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ABSTRACT 

In this work, we seek to optimise surplus reinsurance, which is a type of proportional 

reinsurance where proportions vary with the sum insured, based on a retention line and 

on a reinsurance policy limit. Optimisation is done on a portfolio which is based on 

real­life fire insurance policies. 

We perform this optimisation by resorting to three different optimality criteria, which are 

based on the expected utility, the standard deviation and the Value-at-Risk of the insurer’s 

wealth. Where we found it to be possible, expressions were derived which can be solved 

to find the optimal reinsurance contract. However, the difficulty in solving them 

analytically leads us to optimise them numerically. Where we could not derive such 

expressions, we resorted to simulations in order to find the optimal reinsurance contract. 

Such optimisations are carried out under different reinsurance commissions and different 

premium principles for the primary policies. 

Our findings suggest at least four possible conclusions. Firstly, none of the three 

optimality criteria used is clearly better than the other ones, although the expected utility 

criterion tends to yield more risk-averse results. Secondly, usage of the standard deviation 

as the primary premium principle generally provides better results — with higher 

expected values by comparison to the standard deviations, as well as more favourable 

Values-at-Risk — than the expected value and the variance principles. Thirdly, our results 

highlight the importance that the reinsurance commission provide a reasonable cover for 

the expenses of the insurer, in order to produce acceptable outcomes. Lastly and perhaps 

more interestingly, we conclude that the optimal surplus reinsurance contract will, at least 

quite frequently, feature a reinsurance policy limit low enough to not fully cover the 

highest risks. 

 

KEYWORDS: Reinsurance; Optimal reinsurance; Proportional reinsurance; Surplus 

reinsurance; Numerical optimisation; Simulation. 
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RESUMO 

Neste trabalho, procura-se optimizar o resseguro de surplus, que é um tipo de resseguro 

proporcional em que as proporções variam com o capital seguro, com base numa linha de 

retenção e num limite à apólice de resseguro. A optimização é efectuada numa carteira 

baseada em apólices reais de seguro de incêndio. 

Realiza-se esta optimização com recurso a três diferentes critérios de optimalidade, 

baseados na utilidade esperada, no desvio-padrão e no Value-at-Risk da riqueza da 

seguradora. Quando nos foi possível, obtivemos expressões que podem ser resolvidas 

para encontrar o contrato de resseguro óptimo. Contudo, a dificuldade de as resolver 

analiticamente leva-nos a optimizá-las numericamente. Sempre que não conseguimos 

obter tais expressões, recorremos a simulações para encontrar o contrato de resseguro 

óptimo. Tais optimizações são efectuadas sob diferentes comissões de resseguro e 

diferentes princípios de prémio para as apólices primárias. 

Os nossos resultados sugerem pelo menos quatro conclusões possíveis. Em primeiro 

lugar, nenhum dos três critérios de optimalidade empregues é claramente melhor do que 

os outros, embora o da utilidade esperada tenha tendência para produzir resultados mais 

avessos ao risco. Em segundo lugar, o uso do desvio-padrão como princípio do prémio 

para as apólices primárias costuma apresentar resultados melhores — com maiores 

valores esperados por comparação com os desvios-padrão, bem como Values-at-Risk 

mais favoráveis — do que os princípios do valor esperado e da variância. Em terceiro 

lugar, os nossos resultados salientam a importância de que a comissão de resseguro cubra 

razoavelmente as despesas da seguradora, a fim de gerar resultados admissíveis. 

Finalmente e talvez mais interessante, concluímos que o contrato de resseguro de surplus 

óptimo terá, pelo menos bastante frequentemente, um limite à apólice de resseguro 

suficientemente baixo para que não cubra totalmente os riscos mais elevados. 

 

PALAVRAS-CHAVE: Resseguro; Resseguro óptimo; Resseguro proporcional; Resseguro de 

surplus; Optimização numérica; Simulação. 
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1. INTRODUCTION 

Reinsurance is defined as a contract between an insurer and a reinsurer whereby the 

insurer (also called ‘reinsured’ or ‘cedant’) cedes part of its risk to the reinsurer, which 

agrees to indemnify it to the insurer in exchange for a reinsurance premium. The 

underlying principle is the same as the one which exists for insurance (also called 

‘primary insurance’ here, to help distinguish it), the difference being that the policyholder 

is now an insurer. 

Insurers are interested in signing reinsurance contracts mainly because it helps them 

prevent high losses, which reduces the volatility of the risk they face and, therefore, helps 

stabilise their profits. In general, the less risk an insurer retains, the more stable its 

outcome is expected to be. On the other hand, assuming the insurance business is 

profitable on average, it is not in the insurer’s interest to reinsure too much of its risk — 

in the limiting case, the insurer would cede all of its risk, at which point it would cease to 

be an insurer and become simply an intermediary. These remarks serve to illustrate the 

importance of studying the problem of optimising reinsurance, that is, of deciding how 

much risk the insurer should cede and in what way. 

Reinsurance contracts are divided broadly into two categories, containing four standard 

types of reinsurance (which can exist on their own or be combined with one another): 

• Proportional reinsurance: 

o Quota-share reinsurance; 

o Surplus reinsurance; 

• Non-proportional reinsurance: 

o Excess of loss reinsurance; 

o Stop-loss reinsurance. 

Non-proportional reinsurance contracts establish a value — called a ‘retention line’, or 

simply ‘retention’ or ‘line’ — above which the reinsurance comes into force, covering 

the portion of claims which exceeds the line.1 This cover, however, is usually limited to 

 
1 The difference between the two types of non-proportional reinsurance is that, in excess of loss, the line 

applies to each policy individually, whilst, in stop-loss, it applies to the sum of the claims of all policies. 
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a multiple of the retention, above which the responsibility returns to the insurer; in this 

case, it is said that the insurer has bought k lines of reinsurance, where k+1 is the ratio 

between the reinsurance policy limit and the retention. It follows that a contract of this 

type with a reinsurance policy limit high enough to cover all primary policy limits will 

guarantee that the insurer shall never have to pay more than the retention line. Pricing 

these forms of reinsurance works in the same way as pricing primary insurance. Such 

forms are not within the scope of this work. 

Quota-share reinsurance is easier to understand: the reinsured and reinsurer agree on a 

cession percentage, at which all claims will be proportionally indemnified by the 

reinsurer, usually under no other restrictions. Typically, this proportion is also used to 

price the contract: the reinsurance premium equals that same cession percentage times the 

total primary premium received (minus a commission). Proportionality is a key feature. 

Surplus reinsurance is an alternative form of proportional reinsurance which draws from 

non-proportional reinsurance the concept of a retention line. Under this type of contract, 

all claims of a policy are reinsured proportionally, as with quota-share reinsurance, but 

the proportion varies with the primary policy limit:2 for all policies whose limit exceeds 

the retention, whenever there is a claim, the insurer retains a proportion corresponding to 

the ratio between the retention and the policy limit, whilst the rest is ceded; for the other 

policies, nothing is ceded. This has the effect of retaining more of the smaller risks and 

less of the higher ones, as with non-proportional reinsurance. Such contracts will typically 

be subject to a reinsurance policy limit, in the same way as with non-proportional 

reinsurance. Pricing will usually be done by using, for each policy, the same proportion 

as that which was defined as the ceded percentage (minus a commission), in the same 

way as with quota-share reinsurance; the difference is that now, instead of a single 

proportion, a different proportion is applied to each policy and the total premium is 

calculated by then adding all the individual results. 

Albrecher et al. (2017) consider surplus reinsurance to be an improvement over 

quota­share reinsurance. Both have the proportionality feature in common — which 

brings them advantages such as being administratively simple to implement in practice, 

 
2 According to Albrecher et al. (2017), the policy limit is, in some cases, replaced by the Probable 

Maximum Loss associated with each policy. 
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having the same effect as an increase in the solvency capital and reducing the risk of 

reinsurance moral hazard.3 Yet surplus reinsurance, due to its higher cession percentages 

for larger risks, has the additional advantage of keeping small risks mostly or fully under 

the scope of the insurer, which is preferable if such risks are profitable on average and 

not prone to generating severe losses; in other words, reinsurance will come into force 

only for sufficiently large risks — as in non-proportional reinsurance —, which are the 

ones the insurer most wants to reinsure. The authors claim that surplus reinsurance is 

common in several non-life lines of business, such as fire, property, accident, engineering 

and marine insurance. 

Interestingly, we have found that most papers mentioning surplus reinsurance do not 

include the reinsurance policy limit in their definitions or analyses. In doing so, they work 

with the implicit assumption that said limit is always greater than the highest primary 

policy limit. We do not know why this seems to be common practice. If it is due to the 

belief that the optimal surplus reinsurance contract will always fulfil that condition, our 

results will challenge that conjecture. 

Variants of these standard proportional reinsurance contracts also exist: they are the 

variable quota-share reinsurance (where the portfolio is broken into segments of risk and 

a different proportion is applied to each segment) and the surplus reinsurance with a table 

of lines (where, similarly, a different retention line is used for each segment of risk), as 

defined by Glineur and Walhin (2006). These will not be studied in this work. In fact, the 

four standard types of reinsurance presented above should not be regarded as an 

exhaustive list, since reinsurance can theoretically be defined in any way the signing 

parties want. 

Finally, there are also alternative and unusual definitions of surplus reinsurance, provided 

by Verbeek (1966) and El Attar et al. (2018), which strangely do not respect the feature 

 
3 Moral hazard is mainly a concern in non-proportional reinsurance. The authors explain that, in such 

contracts, when a claim is already known to be larger than the retention line, the insurer can become 

negligent when settling it. The reasoning is that, since any marginal increase on the value falls exclusively 

on the reinsurer, the insurer has little or no incentive to determine the claim’s exact value (they recall that 

settling claims more rigorously is expensive). Within the non-proportional types, this risk is greater in the 

case of stop-loss reinsurance, where the only thing that matters is whether the sum of all claims exceeds 

the retention line or not. Meanwhile, in proportional reinsurance, since the insurer is always responsible 

for a fixed percentage of the claim (regardless of its value), it is in its interest to find exactly the true 

value of any claim. 
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of proportionality which all other works we have found recognise to be an essential trait 

of this type of contract. These other definitions will be explained in more detail in the 

following chapter but shall be ignored for the purposes of this work. 

As we shall see in the following chapter, surplus reinsurance is rarely treated in literature 

about the optimal reinsurance problem. Our motivation to study it arises from this fact, 

together with our perception — following contacts with the Portuguese insurer which has 

given us data for this work — that surplus reinsurance may not be as uncommon in 

actuarial practice as its scarcity in actuarial literature might lead us to believe. We expect, 

therefore, to provide a positive contribution by presenting that which, to the best of our 

knowledge, is the first work which optimises a reinsurance contract specifically of the 

surplus type, based on real data. 
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2. STATE OF THE ART 

2.1. On the optimal reinsurance problem in general 

The optimal reinsurance problem has been studied in the actuarial academic literature for 

decades. Although the problem can be studied from the viewpoint of the reinsurer, or 

even from the viewpoint of both parties at once, most scholars usually analyse it from the 

cedant’s perspective — that is, they seek the reinsurance contract which optimises a given 

function of the insurer’s retained risk or final wealth. 

The earliest works on optimal reinsurance were produced by de Finetti (1940), who 

focused on proportional reinsurance and whose findings will be explained in the next 

section, and by Borch (1960), who proved that stop-loss is the optimal type of reinsurance, 

in the sense that, for a given net reinsurance premium, it minimises the variance of the 

retained claims. 

Since then, a significant amount of research has been conducted on this topic: each new 

paper will resort to a different optimality criterion or work under different assumptions, 

which is why new contributions with different results are regularly presented. For 

example, Centeno (1985) showed that — between a standard quota-share contract, an 

excess of loss contract and a combination of the two —, if the premium for the excess of 

loss contract is determined through either the expected value or the standard deviation 

principles, the excess of loss type is always optimal, in the sense that it minimises the 

skewness coefficient of the retained claims, under constraints on its expected value and 

standard deviation. Some authors seek the optimal type of reinsurance among all 

conceivable reinsurance contracts (not limited to the standard ones), as long as these 

respect the basic condition (to avoid moral hazard) that the ceded amounts never decrease 

if the claim size increases. Within this broad set of contracts, Denuit and Vermandele 

(1998) proved that stop-loss reinsurance is optimal, in the sense that it minimises the 

retained risk in the stop­loss order,4 by comparison to all other types of reinsurance with 

the same expected retention and the same commission, assuming an expected value 

reinsurance premium principle; if stop-loss is not available, the same thing was proven 

 
4 Risk X is said to be smaller than risk Y in the stop-loss order if, for any given d greater than zero, 

E(max{X - d; 0}) is smaller than E(max{Y - d; 0}) — in other words, if the stop-loss reinsurance pure 

premium of X is smaller than that of Y, under any given retention line. 
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for excess of loss reinsurance, under the same criterion and hypotheses. In another work, 

Guerra and Centeno (2008) proved that stop-loss reinsurance is optimal, in the sense that 

it maximises the expected utility of the insurer’s wealth, according to the exponential 

utility function, under an expected value reinsurance premium principle. 

It is noteworthy that stop-loss reinsurance — and, when not so, excess of loss 

reinsurance  — arises frequently as an optimal solution, even under very different 

optimisation criteria. This remark of recurring results in favour of non-proportional 

reinsurance makes analyses of proportional reinsurance less common, a fact which will 

be noted and discussed in the following section. 

For a deeper insight into optimal reinsurance research, we recommend the paper by 

Centeno and Simões (2009), who compiled several classical and more recent results, or 

the book by Albrecher et al. (2017), for an exhaustive regard at the concept of reinsurance. 

2.2. On the optimal surplus reinsurance problem 

However, when reinsurance is restricted to the surplus type, the problem of its 

optimisation becomes very infrequent in the available literature. When this form of 

reinsurance does arise, it is, to the best of our knowledge, always analysed by comparison 

to other types of reinsurance (as we will see in the following paragraphs); we have found 

no papers where surplus reinsurance is optimised on its own. This applies to theoretical 

and to practical works on reinsurance. 

The earliest theoretical work we can find on proportional reinsurance is that of de Finetti 

(1940), who obtained a method which gives the optimal cession percentages, for each 

risk, in order to minimise the variance of the insurer’s profit after imposing a certain 

minimum value for the expected profit. This presumes a generalised type of proportional 

contract,5 where each risk can have different cession proportions with no restriction. In a 

later work, Glineur and Walhin (2006) take de Finetti’s result, present a simpler proof for 

it, and extend it to the more specific types of variable quota-share reinsurance and of 

 
5 We recall that, in the available literature, we have found four types of proportional reinsurance: standard 

quota-share (one cession proportion common to the whole portfolio); variable quota-share (one cession 

proportion for each segment of risk); standard surplus (cession proportions are calculated for each risk 

based on a common line); and surplus with a table of lines (cession proportions are calculated based on 

one line for each segment of risk). The result of de Finetti (1940) implies a generalised proportional 

contract, not bound by the rules of any of these four types. 
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surplus reinsurance with a table of lines. By applying their results to a numerical example, 

they prove that neither of these two types of reinsurance is always optimal over the other. 

We can also find a few papers working from a practical viewpoint. Lampaert and Walhin 

(2005) seek to explain the lack of works on proportional reinsurance by recalling that 

non-proportional reinsurance is known to be optimal, a statement which they substantiate 

by citing the aforementioned findings of Denuit and Vermandele (1998). The authors 

comment, however, that this does not mean that, in practice, proportional reinsurance is 

never used. Rather, they state that non-proportional reinsurance has two main 

disadvantages: a difficulty in correctly pricing contracts and — especially for stop-loss 

reinsurance — a higher risk of moral hazard (as seen in the Introduction). Both such issues 

lead to high loadings, wherefore the authors argue that proportional reinsurance also has 

its place in the actuarial framework. Using the return on risk-adjusted capital (RORAC)6 

as the optimality criterion, they find the optimal reinsurance contract for their set of data 

under each of the four possible forms of proportional reinsurance and compare the results 

obtained across them. They conclude that, on their data, the best form is either standard 

surplus reinsurance or surplus reinsurance with a table of lines. Between these two 

options, the optimal choice depends on the determination of the table of lines: according 

to the authors, practitioners traditionally use one of two methods — called the ‘inverse 

claim probability’ and the ‘inverse rate’ —, trusting that either can provide a better result 

than a standard surplus contract. However, the authors prove this belief to be wrong, as, 

on their data, both such tables are sub-optimal when compared to standard surplus. Then, 

they build an alternative table of lines based on the aforementioned method of de Finetti 

(1940), as expanded by Glineur and Walhin (2006),7 and this table proves to be optimal 

against all other proportional reinsurance contracts. 

Other works have taken similar optimisation approaches, based on comparisons of 

different kinds of reinsurance. El-Bolkiny et al. (2018) make a more limited analysis 

across three types of proportional reinsurance (standard quota-share, variable quota-share 

and standard surplus) where, rather than finding the optimal values within each of them, 

 
6 The RORAC is defined as the difference between the retained premium and the expected value of the 

retained claims, divided by the difference between the capital requirement and the retained premium. 
7 Although the paper of Glineur and Walhin (2006) was published after that of Lampaert and Walhin 

(2005), the latter cites the former as an ‘unpublished manuscript’. 
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they provide unexplained ad hoc values and simply compare their RORACs. Meanwhile, 

Verlaak and Beirlant (2003) work on compound forms of reinsurance, where multiple 

combinations of reinsurance types8 are explored, and derive equations which can be 

solved to optimise such contracts. Concerning proportional reinsurance, these authors 

note that the available literature focuses almost exclusively on quota-share, which does 

not reflect common business practice, where surplus reinsurance is common and, for 

some contracts, it is the only type of proportional reinsurance in force. Veprauskaite and 

Sherris (2012) study three forms of proportional reinsurance: quota-share, surplus and a 

combination of the two. Assuming that a given total difference between sum insured and 

sum reinsured (which they call ‘risk appetite’) remains equal, they select the contract, 

within each of the three types, which respects this hypothesis. Then, they use a blend of 

three optimality criteria — the difference between retained premia and retained claims, 

the ratio between retained premia and retained claims, and the ratio between the variance 

and the mean of the retained claims — to determine which of the three contracts is 

optimal, on real data about life insurance. They conclude that quota-share reinsurance 

tends to be optimal when the variance of claim amounts is small, but otherwise the best 

choice is usually either surplus reinsurance or a combination. 

As stated in the Introduction, none of the aforementioned papers consider the possibility 

that there be a policy limit under surplus reinsurance — which implies the assumption 

that this reinsurance policy limit, if it exists, is always higher than all primary policy limits 

(at least in any optimal contract). The only exception we have found is the work of 

El­Bolkiny et al. (2018), although, as stated earlier, they give the value for this limit ad 

hoc (as they do for the retention line), without seeking to optimise it. Our work will 

explicitly try to optimise the retention as well as the policy limit, without making this 

implicit assumption for which we can find no justification. 

To the best of our knowledge, not many more academic works on optimal reinsurance 

mention surplus reinsurance. This lack of other theoretical works developed about it can 

be seen, for instance, in the paper of Centeno and Simões (2009), who gather a number 

of theoretical results obtained broadly within the optimal reinsurance problem, not one of 

 
8 In particular, they compare seven combinations: excess of loss after surplus; excess of loss after 

quota­share; stop-loss after quota-share; quota-share after stop-loss; quota-share after excess of loss; 

quota-share before surplus; and quota-share after surplus. 
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which mentions surplus reinsurance. More recently, Albrecher et al. (2017), when in the 

context of optimising reinsurance, only discuss surplus reinsurance briefly to report on 

the findings of Glineur and Walhin (2006) and of Lampaert and Walhin (2005). 

It must be noted that some other papers do mention optimisation of surplus reinsurance, 

but present for it definitions which conflict with the one which is generally accepted. This 

is the case of El Attar et al. (2018), who apply the cession proportion only to the portion 

of the risk which exceeds the retention line, and of Verbeek (1966), who presents a 

definition that instead matches excess of loss reinsurance. Both such definitions are 

ignored here, because they are unusual and because they break the proportionality which 

is generally recognised to be a defining feature of surplus reinsurance. The fact that the 

most common definition is the one used here can be seen in all other papers mentioned 

above, as well as in the books by Albrecher et al. (2017) and by Clark (2014). We note 

that, of these two books, the latter is the one which provides the most explicit definition 

when it comes to what happens to payments (premia and claims) above the reinsurance 

policy limit, whereas the former mentions the possibility of a limit but does not go in 

detail. 

Our work, therefore, will seek to provide a contribution by finding the optimal reinsurance 

contract of the surplus type, based on real data provided to us by a Portuguese insurer. As 

explained above, to the best of our knowledge, this is the first such work on surplus 

reinsurance. 
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3. THEORETICAL APPROACH 

3.1. Definition of surplus reinsurance 

As stated in the Introduction, surplus reinsurance is a kind of reinsurance contract 

whereby risk is reinsured proportionally, but there are different proportions for each 

primary policy. These proportions are calculated based on a fixed retention line which is 

common to all sums insured, and are subject to a reinsurance policy limit: for sums 

insured smaller than the retention, there is no reinsurance; for those greater than the 

retention but smaller than the limit, the retention percentage is the ratio between the line 

and the sum insured; for sums insured greater than the limit, their excess over the limit is 

also taken into account in the ratio for the retention percentage, in addition to the line. 

Thus, there is no reinsurance for small risks (that is, those not exceeding the retention 

line), whilst, for the other ones, if no policies exceed the limit, the reinsured percentage 

increases with the risk. For any policies exceeding the limit, the reinsurance effect begins 

to be lost and the cession percentage falls as the risk increases. 

Mathematically, for each policy i, the retained risk under surplus reinsurance is: 

𝑌𝑖 = 

{
 
 

 
 

min{𝑋𝑖, 𝑉𝑖} 𝑉𝑖 ≤ 𝑀
𝑀

𝑉𝑖
min{𝑋𝑖 , 𝑉𝑖} 𝑀 < 𝑉𝑖 ≤ 𝐿

𝑉𝑖 − 𝐿 +𝑀

𝑉𝑖
min{𝑋𝑖, 𝑉𝑖} 𝑉𝑖 > 𝐿

  , 

( 1 ) 

where: 

• Xi is the random variable representing the underlying insured risk (without the 

ceiling at the sum insured); 

• Vi is the sum insured,9 that is, the primary policy limit; 

• M is the retained line of the reinsurance policy; and 

• L is the reinsurance policy limit (whence L minus M is the maximum amount 

payable by the reinsurer), normally a multiple of M. 

 
9 The terms ‘sum insured’, ‘capital insured’ and ‘policy limit’ are treated as synonyms and will be used 

interchangeably hereafter. 
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Naturally, the ceded risk belonging to that policy shall be: 𝑍𝑖 = min{𝑋𝑖, 𝑉𝑖} − 𝑌𝑖. 

Under proportional reinsurance, the reinsurance premium is usually defined as being 

proportional to the primary premium, with the same proportion as that of the reinsurance 

of claims, minus a commission which is aimed at covering partially the insurer’s 

expenses. Thus, for each policy i, the reinsurance premium is: 

𝑃𝑅,𝑖 = 

{
 
 

 
 

0 𝑉𝑖 ≤ 𝑀

(1 −
𝑀

𝑉𝑖
) (1 − 𝑐) 𝑃𝑖 𝑀 < 𝑉𝑖 ≤ 𝐿

𝐿 −𝑀

𝑉𝑖
(1 − 𝑐) 𝑃𝑖 𝑉𝑖 > 𝐿

  , 

( 2 ) 

where: 

• Pi is the primary policy’s premium; and 

• c is the reinsurance commission. 

We note that the constant commission is a simplification. In reality, the commission often 

varies to compensate for changes in the reinsurer’s loss ratio. This is done through special 

features established in the reinsurance contract, such as sliding scales, profit commissions 

and loss corridors. For a detailed explanation of what these are and how they work, we 

recommend the book by Clark (2014). 

Thus, each policy is associated with a primary premium Pi, a reinsurance premium PR,i 

and a retained risk Yi (which is the random variable). With this, we define a new random 

variable, which is the wealth generated by this policy. This ‘wealth’ is called like so for 

simplicity, but it should not be understood as the final capital of the insurer; rather, it is 

more accurately defined as the profit of the insurer, within the line of business under 

consideration, after the unit period of time (which we assume to be one year, by default). 

Having said so, we define the wealth generated by policy i (written as Wi) as its primary 

premium — after deducting the expenses connected with it (which, also for simplicity, 

we assume will be a constant proportion of the premium) —, minus its reinsurance 

premium, minus its retained claims. Mathematically, this becomes: 
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𝑊𝑖 = 𝑃𝑖(1 − 𝑑) − 𝑃𝑅,𝑖 − 𝑌𝑖 =

=

{
  
 

  
 

𝑃𝑖(1 − 𝑑) − min{𝑋𝑖, 𝑉𝑖} 𝑉𝑖 ≤ 𝑀

𝑃𝑖 ((1 − 𝑑) − (1 −
𝑀

𝑉𝑖
) (1 − 𝑐)) −

𝑀

𝑉𝑖
min{𝑋𝑖, 𝑉𝑖} 𝑀 < 𝑉𝑖 ≤ 𝐿

𝑃𝑖 ((1 − 𝑑) −
𝐿 −𝑀

𝑉𝑖
(1 − 𝑐)) −

𝑉𝑖 − 𝐿 +𝑀

𝑉𝑖
min{𝑋𝑖 , 𝑉𝑖} 𝑉𝑖 > 𝐿

  , 

( 3 ) 

where d represents the insurer’s expenses — which should not be lower than c, in order 

to prevent the possibility of obtaining a risk-free profit by reinsuring everything. 

In order to add all the existing n policies to obtain the final characteristics of the contract, 

we can simply define the variables without indices to be the sums of their corresponding 

indexed variables, as: 

𝑃 =∑𝑃𝑖

𝑛

𝑖=1

  ; 𝑃𝑅 =∑𝑃𝑅,𝑖

𝑛

𝑖=1

  ; 𝑋 =∑𝑋𝑖

𝑛

𝑖=1

  ; 

𝑌 =∑𝑌𝑖

𝑛

𝑖=1

  ; 𝑍 =∑𝑍𝑖

𝑛

𝑖=1

  ; 𝑊 =∑𝑊𝑖

𝑛

𝑖=1

  . 

 

Finally, we obtain a full expression for the total wealth yielded by all policies: 

𝑊 = 𝑃(1 − 𝑑) − 𝑃𝑅 − 𝑌 =

= ∑ (𝑃𝑖(1 − 𝑑) − min{𝑋𝑖, 𝑉𝑖})

𝑉𝑖≤𝑀

+

+ ∑ (𝑃𝑖 ((1 − 𝑑) − (1 −
𝑀

𝑉𝑖
) (1 − 𝑐)) −

𝑀

𝑉𝑖
min{𝑋𝑖, 𝑉𝑖})

𝑀<𝑉𝑖≤𝐿

+

+ ∑ (𝑃𝑖 ((1 − 𝑑) − (
𝐿 −𝑀

𝑉𝑖
) (1 − 𝑐)) −

𝑉𝑖 − 𝐿 +𝑀

𝑉𝑖
min{𝑋𝑖, 𝑉𝑖})

𝑉𝑖>𝐿

  . 

( 4 ) 

We recall that we are assuming, for simplicity, that there is a single surplus reinsurance 

contract for all policies. A real-life insurer may purchase multiple reinsurance contracts, 

which can be of the same type and can be from different reinsurers to diversify risk. This 
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may be used to increase the insurer’s protection. In particular, we note that, if a second 

surplus contract (with the same constant commission) is bought on top of the first one 

such that the M of the second one equals the L of the first one, this has the same effect as 

buying one single larger contract with the M of the first one and the L of the second one. 

3.2. Optimality criteria 

Finding the optimal surplus reinsurance contract means finding the M and the L which 

optimise a given optimality criterion. In our approach, we will select for each such 

criterion a function of the insurer’s total wealth (W). 

For this purpose, we will use three different criteria to find the optimal reinsurance 

contract, which — roughly described — shall be: 1) maximising the expected utility; 

2) minimising the standard deviation; and 3) optimising the Value-at-Risk. 

3.2.1. Expected utility 

For the first criterion, we resort to Utility Theory. This is a common approach in 

reinsurance optimisation, carried out, for instance, by Guerra and Centeno (2008). For 

this purpose, they choose the exponential utility function, defined as: 

𝑈(𝑊) =
1 − 𝑒−𝛽𝑊

𝛽
  , 

( 5 ) 

where β is the risk-aversion coefficient. 

This function has two advantages: it incorporates the idea of risk-aversion, due to its 

concave shape; and, as proven by the same authors, the problem of maximising it is deeply 

connected to the problem of maximising the adjustment coefficient (a relevant risk 

measure, because, according to the Lundberg inequality, it establishes an upper bound for 

the probability of ruin). We are going to use it, for the same reasons. 

We seek to maximise its expected value, that is, 𝐸(𝑈(𝑊)), which is the same as 

minimising 𝐸(𝑒−𝛽𝑊) = 𝐸(𝑇(𝑊)). First, we determine for it an explicit expression for 

each policy i, which, based on (3), shall be: 
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𝐸(𝑇(𝑊𝑖)) = 𝐸(𝑒
−𝛽𝑊𝑖) =

=

{
  
 

  
 

𝑒−𝛽𝑃𝑖(1−𝑑)𝐸(𝑒𝛽min{𝑋𝑖,𝑉𝑖}) 𝑉𝑖 ≤ 𝑀

𝑒
−𝛽𝑃𝑖((1−𝑑)−(1−

𝑀
𝑉𝑖
)(1−𝑐))

𝐸 (𝑒
𝛽
𝑀
𝑉𝑖
min{𝑋𝑖,𝑉𝑖}) 𝑀 < 𝑉𝑖 ≤ 𝐿

𝑒
−𝛽𝑃𝑖((1−𝑑)−

𝐿−𝑀
𝑉𝑖

(1−𝑐))
𝐸 (𝑒

𝛽
𝑉𝑖−𝐿+𝑀

𝑉𝑖
min{𝑋𝑖,𝑉𝑖}) 𝑉𝑖 > 𝐿

=

=

{
 
 
 
 

 
 
 
 𝑒−𝛽𝑃𝑖(1−𝑑) (∫ 𝑒𝛽𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽𝑉𝑖𝑆𝑋𝑖(𝑉𝑖)) 𝑉𝑖 ≤ 𝑀

𝑒
−𝛽𝑃𝑖((1−𝑑)−(1−

𝑀
𝑉𝑖
)(1−𝑐))

(∫ 𝑒
𝛽
𝑀
𝑉𝑖
𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽𝑀𝑆𝑋𝑖(𝑉𝑖)) 𝑀 < 𝑉𝑖 ≤ 𝐿

𝑒
−𝛽𝑃𝑖((1−𝑑)−

𝐿−𝑀
𝑉𝑖

(1−𝑐))
(∫ 𝑒

𝛽
𝑉𝑖−𝐿+𝑀

𝑉𝑖
𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽(𝑉𝑖−𝐿+𝑀)𝑆𝑋𝑖(𝑉𝑖)) 𝑉𝑖 > 𝐿

  , 

( 6 ) 

where: 

• 𝑓𝑋𝑖(𝑥𝑖) is the probability density function of 𝑋𝑖; and 

• 𝑆𝑋𝑖(𝑥𝑖) is the survival function of 𝑋𝑖. 

Now, we want to minimise the expected value of the function T(·) applied to the sum of 

the wealth values generated by all policies, as shown in (4). If we assume all policies are 

independent, this expected value becomes: 

𝐸(𝑇(𝑊)) = 𝐸(𝑒−𝛽𝑊) = 𝐸(𝑒−𝛽∑ 𝑊𝑖
𝑛
𝑖=1 ) = 𝐸 (∏𝑒−𝛽𝑊𝑖

𝑛

𝑖=1

) =∏𝐸(𝑒−𝛽𝑊𝑖)

𝑛

𝑖=1

=

= ∏ 𝑒−𝛽𝑃𝑖(1−𝑑) (∫ 𝑒𝛽𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽𝑉𝑖𝑆𝑋𝑖(𝑉𝑖))

𝑉𝑖≤𝑀

×

× ∏ 𝑒
−𝛽𝑃𝑖((1−𝑑)−(1−

𝑀
𝑉𝑖
)(1−𝑐))

(∫ 𝑒
𝛽
𝑀
𝑉𝑖
𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽𝑀𝑆𝑋𝑖(𝑉𝑖))

𝑀<𝑉𝑖≤𝐿

×

×∏𝑒
−𝛽𝑃𝑖((1−𝑑)−

𝐿−𝑀
𝑉𝑖

(1−𝑐))
(∫ 𝑒

𝛽
𝑉𝑖−𝐿+𝑀

𝑉𝑖
𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽(𝑉𝑖−𝐿+𝑀)𝑆𝑋𝑖(𝑉𝑖))

𝑉𝑖>𝐿

 . 

( 7 ) 
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Because differentiating these functions with respect to M and to L (even for only one 

policy) is very difficult to do analytically, we have taken a numerical approach. 

However, because these exponentials will mostly be very small numbers (that is, positive 

but close to zero), their product will be too small for the computer to reach an accurate 

optimisation. Therefore, we will instead minimise its natural logarithm (ln) — which we 

can legitimately do because the logarithm is an increasing monotonic function —, which 

shall be: 

ln 𝐸(𝑇(𝑊)) = ln∏𝐸(𝑒−𝛽𝑊𝑖)

𝑛

𝑖=1

=∑ln𝐸(𝑒−𝛽𝑊𝑖)

𝑛

𝑖=1

=

= ∑ ln(𝑒−𝛽𝑃𝑖(1−𝑑) (∫ 𝑒𝛽𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽𝑉𝑖𝑆𝑋𝑖(𝑉𝑖)))

𝑉𝑖≤𝑀

+

+ ∑ ln(𝑒
−𝛽𝑃𝑖((1−𝑑)−(1−

𝑀
𝑉𝑖
)(1−𝑐))

(∫ 𝑒
𝛽
𝑀
𝑉𝑖
𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑒𝛽𝑀𝑆𝑋𝑖(𝑉𝑖)))

𝑀<𝑉𝑖≤𝐿

+

+ ∑ ln(𝑒
−𝛽𝑃𝑖((1−𝑑)−

𝐿−𝑀
𝑉𝑖

(1−𝑐))
(∫ 𝑒

𝛽
𝑉𝑖−𝐿+𝑀

𝑉𝑖
𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+

𝑉𝑖>𝐿

+ 𝑒𝛽(𝑉𝑖−𝐿+𝑀)𝑆𝑋𝑖(𝑉𝑖)))   . 

( 8 ) 

The numerical results are presented and discussed later. 

3.2.2. Standard deviation 

The method of maximising expected utility has a disadvantage in that utility is a vague 

and merely theoretical concept, with an unclear practical interpretation. Furthermore, it 

requires selecting an arbitrary value for β as a risk-aversion coefficient. 

An alternative form of considering risk-aversion so as to solve this problem is by 

measuring dispersion indicators of the insurer’s risk under each possible reinsurance 

contract, instead of assigning arbitrary utility values to said risk, and attempting to 

optimise that. Two common measures of variability of a given random variable are the 
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variance and the standard deviation. Using them is also frequent in the literature about 

optimal reinsurance; in fact, the earliest papers we know, by de Finetti (1940) and Borch 

(1960), are good examples of the usage of the variance to optimise reinsurance. 

In this section, we will use the standard deviation σX (with X being any given random 

variable) — which has the advantage, over the variance, that it is measured in the same 

unit as the risk itself —, but we will have to convert to the variance in intermediate 

calculations in order to resort to its properties. 

It is in the interest of the insurer to minimise the variability of the risk it takes on, because 

a high variability makes predictions difficult and increases the probability of severely 

high losses. Therefore, we might think about seeking to simply minimise the standard 

deviation. However, this would lead to a trivial solution whereby all risk would be 

reinsured — in other words, there would be no risk and, therefore, the standard deviation 

would be reduced to zero —, which is unreasonable because the insurer would essentially 

cease to be an insurer and because this strategy would result in a guaranteed loss, as the 

reinsurance commission (c) is smaller than the insurer’s expenses (d) with the risk. 

To overcome this problem, de Finetti (1940) and Borch (1960) fix a specific desired 

expected value and find the contract which fulfils that condition and minimises the 

variance. This approach, of course, has the disadvantage of having to select an arbitrary 

desired expected value. Meanwhile, Veprauskaite and Sherris (2012), in one of the three 

criteria they define, opt for minimising the ratio between the variance and the expected 

value of the retained claims. This method is more similar to the one we shall use. 

We consider that what the insurer actually wants is to minimise the standard deviation 

while maximising the expected value. But a reduction in the standard deviation caused 

by an increase in the amount of risk reinsured will reduce the expected value of the wealth, 

assuming the risk is profitable. Therefore, the insurer wants to strike a balance between 

the two goals. This leads us to the strategy of maximising the ratio between the expected 

value and the standard deviation. Unlike the authors cited above, we recall that we prefer 

the standard deviation instead of the variance. 

However, even this criterion has a flaw: for negative expected values, it ceases to be 

risk­averse and becomes risk-loving (because the ratio would then be maximised with a 
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higher standard deviation) — imprudent behaviour for an insurer. Therefore, to ensure 

that the premise of risk-aversion is kept across all admissible solutions, the expected value 

of the wealth must have the riskless strategy wealth deduced from it in the ratio, to keep 

the numerator always positive. The idea is that any value of wealth higher than that which 

would be achieved with no risk is a gain, but we must accept a given amount of risk to 

reach this expected gain; therefore, we want to gain as much as possible, by comparison 

with the riskless scenario, whilst accepting as little volatility as possible. Essentially, this 

is the concept of the Sharpe ratio, as used in the theory of optimisation of financial 

investments — presented by Sharpe (1994) —, applied to reinsurance: the risk-free rate 

is replaced by the riskless scenario wealth, and the other variables remain the same. 

Thus, the function to be maximised under this criterion is: 

𝐸(𝑊) −𝑊𝑟𝑖𝑠𝑘𝑙𝑒𝑠𝑠

𝜎𝑊
=
𝐸(𝑊) − 𝑃(𝑐 − 𝑑)

𝜎𝑊
  . 

( 9 ) 

The riskless strategy wealth is, of course, the one which is obtained by reinsuring 

everything, that is, by setting 𝑀 = 0 and 𝐿 ≥ max{𝑉𝑖}. It is in this case that the insurer 

will face no risk and the standard deviation is zero. 

We now need to determine formulae for the calculation of the expected value and of the 

standard deviation of the wealth. For each policy i, considering the function of its 

generated wealth given in (3), the expected value is: 

𝐸(𝑊𝑖) =

{
  
 

  
 

𝑃𝑖(1 − 𝑑) − 𝐸(min{𝑋𝑖, 𝑉𝑖}) 𝑉𝑖 ≤ 𝑀

𝑃𝑖 ((1 − 𝑑) − (1 −
𝑀

𝑉𝑖
) (1 − 𝑐)) −

𝑀

𝑉𝑖
𝐸(min{𝑋𝑖, 𝑉𝑖}) 𝑀 < 𝑉𝑖 ≤ 𝐿

𝑃𝑖 ((1 − 𝑑) −
𝐿 −𝑀

𝑉𝑖
(1 − 𝑐)) −

𝑉𝑖 − 𝐿 +𝑀

𝑉𝑖
𝐸(min{𝑋𝑖, 𝑉𝑖}) 𝑉𝑖 > 𝐿

, 

( 10 ) 

where: 

𝐸(min{𝑋𝑖, 𝑉𝑖}) = ∫ 𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑉𝑖𝑆𝑋𝑖(𝑉𝑖)  . 

( 11 ) 
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Meanwhile, the formula for the variance of the wealth generated by the same policy i, 

also based on (3), is: 

𝑉𝑎𝑟(𝑊𝑖) =

{
 
 

 
 

𝑉𝑎𝑟(min{𝑋𝑖, 𝑉𝑖}) 𝑉𝑖 ≤ 𝑀

𝑀2

𝑉𝑖
2 𝑉𝑎𝑟(min{𝑋𝑖, 𝑉𝑖}) 𝑀 < 𝑉𝑖 ≤ 𝐿

(𝑉𝑖 − 𝐿 +𝑀)
2

𝑉𝑖
2 𝑉𝑎𝑟(min{𝑋𝑖, 𝑉𝑖}) 𝑉𝑖 > 𝐿

  , 

( 12 ) 

where: 

𝑉𝑎𝑟(min{𝑋𝑖, 𝑉𝑖}) = 𝐸((min{𝑋𝑖, 𝑉𝑖})
2) − 𝐸2(min{𝑋𝑖, 𝑉𝑖}) =

= 𝐸(min{𝑋𝑖
2, 𝑉𝑖

2}) − 𝐸2(min{𝑋𝑖, 𝑉𝑖}) =

= ∫ 𝑥𝑖
2𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

+ 𝑉𝑖
2𝑆𝑋𝑖(𝑉𝑖) − (∫ 𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

)

2

−

− 2∫ 𝑥𝑖𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

𝑉𝑖

0

𝑉𝑖𝑆𝑋𝑖(𝑉𝑖) − 𝑉𝑖
2𝑆𝑋𝑖

2 (𝑉𝑖)  . 

( 13 ) 

Finally, summing the wealth for all policies as in (4) and applying to it the results (10) 

and (12), assuming all policies are independent, we obtain that the expected value of the 

total wealth is: 

𝐸(𝑊) = 𝐸 (∑𝑊𝑖

𝑛

𝑖=1

) =∑𝐸(𝑊𝑖)

𝑛

𝑖=1

=

= ∑ (𝑃𝑖(1 − 𝑑) − 𝐸(min{𝑋𝑖, 𝑉𝑖}))

𝑉𝑖≤𝑀

+

+ ∑ (𝑃𝑖 ((1 − 𝑑) − (1 −
𝑀

𝑉𝑖
) (1 − 𝑐)) −

𝑀

𝑉𝑖
𝐸(min{𝑋𝑖, 𝑉𝑖}))

𝑀<𝑉𝑖≤𝐿

+

+ ∑ (𝑃𝑖 ((1 − 𝑑) − (
𝐿 −𝑀

𝑉𝑖
) (1 − 𝑐)) −

𝑉𝑖 − 𝐿 +𝑀

𝑉𝑖
𝐸(min{𝑋𝑖, 𝑉𝑖}))

𝑉𝑖>𝐿

 

( 14 ) 

and its variance is: 
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𝑉𝑎𝑟(𝑊) = 𝑉𝑎𝑟 (∑𝑊𝑖

𝑛

𝑖=1

) =∑𝑉𝑎𝑟(𝑊𝑖)

𝑛

𝑖=1

=

= ∑ 𝑉𝑎𝑟(min{𝑋𝑖, 𝑉𝑖})

𝑉𝑖≤𝑀

+ ∑
𝑀2

𝑉𝑖
2 𝑉𝑎𝑟(min{𝑋𝑖, 𝑉𝑖})

𝑀<𝑉𝑖≤𝐿

+

+ ∑
(𝑉𝑖 − 𝐿 +𝑀)

2

𝑉𝑖
2 𝑉𝑎𝑟(min{𝑋𝑖, 𝑉𝑖})

𝑀<𝑉𝑖≤𝐿

  . 

( 15 ) 

As in the first criterion, optimising this analytically is very difficult, perhaps even 

impossible. We have to do it numerically. 

3.2.3. Value-at-Risk 

Another optimisation criterion we can use is based on another very important risk measure 

used in the actuarial profession: the Value-at-Risk (written as VaR). It is sometimes used 

in reinsurance optimisation, for example, by Cai and Tan (2007) and by Cai et al. (2008), 

who also use the related Tail-Value-at-Risk (also called Conditional Tail Expectation). 

We recall that the Value-at-Risk at α of a random variable (written as VaRα) — where α 

is a value, usually expressed in percentage, between 0 and 1 — is the number such that 

the probability that the random variable takes a value no greater than it is α. Essentially, 

it is the quantile α of the distribution being considered. In other words, for the usual cases 

and assuming a continuous distribution: 

𝑉𝑎𝑅𝛼(𝑋) = 𝑟 ⟺ 𝑃(𝑋 ≤ 𝑟) = 𝛼  , 

( 16 ) 

where: 

• P(·) is the probability of an event; and 

• X, in this context, is any given random variable. 

Usually, the α is very high, close to 100%, because the random variable being studied 

measures actuarial losses and the point of the VaR is to provide a notion of how high a 

loss can realistically be, in the most extreme scenarios (on the right tail of the loss 
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probability distribution). Naturally, having fixed a given α, insurers would like to have a 

VaR as low as possible. Common values for the α would be 95%, 99% or 99.5%. 

Meanwhile, the Tail-Value-at-Risk (TVaR) is defined as the mean of all values above the 

Value-at-Risk. It is generally regarded as having two advantages over the VaR: it gives 

information as to what happens above the VaR, until the end of the distribution tail; and 

it is a coherent risk measure.10 Nevertheless, it has the notably significant disadvantage 

that it is very difficult to calculate in practice. Possibly for this reason, the EU-wide 

Solvency II rules stipulate the usage of the VaR and set its α at 99.5%. Thus, for 

simplification, we shall also use the VaR in this work and, drawing inspiration from 

Solvency II, we shall set it at the same α of 99.5%. 

However, in this case, we would like to measure the risk of the wealth, as we have been 

doing above, and not specifically of the claims. It does not change the reasoning, other 

than that it now requires us to think of the Value-at-Risk in reverse (on the left tail), setting 

it at 0.5% instead and seeking to maximise it. Note that: 

𝑉𝑎𝑅0.5%(𝑊) = 𝑃(1 − 𝑑) − 𝑃𝑅 − 𝑉𝑎𝑅99.5%(𝑌)  , 

( 17 ) 

because Y is the only random component of W, as given in (4). 

Please note, however, that, for multiple policies with different claim distributions, it is 

very difficult — perhaps even impossible — to obtain an explicit equation for the 

Value­at­Risk of the sum of all claims, even assuming that they are independent. This 

means that the optimisation according to this criterion will have to be done numerically, 

not because it is difficult to do it analytically, but because there is no analytical expression 

to optimise. We will, instead, simulate numerically the VaR under different reinsurance 

contracts and find the one which optimises it. 

As stated earlier, the insurer would like the Value-at-Risk of the wealth to be as high as 

possible. However, similarly to when we sought to minimise the standard deviation, doing 

 
10 A coherent risk measure must, among other criteria, be sub-additive: if two risks are added, the risk 

measure of the sum must not be higher than the sum of the risk measures of the original risks (it may be 

lower, though, because diversifying a portfolio tends to reduce risk). The Value-at-Risk has been proven 

not to fulfil this condition, whereas the Tail-Value-at-Risk does. For more on coherent risk measures, we 

recommend Kaas et al. (2008). 
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only this would lead us back to the trivial solution of reinsuring everything — although, 

this time, concluding this is not immediate, because reinsuring less (that is, accepting 

more risk) has two opposing effects on the VaR0.5%(W) [see (17)]: it increases 

the VaR99.5%(Y) (because the risk is higher), but it also decreases the reinsurance 

premium (PR). Determining which of these two effects is stronger requires us to recall 

that we are working under proportional reinsurance:11 looking back at (1) and (2), we see 

that, for each policy i, any change in the amount of reinsurance causes a proportional 

change in PR,i and in the retained risk Yi; and, since the VaR is a positively homogeneous 

measure — meaning that 𝑉𝑎𝑅(𝑘𝑌𝑖) = 𝑘 × 𝑉𝑎𝑅(𝑌𝑖), ∀𝑘 > 0 —, the impact on 

the VaR99.5%(Yi) will also be proportional. Therefore, if we assume that the VaR of the 

policy’s total claims (Xi) is greater than the premium which would be charged for 

reinsuring the whole policy — which is reasonable, because we are working with an 

extreme α —, we conclude that the effect of the VaR99.5%(Yi) is greater. If all policies 

follow this assumption, we determine that the contract which maximises the VaR0.5%(W) 

is the trivial full reinsurance. 

Therefore, again, we wish to strike a balance between maximising the expected value and 

the Value-at-Risk, which correlate negatively with one another. And, again, we must 

ensure that risk-aversion is respected at all points, which we can do by maximising the 

following function: 

(𝐸(𝑊) −𝑊𝑟𝑖𝑠𝑘𝑙𝑒𝑠𝑠) × (𝑉𝑎𝑅0.5%(𝑊) − 𝑉𝑎𝑅0.5%(𝑊𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑖𝑠𝑘)) =

= (𝐸(𝑊) − 𝑃(𝑐 − 𝑑)) × (𝑉𝑎𝑅0.5%(𝑊) − 𝑉𝑎𝑅0.5%(𝑊𝑛𝑜 𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒))  , 

( 18 ) 

where Wmaximum risk = Wno reinsurance is the wealth if nothing is reinsured, the scenario which 

maximises risk and, therefore, minimises the Value-at-Risk on the left tail. With these 

subtractions, we ensure that both factors are always positive and that the function 

translates a risk-averse behaviour. 

 
11 Indeed, the authors cited earlier do not have this problem, because they work with reinsurance that is 

not necessarily proportional. Therefore, they can simply minimise the VaR or the TVaR. 
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4. DATA SET AND PROBLEM SETTING 

4.1. Data set 

For this work, we have built a portfolio of 998 policies, based on fire insurance data 

received from a Portuguese insurer. The original data contained many more policies and, 

for each one, its premium, its capital insured and its total amount in reported claims over 

one year. We sorted the portfolio by capital insured and divided it into classes, to then 

randomly select a few policies belonging to each class; the number of policies selected 

within each class was meant to approximate the real distribution of the whole portfolio, 

but, due to the fact that there were too few policies with higher risks (which would be 

more relevant to decide the reinsurance contract), we decided to overrepresent such 

policies slightly. Lastly, for each policy among the 998 selected, we used its class average 

to estimate its probability of producing claims over the course of one year and, assuming 

such claims occur, the mean and the standard deviation of their total value. 

The summary statistics of the portfolio which was produced by using this method are 

shown in Table 1. 

Statistics Mean Minimum 1st Q Median 3rd Q Maximum 

Capital 353 308.55 2619.73 50 000 81 379.84 200 000 19 792 309.33 

Probability 0.0736 0.03 0.03 0.06 0.09 0.75 

Avg. sev. 2067.19 1000 1160 1360 2300 35 000 

STD of sev. 4236.27 1900 1900 1900 7500 50 000 

P: Given 517.08 39.13 76.75 140.04 294.59 70 257.17 

P: EV 517.08 57.74 66.97 157.04 398.38 50 518.92 

P: STD 517.08 91.75 98.77 175.97 597.54 33 892.61 

P: Variance 517.08 34.51 39.64 92.14 387.46 95 359.31 

Table 1 — Means, minima, maxima and quartiles of the characteristics of the 998 policies used. ‘Probability’ refers 

to the probability that any claim will occur within one year. ‘P’ stands for ‘premium’, ‘Q’ for ‘quartile’, ‘avg.’ for 

‘average’, ‘sev.’ for ‘severity’, ‘STD’ for ‘standard deviation’, and ‘EV’ for ‘expected value’. 

A few of the policy limits are much higher than the other ones, as we can see from the 

first line of the table. This is not a mistake, as the capital distribution is indeed severely 

skewed to the left: in fact, although more than half of all sums insured are below 100 000, 

there are 47 policies with a capital insured of at least 1 000 000, six of which even 
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above 10 000 000 (and, as stated above, even these few higher risks are somewhat 

overrepresented). The implication is that, under many of the optimal reinsurance contracts 

we will find, only a minority of policies will actually be reinsured. 

As mentioned earlier, primary premia were provided along with each policy. We could 

not identify the premium principle which had been used to determine them (which can 

perhaps mean that the insurer was using information specific to each policy, which we do 

not have, in addition to an unknown principle). Therefore, for the purposes of our 

optimisation, we decided to consider three more sets of premia, calculated with the 

expected value principle, with the standard deviation principle and with the variance 

principle. In order to do so, for each principle, we computed the loading which would 

keep the same total received premium of 516 049.29. This loading was found to be of 

92.4530% for the expected value principle, 16.6590% for the standard deviation 

principle, and 0.0033% for the variance principle. 

4.2. Claim frequency and claim severity distributions 

As seen in the previous chapter, in order to perform many of the calculations necessary 

to find the optimal reinsurance contract, we must select a distribution for each Xi, that is, 

for the total value in yearly claims of each policy i. 

This can be done in two ways: either the number of claims Ni follows a Poisson 

distribution and each claim has a severity given by Xij (where j = 1, …, ni), or we use a 

Bernoulli distribution to model whether there were any claims or not (so that Ni only takes 

the values 0 and 1) and the total severity of all claims is given by Xi | Ni = 1. Naturally, 

unlike the Bernoulli approach, the Poisson method requires us to have knowledge of the 

severities of each specific claim. 

If the Poisson approach is followed, Xi will be given by: 

𝑓𝑋𝑖(𝑥𝑖) =

{
 

 
𝑓𝑁𝑖(0) 𝑥𝑖 = 0

∑ 𝑓𝑋𝑖|𝑁𝑖(𝑥𝑖)𝑓𝑁𝑖(𝑛𝑖)

+∞

𝑛𝑖=1

𝑥𝑖 > 0
= {

𝑒−𝜇𝑖 𝑥𝑖 = 0

∑ 𝑓𝑋𝑖|𝑁𝑖(𝑥𝑖)
𝑒−𝜇𝑖𝜇𝑖

𝑛𝑖

𝑛𝑖!

+∞

𝑛𝑖=1

𝑥𝑖 > 0
  , 

( 19 ) 

where μi is the Poisson parameter of policy i, which is the average number of claims. 



 

24 

 

Meanwhile, if we follow the Bernoulli approach, Xi is given by: 

𝑓𝑋𝑖(𝑥𝑖) = {
𝑓𝑁𝑖(0) 𝑥𝑖 = 0

𝑓𝑋𝑖|𝑁𝑖=1(𝑥𝑖)𝑓𝑁𝑖(1) 𝑥𝑖 > 0
= {

1 − 𝑝𝑖 𝑥𝑖 = 0

𝑝𝑖𝑓𝑋𝑖|𝑁𝑖=1(𝑥𝑖) 𝑥𝑖 > 0
  , 

( 20 ) 

where pi is the Bernoulli parameter of policy i, which is the probability that there is a 

claim. 

We have chosen the Bernoulli model, essentially because we do not have information on 

the individual claim severity for each policy. 

Finally, we have chosen to model the total severity of all claims incurred by policy i 

through a Lognormal distribution, mainly because it is generally considered to be a 

medium-tailed distribution (that is, with a tail which is neither too light nor too heavy). 

4.3. Problem setting 

By resorting to the distribution explained in the previous section and assuming a portfolio 

comprising the 998 policies whose summary statistics were presented in Section 4.1, we 

have sought to find the optimal surplus reinsurance contract, according to the definition 

of surplus reinsurance presented in Section 3.1 and following each of the three 

optimisation criteria explained in Section 3.2. 

We recall that the three criteria are each based on: 

1. The expected utility of the wealth, which is the minimisation of (8); 

2. The standard deviation of the wealth, which is the maximisation of (9), where the 

expected value of W is given by (14) and its variance by (15); and 

3. The Value-at-Risk of the wealth, which is the maximisation of (18). 

For the first two criteria, we have derived formulae which we can optimise numerically 

using adequate software. For the expected utility, we had to decide a value for β (which 

represents the coefficient of risk-aversion): we used β = 0.3 and β = 0.6. 

For the Value-at-Risk criterion, since we were unable to obtain a formula for the VaR, 

we instead decided to simulate the expected value and the VaR for each possible 

reinsurance contract, at intervals of 1 000 000 for each of the variables M and L, such 
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that 0 ≤ 𝑀 ≤ 19 000 000 and 𝑀 + 1 000 000 ≤ 𝐿 ≤ 20 000 000, plus the scenario of 

no reinsurance; and we found the optimal contract by identifying the highest value 

for (18) among the scenarios simulated. Such simulations were performed with 499 999 

elements.12 

Lastly, after finding the optimal contract under each criterion, we conducted simulations 

to determine the final risk measures — expected value, standard deviation and VaR — 

under that reinsurance contract, in order to compare the results produced by the different 

methods. These simulations were also performed with 499 999 elements. 

These procedures, under all three optimisation criteria, were carried out for each of the 

four possible sets of premia mentioned in section 4.1, assuming a commission c of 10% 

and of 20%, and expenses d of 24%. The idea was to contrast the effect of a commission 

which is far from sufficient to reasonably cover the expenses against a commission which 

covers them more adequately. 

All optimisations and simulations were computed using the R software. 

 
12 The odd number makes it easier to determine the Value-at-Risk at 99.5% of the claims. In fact, if the 

number of elements is one less than a multiple of 200, the VaR99.5% can be identified by picking only one 

of the simulated elements. This presumes that, given a statistical sample with n elements, a quantile q is 

calculated from the element of order (n+1)q — which is not the only formula that can be used, but it is 

the one we have used in this work. For more on quantile calculation, we recommend Kaas et al. (2008). 



 

26 

 

5. RESULTS 

5.1. Presentation 

All results obtained are presented in Table 2. 

The left side of the table shows the eight scenarios tested (four possible sets of premia 

and two possible values for the commission), under each of the three criteria used. As 

stated earlier, in the case of the expected utility criterion, optimisations featured two 

different values for β. 

At the top, the expected results under no reinsurance (in yellow) and the sure results under 

full reinsurance (in green) are shown, for comparison. These are the same for any 

premium principle, because the total premium amount of 516 049.29 has been kept. 

Under full reinsurance, there is, evidently, no risk, which is why the standard deviation 

under these scenarios is zero. The no reinsurance scenario provides the highest possible 

expected value and standard deviation, and the worst possible VaR; the full reinsurance 

scenario gives the lowest possible expected value and the best possible VaR (which, in 

this case, are equal, because no risk is taken). 

In the central columns, the optimal reinsurance contract — defined by its M and its L — 

is presented. On the right side, the simulated risk measures of the wealth, under each 

optimal reinsurance contract, are shown. 

We recall that, as explained earlier, the optimal reinsurance contracts for the 

Value­at­Risk criterion had to be obtained in a different way (through simulation), which 

is why their values for M and L are always rounded to the million, and which implies that 

better contracts with values of M and L in-between may have been missed. 

Finally, we note that we did not allow the expenses (d) to vary, because we determined 

that it would cause no impact in the selection of the optimal reinsurance contract, as we 

will explain next. 
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Table 2 — Optimisation results obtained. ‘EV’ stands for ‘expected value’, ‘STD’ for ‘standard deviation’, ‘VAR’ for 

‘variance’ and ‘VaR’ for ‘Value-at-Risk’. 

5.2. Discussion 

As stated earlier, we did not include any presentation of results with different values for 

the expenses (d). This is because we have concluded that, when the expenses vary, under 

any of the criteria used, the optimal reinsurance contract does not change. Indeed, 



 

28 

 

preliminary optimisations (not reported here) with different values for the expenses had 

led us to observe this fact, which can be explained from the expressions for each criterion: 

1. For the expected utility, we see that, in (6), the only term where d appears can be 

factored as 𝑒−𝛽𝑃𝑖(1−𝑑) > 0, which shows that changing the d is simply equivalent 

to multiplying 𝐸(𝑇(𝑊𝑖)) by a positive constant, which does not change its 

optimum, and the same thing happens for the joint 𝐸(𝑇(𝑊)), in (7), where the 

factored term is ∏ 𝑒−𝛽𝑃𝑖(1−𝑑)𝑉𝑖
= 𝑒−𝛽𝑃(1−𝑑) > 0; 

2. For the standard deviation criterion, we see, in (14), that any change in d (say, Δd) 

produces a change of ∑ (−𝑃𝑖Δ𝑑)𝑉𝑖
= −𝑃Δ𝑑 in 𝐸(𝑊), which is then cancelled out 

in (9) by adding 𝑃Δ𝑑 to the numerator; 

3. Similarly, for the Value-at-Risk criterion, any change Δd also produces in 𝐸(𝑊) 

a change of −𝑃Δ𝑑 which is then cancelled in (18) and, through (17), the same 

kind of cancelled change also happens in VaR0.5%(W). 

We note that varying the expenses, although it does not change the optimal point, will 

change the expected value and the Value-at-Risk of the wealth, improving them if the 

expenses are reduced and worsening them if they are increased. This implies, for example, 

that any optimal result producing a negative expected value should not be disregarded 

solely for that reason, as it can be turned into a positive one by reducing sufficiently the 

expenses. 

The effect of changes in the commission is noticeable: as we would expect, since a higher 

commission makes reinsurance more attractive, results with a 20% commission tend to 

point to reinsuring more (that is, using a smaller M and perhaps a higher L) than under a 

10% commission, although this is not always the case. Indeed, when the optimisation 

criterion is not the expected utility, the effect of changing the commission seems to 

become more negligeable. More relevant, though, is the fact that a commission increase 

always has a positive effect in the expected value and in the VaR of the wealth, which is 

to be expected: ceteris paribus, increasing the commission always increases the wealth, 

unless no reinsurance is in force. Notably, in scenarios of a 10% commission, some 

optimal contracts even yield undesirably negative expected values, which almost never 

happens with a 20% commission. We recall that the commission is aimed at partially, but 
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not completely, covering the expenses: a 20% commission can perhaps be said to cover 

expenses of 24% satisfactorily, but a 10% commission falls short of having a similar 

effect. 

Changing the premium principle also has an interesting impact on the optimal reinsurance 

contract. The expected value premium principle points to reinsuring less than the original 

real premia when using the expected utility criterion, but more when using the other two; 

the effect in the expected value is not constant but, interestingly, all Values-at-Risk are 

better under this premium principle than under the original premia. The standard deviation 

principle improves all VaRs even further; in this case, the expected utility criterion also 

requires reinsuring less, but, for the other two criteria, the optimal contracts are actually 

closer to those produced by the expected utility than under any other principle. 

Remarkably, it seems that usage of this premium principle produces overall better results 

than any other (which can perhaps be attributed to the fact that the premia follow the 

claim distributions more closely): not only are the VaRs the highest of all (as stated 

earlier), but also this is the only principle under which we can, for example, find optimal 

contracts with an expected value that is more than twice the standard deviation. Finally, 

the variance principle is the one producing the strangest outcomes (which can perhaps be 

attributed to the fact that the variance is not measured in the same scale as the claim): 

almost all VaRs are worse than those given by all the other premia sets, but, intriguingly, 

the standard deviation criterion suggests reinsuring very little of the high risks, by 

providing a low L. 

The usage of different optimisation criteria is also interesting to analyse: the expected 

utility criterion almost always requires reinsuring much more than the other two; in fact, 

the only exception happens, as mentioned earlier, when using the standard deviation 

premium principle, under which the standard deviation criterion now approximates more 

closely the results given by the expected utility. Elsewhere, though, the expected utility 

criterion may be regarded as excessively risk-averse, as it frequently provides contracts 

which yield negative expected values and, when not so, expected values smaller than the 

associated standard deviations. This could be fixed by reducing the risk-aversion 

coefficient (β). Indeed, as expected, the higher coefficient of 0.6 always pointed to 

reinsuring more than the lower one of 0.3, thus improving the VaRs and the standard 

deviations, but reducing the expected values. 
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Finally, we note that — as stated in the Introduction — in no scenario did the optimal L 

match or exceed the highest of all sums insured Vi (in this case, 19 792 309.33) — 

although sometimes, especially under the expected utility criterion, the L was close to 

said value, but still from below. Thus, we confirm that it is possible to build a portfolio 

with which, using at least some optimality criteria and under certain conditions, the 

optimal surplus reinsurance contract does not imply reinsuring in such a way as to cover 

the highest of all risks; in other words, it is quite possible that the optimal surplus 

reinsurance contract features a non-negligeable reinsurance policy limit. This can perhaps 

be explained by the fact that there are so few risks so high that, mathematically, ensuring 

that they are fully covered simply does not compensate. 
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6. CONCLUSION 

In this work, we have discussed ways of optimising surplus reinsurance, beginning with 

a theoretical approach and then applying it to a portfolio which was constructed based on 

real-life data on fire insurance. 

We developed three possible optimisation criteria, based on the expected utility, the 

standard deviation, and the Value-at-Risk of the insurer’s wealth. For the first two, it was 

possible to derive explicit expressions to be optimised numerically; for the Value-at-Risk, 

since this was not possible, optimisation was carried out by simulating several different 

reinsurance contracts. We applied each of these three methods to a portfolio of policies, 

and we varied the primary premium principle and the reinsurance commission. 

Our findings do not point to any one of these three methods being better than the other 

ones, although the expected utility generally provided more risk-averse results, in the 

sense that more risk was reinsured. One disadvantage of the expected utility criterion is 

the vagueness of the concept of ‘utility’ and the need to provide an arbitrary risk-aversion 

coefficient. Meanwhile, a disadvantage of the Value-at-Risk method is its difficulty in 

calculating it, which does not allow for too much precision in the results obtained. 

Interestingly, our results suggest that using the standard deviation as the primary premium 

principle tends to provide better results, after applying surplus reinsurance, than the other 

premia considered (the expected value principle, the variance principle, or the original 

premium with no clear principle), keeping the total premium constant. This improvement 

is noticeable in the sense that the Values-at-Risk are always higher and that the expected 

values, especially by comparison to their associated standard deviations, also tend to be 

higher. We attribute this to the fact that this principle causes the premium to follow more 

closely the distribution of each risk: given two risks with the same expected value but 

different standard deviations, it makes a distinction between the riskiest one and the safest 

one (unlike the expected value principle); and this distinction is measured in the same 

scale as the risk itself (unlike the variance principle). 

Although we have also proven that varying the expenses does not change the optimal 

surplus reinsurance contract under any of the criteria we used, our findings highlight the 

need for the reinsurance commission to cover, as closely as possible, the insurer’s 
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expenses. Indeed, it was only when we optimised under a commission of 20% to cover 

expenses of 24% — as opposed to a commission of only 10% to cover the same amount 

in expenses — that we obtained reasonable results, in the sense that they could usually 

fulfil the basic desirability condition that the expected value of the wealth be positive. 

Otherwise, the optimal contract will usually require reinsuring unnecessarily less (that is, 

accepting unnecessarily more risk) to provide clearly worse results on average. The 

commission, of course, only has no impact if nothing is reinsured. 

Finally, our results show that the reinsurance policy limit has its importance when 

optimising surplus reinsurance. As stated in the Introduction, this contrasts with the 

existing literature, which rarely considers the existence of a policy limit under surplus 

reinsurance — implicitly assuming that it can be ignored because, if it exists, it shall 

always be no smaller than the highest sum insured, at least for the optimal contract. In 

our work, doing away with this assumption has shown us that, very frequently — in fact, 

in all the scenarios we analysed —, the optimal reinsurance policy includes a limit which 

actually leaves some of the highest risks partially uncovered at the top. 

Possible opportunities for future research on optimal surplus reinsurance, based on this 

work, could be, for example: modelling the severities with other distributions; 

determining what happens when the commission varies with the loss ratio, rather than 

remaining constant (including through mechanisms such as sliding scales and loss 

corridors); considering expenses that are not uniform across all policies; adding more 

premium principles to the analysis; exploring further the effects of the premium principle, 

notably the reason why the standard deviation premium principle yielded so much better 

results; identifying mathematically why a policy limit no smaller than the highest of all 

sums insured is not always optimal; introducing new optimisation criteria (some of which 

perhaps now depend on the expenses); or even adding a table of lines, rather than working 

with standard surplus reinsurance. 
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