-padrdo e no Value-at-Risk da riqueza da
seguradora. Quando nos foi possivel, obtivemos expressdes que podem ser resolvidas
para encontrar o contrato de resseguro éptimo. Contudo, a dificuldade de as resolver
analiticamente leva-nos a optimiza-las numericamente. Sempre que ndo conseguimos
obter tais expressdes, recorremos a simulacdes para encontrar o contrato de resseguro
Optimo. Tais optimizacBes sdo efectuadas sob diferentes comissdes de resseguro e
diferentes principios de prémio para as apolices primarias.

Os nossos resultados sugerem pelo menos quatro conclusfes possiveis. Em primeiro
lugar, nenhum dos trés critérios de optimalidade empregues é claramente melhor do que
0S outros, embora o da utilidade esperada tenha tendéncia para produzir resultados mais
avessos ao risco. Em segundo lugar, o uso do desvio-padrdo como principio do prémio
para as apolices primarias costuma apresentar resultados melhores — com maiores
valores esperados por comparacdo com o0s desvios-padrdo, bem como Values-at-Risk
mais favoraveis — do que os principios do valor esperado e da variancia. Em terceiro
lugar, os nossos resultados salientam a importancia de que a comissao de resseguro cubra
razoavelmente as despesas da seguradora, a fim de gerar resultados admissiveis.
Finalmente e talvez mais interessante, concluimos que o contrato de resseguro de surplus
optimo tera, pelo menos bastante frequentemente, um limite a apolice de resseguro

suficientemente baixo para que ndo cubra totalmente os riscos mais elevados.

PALAVRAS-CHAVE: Resseguro; Resseguro 6ptimo; Resseguro proporcional; Resseguro de

surplus; Optimizagdo numérica; Simulacéo.
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1. INTRODUCTION

Reinsurance is defined as a contract between an insurer and a reinsurer whereby the
insurer (also called ‘reinsured’ or ‘cedant’) cedes part of its risk to the reinsurer, which
agrees to indemnify it to the insurer in exchange for a reinsurance premium. The
underlying principle is the same as the one which exists for insurance (also called
‘primary insurance’ here, to help distinguish it), the difference being that the policyholder

iS now an insurer.

Insurers are interested in signing reinsurance contracts mainly because it helps them
prevent high losses, which reduces the volatility of the risk they face and, therefore, helps
stabilise their profits. In general, the less risk an insurer retains, the more stable its
outcome is expected to be. On the other hand, assuming the insurance business is
profitable on average, it is not in the insurer’s interest to reinsure too much of its risk —
in the limiting case, the insurer would cede all of its risk, at which point it would cease to
be an insurer and become simply an intermediary. These remarks serve to illustrate the
importance of studying the problem of optimising reinsurance, that is, of deciding how

much risk the insurer should cede and in what way.

Reinsurance contracts are divided broadly into two categories, containing four standard

types of reinsurance (which can exist on their own or be combined with one another):

e Proportional reinsurance:
o Quota-share reinsurance;
o Surplus reinsurance;

e Non-proportional reinsurance:
o Excess of loss reinsurance;

o Stop-loss reinsurance.

Non-proportional reinsurance contracts establish a value — called a ‘retention line’, or
simply ‘retention’ or ‘line” — above which the reinsurance comes into force, covering

the portion of claims which exceeds the line.! This cover, however, is usually limited to

! The difference between the two types of non-proportional reinsurance is that, in excess of loss, the line
applies to each policy individually, whilst, in stop-loss, it applies to the sum of the claims of all policies.



a multiple of the retention, above which the responsibility returns to the insurer; in this
case, it is said that the insurer has bought k lines of reinsurance, where k+1 is the ratio
between the reinsurance policy limit and the retention. It follows that a contract of this
type with a reinsurance policy limit high enough to cover all primary policy limits will
guarantee that the insurer shall never have to pay more than the retention line. Pricing
these forms of reinsurance works in the same way as pricing primary insurance. Such

forms are not within the scope of this work.

Quota-share reinsurance is easier to understand: the reinsured and reinsurer agree on a
cession percentage, at which all claims will be proportionally indemnified by the
reinsurer, usually under no other restrictions. Typically, this proportion is also used to
price the contract: the reinsurance premium equals that same cession percentage times the

total primary premium received (minus a commission). Proportionality is a key feature.

Surplus reinsurance is an alternative form of proportional reinsurance which draws from
non-proportional reinsurance the concept of a retention line. Under this type of contract,
all claims of a policy are reinsured proportionally, as with quota-share reinsurance, but
the proportion varies with the primary policy limit:2 for all policies whose limit exceeds
the retention, whenever there is a claim, the insurer retains a proportion corresponding to
the ratio between the retention and the policy limit, whilst the rest is ceded; for the other
policies, nothing is ceded. This has the effect of retaining more of the smaller risks and
less of the higher ones, as with non-proportional reinsurance. Such contracts will typically
be subject to a reinsurance policy limit, in the same way as with non-proportional
reinsurance. Pricing will usually be done by using, for each policy, the same proportion
as that which was defined as the ceded percentage (minus a commission), in the same
way as with quota-share reinsurance; the difference is that now, instead of a single
proportion, a different proportion is applied to each policy and the total premium is

calculated by then adding all the individual results.

Albrecher et al. (2017) consider surplus reinsurance to be an improvement over
guota-share reinsurance. Both have the proportionality feature in common — which

brings them advantages such as being administratively simple to implement in practice,

2 According to Albrecher et al. (2017), the policy limit is, in some cases, replaced by the Probable
Maximum Loss associated with each policy.



having the same effect as an increase in the solvency capital and reducing the risk of
reinsurance moral hazard.® Yet surplus reinsurance, due to its higher cession percentages
for larger risks, has the additional advantage of keeping small risks mostly or fully under
the scope of the insurer, which is preferable if such risks are profitable on average and
not prone to generating severe losses; in other words, reinsurance will come into force
only for sufficiently large risks — as in non-proportional reinsurance —, which are the
ones the insurer most wants to reinsure. The authors claim that surplus reinsurance is
common in several non-life lines of business, such as fire, property, accident, engineering

and marine insurance.

Interestingly, we have found that most papers mentioning surplus reinsurance do not
include the reinsurance policy limit in their definitions or analyses. In doing so, they work
with the implicit assumption that said limit is always greater than the highest primary
policy limit. We do not know why this seems to be common practice. If it is due to the
belief that the optimal surplus reinsurance contract will always fulfil that condition, our

results will challenge that conjecture.

Variants of these standard proportional reinsurance contracts also exist: they are the
variable quota-share reinsurance (where the portfolio is broken into segments of risk and
a different proportion is applied to each segment) and the surplus reinsurance with a table
of lines (where, similarly, a different retention line is used for each segment of risk), as
defined by Glineur and Walhin (2006). These will not be studied in this work. In fact, the
four standard types of reinsurance presented above should not be regarded as an
exhaustive list, since reinsurance can theoretically be defined in any way the signing

parties want.

Finally, there are also alternative and unusual definitions of surplus reinsurance, provided
by Verbeek (1966) and El Attar et al. (2018), which strangely do not respect the feature

3 Moral hazard is mainly a concern in non-proportional reinsurance. The authors explain that, in such
contracts, when a claim is already known to be larger than the retention line, the insurer can become
negligent when settling it. The reasoning is that, since any marginal increase on the value falls exclusively
on the reinsurer, the insurer has little or no incentive to determine the claim’s exact value (they recall that
settling claims more rigorously is expensive). Within the non-proportional types, this risk is greater in the
case of stop-loss reinsurance, where the only thing that matters is whether the sum of all claims exceeds
the retention line or not. Meanwhile, in proportional reinsurance, since the insurer is always responsible
for a fixed percentage of the claim (regardless of its value), it is in its interest to find exactly the true
value of any claim.



of proportionality which all other works we have found recognise to be an essential trait
of this type of contract. These other definitions will be explained in more detail in the

following chapter but shall be ignored for the purposes of this work.

As we shall see in the following chapter, surplus reinsurance is rarely treated in literature
about the optimal reinsurance problem. Our motivation to study it arises from this fact,
together with our perception — following contacts with the Portuguese insurer which has
given us data for this work — that surplus reinsurance may not be as uncommon in
actuarial practice as its scarcity in actuarial literature might lead us to believe. We expect,
therefore, to provide a positive contribution by presenting that which, to the best of our
knowledge, is the first work which optimises a reinsurance contract specifically of the

surplus type, based on real data.



2. STATE OF THE ART

2.1. On the optimal reinsurance problem in general

The optimal reinsurance problem has been studied in the actuarial academic literature for
decades. Although the problem can be studied from the viewpoint of the reinsurer, or
even from the viewpoint of both parties at once, most scholars usually analyse it from the
cedant’s perspective — that is, they seek the reinsurance contract which optimises a given

function of the insurer’s retained risk or final wealth.

The earliest works on optimal reinsurance were produced by de Finetti (1940), who
focused on proportional reinsurance and whose findings will be explained in the next
section, and by Borch (1960), who proved that stop-loss is the optimal type of reinsurance,
in the sense that, for a given net reinsurance premium, it minimises the variance of the

retained claims.

Since then, a significant amount of research has been conducted on this topic: each new
paper will resort to a different optimality criterion or work under different assumptions,
which is why new contributions with different results are regularly presented. For
example, Centeno (1985) showed that — between a standard quota-share contract, an
excess of loss contract and a combination of the two —, if the premium for the excess of
loss contract is determined through either the expected value or the standard deviation
principles, the excess of loss type is always optimal, in the sense that it minimises the
skewness coefficient of the retained claims, under constraints on its expected value and
standard deviation. Some authors seek the optimal type of reinsurance among all
conceivable reinsurance contracts (not limited to the standard ones), as long as these
respect the basic condition (to avoid moral hazard) that the ceded amounts never decrease
if the claim size increases. Within this broad set of contracts, Denuit and Vermandele
(1998) proved that stop-loss reinsurance is optimal, in the sense that it minimises the
retained risk in the stop-loss order,* by comparison to all other types of reinsurance with
the same expected retention and the same commission, assuming an expected value

reinsurance premium principle; if stop-loss is not available, the same thing was proven

4 Risk X is said to be smaller than risk Y in the stop-loss order if, for any given d greater than zero,
E(max{X - d; 0}) is smaller than E(max{Y - d; 0}) — in other words, if the stop-loss reinsurance pure
premium of X is smaller than that of Y, under any given retention line.



for excess of loss reinsurance, under the same criterion and hypotheses. In another work,
Guerra and Centeno (2008) proved that stop-loss reinsurance is optimal, in the sense that
it maximises the expected utility of the insurer’s wealth, according to the exponential

utility function, under an expected value reinsurance premium principle.

It is noteworthy that stop-loss reinsurance — and, when not so, excess of loss
reinsurance — arises frequently as an optimal solution, even under very different
optimisation criteria. This remark of recurring results in favour of non-proportional
reinsurance makes analyses of proportional reinsurance less common, a fact which will

be noted and discussed in the following section.

For a deeper insight into optimal reinsurance research, we recommend the paper by
Centeno and Simdes (2009), who compiled several classical and more recent results, or
the book by Albrecher et al. (2017), for an exhaustive regard at the concept of reinsurance.

2.2. On the optimal surplus reinsurance problem

However, when reinsurance is restricted to the surplus type, the problem of its
optimisation becomes very infrequent in the available literature. When this form of
reinsurance does arise, it is, to the best of our knowledge, always analysed by comparison
to other types of reinsurance (as we will see in the following paragraphs); we have found
no papers where surplus reinsurance is optimised on its own. This applies to theoretical

and to practical works on reinsurance.

The earliest theoretical work we can find on proportional reinsurance is that of de Finetti
(1940), who obtained a method which gives the optimal cession percentages, for each
risk, in order to minimise the variance of the insurer’s profit after imposing a certain
minimum value for the expected profit. This presumes a generalised type of proportional
contract,® where each risk can have different cession proportions with no restriction. In a
later work, Glineur and Walhin (2006) take de Finetti’s result, present a simpler proof for

it, and extend it to the more specific types of variable quota-share reinsurance and of

5 We recall that, in the available literature, we have found four types of proportional reinsurance: standard
quota-share (one cession proportion common to the whole portfolio); variable quota-share (one cession
proportion for each segment of risk); standard surplus (cession proportions are calculated for each risk
based on a common line); and surplus with a table of lines (cession proportions are calculated based on
one line for each segment of risk). The result of de Finetti (1940) implies a generalised proportional
contract, not bound by the rules of any of these four types.



surplus reinsurance with a table of lines. By applying their results to a numerical example,
they prove that neither of these two types of reinsurance is always optimal over the other.

We can also find a few papers working from a practical viewpoint. Lampaert and Walhin
(2005) seek to explain the lack of works on proportional reinsurance by recalling that
non-proportional reinsurance is known to be optimal, a statement which they substantiate
by citing the aforementioned findings of Denuit and Vermandele (1998). The authors
comment, however, that this does not mean that, in practice, proportional reinsurance is
never used. Rather, they state that non-proportional reinsurance has two main
disadvantages: a difficulty in correctly pricing contracts and — especially for stop-loss
reinsurance — a higher risk of moral hazard (as seen in the Introduction). Both such issues
lead to high loadings, wherefore the authors argue that proportional reinsurance also has
its place in the actuarial framework. Using the return on risk-adjusted capital (RORAC)®
as the optimality criterion, they find the optimal reinsurance contract for their set of data
under each of the four possible forms of proportional reinsurance and compare the results
obtained across them. They conclude that, on their data, the best form is either standard
surplus reinsurance or surplus reinsurance with a table of lines. Between these two
options, the optimal choice depends on the determination of the table of lines: according
to the authors, practitioners traditionally use one of two methods — called the ‘inverse
claim probability’ and the ‘inverse rate’ —, trusting that either can provide a better result
than a standard surplus contract. However, the authors prove this belief to be wrong, as,
on their data, both such tables are sub-optimal when compared to standard surplus. Then,
they build an alternative table of lines based on the aforementioned method of de Finetti
(1940), as expanded by Glineur and Walhin (2006),” and this table proves to be optimal

against all other proportional reinsurance contracts.

Other works have taken similar optimisation approaches, based on comparisons of
different kinds of reinsurance. El-Bolkiny et al. (2018) make a more limited analysis
across three types of proportional reinsurance (standard quota-share, variable quota-share
and standard surplus) where, rather than finding the optimal values within each of them,

® The RORAC is defined as the difference between the retained premium and the expected value of the
retained claims, divided by the difference between the capital requirement and the retained premium.

7 Although the paper of Glineur and Walhin (2006) was published after that of Lampaert and Walhin
(2005), the latter cites the former as an ‘unpublished manuscript’.



they provide unexplained ad hoc values and simply compare their RORACs. Meanwhile,
Verlaak and Beirlant (2003) work on compound forms of reinsurance, where multiple
combinations of reinsurance types® are explored, and derive equations which can be
solved to optimise such contracts. Concerning proportional reinsurance, these authors
note that the available literature focuses almost exclusively on quota-share, which does
not reflect common business practice, where surplus reinsurance is common and, for
some contracts, it is the only type of proportional reinsurance in force. Veprauskaite and
Sherris (2012) study three forms of proportional reinsurance: quota-share, surplus and a
combination of the two. Assuming that a given total difference between sum insured and
sum reinsured (which they call ‘risk appetite’) remains equal, they select the contract,
within each of the three types, which respects this hypothesis. Then, they use a blend of
three optimality criteria — the difference between retained premia and retained claims,
the ratio between retained premia and retained claims, and the ratio between the variance
and the mean of the retained claims — to determine which of the three contracts is
optimal, on real data about life insurance. They conclude that quota-share reinsurance
tends to be optimal when the variance of claim amounts is small, but otherwise the best

choice is usually either surplus reinsurance or a combination.

As stated in the Introduction, none of the aforementioned papers consider the possibility
that there be a policy limit under surplus reinsurance — which implies the assumption
that this reinsurance policy limit, if it exists, is always higher than all primary policy limits
(at least in any optimal contract). The only exception we have found is the work of
El-Bolkiny et al. (2018), although, as stated earlier, they give the value for this limit ad
hoc (as they do for the retention line), without seeking to optimise it. Our work will
explicitly try to optimise the retention as well as the policy limit, without making this

implicit assumption for which we can find no justification.

To the best of our knowledge, not many more academic works on optimal reinsurance
mention surplus reinsurance. This lack of other theoretical works developed about it can
be seen, for instance, in the paper of Centeno and Simdes (2009), who gather a number

of theoretical results obtained broadly within the optimal reinsurance problem, not one of

8 In particular, they compare seven combinations: excess of loss after surplus; excess of loss after
guota-share; stop-loss after quota-share; quota-share after stop-loss; quota-share after excess of loss;
quota-share before surplus; and quota-share after surplus.



which mentions surplus reinsurance. More recently, Albrecher et al. (2017), when in the
context of optimising reinsurance, only discuss surplus reinsurance briefly to report on
the findings of Glineur and Walhin (2006) and of Lampaert and Walhin (2005).

It must be noted that some other papers do mention optimisation of surplus reinsurance,
but present for it definitions which conflict with the one which is generally accepted. This
is the case of El Attar et al. (2018), who apply the cession proportion only to the portion
of the risk which exceeds the retention line, and of Verbeek (1966), who presents a
definition that instead matches excess of loss reinsurance. Both such definitions are
ignored here, because they are unusual and because they break the proportionality which
is generally recognised to be a defining feature of surplus reinsurance. The fact that the
most common definition is the one used here can be seen in all other papers mentioned
above, as well as in the books by Albrecher et al. (2017) and by Clark (2014). We note
that, of these two books, the latter is the one which provides the most explicit definition
when it comes to what happens to payments (premia and claims) above the reinsurance
policy limit, whereas the former mentions the possibility of a limit but does not go in
detail.

Our work, therefore, will seek to provide a contribution by finding the optimal reinsurance
contract of the surplus type, based on real data provided to us by a Portuguese insurer. As
explained above, to the best of our knowledge, this is the first such work on surplus

reinsurance.



3. THEORETICAL APPROACH

3.1. Definition of surplus reinsurance

As stated in the Introduction, surplus reinsurance is a kind of reinsurance contract
whereby risk is reinsured proportionally, but there are different proportions for each
primary policy. These proportions are calculated based on a fixed retention line which is
common to all sums insured, and are subject to a reinsurance policy limit: for sums
insured smaller than the retention, there is no reinsurance; for those greater than the
retention but smaller than the limit, the retention percentage is the ratio between the line
and the sum insured; for sums insured greater than the limit, their excess over the limit is
also taken into account in the ratio for the retention percentage, in addition to the line.
Thus, there is no reinsurance for small risks (that is, those not exceeding the retention
line), whilst, for the other ones, if no policies exceed the limit, the reinsured percentage
increases with the risk. For any policies exceeding the limit, the reinsurance effect begins

to be lost and the cession percentage falls as the risk increases.

Mathematically, for each policy i, the retained risk under surplus reinsurance is:

min{X;, V;} V,<M
M -
Y; = Vimm{xi, Vi} M<V;, <L ’
Vi—L+M

min{Xi, VL} VL' > L
Vi

(1)

where:

e Xj is the random variable representing the underlying insured risk (without the

ceiling at the sum insured);
e Viis the sum insured,® that is, the primary policy limit;
e Miis the retained line of the reinsurance policy; and

e L is the reinsurance policy limit (whence L minus M is the maximum amount

payable by the reinsurer), normally a multiple of M.

® The terms ‘sum insured’, ‘capital insured’ and “policy limit’ are treated as synonyms and will be used
interchangeably hereafter.
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Naturally, the ceded risk belonging to that policy shall be: Z; = min{X;,V;} - Y;.

Under proportional reinsurance, the reinsurance premium is usually defined as being
proportional to the primary premium, with the same proportion as that of the reinsurance
of claims, minus a commission which is aimed at covering partially the insurer’s

expenses. Thus, for each policy i, the reinsurance premium is:

(1 M)(1 YP, M<V, <L
PR,i= Vi o LT ’
L—M
T -0Pp V>l
Vi

(2)

where:

e Pjis the primary policy’s premium; and

e cis the reinsurance commission.

We note that the constant commission is a simplification. In reality, the commission often
varies to compensate for changes in the reinsurer’s loss ratio. This is done through special
features established in the reinsurance contract, such as sliding scales, profit commissions
and loss corridors. For a detailed explanation of what these are and how they work, we
recommend the book by Clark (2014).

Thus, each policy is associated with a primary premium Pj, a reinsurance premium Prj
and a retained risk Y; (which is the random variable). With this, we define a new random
variable, which is the wealth generated by this policy. This ‘wealth’ is called like so for
simplicity, but it should not be understood as the final capital of the insurer; rather, it is
more accurately defined as the profit of the insurer, within the line of business under

consideration, after the unit period of time (which we assume to be one year, by default).

Having said so, we define the wealth generated by policy i (written as Wi) as its primary
premium — after deducting the expenses connected with it (which, also for simplicity,
we assume will be a constant proportion of the premium) —, minus its reinsurance

premium, minus its retained claims. Mathematically, this becomes:

11



Wi=P(1—-d)—Pri—Y; =

. P,(1 — d) — min{X,, V;} V,<M
M M
pl(1—-a)- (1 ——) A-0) | -—min{x, v} M<V,<L

5

L-M Vi—L+M
Pl(1-d) - (1-¢)|-———min{X,V;} V,>L
L Vi Vi

(3)

where d represents the insurer’s expenses — which should not be lower than c, in order

to prevent the possibility of obtaining a risk-free profit by reinsuring everything.

In order to add all the existing n policies to obtain the final characteristics of the contract,
we can simply define the variables without indices to be the sums of their corresponding
indexed variables, as:

n n n
P=>P Pa= P s X=X ;
i=1 i=1 i=1
n n n
Y=Zyi, Z=Zzi; W=ZWi.
i=1 i=1 i=1

Finally, we obtain a full expression for the total wealth yielded by all policies:
W=P1-d)—P;—Y =

= Z (P.(1 - d) — min{X,, V;}) +

VisM
M M
M<ZVisL ( Vi) Vi
L-M Vi—L+M
+ <Pi <(1 —d) - (1- c)) ————— min{X,, Vi}> .
> (n -0~ (520 -0) 42

(4)
We recall that we are assuming, for simplicity, that there is a single surplus reinsurance
contract for all policies. A real-life insurer may purchase multiple reinsurance contracts,

which can be of the same type and can be from different reinsurers to diversify risk. This
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may be used to increase the insurer’s protection. In particular, we note that, if a second
surplus contract (with the same constant commission) is bought on top of the first one
such that the M of the second one equals the L of the first one, this has the same effect as

buying one single larger contract with the M of the first one and the L of the second one.

3.2. Optimality criteria

Finding the optimal surplus reinsurance contract means finding the M and the L which
optimise a given optimality criterion. In our approach, we will select for each such

criterion a function of the insurer’s total wealth (W).

For this purpose, we will use three different criteria to find the optimal reinsurance
contract, which — roughly described — shall be: 1) maximising the expected utility;

2) minimising the standard deviation; and 3) optimising the Value-at-Risk.

3.2.1. Expected utility

For the first criterion, we resort to Utility Theory. This is a common approach in
reinsurance optimisation, carried out, for instance, by Guerra and Centeno (2008). For

this purpose, they choose the exponential utility function, defined as:

1—e PW
uw) :T ,

(5)
where £ is the risk-aversion coefficient.
This function has two advantages: it incorporates the idea of risk-aversion, due to its
concave shape; and, as proven by the same authors, the problem of maximising it is deeply
connected to the problem of maximising the adjustment coefficient (a relevant risk

measure, because, according to the Lundberg inequality, it establishes an upper bound for
the probability of ruin). We are going to use it, for the same reasons.

We seek to maximise its expected value, that is, E(U(W)), which is the same as
minimising E(e ") = E(T(W)). First, we determine for it an explicit expression for

each policy i, which, based on (3), shall be:
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E(TW,)) = E(e™#"i) =

( e—ﬁ’Pi(l—d)E(eB min{XirVi}) V<M

—ﬁPi<(1—d)— 1-4 (1—c)> M infX: Vv
. (-77) E<eﬁvimm{xvvl} M<vi<L

e—ﬁm((l—d)—%(l—c))E (eﬁvi_VL;'M min{Xi,Vi}>

V,>L
\
( Vi

e BP1-d) f ePrify (x)dx; + ePViSy, (V) Vi<M
0
—BPi<(1—d)— 1-4 (1—c)> Vi oM
e ( Vl) (f eﬁVixlei(xi)dxi + eﬁMSXi(Vi) M<V, <L ,
0

_[’)Pi<(1—d)—ﬂ(1—c)) Vi pVizL+M
Le Vi f e’V x‘in(xl-)dxl- + PVl Mg, (V) Vi>L
0

(6)

where:

e fx,(x;) is the probability density function of X;; and

e Sy, (x;) is the survival function of X;.

Now, we want to minimise the expected value of the function T(-) applied to the sum of

the

wealth values generated by all policies, as shown in (4). If we assume all policies are

independent, this expected value becomes:

E(T(W)) = E(e_BW) = E(e‘ﬁz?nwi) =F <ﬁ e—ﬁWi> = ﬁE(e—BWi) =

1=

Vi
= | [ePro-o ( | erip e+ eﬁvfsxi(vi)> x
0

VisM

—ﬁPi<(1—d)— 1-gH)a- )) Vi pM,
% 1—[ e ( VI.> ¢ (f eBVixlei(xi)dxi+eﬁMSXl-(Vi) X
0

M<V;<L

L-M Vi  Vi-L+M
—,BPi<(1—d)——_(1—C)> L ﬁl—xi L
X | | e Vi (f e” Vi fy,(x)dx; + ePi L+M)SXL.(VL-)> .
0

Vi>L

(7)
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Because differentiating these functions with respect to M and to L (even for only one

policy) is very difficult to do analytically, we have taken a numerical approach.

However, because these exponentials will mostly be very small numbers (that is, positive
but close to zero), their product will be too small for the computer to reach an accurate
optimisation. Therefore, we will instead minimise its natural logarithm (In) — which we
can legitimately do because the logarithm is an increasing monotonic function —, which
shall be:

In E(T(W)) = lnl_[E(e‘ﬁWi) = ZIn E(e‘f”Wi) =

Vi
= Z In( eAPiA-d) (f eF¥ify, (x)dx; + eﬁViSXi(Vi)> +
0

VisM

—Bm((l—d)— 1-Ma- )> Vi M
+ Z In| e ( V‘> ‘ <f eBVix‘in(xi)dxi +€BMSXi(Vi) +
0

M<V;<L

—BP-((I—d)—ﬂ(l—c)) Vi gVi—L+M
+ 2 In({e Vi f ef ", Ce)dx +
0

Vi>L

+ ePUirLHg, (Vi)>

(8)

The numerical results are presented and discussed later.

3.2.2. Standard deviation

The method of maximising expected utility has a disadvantage in that utility is a vague
and merely theoretical concept, with an unclear practical interpretation. Furthermore, it

requires selecting an arbitrary value for £ as a risk-aversion coefficient.

An alternative form of considering risk-aversion so as to solve this problem is by
measuring dispersion indicators of the insurer’s risk under each possible reinsurance
contract, instead of assigning arbitrary utility values to said risk, and attempting to

optimise that. Two common measures of variability of a given random variable are the
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variance and the standard deviation. Using them is also frequent in the literature about
optimal reinsurance; in fact, the earliest papers we know, by de Finetti (1940) and Borch

(1960), are good examples of the usage of the variance to optimise reinsurance.

In this section, we will use the standard deviation ox (with X being any given random
variable) — which has the advantage, over the variance, that it is measured in the same
unit as the risk itself —, but we will have to convert to the variance in intermediate

calculations in order to resort to its properties.

Itis in the interest of the insurer to minimise the variability of the risk it takes on, because
a high variability makes predictions difficult and increases the probability of severely
high losses. Therefore, we might think about seeking to simply minimise the standard
deviation. However, this would lead to a trivial solution whereby all risk would be
reinsured — in other words, there would be no risk and, therefore, the standard deviation
would be reduced to zero —, which is unreasonable because the insurer would essentially
cease to be an insurer and because this strategy would result in a guaranteed loss, as the

reinsurance commission (c) is smaller than the insurer’s expenses (d) with the risk.

To overcome this problem, de Finetti (1940) and Borch (1960) fix a specific desired
expected value and find the contract which fulfils that condition and minimises the
variance. This approach, of course, has the disadvantage of having to select an arbitrary
desired expected value. Meanwhile, Veprauskaite and Sherris (2012), in one of the three
criteria they define, opt for minimising the ratio between the variance and the expected

value of the retained claims. This method is more similar to the one we shall use.

We consider that what the insurer actually wants is to minimise the standard deviation
while maximising the expected value. But a reduction in the standard deviation caused
by an increase in the amount of risk reinsured will reduce the expected value of the wealth,
assuming the risk is profitable. Therefore, the insurer wants to strike a balance between
the two goals. This leads us to the strategy of maximising the ratio between the expected
value and the standard deviation. Unlike the authors cited above, we recall that we prefer

the standard deviation instead of the variance.

However, even this criterion has a flaw: for negative expected values, it ceases to be

risk-averse and becomes risk-loving (because the ratio would then be maximised with a
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higher standard deviation) — imprudent behaviour for an insurer. Therefore, to ensure
that the premise of risk-aversion is kept across all admissible solutions, the expected value
of the wealth must have the riskless strategy wealth deduced from it in the ratio, to keep
the numerator always positive. The idea is that any value of wealth higher than that which
would be achieved with no risk is a gain, but we must accept a given amount of risk to
reach this expected gain; therefore, we want to gain as much as possible, by comparison
with the riskless scenario, whilst accepting as little volatility as possible. Essentially, this
is the concept of the Sharpe ratio, as used in the theory of optimisation of financial
investments — presented by Sharpe (1994) —, applied to reinsurance: the risk-free rate
is replaced by the riskless scenario wealth, and the other variables remain the same.

Thus, the function to be maximised under this criterion is:

E(W) — Wriskiess _ E(W)—-P(c—4d)
ow ow '
(9)
The riskless strategy wealth is, of course, the one which is obtained by reinsuring
everything, that is, by setting M = 0 and L > max{V;}. It is in this case that the insurer

will face no risk and the standard deviation is zero.

We now need to determine formulae for the calculation of the expected value and of the
standard deviation of the wealth. For each policy i, considering the function of its

generated wealth given in (3), the expected value is:

( P;(1 —d) — E(min{X;, V;}) VisM
M M
P; (1—d)—(1—7) (1-o¢) —VE(mln{Xi,Vi}) M<V, <L
E(W;) = < : i ;
L—M Vi-L+M
pla-d-—Z1-0 -2 Eminfx, V)  V,>L
L Vi Vi
(10)
where:
Vi
E(min{X;,V;}) = f xifx,(x)dx; + V;Sx, (V) .
0
(11)
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Meanwhile, the formula for the variance of the wealth generated by the same policy i,

also based on (3), is:

( Var(min{X;,V;}) Vi<M
MZ
— Var(min{X;, V;}) M<V; <L
Var(W;) = V; ,
Vi—L+ M)?
%Var(min{&-, Vi}) V,>L
L
(12)
where:
Var(min{X;,V;}) = E((min{X;,V;})*) — E*(min{X,,V;}) =
= E(min{X7?,V?}) — E*(min{X;,V;}) =
Vi Vi 2
= f xizfxi(xi)dxi + ViZSxi(Vi) - (J xiin(xi)dxi> -
0 0
Vi
=2 [ xify G Vis (7) — VESE ()
0
(13)

Finally, summing the wealth for all policies as in (4) and applying to it the results (10)
and (12), assuming all policies are independent, we obtain that the expected value of the

total wealth is:

EW)=E <zn: Wi> = Zn: EW) =

i=1

= ) (P - d) — E(min{X, Vi) +

VisM
M M
+ PplA-d)-(1-=)1 - c)> — —E(min{X;, V;}) | +
M<ZV1'SL ( ( Vi) Vi

+ z P, ((1 —d)— (#) (1- c)) _ Vi_vﬂE(min{Xi, V.
Vi>L t l

(14)

and its variance is:
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Var(W) = Var (i Wi> = zn: Var(W;) =

i=
2

M
= Z Var(min{X;,V;}) + 2 WVar(min{Xi,Vi}) +

L

VoM M<V;sL
Vi — L+ M)?
M<V;<L L

(15)
As in the first criterion, optimising this analytically is very difficult, perhaps even

impossible. We have to do it numerically.

3.2.3. Value-at-Risk

Another optimisation criterion we can use is based on another very important risk measure
used in the actuarial profession: the Value-at-Risk (written as VaR). It is sometimes used
in reinsurance optimisation, for example, by Cai and Tan (2007) and by Cai et al. (2008),

who also use the related Tail-Value-at-Risk (also called Conditional Tail Expectation).

We recall that the Value-at-Risk at o of a random variable (written as VaR,) — where a
is a value, usually expressed in percentage, between 0 and 1 — is the number such that
the probability that the random variable takes a value no greater than it is «. Essentially,
it is the quantile « of the distribution being considered. In other words, for the usual cases

and assuming a continuous distribution:
VaR,(X) =reoPX<r)=a ,

(16)

where:

e P(') is the probability of an event; and

e X, in this context, is any given random variable.

Usually, the « is very high, close to 100%, because the random variable being studied
measures actuarial losses and the point of the VaR is to provide a notion of how high a

loss can realistically be, in the most extreme scenarios (on the right tail of the loss
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probability distribution). Naturally, having fixed a given «, insurers would like to have a
VaR as low as possible. Common values for the o would be 95%, 99% or 99.5%.

Meanwhile, the Tail-Value-at-Risk (TVaR) is defined as the mean of all values above the
Value-at-Risk. It is generally regarded as having two advantages over the VaR: it gives
information as to what happens above the VaR, until the end of the distribution tail; and
it is a coherent risk measure.'® Nevertheless, it has the notably significant disadvantage
that it is very difficult to calculate in practice. Possibly for this reason, the EU-wide
Solvency Il rules stipulate the usage of the VaR and set its a« at 99.5%. Thus, for
simplification, we shall also use the VaR in this work and, drawing inspiration from

Solvency II, we shall set it at the same o of 99.5%.

However, in this case, we would like to measure the risk of the wealth, as we have been
doing above, and not specifically of the claims. It does not change the reasoning, other
than that it now requires us to think of the Value-at-Risk in reverse (on the left tail), setting

it at 0.5% instead and seeking to maximise it. Note that:
VaR sy, (W) = P(1 —d) — P — VaRgg59,(Y) ,

(17)

because Y is the only random component of W, as given in (4).

Please note, however, that, for multiple policies with different claim distributions, it is
very difficult — perhaps even impossible — to obtain an explicit equation for the
Value-at-Risk of the sum of all claims, even assuming that they are independent. This
means that the optimisation according to this criterion will have to be done numerically,
not because it is difficult to do it analytically, but because there is no analytical expression
to optimise. We will, instead, simulate numerically the VaR under different reinsurance

contracts and find the one which optimises it.

As stated earlier, the insurer would like the Value-at-Risk of the wealth to be as high as

possible. However, similarly to when we sought to minimise the standard deviation, doing

10 A coherent risk measure must, among other criteria, be sub-additive: if two risks are added, the risk
measure of the sum must not be higher than the sum of the risk measures of the original risks (it may be
lower, though, because diversifying a portfolio tends to reduce risk). The Value-at-Risk has been proven
not to fulfil this condition, whereas the Tail-Value-at-Risk does. For more on coherent risk measures, we
recommend Kaas et al. (2008).
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only this would lead us back to the trivial solution of reinsuring everything — although,
this time, concluding this is not immediate, because reinsuring less (that is, accepting
more risk) has two opposing effects on the VaRosw(W) [see (17)]: it increases
the VaRoo50%(Y) (because the risk is higher), but it also decreases the reinsurance
premium (Pr). Determining which of these two effects is stronger requires us to recall
that we are working under proportional reinsurance:*! looking back at (1) and (2), we see
that, for each policy i, any change in the amount of reinsurance causes a proportional
change in Pr;i and in the retained risk Yi; and, since the VaR is a positively homogeneous
measure — meaning that VaR(kY;) = k X VaR(Y;),Yk >0 —, the impact on
the VaRoo.50%(Yi) will also be proportional. Therefore, if we assume that the VaR of the
policy’s total claims (X;) Is greater than the premium which would be charged for
reinsuring the whole policy — which is reasonable, because we are working with an
extreme a —, we conclude that the effect of the VaRog5%(Yi) is greater. If all policies
follow this assumption, we determine that the contract which maximises the VaRo s0(W)

is the trivial full reinsurance.

Therefore, again, we wish to strike a balance between maximising the expected value and
the Value-at-Risk, which correlate negatively with one another. And, again, we must
ensure that risk-aversion is respected at all points, which we can do by maximising the

following function:

(E(W) — Wyiskiess) X (VaRo.s9,(W) — VaRy syo (Winaximum risk)) =
= (EW) = P(c — d)) x (VaRo 50,(W) — VaRo s W reinsurance))
(18)
where Wmaximum risk = Who reinsurance 1S the wealth if nothing is reinsured, the scenario which
maximises risk and, therefore, minimises the Value-at-Risk on the left tail. With these

subtractions, we ensure that both factors are always positive and that the function

translates a risk-averse behaviour.

1 Indeed, the authors cited earlier do not have this problem, because they work with reinsurance that is
not necessarily proportional. Therefore, they can simply minimise the VaR or the TVaR.
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4. DATA SET AND PROBLEM SETTING

4.1. Data set

For this work, we have built a portfolio of 998 policies, based on fire insurance data
received from a Portuguese insurer. The original data contained many more policies and,
for each one, its premium, its capital insured and its total amount in reported claims over
one year. We sorted the portfolio by capital insured and divided it into classes, to then
randomly select a few policies belonging to each class; the number of policies selected
within each class was meant to approximate the real distribution of the whole portfolio,
but, due to the fact that there were too few policies with higher risks (which would be
more relevant to decide the reinsurance contract), we decided to overrepresent such
policies slightly. Lastly, for each policy among the 998 selected, we used its class average
to estimate its probability of producing claims over the course of one year and, assuming
such claims occur, the mean and the standard deviation of their total value.

The summary statistics of the portfolio which was produced by using this method are

shown in Table 1.

Statistics Mean Minimum 1Q  Median 39Q Maximum
353308.55 2619.73 50000 81379.84 200000 19 792 309.33

Probability 0.0736 0.03 0.03 0.06 0.09 0.75

2067.19 1000 1160 1360 2300 35000
STD of sev. [ vkl 1900 1900 1900 7500 50 000

517.08 39.13  76.75 14004 29459  70257.17
517.08 57.74  66.97 157.04 398.38  50518.92
517.08 91.75  98.77 17597 59754  33892.61
517.08 3451 3964 9214  387.46  95359.31

Table 1 — Means, minima, maxima and quartiles of the characteristics of the 998 policies used. ‘Probability’ refers
to the probability that any claim will occur within one year. ‘P’ stands for ‘premium’, ‘Q’ for ‘quartile’, ‘avg.’ for
‘average’, ‘sev.’ for ‘severity’, ‘STD’ for ‘standard deviation’, and ‘EV’ for ‘expected value’.

A few of the policy limits are much higher than the other ones, as we can see from the
first line of the table. This is not a mistake, as the capital distribution is indeed severely
skewed to the left: in fact, although more than half of all sums insured are below 100 000,

there are 47 policies with a capital insured of at least 1 000 000, six of which even
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above 10 000 000 (and, as stated above, even these few higher risks are somewhat
overrepresented). The implication is that, under many of the optimal reinsurance contracts

we will find, only a minority of policies will actually be reinsured.

As mentioned earlier, primary premia were provided along with each policy. We could
not identify the premium principle which had been used to determine them (which can
perhaps mean that the insurer was using information specific to each policy, which we do
not have, in addition to an unknown principle). Therefore, for the purposes of our
optimisation, we decided to consider three more sets of premia, calculated with the
expected value principle, with the standard deviation principle and with the variance
principle. In order to do so, for each principle, we computed the loading which would
keep the same total received premium of 516 049.29. This loading was found to be of
92.4530% for the expected value principle, 16.6590% for the standard deviation
principle, and 0.0033% for the variance principle.

4.2. Claim frequency and claim severity distributions

As seen in the previous chapter, in order to perform many of the calculations necessary
to find the optimal reinsurance contract, we must select a distribution for each X;, that is,

for the total value in yearly claims of each policy i.

This can be done in two ways: either the number of claims N; follows a Poisson
distribution and each claim has a severity given by Xj; (where j =1, ..., nj), or we use a
Bernoulli distribution to model whether there were any claims or not (so that Ni only takes
the values 0 and 1) and the total severity of all claims is given by X; | Ni = 1. Naturally,
unlike the Bernoulli approach, the Poisson method requires us to have knowledge of the

severities of each specific claim.
If the Poisson approach is followed, Xi will be given by:
fn;(0) x;=0 e Hi x;=0
fr) =1 ¥ N e
(x;) = = 1 ,
X z fxgn, ) fn,(n) x>0 Z fregn, (x0) n.,l x; >0
n;=1 n;=1 v

(19)

where wi is the Poisson parameter of policy i, which is the average number of claims.
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Meanwhile, if we follow the Bernoulli approach, X; is given by:

fNi(O) x; =0 { 1—p; x;=0

fi () = {inINFI(xi)fNi(l) x>0 Wifxgn=1 () x>0

(20)

where p; is the Bernoulli parameter of policy i, which is the probability that there is a

claim.

We have chosen the Bernoulli model, essentially because we do not have information on

the individual claim severity for each policy.

Finally, we have chosen to model the total severity of all claims incurred by policy i
through a Lognormal distribution, mainly because it is generally considered to be a

medium-tailed distribution (that is, with a tail which is neither too light nor too heavy).

4.3. Problem setting

By resorting to the distribution explained in the previous section and assuming a portfolio
comprising the 998 policies whose summary statistics were presented in Section 4.1, we
have sought to find the optimal surplus reinsurance contract, according to the definition
of surplus reinsurance presented in Section 3.1 and following each of the three

optimisation criteria explained in Section 3.2.
We recall that the three criteria are each based on:

1. The expected utility of the wealth, which is the minimisation of (8);
2. The standard deviation of the wealth, which is the maximisation of (9), where the
expected value of W is given by (14) and its variance by (15); and

3. The Value-at-Risk of the wealth, which is the maximisation of (18).

For the first two criteria, we have derived formulae which we can optimise numerically
using adequate software. For the expected utility, we had to decide a value for g (which

represents the coefficient of risk-aversion): we used g = 0.3 and 5 = 0.6.

For the Value-at-Risk criterion, since we were unable to obtain a formula for the VaR,
we instead decided to simulate the expected value and the VaR for each possible

reinsurance contract, at intervals of 1 000 000 for each of the variables M and L, such
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that 0 < M < 19 000 000 and M + 1 000 000 < L < 20 000 000, plus the scenario of
no reinsurance; and we found the optimal contract by identifying the highest value
for (18) among the scenarios simulated. Such simulations were performed with 499 999

elements.!?

Lastly, after finding the optimal contract under each criterion, we conducted simulations
to determine the final risk measures — expected value, standard deviation and VaR —
under that reinsurance contract, in order to compare the results produced by the different

methods. These simulations were also performed with 499 999 elements.

These procedures, under all three optimisation criteria, were carried out for each of the
four possible sets of premia mentioned in section 4.1, assuming a commission ¢ of 10%
and of 20%, and expenses d of 24%. The idea was to contrast the effect of a commission
which is far from sufficient to reasonably cover the expenses against a commission which

covers them more adequately.

All optimisations and simulations were computed using the R software.

12 The odd number makes it easier to determine the Value-at-Risk at 99.5% of the claims. In fact, if the
number of elements is one less than a multiple of 200, the VaRgg 5% can be identified by picking only one
of the simulated elements. This presumes that, given a statistical sample with n elements, a quantile q is
calculated from the element of order (n+1)q — which is not the only formula that can be used, but it is
the one we have used in this work. For more on quantile calculation, we recommend Kaas et al. (2008).
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5. RESULTS

5.1. Presentation

All results obtained are presented in Table 2.

The left side of the table shows the eight scenarios tested (four possible sets of premia
and two possible values for the commission), under each of the three criteria used. As
stated earlier, in the case of the expected utility criterion, optimisations featured two
different values for .

At the top, the expected results under no reinsurance (in yellow) and the sure results under
full reinsurance (in green) are shown, for comparison. These are the same for any
premium principle, because the total premium amount of 516 049.29 has been kept.
Under full reinsurance, there is, evidently, no risk, which is why the standard deviation
under these scenarios is zero. The no reinsurance scenario provides the highest possible
expected value and standard deviation, and the worst possible VaR; the full reinsurance
scenario gives the lowest possible expected value and the best possible VaR (which, in

this case, are equal, because no risk is taken).

In the central columns, the optimal reinsurance contract — defined by its M and its L —
is presented. On the right side, the simulated risk measures of the wealth, under each

optimal reinsurance contract, are shown.

We recall that, as explained earlier, the optimal reinsurance contracts for the
Value-at-Risk criterion had to be obtained in a different way (through simulation), which
is why their values for M and L are always rounded to the million, and which implies that

better contracts with values of M and L in-between may have been missed.

Finally, we note that we did not allow the expenses (d) to vary, because we determined
that it would cause no impact in the selection of the optimal reinsurance contract, as we

will explain next.
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Data Optimum Risk measures
Premium Commission  Beta Criterion M L E(W) std(wW) VaR(W)
No reinsurance 125122 83897 -217339
Full reinsurance, under a 10% commission -72247 0 -72247
Full reinsurance, under a 20%-,commission -20 642 0 -20 642
GIVEN 0.1 0.3 Utility 90 467 19209718 | -30756 24502 -125407
GIVEN 0.1 0.6 Utility 38720 194594493 | -47352 14331 -99457
GIVEN 0.1 - STD 2939263 7950670 | 84783 63336 -155935
GIVEN 0.1 - VaR 3000000 9000000 ( 79277 61358 -153404
GIVEN 0.2 0.3 Utility 65 769 19154770 ( 3433 20453 -72974
GIVEN 0.2 0.6 Utility 30825 19491486 | -6349 11864 -45072
GIVEN 0.2 - STD 2982069 6923361 | 99714 66557 -154419
GIVEN 0.2 - VaR 3000000 10000000 87480 60214 -138916
EV 0.1 0.3 Utility 110453 19236686 | -7596 27216 -114985
EV 0.1 0.6 Utility 47420 19506689 | -32150 16763 -93112
EV 0.1 - STD 2147191 10664714 | 77434 55115 -132675
EV 0.1 - VaR 3000000 10000000 ( 89171 60323 -138177
EV 0.2 0.3 Utility 93774 19231179 | 23650 24936 -72753
EV 0.2 0.6 Utility 40 353 19505217 | 5656 14778 -47667
EV 0.2 - STD 2138498 10686927 89783 55022 -118637
EV 0.2 - VaR 2000000 11000000 | 88075 54296 -117760
STD 0.1 0.3 Utility 136027 19297903 | 47720 30093 -73431
STD 0.1 0.6 Utility 59 880 19536986 | 8333 19337 -63457
STD 0.1 - STD 55839 19198075 | 5072 18588 -63 259
STD 0.1 - VaR 1000000 16000000 98756 48197 -92035
STD 0.2 0.3 Utility 120206 19311957 | 70951 28388 -42112
STD 0.2 0.6 Utility 55333 19547216 | 41222 18473 -26695
STD 0.2 - STD 55441 19446854 | 41314 18455 -26504
STD 0.2 - VaR 1000000 16000000 [ 113003 47949 -74723
VAR 0.1 0.3 Utility 93277 19206831 | -38082 24857 -133887
VAR 0.1 0.6 Utility 32921 19485848 | -57336 12600 -102961
VAR 0.1 - STD 536574 884835 (115779 80219 -211968
VAR 0.1 - VaR 2000000 7000000 | 62339 60220 -167482
VAR 0.2 0.3 Utility 69 450 19191807 | -3332 21120 -82387
VAR 0.2 0.6 Utility 22279 19479607 | -14572 9082 @ -46902
VAR 0.2 - STD 383 847 795700 | 116204 77801 -199610
VAR 0.2 - VaR 2000000 7000000 | 75227 60217 -155134

Table 2 — Optimisation results obtained. ‘EV’ stands for ‘expected value’, ‘STD’ for ‘standard deviation’, ‘VAR’ for
‘variance’ and ‘VaR’ for ‘Value-at-Risk’.

5.2. Discussion

As stated earlier, we did not include any presentation of results with different values for
the expenses (d). This is because we have concluded that, when the expenses vary, under

any of the criteria used, the optimal reinsurance contract does not change. Indeed,
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preliminary optimisations (not reported here) with different values for the expenses had
led us to observe this fact, which can be explained from the expressions for each criterion:

1. For the expected utility, we see that, in (6), the only term where d appears can be
factored as e “#Pi1=® > 0 which shows that changing the d is simply equivalent
to multiplying E(T(W;)) by a positive constant, which does not change its
optimum, and the same thing happens for the joint E(T(W)), in (7), where the
factored term is [y, e APt~ = ¢=FPU1~4) > q;

2. For the standard deviation criterion, we see, in (14), that any change in d (say, Ad)
produces a change of X, (—P;Ad) = —PAd in E(W), which is then cancelled out
in (9) by adding PAd to the numerator;

3. Similarly, for the Value-at-Risk criterion, any change Ad also produces in E (W)
a change of —PAd which is then cancelled in (18) and, through (17), the same

kind of cancelled change also happens in VaRo 5o (W).

We note that varying the expenses, although it does not change the optimal point, will
change the expected value and the Value-at-Risk of the wealth, improving them if the
expenses are reduced and worsening them if they are increased. This implies, for example,
that any optimal result producing a negative expected value should not be disregarded
solely for that reason, as it can be turned into a positive one by reducing sufficiently the

expenses.

The effect of changes in the commission is noticeable: as we would expect, since a higher
commission makes reinsurance more attractive, results with a 20% commission tend to
point to reinsuring more (that is, using a smaller M and perhaps a higher L) than under a
10% commission, although this is not always the case. Indeed, when the optimisation
criterion is not the expected utility, the effect of changing the commission seems to
become more negligeable. More relevant, though, is the fact that a commission increase
always has a positive effect in the expected value and in the VaR of the wealth, which is
to be expected: ceteris paribus, increasing the commission always increases the wealth,
unless no reinsurance is in force. Notably, in scenarios of a 10% commission, some
optimal contracts even yield undesirably negative expected values, which almost never

happens with a 20% commission. We recall that the commission is aimed at partially, but
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not completely, covering the expenses: a 20% commission can perhaps be said to cover
expenses of 24% satisfactorily, but a 10% commission falls short of having a similar
effect.

Changing the premium principle also has an interesting impact on the optimal reinsurance
contract. The expected value premium principle points to reinsuring less than the original
real premia when using the expected utility criterion, but more when using the other two;
the effect in the expected value is not constant but, interestingly, all Values-at-Risk are
better under this premium principle than under the original premia. The standard deviation
principle improves all VaRs even further; in this case, the expected utility criterion also
requires reinsuring less, but, for the other two criteria, the optimal contracts are actually
closer to those produced by the expected utility than under any other principle.
Remarkably, it seems that usage of this premium principle produces overall better results
than any other (which can perhaps be attributed to the fact that the premia follow the
claim distributions more closely): not only are the VaRs the highest of all (as stated
earlier), but also this is the only principle under which we can, for example, find optimal
contracts with an expected value that is more than twice the standard deviation. Finally,
the variance principle is the one producing the strangest outcomes (which can perhaps be
attributed to the fact that the variance is not measured in the same scale as the claim):
almost all VaRs are worse than those given by all the other premia sets, but, intriguingly,
the standard deviation criterion suggests reinsuring very little of the high risks, by

providing a low L.

The usage of different optimisation criteria is also interesting to analyse: the expected
utility criterion almost always requires reinsuring much more than the other two; in fact,
the only exception happens, as mentioned earlier, when using the standard deviation
premium principle, under which the standard deviation criterion now approximates more
closely the results given by the expected utility. Elsewhere, though, the expected utility
criterion may be regarded as excessively risk-averse, as it frequently provides contracts
which yield negative expected values and, when not so, expected values smaller than the
associated standard deviations. This could be fixed by reducing the risk-aversion
coefficient (5). Indeed, as expected, the higher coefficient of 0.6 always pointed to
reinsuring more than the lower one of 0.3, thus improving the VaRs and the standard

deviations, but reducing the expected values.
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Finally, we note that — as stated in the Introduction — in no scenario did the optimal L
match or exceed the highest of all sums insured V; (in this case, 19 792 309.33) —
although sometimes, especially under the expected utility criterion, the L was close to
said value, but still from below. Thus, we confirm that it is possible to build a portfolio
with which, using at least some optimality criteria and under certain conditions, the
optimal surplus reinsurance contract does not imply reinsuring in such a way as to cover
the highest of all risks; in other words, it is quite possible that the optimal surplus
reinsurance contract features a non-negligeable reinsurance policy limit. This can perhaps
be explained by the fact that there are so few risks so high that, mathematically, ensuring

that they are fully covered simply does not compensate.
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6. CONCLUSION

In this work, we have discussed ways of optimising surplus reinsurance, beginning with
a theoretical approach and then applying it to a portfolio which was constructed based on

real-life data on fire insurance.

We developed three possible optimisation criteria, based on the expected utility, the
standard deviation, and the Value-at-Risk of the insurer’s wealth. For the first two, it was
possible to derive explicit expressions to be optimised numerically; for the Value-at-Risk,
since this was not possible, optimisation was carried out by simulating several different
reinsurance contracts. We applied each of these three methods to a portfolio of policies,

and we varied the primary premium principle and the reinsurance commission.

Our findings do not point to any one of these three methods being better than the other
ones, although the expected utility generally provided more risk-averse results, in the
sense that more risk was reinsured. One disadvantage of the expected utility criterion is
the vagueness of the concept of ‘utility’ and the need to provide an arbitrary risk-aversion
coefficient. Meanwhile, a disadvantage of the Value-at-Risk method is its difficulty in
calculating it, which does not allow for too much precision in the results obtained.

Interestingly, our results suggest that using the standard deviation as the primary premium
principle tends to provide better results, after applying surplus reinsurance, than the other
premia considered (the expected value principle, the variance principle, or the original
premium with no clear principle), keeping the total premium constant. This improvement
is noticeable in the sense that the Values-at-Risk are always higher and that the expected
values, especially by comparison to their associated standard deviations, also tend to be
higher. We attribute this to the fact that this principle causes the premium to follow more
closely the distribution of each risk: given two risks with the same expected value but
different standard deviations, it makes a distinction between the riskiest one and the safest
one (unlike the expected value principle); and this distinction is measured in the same

scale as the risk itself (unlike the variance principle).

Although we have also proven that varying the expenses does not change the optimal
surplus reinsurance contract under any of the criteria we used, our findings highlight the

need for the reinsurance commission to cover, as closely as possible, the insurer’s
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expenses. Indeed, it was only when we optimised under a commission of 20% to cover
expenses of 24% — as opposed to a commission of only 10% to cover the same amount
in expenses — that we obtained reasonable results, in the sense that they could usually
fulfil the basic desirability condition that the expected value of the wealth be positive.
Otherwise, the optimal contract will usually require reinsuring unnecessarily less (that is,
accepting unnecessarily more risk) to provide clearly worse results on average. The

commission, of course, only has no impact if nothing is reinsured.

Finally, our results show that the reinsurance policy limit has its importance when
optimising surplus reinsurance. As stated in the Introduction, this contrasts with the
existing literature, which rarely considers the existence of a policy limit under surplus
reinsurance — implicitly assuming that it can be ignored because, if it exists, it shall
always be no smaller than the highest sum insured, at least for the optimal contract. In
our work, doing away with this assumption has shown us that, very frequently — in fact,
in all the scenarios we analysed —, the optimal reinsurance policy includes a limit which

actually leaves some of the highest risks partially uncovered at the top.

Possible opportunities for future research on optimal surplus reinsurance, based on this
work, could be, for example: modelling the severities with other distributions;
determining what happens when the commission varies with the loss ratio, rather than
remaining constant (including through mechanisms such as sliding scales and loss
corridors); considering expenses that are not uniform across all policies; adding more
premium principles to the analysis; exploring further the effects of the premium principle,
notably the reason why the standard deviation premium principle yielded so much better
results; identifying mathematically why a policy limit no smaller than the highest of all
sums insured is not always optimal; introducing new optimisation criteria (some of which
perhaps now depend on the expenses); or even adding a table of lines, rather than working

with standard surplus reinsurance.
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