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GLOSSARY 

AICc – Corrected Akaike’s Information Criterion. 

AR – Autoregressive. 

ARIMA – Autoregressive Integrated Moving Average. 

ARIMA_auto – ARIMA model using the automatic ARIMA modelling function. 

ARIMA_d0D1 – ARIMA (𝑝, 0, 𝑞)(𝑃, 1, 𝑄)12. 

ARIMA_d1D1 – ARIMA (𝑝, 1, 𝑞)(𝑃, 1, 𝑄)12. 

ETS – Exponential Smoothing. 

ETS_auto – Exponential Smoothing Model using the automatic modelling function. 

HWA – Holt Winters’ Additive. 

Lisbon M.A. – Lisbon Metropolitan Area. 

MA – Moving average. 

MFW – Master’s Final Work. 

Recursive CV – Recursive window cross-validation. 

RMSE – Root Mean Squared Error. 

Rolling CV – Rolling window cross-validation. 

SARIMA – Seasonal ARIMA. 

SNaïve – Seasonal Naïve Model. 

STL decomposition – Seasonal-Trend decomposition using LOESS. 

TSLM – Time Series Linear Model. 
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ABSTRACT 

Time series models have proven to be powerful tools for forecasting tourism demand. 

However, the recent Covid-19 outbreak has severely impacted the tourism industry, and 

models which were previously able to provide accurate forecasts may no longer be viable. 

This work aims to further analyse this situation by measuring the impact of data anomalies 

caused by the Covid-19 pandemic on the forecasting performance of different time series 

models. For this purpose, the monthly number of tourist Overnight Stays per region in 

Portugal from 2000 to 2022 is used and forecasting competitions are performed on three 

selected time series.  

These forecasting competitions contain various approaches, from simple methods to 

different variants of Autoregressive Integrated Moving Average and Exponential 

Smoothing models. The forecasting performance of the models is assessed firstly by 

excluding the Covid-19 pandemic from the time series and secondly by including this 

period. In addition, a logarithmic transformation of the forecast variable is performed as 

well as different types of cross-validation approaches are used. 

The results reveal that Autoregressive Integrated Moving Average and Exponential 

Smoothing models showed superior performance before the Covid-19 outbreak, but a 

significant loss of performance in the months thereafter. In contrast, the Naïve method 

produced comparatively good forecasts during these months due to its simplicity. 

Moreover, the Drift model applied to seasonally adjusted data was able to compete with 

the best models and displayed a lower deterioration in prediction accuracy following the 

Covid-19 outbreak. Besides, this work provides evidence that regions with a higher 

percentage of Portuguese tourists displayed lower declines in tourism demand during the 

Covid-19 period. 

 

KEYWORDS: Time Series Models; Forecasting Tourism Demand; Change in Model 

Performance; Data Anomalies; Covid-19.  

JEL CODES: C12; C22; C52; C53; C88; Z32. 
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RESUMO 

Os modelos de séries temporais provaram ser instrumentos eficazes a prever a procura 

turística. Contudo, o recente surto de Covid-19 afectou gravemente a indústria do turismo, 

e os modelos que anteriormente eram capazes de produzir previsões com uma reduzida 

margem de erro podem já não ser viáveis. Este trabalho visa analisar esta situação ao 

medir o impacto das anomalias de dados causadas pela pandemia de Covid-19 no 

desempenho preditivo de alguns modelos de séries temporais. Para este efeito, é utilizado 

o número mensal de estadias nas várias regiões de Portugal entre 2000 e 2022 e são 

realizadas previsões com vários modelos para três séries temporais distintas.  

Estes modelos de previsão incluem vários modelos, desde métodos simples a 

diferentes variantes de modelos Autoregressivos Integrados de Média Móvel e modelos 

de Suavização Exponencial. Em primeiro lugar, o desempenho da previsão destes 

modelos é avaliado excluindo à série temporal o período da pandemia Covid-19 e, em 

segundo lugar, incluindo este mesmo período. Além disso, é realizada uma transformação 

logarítmica na variável prevista e, de seguida, são implementados diferentes tipos de 

abordagens de validação cruzada. 

Os resultados revelam que os Modelos Autoregressivos Integrados de Médias Móveis 

e Suavização Exponencial apresentam um melhor desempenho antes do pandemia Covid-

19, mas uma perda significativa de desempenho nos meses seguintes. Em contraste, o 

método Naive, devido à sua simplicidade, consegue produzir previsões relativamente 

boas durante estes meses. Além disso, o modelo Drift aplicado a dados ajustados 

sazonalmente foi capaz de competir com os melhores modelos, revelando uma menor 

deterioração na precisão das suas previsões durante a pandemia da Covid-19. Além disso, 

este trabalho fornece provas de que as regiões com uma maior percentagem de turistas 

portugueses apresentaram menores declínios na procura turística durante o período de 

Covid-19. 

 

PALAVRAS-CHAVE: Modelos de séries temporais; Previsão da procura turística; 

Alteração no desempenho do modelo; Anomalias de dados; Covid-19.  

JEL: C12; C22; C52; C53; C88; Z32. 
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1. INTRODUCTION 

Planning is always crucial for the tourism industry, and an essential part of the 

planning process is forecasting tourism demand. Due to their ease of use, non-causal time 

series models are frequently applied in forecasting time series data. These models are 

based on historical patterns in the time series, such as trend and seasonality, and make 

forecasts based on the assumption that these patterns will persist into the future. 

However, in a rapidly changing world, sudden external changes can occur, leading to 

changes in patterns and data anomalies in the time series. In these situations, models that 

perform well during periods with regular patterns in the time series may perform worse, 

while other models may perform better. Only recently, with the outbreak of the 

Coronavirus disease, the tourism industry experienced such a sudden external change that 

led to a sharp decline in tourism demand and a slow recovery.  

This Master’s Final Work (MFW) aims to further analyse this situation by measuring 

the impact of data anomalies caused by the Covid-19 pandemic on the forecasting 

performance of various time series models. For this purpose, the monthly number of 

Overnight Stays in touristic accommodations from 2000 to 2022 per region of Portugal is 

gathered from the Statistical Institute of Portugal (“Instituto Nacional de Estatística”) and 

forms the data basis of this work. 

In recent decades, Portugal has experienced an extraordinary growth in tourism, 

making it one of the country’s most important economic sectors (Turismo de Portugal, 

2021). Portugal is renowned for its diversity. City tours, historical landmarks, wine 

regions, culinary specialities, religious sites and long sandy beaches are just some of the 

reasons why tourists travel to Portugal. However, the Covid-19 pandemic had a severe 

impact on Portugal’s tourism. As a result, Portugal’s tourism data offers interesting 

characteristics that may vary from region to region and will be analysed in more detail in 

this thesis. 

The forecasting performance of the different models is evaluated firstly by excluding 

the time period affected by the Covid-19 pandemic from the time series and secondly by 

including this period. In addition, the evolution of the performance over the years will be 

analysed. The purpose of this work is not to predict the future development of tourism, 

but to find out how the performance of the models changed during the Covid-19 
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pandemic. In particular, this MFW addresses the following research question: "How does 

the forecasting performance of time series models for tourism demand change with the 

presence of data anomalies induced by the Covid-19 pandemic?" 

In the past decades, several studies have been conducted on forecasting tourism 

demand. The main developments in this field may be found in literature reviews (Song et 

al., 2019; Jiao & Chen, 2019). The diversity of forecasting models and the increased use 

of modelling combination techniques are described as two key developments. 

However, most studies evaluated the forecasting performance of models during 

periods with regular patterns in the time series. The performance in situations of sudden 

external changes has not been given much attention, even though tourism data is 

characterised by a high sensitivity to external changes. Therefore, the addressed research 

question is relevant, and the present work can contribute to the literature by 

complementing these studies. To the author's knowledge, this MFW is the only academic 

work that uses recent tourism demand data from different regions in Portugal and analyses 

the impact of the Covid-19 pandemic on the predictive performance of different time 

series models. A detailed analysis of the literature on forecasting tourism demand can be 

found in chapter 2 of this MFW. 

In the present work, forecasting competitions are performed, which are often 

described as the application of different forecasting models on the same time series to 

evaluate which method produces the most accurate point forecasts. Forecasting 

competitions were also frequently used by the statistician Rob J. Hyndman, who is 

responsible for important developments in the field of forecasting time series (e.g. 

Athanasopoulos et al., 2011; Hyndman & Athanasopoulos, 2018). This confirms that the 

chosen approach of this MFW is appropriate for the problem to be solved. 

Since the software R provides useful functions and packages for time series analysis, 

the implementation for this thesis is made in R. The RMD file and the knitted HTML file 

are available on Github1. In addition, a programming walkthrough, which provides a 

description of the organisation of the code, can be found in Appendix B. 

 
1 https://github.com/RM-Mueller/MFW_l56280. 
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This MFW concludes that sophisticated time series models showed superior 

performance during periods with regular patterns in the time series, but recorded a 

significant loss of performance in the months following the Covid-19 outbreak. In 

contrast, the Naïve method is able to produce relatively good forecasts during this period 

due to its simplicity. 

Moreover, the Drift model applied to seasonally adjusted data was often able to 

compete with the best models. A smaller performance decrease following the Covid-19 

outbreak, allowed it to be among the top performers for predictions from 2010 to 2022 

for all three time series, whereas the linear regression and Prophet models have been 

among the inferior forecasting models during the whole time period. In addition, the 

exploratory analysis of the time series provided evidence that regions with a higher share 

of Portuguese tourists were less affected by strong declines in tourism demand during the 

Covid-19 period. 

The remainder of this work is structured as follows. The next section reviews recent 

developments in the tourism forecasting literature. This is followed by an exploratory 

data analysis of the time series and a description of the models used in the forecasting 

competitions. Thereafter, the forecasting procedure and evaluation will be explained. 

Finally, the results are presented before a conclusion is drawn in the last section. 

2. LITERATURE REVIEW 

Due to the sustained growth of the tourism market, tourism forecasting has received 

increasing attention. Over the last few decades, more than 600 studies have been 

published on modelling and forecasting tourism demand (Song et al., 2019). Many studies 

focus on developing forecasting techniques to improve the accuracy of predictions, which 

can help decision makers to enhance the efficiency of their strategic planning and 

minimize the risk of wrong decisions (Chen et al., 2019). 

There are numerous forecast variables available to measure tourism demand. It is 

common to use tourist arrivals from an origin country to a destination country as a 

measure (Jiao & Chen, 2019). However, other variables such as the number of tourist 

Overnight Stays (Athanasopoulos et al., 2009; Bigović, 2012), average hotel occupancy 

(Pan & Yang, 2017) and tourist expenditures (Song et al., 2013) have been applied as 

well.  
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The main developments in tourism forecasting in recent decades involve the increased 

diversity of forecasting models, the combination of models and the improvement in 

forecasting accuracy (Song et al., 2019). Methodological approaches to forecast tourism 

demand can be divided into quantitative and qualitative methods. Time series models 

belong to the first category (Hyndman & Athanasopoulos, 2018). 

Despite numerous studies in the field of tourism demand forecasting, there is still not 

a consensus on which forecasting methods are most accurate under which circumstances 

(Peng et al., 2014). In this dissertation the focus will be on non-causal time series models, 

which forecast tourism demand based on its historical patterns. Due to their ease of 

implementation and ability to adequately capture historical patterns, these models remain 

popular in the literature on tourism demand forecasting (Song et al., 2019; Jiao & Chen, 

2019). 

There are two types of time series approaches: Basic time series models and advanced 

time series models (Peng et al., 2014). The former includes the Naïve, the single 

exponential smoothing, and the historical mean models. The Naïve models are most often 

applied in tourism forecasting literature (Song et al., 2019). Despite its simplicity, the 

Naïve (or no change) technique is accurate in predicting annual tourism data one year 

ahead (Athanasopoulos et al., 2011; Witt & Witt, 1995). 

The advanced time series models can be distinguished from the basic models by the 

fact that they integrate additional time series features, like trend and seasonality. Various 

types of exponential smoothing models and autoregressive integrated moving average 

(ARIMA) methods belong to this category (Song et al., 2019). A variety of ARIMA 

models have been widely used in time series analyses of tourism demand, and especially 

the seasonal ARIMA (SARIMA) models often prove to be the most accurate due to the 

seasonality of tourism data (Song & Li, 2008; Saayman & Botha, 2017). 

Time series models have been used extensively in recent decades, with some general 

trends becoming established. Traditional time series models are often considered as 

benchmark models to evaluate the forecasting performance of new models. However, 

several new models based on ARIMA and SARIMA models have been developed with 

the aim of improving forecasting accuracy (Song & Li, 2008). Models, such as AR 

fractionally integrated moving average (ARFIMA) (Chu, 2008a), autoregressions of AR 
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(ARAR) (Chu, 2008b) and ARMAX models (Pan & Yang, 2017), are examples of 

extensions to the traditional ARIMA models. Moreover, a range of “partial linear” time 

series models and nonlinear time series models have been applied to forecast tourism 

demand (Jiao & Chen, 2019). 

A major challenge in forecasting tourism demand is the high sensitivity of demand to 

external shocks such as terrorism, earthquakes, and diseases (Song et al., 2013). Most 

studies evaluated forecasting performance in time periods without external shocks 

(Kourentzes et al., 2021). However, a few studies have analysed the impact of a pandemic 

on tourism in a particular region and highlighted the difficulties in predicting tourism 

during a pandemic (Choe et al., 2020; Kuo et al., 2008; Mao et al., 2010). 

This thesis aims to contribute to the literature by complementing these studies through 

analysing the performance of different time series models on forecasting tourism data 

during a period with data anomalies. In particular, it examines the impact of the Covid-

19 pandemic on tourism demand forecasts generated by various time series models for 

several regions in Portugal. According to the author's knowledge, this is the first academic 

work addressing this issue.  

3. METHODOLOGY 

The above disclosure of existing research in tourism forecasting is followed by an 

exploratory data analysis of the time series. Based on the results, appropriate time series 

models are chosen, and their theoretical framework will be explained. Finally, the 

forecasting procedure and evaluation will be described. 

3.1. Exploratory Data Analysis 

The variable used for the analysis is Overnight Stays in touristic accommodations. 

The data set contains the monthly number of Overnight Stays from January 2000 to June 

2022 per region of Portugal. According to NUTS 2 (“Nomenclatura das Unidades 

Territoriais para Fins Estatísticos”), Portugal is divided into seven regions: Azores, 

Alentejo, Algarve, Central, Lisbon Metropolitan Area (Lisbon M.A.), Madeira and North.  

The data from 2000 to 2015 was gathered from the Statistical Institute of Portugal 

(Instituto Nacional de Estatística, 2022). As the website of the Statical Institute only 

provides the monthly number of Overnight Stays per region until 2015, the data from 
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2016 onwards is obtained from Portugal’s National Tourism Authority (Turismo de 

Portugal, 2022). However, Portugal’s National Tourism Authority cites the Statistical 

Institute of Portugal as the data provider. Therefore, the data source is identical. 

3.1.1. All Time Series 

Initially, all seven regions were examined. Figure 7 in the appendix shows the time 

series plots, which reveal that the time series are characterised by a strong seasonality and 

an upward trend until the end of 2019. There is a major change in 2020, characterised by 

a sharp decline in Overnight Stays, followed by a slow recovery in the subsequent years. 

The event, which caused these data anomalies, was the spread of Covid-19, which was 

declared as a pandemic by the World Health Organization on 11 March 2020 (World 

Health Organization, 2023). Since travel restrictions have been imposed in many 

countries in March 2020, this work refers to March 2020 as the month of the Covid-19 

outbreak.  

Although the main characteristics of the seven time series are similar, a closer analysis 

reveals differences. The decline in Overnight Stays after March 2020 is particularly high 

for the regions Azores, Lisbon M.A., and Madeira. Therefore, the recovery of tourism 

demand in these regions is slow in the following months. The average of the year-over-

year percentage changes from April 2020 to December 2020 confirms this observation, 

as it is the highest for these regions at more than -78%. 

Similarly, the regions Algarve and North showed a big decline in Overnight Stays. 

However, the time series plots indicate a faster recovery compared to the previously 

mentioned regions. This observation is reinforced by an average of the year-over-year 

percentage changes from April 2020 to December 2020 of about -71%. Tourism in 

Alentejo and Central recovered fastest from the Covid-19 outbreak. The average of the 

year-over-year percentage changes from April 2020 to December 2020 is the lowest for 

these two regions at below -64%.  

The pandemic led to reduced air travel and international travel restrictions (Abdullah 

et al., 2020), which may partly explain the different recovery rates among the seven 

Portuguese regions. In particular, for Azores and Madeira, the reduced air traffic had a 

major impact on tourism demand. Moreover, most people travelled within their own 

country due to international travel restrictions. Therefore, there seems to be a correlation 
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between the share of Portuguese tourists in a given region and the decline in tourism due 

to the Covid-19 pandemic. The following hypothesis can be made: The lower the 

proportion of Portuguese tourists in a given region, the higher the decline in tourism in 

that region due to the Covid-19 pandemic. 

As the Statistical Institute of Portugal also provides information about the residence 

countries of the tourists (Instituto Nacional de Estatística, 2022), the validity of the 

hypothesis can be further assessed. In order to quantify the weight of domestic tourism 

and the decline of tourism during the Covid-19 period in each region, three different 

measurements are employed. An overview of the different measurements can be found in 

Table I. 

All nine possible combinations between the measures of the two variables are 

analysed. First, a scatter plot is generated for each pair to confirm the linear relationship 

between the variables and the absence of outliers. In addition, for each of the measures, 

it is checked whether the data is drawn from a normal distribution. Pearson’s correlation 

tests are then performed on the nine pairs. The p-value of all correlation tests is below the 

5% significance level. This means that the null hypothesis of no linear relationship 

between the two variables is rejected. The correlation coefficient ranges between 0.80 

and 0.96, indicating a strong positive relationship between the two variables. These 

results prove that there is indeed significant evidence of a correlation between the 

proportion of Portuguese tourists in a given region and the decline in tourism due to the 

Covid-19 pandemic among the Portuguese regions.  

Finally, this chapter has shown that there are three groups of regions according to 

different rates of recovery from the Covid-19 pandemic. In the following, the focus of the 

MFW will be on the analysis of one region per group: Madeira, Algarve and Alentejo. 

3.1.2. Madeira 

The time series plot for Madeira in Figure 1 reveals a significant seasonality of the 

time series. The seasonal subseries plot, which can be found as Figure 8 in the appendix, 

shows that the number of Overnight Stays is on average highest in August and lowest in 

December. In 2019, for example, Madeira recorded 828,426 Overnight Stays in August, 

but only 445,470 Overnight Stays in December. This corresponds to a reduction of 

46.23%.  
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Moreover, the graphs indicate an upward trend until February 2020, which is 

particularly strong from 2010 until 2019. From 2000 to 2009, Madeira recorded an 

average annual increase of 1.29% in the number of Overnight Stays, while this figure rose 

to 3.42% from 2010 to 2019. 

 
Figure 1 – Monthly Overnight Stays in Madeira. 

Furthermore, the time series plot for Madeira reveals a seasonal variation that 

increases proportional with the level of the time series from 2000 to 2019. The difference 

between the month with the highest number of Overnight Stays, August, and the month 

with the lowest number of Overnight Stays, December, was 151.675 Overnight Stays in 

2000. By contrast, the difference between these two months in 2019 was 382,956 

Overnight Stays, which corresponds to more than a doubling of the variation. 

However, after the Covid-19 outbreak, these patterns changed. In March 2020, 

Madeira recorded 297,649 Overnight Stays, which was 50.93% lower than in March 

2019. In April 2020, the number of Overnight Stays decreased even further to 2,191 

Overnight Stays, which corresponds to a year-over-year percentage change of -99.64%.  

Therefore, the regular seasonal pattern, which was observed before, did not continue 

in the months after March 2020. The month October corresponds in 2020 to the peak 

month with 253,895 Overnight Stays. The following low point of the data can be found 

with 40,883 Overnight Stays in February 2021. In the following months, the seasonality 

seems to converge back to the previous pattern: August 2021 corresponds to the peak 

with 780,123 Overnight Stays and January 2022 to the low with 341,744 Overnight Stays. 
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In addition, the time series indicates an upward trend after the Covid-19 outbreak. 

This is illustrated by Figure 9 in the appendix, which shows the time series with the 

superimposed trend-cycle component by applying Seasonal-Trend decomposition using 

LOESS (STL decomposition). In 2020, Madeira reported an annual number of Overnight 

Stays of 2,441,536, but in 2021 the figure had risen to 4,395,765 Overnight Stays. This is 

a relative increase of approximately 80%.  

Despite the fact that not all data is available for 2022, it can be stated that the number 

of Overnight Stays from January to June 2022 for each month is higher than in the same 

month of the previous year. As an example, in June 2022, the number of Overnight Stays 

was 833,955, approximately 159% higher than in the previous year and even 16.79% 

higher than in 2019.  

To conclude, the Covid-19 outbreak had a significant impact on the time series of 

Madeira. The sharp drop in the number of Overnight Stays in March/April 2020 also 

affected the subsequent months. Therefore, no seasonal pattern could be observed in 

2020. However, tourism recovered fast and in the following years the seasonality seemed 

to converge back to the previous patterns. Similarly, an upward trend pattern is visible. 

For some months in 2022, the number of Overnight Stays is even higher than in 2019. 

3.1.3. Algarve 

The strong seasonal pattern of tourism in the Algarve is highlighted by the time series 

plot in Figure 2. There is a big difference between the summer months and the winter 

months. The seasonal subseries plot in Figure 10 in the appendix shows that on average 

December is the month with the lowest and August the month with the highest number of 

Overnight Stays. For example, in August 2019 Algarve reported 3,439,271 Overnight 

Stays, whereas in December 2019 the number of Overnight Stays was 602,860. This 

corresponds to a reduction of 82.47%. 

Moreover, the time series plot reveals an upward trend before the Covid-19 outbreak. 

This is particularly evident between 2010 and 2020, when the Algarve recorded an 

average annual increase of 4.96% in the number of Overnight Stays. Before 2010, there 

was even a slight downward trend, with an average annual decrease of 1.22% between 

2000 and 2009. 
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Figure 2 – Monthly Overnight Stays in Algarve. 

In addition, an increasing seasonal variation with the level of the time series before 

March 2020 can be detected by looking at the time series plot. In 2000, the number of 

Overnight Stays decreased by -1,707,565 from August to December, while in 2019 it 

decreased by -2,836,411.  

The Covid-19 outbreak resulted in a big decline in Overnight Stays. In March 2020, 

the number of Overnight Stays was 565,558 lower than the year before, which 

corresponds to a reduction of 52.42%. In April the number decreased even further, such 

that there were only 25,614 Overnight Stays, which is a reduction by 98.57% compared 

to April 2019. 

However, the time series plot shows that there was still a seasonal pattern, which is 

consequently at a lower level of the time series. In 2020 and 2021, August remains the 

peak month, with 2,090,569 and 2,762,537 Overnight Stays, respectively. The lowest 

number of Overnight Stays remains in winter. Although there is a slight shift backwards. 

In 2021, February was the month with the lowest number of Overnight Stays and in 2022 

it was January.  

Furthermore, an upward trend after the Covid-19 outbreak can be detected. An 

illustration of the trend can be found in Figure 11 in the appendix, which shows the time 

series with the superimposed trend-cycle component by applying STL decomposition. In 

2021, the annual number of Overnight Stays increased by 37.81% to 10,874,036. 
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In 2022, the data is only available until June. However, by looking at the seasonal 

differences, an increase in Overnight Stays can be detected every month. For example, in 

June 2022, the number of Overnight Stays was 2,230,207, which is approximately 89% 

higher than in the previous year and only 8.06% lower than in 2019. 

In summary, the Covid-19 outbreak led to a sharp decline in the number of Overnight 

Stays in Algarve. However, the same patterns can be observed in the data thereafter, 

namely an upward trend and a strong seasonality. Moreover, the number of Overnight 

Stays in 2022 appears to be almost at the same level as before the outbreak. 

3.1.4. Alentejo 

The time series plot for Alentejo in Figure 3 shows a significant seasonality. This 

observation is confirmed by the seasonal subseries (see Figure 12 in the appendix),  which 

reveals, that on average the number of Overnight Stays is lowest in January and highest 

in August. For example, in August 2019 Alentejo recorded 484,403 Overnight Stays, 

whereas in January 2020 this figure decreased to 126,349 Overnight Stays. This 

represents a reduction of approximately 74%.  

 
Figure 3 – Monthly Overnight Stays in Alentejo. 

Furthermore, the time series plot shows an upward trend before the Covid-19 

outbreak. It reveals that, particularly from 2010 to 2019, the annual number of Overnight 

Stays increased. From 2000 to 2009, the annual number of Overnight Stays increased on 

average by 3.12%, whereas from 2010 to 2019 an average increase of 10.61% was 

reported. 
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In addition, the time series plot for Alentejo shows before the Covid-19 outbreak a 

seasonal variation that increased strongly with the level of the time series. Alentejo 

reported a difference of 90,732 Overnight Stays between August 2000 and January 2001. 

In contrast, the difference between August 2019 and January 2020 was 358,054 Overnight 

Stays, which corresponds nearly to a fourfold increase in seasonal variation. 

However, the Covid-19 outbreak led to a sharp decline in Overnight Stays. The 

number of Overnight Stays was 70,530 in March 2020, approximately 59% lower than in 

March of the previous year. In April 2020, the figure fell further to 13,892, which 

corresponds to a year-over-year percentage change of 94.25%. 

Despite the pandemic, the seasonal pattern remained relatively stable. In 2020, August 

was the month with the highest number of Overnight Stays with 407,020, followed by a 

low point in February 2021 with 40,443 Overnight Stays. Thereafter, August 2021 and 

January 2022 clearly correspond to the highest and lowest points. 

Furthermore, the time series shows an upward trend after the Covid-19 outbreak. This 

is visualized in Figure 13 in the appendix, which shows the time series with the 

superimposed trend-cycle component by applying STL decomposition. In 2021, the 

annual number of Overnight Stays was 2,280,089, which is approximately 25% higher 

than in the previous year.  

The observed months in 2022 confirm this observation, because all months record a 

higher number of Overnight Stays than the same month of the previous year. For example, 

Alentejo reported 300,520 Overnight Stays in June 2022, which is 18.20% higher than in 

June 2021 and only 1.81% lower than in 2019. 

In summary, the Covid-19 outbreak led to a sharp decline in the number of Overnight 

Stays in Alentejo. However, tourism in Alentejo recovered relatively fast and the same 

core patterns can be observed in the data thereafter, namely an upward trend and a strong 

seasonality. In addition, the number of Overnight Stays seems to reach nearly the same 

level again in 2022. 
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3.2. Time Series Models 

In this section, the details of the models applied to forecast the number of Overnight 

Stays will be described. This MFW focuses on univariate time series models that use only 

information on the variable being forecast. Therefore, all models are based on the same 

data to allow a direct comparison between the performance of the various models. 

  The exploratory analysis for Madeira, Algarve and Alentejo revealed patterns in the 

time series, which are considered to choose appropriate models for the forecasting 

competition. In order to enable comparability, the same forecasting models are selected 

for each region. Moreover, the author has chosen simple as well as more sophisticated 

forecasting models to increase diversity in the forecasting competition. The following 

paragraphs describe which models are included in the forecasting competition for which 

reasons. A detailed explanation of the respective method is provided in the following 

subchapters. 

The time series plots of Madeira, Algarve and Alentejo show regular patterns before 

the Covid-19 outbreak: A strong seasonality and an upward trend. For this reason, the 

Seasonal Naïve method, which captures the seasonal pattern of the time series, and the 

Random Walk with Drift method applied to seasonally adjusted data obtained from a STL 

decomposition, which considers both trend and seasonality, are chosen. Since the patterns 

changed after the Covid-19 outbreak and in particular for Madeira no trend, no seasonality 

and no stable level in 2020 could be identified, the Naïve method is included in the 

forecasting competition as another simple forecasting model. 

In addition, Exponential Smoothing (ETS) and ARIMA models are chosen since they 

capture both seasonality and trend. The Holt-Winters’ Additive Method is selected as an 

ETS model, which assumes seasonal variations that are roughly constant throughout the 

series. The reason for this is that all models are also included in the forecasting 

competition with the log-transformed variable. Therefore, the logarithmic transformation 

already considers an increasing seasonal variation. Also, the automatic ETS modelling 

function (Hyndman et al., 2002; Hyndman et al., 2008) is used in order to evaluate if it 

provides more accurate predictions. 

 Furthermore, the automatic ARIMA modelling function provided by the 𝑓𝑎𝑏𝑙𝑒 

package is applied. This function uses a combination of Hyndman-Khandakar algorithm 
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(Hyndman & Khandakar, 2008) to obtain the ARIMA model with the lowest Corrected 

Akaike’s Information Criterion (Hyndman & Athanasopoulos, 2018). A fully automated 

ARIMA model, where all parameters are defined automatically, is added to the 

forecasting competition. In addition, the following two ARIMA models are implemented 

with predefined parameters as well as automatically selected parameters using the 

automatic ARIMA modelling function: ARIMA (𝑝, 1, 𝑞)(𝑃, 1, 𝑄)12 and ARIMA 

(𝑝, 0, 𝑞)(𝑃, 1, 𝑄)12. 

Lastly, a linear regression model including trend and seasonality components and a 

Prophet model is included in the forecasting competition, which is able to capture trend, 

seasonality and holiday effects. The model characteristics of the Prophet model are 

automatically selected. 

3.2.1. Naïve and Seasonal Naïve Model 

The Naïve model, which is also called Naïve I, is a simple forecasting method which 

uses the most recent observation as a forecast. It is frequently used as a benchmark against 

sophisticated models, but can also be useful for data following a random walk (Hyndman 

& Athanasopoulos, 2018). Despite its simplicity, the Naïve model was able to outperform 

more complex models in several studies (Goh & Law, 2011).  

The Seasonal Naïve model (SNaïve) sets each prediction equal to the last observed 

value from the same season. This method is useful for time series with strong seasonality 

(Hyndman & Athanasopoulos, 2018).  

3.2.2. Drift Model applied to seasonally adjusted Data 

The Drift model, which is also called the constant change model, is appropriate for 

time series with a significant trend component. The forecast is the last observation plus a 

drift term. The mean change in historical data is used as the value of the drift term 

(Hyndman & Athanasopoulos, 2018). Therefore, the forecast for time 𝑇 + ℎ is given by: 

(1) �̂�𝑇+ℎ|𝑇 =  𝑦𝑇 + ℎ (
𝑦𝑇− 𝑦1 

𝑇−1
) , 

where historical data is denoted by 𝑦1, … , 𝑦𝑇. 

If the Drift model is applied to seasonally adjusted data, the model is able to capture 

both, trend and seasonality. The STL decomposition was developed by Cleveland et al. 
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(1990) and uses the LOESS method to divide a time series additively into trend, seasonal 

and remainder components. Therefore, it is able to provide seasonally adjusted data. In 

this MFW the STL decomposition is used with its default parameters. By using the 

𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙() function in R the forecasts will be “reseasonalised” 

automatically by adding in the seasonal naïve forecasts of the seasonal component. 

3.2.3. Prophet Model 

The Prophet model was implemented by Facebook’s Core Data Science team (Taylor 

& Letham, 2018) and was originally intended to predict daily data with weekly and annual 

seasonality, as well as holiday effects. However, it has since been expanded to predict 

several types of seasonality (Satrio et al., 2021; Hyndman & Athanasopoulos, 2018). 

It works best if the times series shows a strong seasonality and there are several 

seasons of historical data available. The Prophet model can be considered as a nonlinear 

regression model, which decomposes the time series into three main model components: 

Trend, seasonality, and holidays (Hyndman & Athanasopoulos, 2018). They are 

combined in the following equation: 

(2) 𝑦𝑡 =  𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡 , 

where 𝑔(𝑡) is a piecewise-linear trend, 𝑠(𝑡) represents the seasonal pattern, and ℎ(𝑡)  

captures the holiday effects, which may occur at irregular intervals on one or more days. 

The last part 𝜖𝑡 represents the error term, which accounts for any unusual changes not 

accommodated by the model. 

The formulation is similar to a generalized additive model, which is a class of 

regression models in which typically non-linear smoothing factors are applied to the 

regressors. It enables easy decomposition and new components can be added, if 

necessary. For example, if a new source of seasonality is identified. In the case of the 

Prophet model, the only regressor is time and several linear and nonlinear functions of 

time can be used as components. 

The key advantages of the Prophet model are that outliers are handled relatively well 

and it is robust to missing data as well as shifts in the trend. It is available via the 

𝑓𝑎𝑏𝑙𝑒. 𝑝𝑟𝑜𝑝ℎ𝑒𝑡 package in R. In this MFW the automatic selection of the parameters is 
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used. Only the period of the seasonal component is set to 12, which stands for monthly 

data (Hyndman & Athanasopoulos, 2018). 

3.2.4. Linear Regression Model 

A Time Series Linear Model (TSLM) is a regression model which assumes a linear 

relationship between the forecast variable y and the predictor variables x. The simplest 

case involves only one predictor variable (Hyndman & Athanasopoulos, 2018) and is 

represented by the following equation: 

(3) 𝑦𝑡 =  𝛽0 + 𝛽1𝑥𝑡 + 𝜖𝑡  , 

where 𝛽0 represents the intercept and 𝛽1 denotes the slope of the line. The last part 𝜖𝑡 is 

the error term, which captures everything that may affect the forecast variable 𝑦𝑡 other 

than 𝑥𝑡. 

Trend and seasonality components can be added to the simple linear regression model 

as predictor variables (Tiwari et al., 2017). They are created from the characteristics of 

the time series data. The variable “trend” represents a linear trend and “season” is a factor 

indicating the season, which depends on the frequency of the data. For example, there 

will be eleven dummy variables for monthly data. Therefore, the TSLM for monthly data 

with trend and seasonality components is given by: 

(4) 𝑦𝑡 =  𝛽0 + 𝛽1𝑡 + 𝛽2𝑑2,𝑡 + 𝛽3𝑑3,𝑡 + 𝛽4𝑑4,𝑡 + 𝛽5𝑑5,𝑡 + 𝛽6𝑑6,𝑡 + 𝛽7𝑑7,𝑡 +

𝛽8𝑑8,𝑡 + 𝛽9𝑑9,𝑡 + 𝛽10𝑑10,𝑡 + 𝛽11𝑑11,𝑡 + 𝛽12𝑑12,𝑡 + 𝜖𝑡  , 

where 𝛽0 represents the intercept. 𝛽1 denotes the trend and 𝑡 = 1, … , 𝑇 . The variables 𝑑𝑖,𝑡 

are dummy variables which are equal to 1 if 𝑡 is in month 𝑖 and 0 otherwise. The last part 

𝜖𝑡 is the random error term. 

In this MFW, the 𝑡𝑟𝑒𝑛𝑑() and 𝑠𝑒𝑎𝑠𝑜𝑛() components within the TSLM function are 

used allowing R to automatically estimate a model from the data that minimizes the sum 

of squared errors (Hyndman & Athanasopoulos, 2018). 

3.2.5. Holt-Winters’ Additive Model 

The Holt-Winters’ Additive model belongs to the ETS family of models. ETS is a 

technique that assigns a weight to each observed value in order to predict upcoming 

values. More recent observations have a higher weight and there is a decay to the older 
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observations, which will have a lower impact on the predictions. This is based on the idea 

that the most recent observations should explain the future value of the variable better 

than older observations (Hyndman & Athanasopoulos, 2018). ETS was introduced in the 

1950s (Brown, 1959; Holt, 1957; Winters, 1960) and has been widely used in both 

academia and practice ever since. It is popular mainly because of its transparency and 

relatively good performance. Furthermore, it has been shown to perform well in 

forecasting tourism arrivals (Kourentzes et al., 2021). 

The Holt-Winters’ Method (Holt, 1957; Winters, 1960) is a specific ETS model, 

which is able to capture seasonality and trend. The framework consists of one forecast 

equation and three smoothing equations, which are for level, trend and seasonality 

components. There are two types of Holt-Winters’ models, which differ in the nature of 

the seasonal variation: The additive and the multiplicative method. While the additive 

method is appropriate, when the data shows a seasonal variation that is roughly constant 

with the level of the time series, the multiplicative method should be used, if the seasonal 

variation is increasing with the level of the time series (Hyndman & Athanasopoulos, 

2018). 

The equations of the Holt-Winters’ Additive Method are as follows (Hyndman & 

Athanasopoulos, 2018): 

(5) �̂�𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1) ,  

(6) 𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) , 

(7) 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1 , 

(8) 𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚 , 

where 𝑦1, … , 𝑦𝑡 represents historical data, 𝑙𝑡 the level of the time series, 𝑏𝑡 the trend, 𝑠𝑡 

the seasonal component and �̂�𝑡+ℎ|𝑡 the forecast for ℎ periods ahead. 𝑚 denotes the period 

of the seasonality, i.e. the number of seasons in a year. The parameter 𝑘 is the integer part 

of (ℎ − 1)/𝑚, ensuring that the estimates of the seasonal indices used for the forecasts 

are from the last year of the sample. The smoothing parameters 𝛼, 𝛽, 𝛾 are estimated from 

0 to 1 and used to minimize mean squared errors. The parameter 𝛼 controls the weight 

given to each observation based on the available information at a specific point of time. 

The level equation is a weighted average between the seasonally adjusted observation 

(𝑦𝑡 − 𝑠𝑡−𝑚) and the non-seasonal forecast (𝑙𝑡−1 + 𝑏𝑡−1) for time 𝑡. The trend equation 
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reflects a linear trend. Lastly, the seasonal equation is a weighted average of the current 

seasonal index (𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) and the seasonal index of the same season of the 

previous year. 

The forecasting competitions of this MFW include the Holt-Winters’ Additive model. 

In addition, the automatic ETS modelling function (Hyndman et al., 2002; Hyndman et 

al., 2008) is used, which selects the model by minimising the Corrected Akaike’s 

Information Criterion (AICc) and optimises the parameter values by maximum likelihood 

estimation. 

3.2.6. Seasonal ARIMA Model 

Autoregressive integrated moving average (ARIMA) is a model used for predictions, 

which aims to describe the autocorrelations in the data. It considers the lagged values of 

the predicted variable as well as a moving average component. Box & Jenkins (1970) 

popularised ARIMA modelling in the early 1970s. For time series forecasting, ARIMA 

models are one of the most popular approaches (Hyndman & Athanasopoulos, 2018). 

Since the time series for Madeira, Algarve and Alentejo show a strong seasonal 

pattern, this MFW focuses on the SARIMA model, which accounts for the seasonality of 

the data. SARIMA is composed of non-seasonal and seasonal autoregressive (AR) and 

moving average (MA) models. It can be written as a composite model of the form: 

(9) 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚  , 

where p, d and q represent the non-seasonal AR order, non-seasonal differencing and 

non-seasonal MA order, respectively, whereas P, D and Q denote the seasonal AR order, 

seasonal differencing and seasonal MA order, respectively. The model parameter m is the 

seasonal period, which corresponds to the number of observations per year. 

Mathematically, the general form of the SARIMA is given by: 

(10)  (1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝)(1 − Φ1𝐵𝑚 − ⋯ − Φ𝑃𝐵𝑃𝑚)(1 − 𝐵)𝑑(1 − 𝐵𝑚)𝐷𝑦𝑡 

= 𝑐 + (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞)(1 + Θ1𝐵𝑚 + ⋯ + Θ𝑄𝐵𝑄𝑚)𝜀𝑡 , 

where (1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝) is the non-seasonal AR(p). (1 − Φ1𝐵𝑚 − ⋯ − Φ𝑃𝐵𝑃𝑚) 

represents the seasonal AR(P). (1 − 𝐵)𝑑 is the non-seasonal difference and (1 − 𝐵𝑚)𝐷 

the seasonal difference. (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞) represents the non-seasonal MA(q) and 
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(1 + Θ1𝐵𝑚 + ⋯ + Θ𝑄𝐵𝑄𝑚) the seasonal MA(Q). Moreover, 𝑦𝑡 is the time series 

observation at time period 𝑡 and 𝐵 is the backward shift operator, which reflects the time 

series lags. The parameter 𝜀𝑡 is a sequence of the error term with mean zero and constant 

variance. 

A common obstacle in using ARIMA models for forecasting is the initialisation of 

the parameters, which is subjective and can be difficult to apply (Ponnam et al., 2016). 

Motivated by this observation, there have been several attempts to automate ARIMA 

modelling. In this work the automatic ARIMA modelling function provided by the 𝑓𝑎𝑏𝑙𝑒 

package in R (Hyndman & Khandakar, 2008) is used. The function applies a variant of 

the Hyndman-Khandakar algorithm, which combines unit root tests, minimisation of the 

AICc and maximum likelihood estimation to generate an ARIMA model. It is possible to 

have all parameters determined by the automatic ARIMA modelling function or to define 

certain parameters and use the automatic function for the remaining parameters 

(Hyndman & Athanasopoulos, 2018).  

The automatic ARIMA modelling function is applied in various ways in this MFW. 

In addition to a fully automatically determined ARIMA model, several "semi-automatic" 

ARIMA models are implemented, where only certain parameters are defined. 

In order to determine the parameter 𝑑, the automatic ARIMA modelling function 

applies the KPSS test, which tests the null hypothesis that the data is stationary against 

the alternative that it has a unit root (Kwiatkowski et al., 1992). However, there is 

empirical evidence that the KPSS test does not perform well in selecting the appropriate 

order differencing in certain circumstances (Müller, 2005; Shin & Schmidt, 1992). 

Therefore, this work aims to be independent of the results of a statistical test and considers 

the two most common situations: 𝑑 = 1 and 𝑑 = 0.  

Following the recommendations of Hyndman & Athanasopoulos (2018) the 

𝑛𝑠𝑑𝑖𝑓𝑓𝑠() function of the 𝑓𝑎𝑏𝑙𝑒 package is applied, which is based on the seasonal 

strength of a STL decomposition, to determine whether seasonal differencing is 

necessary. Since 𝐹𝑠 ≥ 0.64 for all time series, one seasonal difference is suggested. 

Therefore, the parameter 𝐷 is set to 1 for the “semi-automatic” ARIMA models.  
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3.3. Forecasting Procedure and Evaluation 

The exploratory data analysis revealed that the seasonal variation of the time series 

increased until March 2020. However, no increase in seasonal variation could be observed 

during the pandemic, as the time span is too short. Since the logarithmic transformation 

of the predicted variable is a suitable means to stabilise the variance (Box & Jenkins, 

1970; Lütkepohl & Xu, 2012), each model appears twice in the forecasting competition: 

Once with forecasts based on the time series with the original variable, and once with 

forecasts based on the log-transformed variable.  

In order to separate the available data dynamically into training and test data, two 

types of time series cross-validation are used: Recursive window and rolling window 

cross-validation. The function 𝑠𝑡𝑟𝑒𝑡𝑐ℎ_𝑡𝑠𝑖𝑏𝑏𝑙𝑒 enables recursive window cross-

validation (recursive CV) in R. In this work the initial window size is 120, which means 

that the initial training set contains observations from January 2000 to December 2009. 

The number of Overnight Stays for January 2010 is the first test observation and will be 

compared to the forecasted value calculated by the various models. The window size 

increases incrementally by 1 month. This procedure will be continued until the test data 

set contains observations from January 2000 to May 2022 and the number of Overnight 

Stays in June 2022 will be the test observation.   

The function 𝑠𝑙𝑖𝑑𝑒_𝑡𝑠𝑖𝑏𝑏𝑙𝑒 is used for rolling window cross-validation (rolling CV) 

and shifts a fixed-length window through the data. The window size is set to 120 months 

and the step size to 1, which means that for each validation fold the training and test 

windows are shifted by one month. The first training and test sample produced by the 

rolling CV is the same as produced by a recursive CV. However, the window slides 

through the data, and therefore the remaining training data sets differ. As an example, the 

last training data set contains observations from June 2012 to May 2022 and uses the 

number of Overnight Stays of June 2022 as test observation. It should be noted that in the 

case of the automatic ARIMA and ETS modelling functions, cross-validation may result 

in the selection of different models for the different training data sets.  

As this MFW is interested in the performance of different models in predicting the 

next observation, the forecast horizon is set to ℎ = 1, which represents forecasts of one 

month ahead. To assess the forecast accuracy, point forecasts are compared to the actual 
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number of Overnight Stays in a given month and region. The evaluation of the forecast 

accuracy is based on two metrics: The Root Mean Squared Error (RMSE) and the Root 

Mean Squared Scaled Error (RMSSE). The forecast errors of the RMSE are on the same 

scale as the data and therefore scale dependent. The equation is given by: 

(11) 𝑅𝑀𝑆𝐸 =  √𝑚𝑒𝑎𝑛(𝜖𝑡
2) , 

where 𝜖𝑡 is the absolute error at time 𝑡. 

Since the three time series showed a significantly lower level of Overnight Stays in 

2020, the situation can be compared to a different scale. Therefore, the RMSSE, which 

was introduced in 2006 by Hyndman & Koehler, is used as a scale-independent measure. 

For seasonal time series the errors are scaled based on the in-sample MAE from the 

Seasonal Naïve forecast method. Thus, a scaled error is defined as: 

(12) 𝑞𝑗 =
𝜖𝑗

1

𝑇−𝑚
∑ |𝑦𝑡−𝑦𝑡−𝑚|

𝑇
𝑡=𝑚+1

 , 

where 𝜖𝑗 is the absolute error at time j and 𝑚 is the seasonal period. 

Consequently, the RMSSE is given by: 

(13) 𝑅𝑀𝑆𝑆𝐸 =  √𝑚𝑒𝑎𝑛(𝑞𝑗
2) . 

RMSSE is smaller than one if the forecast is better than the average one-step seasonal 

Naïve forecast calculated from the training data. Conversely, it is bigger than one if the 

forecast is worse than the average one-step seasonal naïve forecast calculated from the 

training data. Due to the squaring portion of RMSE and RMSSE, larger errors are 

penalised more than smaller errors. 

4. RESULTS 

In this chapter the results of the several forecasting competitions will be described 

and analysed in different dimensions. The first three sections summarise the forecasting 

results for Madeira, Algarve, and Alentejo and describe how the models perform 

according to the RMSE. In order to assess the forecasting performance of the methods, 

three aspects of the results are considered: (i) Development of absolute forecasting errors; 

(ii) development of overall RMSE by including more years in the time series and 

according ranking of the models; and (iii) development of yearly RMSE in particular 
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during the Covid-19 pandemic. The main focus will be on the second aspect, with 

consideration of the other aspects since they may lead to a different view of the results. 

As the same figures and tables appear in all three subchapters, an explanation of their 

structure is given once for Madeira. Thus, the sections for Algarve and Alentejo focus 

only on the results.  

In the following two chapters, additional dimensions of the results are analysed. 

Firstly, the robustness of the results to a scale-independent evaluation metric, the RMSSE, 

is examined. Secondly, the performance of the models after varying the estimation 

window is analysed. Lastly, the final chapter provides an insight into another area of 

research, analysing how to improve forecasting performance following data anomalies. 

In order to increase the readability of this work and to use consistent wording, the 

same short names for the models are used as in the R code. The two ARIMA models, 

ARIMA (𝑝, 1, 𝑞)(𝑃, 1, 𝑄)12 and ARIMA (𝑝, 0, 𝑞)(𝑃, 1, 𝑄)12, are called “ARIMA_d1D1” 

and “ARIMA_d0D1”, respectively. The fully automatic models using the automatic 

ARIMA modelling function and the automatic ETS modelling function are called 

“ARIMA_auto” and “ETS_auto”. The Drift model applied to seasonally adjusted data 

using STL decomposition is shortened as “Drift_STL”. Moreover all models, which are 

based on a log-transformed variable end with “_log”. Consequently, all models are based 

on the original variable, if they do not end with “_log”.  

4.1. Forecasting Results: Madeira 

This section describes the forecasting results of the various models for Madeira. As 

mentioned above, the forecasting competition is performed twice for Madeira. The 

difference is that the division of the time series into training and test data is based on two 

different types of time series CV: Recursive and rolling CV. Firstly, this chapter focuses 

on the results obtained based on a recursive CV and thereafter, a comparison to the results 

based on a rolling CV will be made. 

Figure 14 in the appendix shows the point forecasts of the models versus the actual 

number of Overnight Stays, which is displayed in black. As the number of models is high, 

it is difficult to differentiate each model. However, first insights can be gained. The 

performance of all models before 2020 seemed to be relatively stable, whereas during the 

Covid-19 pandemic the forecasts of most models were inaccurate. Particularly, the 
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SNaïve, TSLM and Prophet methods generated forecasts, which are far away from the 

actual number of Overnight Stays. 

Now, the performance of the different models is evaluated by using the RMSE to 

assess the point forecast accuracy. Figure 4 shows how the RMSE developed by including 

more years in the time series and how the corresponding ranking of the models changed. 

In the table on the left, the two columns headed “2010-2019” show the RMSE per model 

based on the forecasts from January 2010 to December 2019 and the corresponding 

ranking. The two columns headed “2010-2022” display the RMSE per model based on 

the January 2010 to June 2022 forecasts and the corresponding ranking. 

For clarity, it is important to note that each model appears only once in the following 

analysis. That is, if the model based on the log-transformed variable achieved a lower 

RMSE for the forecasts from 2010 to 2022, only that model appears. Conversely, the 

model based on the original variable would only appear if it achieved a lower RMSE. 

However, for the interested reader, all figures and tables of this MFW are also available 

with the full range of models in the files provided on Github. 

The line plot on the right side of Figure 4 shows the development of the RMSE by 

including more years in the time series. The RMSE is always calculated from 2010 and 

the x-axis shows up to which year the RMSE is calculated. Therefore, this plot reveals 

which years’ inclusion changed the ranking of the models.  

  
Figure 4 – Development of RMSE of Madeira’s Forecasts based on Recursive CV. 
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By looking at the line plot, it can be depicted that the RMSE stayed at a relatively 

stable level for all models before the Covid-19 outbreak. The performance of all ARIMA 

and ETS models as well as the Drift_STL model was close to each other and their RMSE 

stayed lowest during this period. Whereas TSLM, SNaïve, Naïve and Prophet_log 

produced more inaccurate forecasts as their RMSE is consistently at a higher level. 

The table shows that the RMSE of the forecasts from 2010 to 2019 for the ARIMA, 

ETS and Drift_STL models is between 24,000 and 35,000, while the RMSE varies 

between 53,000 and 91,000 for the remaining models. By the end of 2019, the RMSE is 

with 24,386.04 lowest for ARIMA_d0D1 followed by ARIMA_d1D1 and ARIMA_auto. 

But the Covid-19 outbreak and in particular the inclusion of 2020 in the time series 

led to a big increase in the RMSE for all models. An exception is the Naïve Model and 

therefore the forecasting performance of Naïve was able to get closer to the models which 

are more competitive.  

Table II in the appendix presents the absolute and relative differences between the 

calculated RMSE based on the forecasting errors from 2010 to 2019 and the calculated 

RMSE based on the forecasting errors from 2010 to 2020. Accordingly, it provides us 

with information on the extent of the increase in the RMSE by including 2020 in the time 

series. It reveals that the RMSE only increased by 6.29% for the Naïve Model, but by 

185.67% for the SNaïve model. However, also the three ARIMA models, which showed 

superior performance before the Covid-19 outbreak, recorded with more than 122% a big 

increase in the RMSE. 

Moreover, the line plot in Figure 4 shows that the inclusion of 2021 and 2022 did not 

lead to another big increase in the RMSE for the ARIMA, ETS and Drift_STL models. 

By contrast, Prophet_log, TSLM and SNaïve seem to be inferior to the other methods 

during the Covid-19 period, since their RMSE increased further. 

Finally, the ranking of the models did not significantly change by including the Covid-

19 period in the time series. One reason for this is that the RMSE in Figure 4 always 

includes the forecasts from 2010 onwards for the calculation, and the Covid-19 period is 

only a relatively short period of 2.5 years. The three ARIMA models together with 

Drift_STL still achieve the best overall performance. They are followed by the two ETS 
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models, which remain on rank 5 and 6. Much closer to them is now the Naïve model 

which is ranked 7th. The Prophet_log, TSLM and SNaïve are still ranked at the bottom. 

But how precise were the forecasts of the models for each particular year? Figure 15 

in the appendix gives an answer to this question as it shows the RMSE per year. The line 

plot emphasizes the main conclusions drawn above. However, the performance of the 

models in 2020, 2021 and 2022 is particularly interesting as it provides new findings. The 

graph reveals that with an RMSE of about 128,000 the Naïve method was able to produce 

the most accurate forecasts in 2020. It is followed by the ARIMA, ETS and Drift_STL 

models whose performance is close to each other, with an RMSE between 165,000 and 

182,000. This number seems acceptable, but it corresponds to a relative increase in the 

RMSE for 2019 to 2020 of above 430%. Prophet_log, SNaïve and TSLM  performed 

worst in 2020. 

In 2021, all models were able to produce better forecasts than in 2020, as their RMSE 

of 2021 is lower compared to their RMSE of 2020. The performance of the ARIMA, ETS 

and Drift_STL models increased strongly, resulting in the best performance in 2021 and 

consequently a better performance than the Naïve model. However, in 2022 the 

performance of the Naïve model was again able to get closer to the more competitive 

models. During the whole Covid-19 period Prophet_log, SNaïve and TSLM performed 

worst. 

By comparing these results with those obtained using a rolling CV (see Figure 16 in 

the appendix), mainly the same conclusions can be drawn. Therefore, this paragraph only 

describes the major differences. TSLM performed better before the Covid-19 outbreak 

and was consequently able to produce more accurate forecasts than Naïve during this 

period. As a result, Naïve was ranked lowest, when considering the RMSE from 2000 to 

2019. Once again, the ARIMA, ETS and Drift_STL models competed for the best ranks, 

with their performances consistently close to each other from 2010 to 2022. The only 

exception is the ARIMA_d0D1 model, which showed a higher increase in the RMSE by 

including 2020 in the time series. 
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4.2. Forecasting Results: Algarve 

The forecasting results for Algarve will be described in this chapter. Firstly, the focus 

will be on the forecasting results based on a recursive CV. Thereafter, the results will be 

compared to the results obtained based on a rolling CV. 

The line plot in Figure 17 in the appendix shows the point forecasts of all 20 models 

and the actual number of Overnight Stays from 2010 to 2022 in black. The number of 

models is large. Therefore, only first fundamental insights can be gained. The 

performance of all models seemed to be relatively stable from 2010 to 2019, but the 

forecasts became less accurate, due to the outbreak of Covid-19. Particularly in 2020, the 

performance of all models appeared to be poor, but improved in the subsequent years. 

In the following, the performance of the different models is evaluated by using the 

RMSE to assess the point forecast accuracy. Figure 5 shows how the RMSE developed 

by including more years in the time series and how the corresponding ranking of the 

models changed. The table and the line plot follow the same structure as in Figure 4. 

  
Figure 5 – Development of RMSE of Algarve’s Forecasts based on Recursive CV. 

The line plot reveals that the performance of all models was at a relatively stable level 

before the Covid-19 outbreak. There are only two exceptions: Naïve and TSLM recorded 

a steady increase in the RMSE, which was particularly high for TSLM.  

According to the two illustrations in Figure 5, the performance of the models by the 

end of 2019 can be divided into three groups: The best performing models, the second 

best performing models and the worst performing models. The three ARIMA models are 
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the best performing models as their RMSE is the lowest between 91,000 and 97,000. The 

second group form the two ETS, the SNaïve and the Drift_STL models with an RMSE 

between 110,000 and 117,000. Lastly, the worst performing models from 2010 to 2019 

are Prophet_log, TSLM and Naïve. In particular the forecasts of the Naïve model resulted 

in a high RMSE with above 517,000. 

However, the inclusion of the year 2020 led to a big increase in the RMSE, which was 

highest for SNaïve and lowest for Naïve. Table III in the appendix displays the absolute 

and relative increase in the RMSE due to the inclusion of 2020. While the RMSE of the 

Naïve model increased by only 0.21%, the RMSE of the SNaïve rose by 257.74%. With 

an increase of above 104% also the performance of the three ARIMA models has gotten 

significantly worse. They are followed by the two ETS models, which recorded an 

increase in the RMSE of around 90%. The relative difference of Drift_STL is the third 

smallest with 57.44%. 

Nevertheless, the line plot in Figure 5 shows that the inclusion of 2021 and 2022 did 

not lead to such a further strong increase in the RMSE. For the ARIMA, ETS, Naïve and 

Drift_STL models, the overall RMSE remained at a relatively stable level. For TSLM, 

SNaïve and Prophet_log, the RMSE increased further, with the largest increase for 

Prophet_log. 

According to the forecasting performance based on the RMSE from 2010 to 2022, the 

table in Figure 5 reveals that Drift_STL was able to slide up to rank 1. The main reason 

for this is that the Drift_STL method experienced a relatively small increase in the RMSE 

compared to the ARIMA and ETS models by including the Covid-19 period in the time 

series. In contrast, the RMSE of the SNaïve method increased significantly, dropping it 

to rank 9. The ranking of the other models remained similar. 

Figure 18 in the appendix presents the RMSE per year, thus it shows the performance 

of the various models for each year separately. In particular, the performance in 2020 is 

interesting as it shows that, contrary to Madeira’s forecasting results, the Naïve method 

was not able to produce the best forecasts. The performance of Naïve is only slightly 

better than the ARIMA and ETS models and not able to beat the Drift_STL method, 

which produced the most accurate forecasts. Prophet_log, TSLM and SNaïve performed 

worst in 2020. 
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A comparison is now made with the results of the forecasting competition based on a 

rolling CV. Figure 19 in the appendix shows how the RMSE based on a rolling CV 

developed by including more years in the time series. Since the results are very similar, 

only two main differences will be described. TSLM was able to forecast more accurately 

until 2019 as the RMSE of approximately 212,000 was 82,000 lower than with a recursive 

CV. In addition, the HWA model performed better during the Covid-19 pandemic and 

was able to slide up to rank 1 by the end of 2022, meaning that it outperformed Drift_STL. 

4.3. Forecasting Results: Alentejo 

This chapter describes the forecasting results for Alentejo and follows the same 

structure as sections 4.1 and 4.2. Hence, it focuses first on the forecasting results based 

on a recursive CV and thereafter a comparison to the forecasting results based on a rolling 

CV is made. 

Figure 20 in the appendix shows the point forecasts of all models for the period 2010-

2022 as well as the actual number of Overnight Stays. Therefore, a first impression of the 

forecasting accuracy can be gained. At the beginning of this forecasting period, almost 

all models seemed to produce forecasts which were close to the actual number of 

Overnight Stays. But as the years went by, more models produced inaccurate forecasts, 

and the Covid-19 outbreak exacerbated this. Particularly in 2021 and 2022, many models 

produced forecasts that were very distant from the actual numbers. In 2022, however, 

several models were able to improve their forecasting performance. 

More details are provided by Figure 6, which shows how the RMSE developed by 

including more years in the time series and how the corresponding ranking of the models 

changed. It follows the same structure as the previous two figures above. The line graph 

shows that even before the Covid-19 outbreak, the RMSE of all models was not at a stable 

level. The RMSE increased steadily for all models, whereby the increase was particularly 

strong for Naïve and TSLM_log. The ranking at the end of 2019 confirms that these two 

models were inferior to the other models, as their RMSE of over 47,000 is more than 

twice as high as the RMSE of the other methods. This time, the Prophet_log model is 

competitive with SNaïve and Drift_STL as their performances at the end of 2019 are 

close, with an RMSE between 22,000 and 24,000. The three ARIMA models and 

ETS_auto_log produced the most accurate forecasts, followed by the HWA model. 
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Figure 6 – Development of RMSE of Alentejo’s Forecasts based on Recursive CV. 

However, the inclusion of 2020 in the time series led to a big increase in the RMSE, 

which is lowest for TSLM_log and Naïve. The absolute and relative differences between 

the RMSE of 2019 and 2020 for each model is provided in Table IV. Remarkably, the 

relative increase in the RMSE for Alentejo is on average lower than for Algarve and 

Madeira. The ETS and SNaïve models recorded the highest increase in RMSE, with 

values ranging from 80% to 88%. The increase was slightly lower for the ARIMA and 

Prophet_log models, with values between 74% and 75%. Naïve recorded the smallest 

increase at around 7%, followed by TSLM_log and Drift_STL at around 11% and 26%, 

respectively.  

The line plot in Figure 6 reveals that thereafter, the RMSE stayed at a relatively stable 

level for all models. There are only two models whose RMSE increased further: SNaïve 

and Prophet_log. However, the ranking of the models according to their RMSE based on 

forecasts from 2010 to 2022 (see table in Figure 6) remained mostly unchanged. The only 

difference is that the forecasting performance of Drift_STL got closer to the ARIMA 

models and therefore, this methodology was able to slide up from rank 6 to rank 3. 

Consequently, ARIMA_d1D1, ETS_auto_log and HWA moved down a rank. 

But does this change when looking at the performance of the models for each specific 

year? An answer to this question can be found by analysing the annual RMSE, which is 

presented in Figure 21 in the appendix. The line plot shows that Drift_STL was able to 

produce the most accurate forecasts for 2020, which explains the change in the ranking. 

Contrary to the results obtained for Madeira and Algarve, the Naïve model was not able 
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to compete with the best models in 2020. With an RMSE of 91,140.01 in 2020, it is more 

than 30% higher than the RMSE of Drift_STL. In particular, SNaïve and Prophet_log 

were inferior to the other models in 2020 as their RMSE is with above 110,000 highest. 

Nevertheless, all methods produced more accurate forecasts in 2021, according to a much 

lower RMSE in 2021. For most models, the RMSE per year continued to decrease in 

2022. Only the ARIMA and SNaïve models performed worse than in 2021. 

Since the results of the forecasts based on a rolling CV are similar, only the main 

differences are presented. Figure 22 in the appendix shows how the RMSE based on a 

rolling CV developed by including more years in the time series. Throughout the entire 

forecast period, the performance of the ARIMA and ETS models was consistently very 

close to each other. Before the Covid-19 outbreak, Drift_STL was not able to compete 

with the ARIMA and ETS models. However, the increase in RMSE due to the Covid-19 

outbreak was significantly lower, allowing it to move up to rank 1. Moreover, TSLM_log 

produced consistently more accurate forecasts than based on a recursive CV and was 

therefore able to outperform SNaïve by the end of 2022. 

4.4. Robustness of Results to scale-independent Forecasting Measure 

Since the number of Overnight Stays in the months after the Covid-19 outbreak is 

very low, it can be compared to a different scale. As the previous analysis focused only 

on the RMSE, which is a scale-dependent measure, a comparison to a scale-independent 

measure should be made. The scale-independent counterpart to the RMSE is the RMSSE. 

However, considering the RMSSE, the ranking of the models is exactly the same as 

the ranking according to the RMSE at the end of 2019 and at the end of 2022. Therefore, 

the core statements remain unchanged, and a more detailed analysis will be omitted in 

this MFW. For interested readers, an analysis of the development of the RMSSE is 

available in the files on Github. 

4.5. Model Performance after varying the Estimation Window 

The previous analysis of the forecasting results focused mainly on two estimation 

windows: January 2010 to December 2019 and January 2010 to June 2022. In the second 

case, the proportion of observations during the Covid-19 pandemic was relatively small. 

This may lead to smaller differences between the rankings based on the two estimation 

windows. But how do the models perform when the estimation window is changed? 
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To answer this question, the ranking is analysed based on different estimation 

windows for both recursive and rolling CV for the three regions. The first two estimation 

windows begin in January 2015. The ranking of the models according to the RMSE based 

on the forecasts from January 2015 to December 2019 is compared with the ranking 

according to the RMSE based on the forecasts from January 2015 to June 2022. The next 

two estimation windows start in January 2017 and the last two estimation windows start 

in January 2019. In each case, the proportion of observations during the Covid-19 

pandemic gradually increases. Therefore, the impact of these observations on the change 

in ranking also increases. This is confirmed by the results, as the later the estimation 

window starts, the more the ranking of the models changes by including the Covid-19 

period in the time series. 

The comparatively good performance of Drift_STL during the Covid-19 period is 

reinforced by this analysis. After including the Covid-19 period in the time series, it 

always moved up in the rankings. For example, for Alentejo with recursive CV, it ranks 

from 6th to 3rd when the estimation window starts in 2010, but from 7th to 1st when the 

estimation window starts in 2017. The same behaviour is observed for the Naïve model. 

In fact, the difference between the two rankings for Naïve increases the later the 

estimation window starts. However, despite the inclusion of the observations during the 

Covid-19 pandemic in the time series, it remains one of the inferior models. During this 

period, Naïve can compete with the best models only for Madeira. 

When the estimation window starts in 2017, in most cases the three ARIMA models 

move down in the ranking after the inclusion of the Covid-19 period in the time series. In 

addition, the two ETS models do not show a consistent behaviour for the estimation 

window starting in 2017: In some cases the ranking improves, in others it deteriorates. 

An exception are the results of Algarve with rolling CV. In this case, both ETS models 

performed well during the Covid-19 period as their ranking improved.  

The biggest change in the rankings shows SNaïve for Algarve with rolling CV when 

the estimation window starts in 2019. By including the Covid-19 period in the time series, 

SNaïve drops down from 1st to 10th place. Finally, the Prophet and TSLM models are 

still outperformed by the majority of the models, regardless of when the estimation 

window starts. 
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4.6. Improving Forecasting Accuracy following Data Anomalies 

The previous analysis revealed that the data anomalies induced by the Covid-19 

outbreak led to higher forecasting errors, and therefore a higher RMSE. In 2020, the 

annual RMSE was particularly high, and in 2021 and 2022, it was still higher than before 

the Covid-19 outbreak. But how can forecasting accuracy be improved after the data 

anomalies? 

Many studies have been conducted in the field of data anomaly detection in time 

series, also known as outlier detection (Blázquez-García et al., 2021; Wu, 2016). 

However, these studies do not focus on how to deal with outliers once they have been 

identified. In the present work, the removal of outliers is not possible, as some modelling 

functions, e.g., STL decomposition or ETS, do not allow for missing values without any 

problems (Hyndman & Athanasopoulos, 2018). Therefore, the procedure chosen is to 

adjust the outliers. 

Six different approaches are evaluated for the recursive CV datasets of the three 

regions: Adjustment of outliers by 100% to the mean per month of the previous 20, 10 

and 5 years; and adjustment of the outliers by 50% to the mean per month of the previous 

20, 10 and 5 years. Moreover, these six approaches are applied to two cases: In the first 

case, the observations from March 2020 to June 2021 are classified as outliers and the 

forecasts are performed for July 2021 to June 2022; and in the second case, the 

observations from March 2020 to December 2021 are classified as outliers and the 

forecasts are performed for January to June 2022. The model selection is made based on 

which model produced the best forecasts for each region in the period 2010 to 2022. 

Table V in the appendix summarizes the results. In some cases the adjustments 

improved the RMSE only slightly or even led to an increase in the RMSE, whereas in 

other cases the RMSE decreased significantly. The highest reduction of the RMSE was 

achieved by classifying the observations from March 2020 to December 2021 as outliers. 

In this case, for example, the RMSE for Alentejo was 20,489.61, which is almost 50% 

lower than the RMSE based on the original outliers.  

This chapter is intended to provide an insight into another area of research. However, 

as further research in this area does not contribute to the research question of this thesis, 

no further analysis will be conducted. 
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5. CONCLUSION 

In this work, forecasting competitions were designed for three regions of Portugal 

using data from the tourism sector. The time series contain the monthly number of tourist 

Overnight Stays from 2000 to 2022 and therefore, a period with regular patterns in the 

time series and a period with data anomalies induced by the Covid-19 outbreak can be 

found. Madeira, Algarve and Alentejo were selected as the time series of interest because 

the tourism demand of these three regions showed different patterns, particularly after the 

Covid-19 outbreak. The forecasting methods considered in this MFW are pure time series 

approaches, ranging from simple methods, such as Naïve models, to more sophisticated 

models, such as ARIMA and ETS models.  

It can be concluded that methods which perform well during a time period with 

regular patterns in the time series, will not necessarily show superior performance during 

a time period with data anomalies. This work showed that the ARIMA and ETS models 

have always been among the models with the best forecasting performance from 2010 to 

2019, but their performance deteriorated sharply in 2020. However, these methods were 

able to achieve fast improvements in 2021 and 2022. A possible reason for this could be 

that the time series in 2021 and 2022 displayed some patterns again, and these more 

sophisticated methods were able to capture these new patterns quickly. For example, the 

ETS model weights more recent observations more heavily than older observations, 

which is a useful feature in this situation. 

Moreover, the SNaïve method was able to compete with more sophisticated models 

before the Covid-19 outbreak. This was observed in particular for the Algarve, whose 

time series showed a strong seasonality. By contrast, the Naïve method showed poor 

performance during this period. However, the Covid-19 breakout reversed this situation: 

While the SNaïve model recorded a sharp deterioration in prediction accuracy, the 

performance of the Naïve model reduced only slightly. Particularly in 2020, the Naïve 

model was able to compete with more complex models. For Madeira the Naïve model 

recorded in 2020 even the most accurate forecasts. The main reason for this is that the 

SNaïve method relies only on the seasonal pattern in the data, and the seasonality behaved 

differently in 2020 than before. The Naïve model, on the other hand, is not based on any 
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patterns in the time series and performs particularly well when the time series follows a 

random walk. 

Another conclusion is that TSLM and Prophet have always been among the inferior 

forecasting models during the whole time period. Therefore, these methodologies do not 

seem to be suitable for predicting the number of Overnight Stays in the selected regions. 

In contrast, Drift_STL was consistently able to compete with the best models and, due to 

the smaller drop in performance following the Covid-19 outbreak, it was able to rank 

among the top models for predictions from 2010 to 2022 for all three time series. 

Changing the estimation window to increase the proportion of observations during the 

Covid-19 pandemic further enhanced this effect, and Drift_STL was ranked first in most 

cases. 

These conclusions were mainly drawn from the development of the RMSE and are 

based on a recursive CV. However, a comparison was made with the results based on a 

rolling CV and the results obtained using the RMSSE, a scale-independent accuracy 

measure. Moreover, the model performance was evaluated after varying the estimation 

window. The robustness of the results was confirmed as the main conclusions remained 

unchanged. In addition to the results of the forecasting competitions, the exploratory data 

analysis revealed another finding: There is evidence that regions with a higher percentage 

of Portuguese tourists were less affected by strong declines in tourism demand during the 

Covid-19 period. 

For further investigation, it would be of interest to enlarge the forecasting competition 

with models that incorporate explanatory variables. After performing a broad forecasting 

competition, Athanasopoulos et al. (2011) confirmed the conclusion already drawn from 

previous studies: Pure time series approaches forecast tourism demand data more 

accurately than methods that use explanatory variables. Nevertheless, these studies were 

based on time series with regular patterns. The performance of the models could change 

during time periods with data anomalies. Furthermore, in this MFW two accuracy 

measures are used that penalise large errors more than small errors. Since this is not 

favourable in all situations, further accuracy measures could be used to evaluate forecast 

results. 
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All in all, this work was motivated by the observation that there has been limited 

research on forecasting tourism demand in the presence of data anomalies. The recent 

global pandemic of Covid-19, with its significant impact on the tourism industry, 

provided an opportunity to further explore this research area and extend the existing 

literature. In a rapidly changing world, models cannot always be applied to time series 

with regular patterns without data anomalies. Hence, it is crucial to increase the focus on 

this field of study to ensure that research is prepared for the future. 
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APPENDICES 

Appendix A – Data and Results 

Table I – Different Measures for Ratio of Portuguese Tourists and Decline in Tourism 

due to Covid-19 

 

 

 
Figure 7 – Monthly Overnight Stays in all Regions. 

 

 
Figure 8 – Seasonality of monthly Overnight Stays in Madeira. 
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Figure 9 – Madeira’s Overnight Stays with Trend-Cycle Component (red). 

 

 
Figure 10 – Seasonality of monthly Overnight Stays in Algarve. 

 

 
Figure 11 – Algarve’s Overnight Stays with Trend-Cycle Component (red). 



Rosanna Mueller   Measuring the Impact of Data Anomalies 

on Tourism Demand Forecasts 

 

42 

 

 
Figure 12 – Seasonality of monthly Overnight Stays in Alentejo. 

 

 
Figure 13 – Alentejo’s Overnight Stays with Trend-Cycle Component (red). 

 

 
Figure 14 – Madeira’s Point Forecasts based on Recursive CV. 
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Table II – Change of RMSE by including 2020 in Time Series: Madeira’s Forecasts 

based on Recursive CV 

 
 

 
Figure 15 – RMSE per Year of Madeira’s Forecasts based on Recursive CV. 

 

  
Figure 16 – Development of RMSE of Madeira’s Forecasts based on Rolling CV. 
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Figure 17 – Algarve’s Point Forecasts based on Recursive CV. 

 

Table III – Change of RMSE by including 2020 in Time Series: Algarve’s Forecasts 

based on Recursive CV 

 

 

 
Figure 18 – RMSE per Year of Algarve’s Forecasts based on Recursive CV. 
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Figure 19 – Development of RMSE of Algarve’s Forecasts based on Rolling CV. 

 

 
Figure 20 – Alentejo’s Point Forecasts based on Recursive CV. 

 

Table IV – Change of RMSE by including 2020 in Time Series: Alentejo’s Forecasts 

based on Recursive CV 

 



Rosanna Mueller   Measuring the Impact of Data Anomalies 

on Tourism Demand Forecasts 

 

46 

 

 
Figure 21 – RMSE per Year of Alentejo’s Forecasts based on Recursive CV. 

 

 
Figure 22 – Development of RMSE of Algarve’s Forecasts based on Rolling CV. 

 

Table V – Impact of Outlier Adjustments on RMSE 
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Appendix B – Programming Walkthrough 

This appendix provides a programming walkthrough that describes the organisation of the R code. The 

same code is available in two different files on Github. The RMD file is more technical and contains the 

source code. All chunks must be run first to see the results, e.g. figures and tables. In addition, there is an 

HTML file containing the figures and tables, and by clicking on the “Code” button the source code will 

appear. The work is divided into three main sections: “Exploratory Data Analysis”, “Fitting and Evaluation 

Models” and “Improving Forecasting Accuracy following Data Anomalies”.  

The exploratory data analysis starts with the creation of the tsibble with the Overnight Stays per region 

from 2000 to 2022, which forms the database of this work. Thereafter, time series plots for all seven regions 

are shown and seasonal differencing is performed for several months in 2020 to determine the impact of 

Covid-19 on the number of Overnight Stays per region. Subsequently, a correlation analysis is carried out 

to determine if there is a relationship between the share of Portuguese tourists in a given region and the 

decline in tourism in that region due to the Covid-19 pandemic. The last subchapter provides an in-depth 

analysis of seasonality and trend for the three selected time series, namely Madeira, Algarve and Alentejo. 

The second main section, “Fitting and Evaluation Models”, is separated into Madeira, Algarve and 

Alentejo. Each of these three chapters is further divided into a recursive CV and a rolling CV, which always 

follow the same structure. First, the respective CV is conducted, and a seasonal strength test is performed 

on the training sets to define the parameter 𝐷 of the ARIMA models. Thereafter, the models are fitted and 

one-step ahead forecasts are produced. In the subchapter “Forecast Errors” the point forecasts of the various 

models are shown in plots for several time periods. The next four chapters focus on the RMSE. First, the 

ranking of the models based on the RMSE from 2010 to 2019 and from 2010 to 2022 is presented in a table. 

Second, the development of the RMSE by including more years in the time series and third, the RMSE per 

year is displayed in several line plots. There are also tables showing the difference between the RMSE of 

certain years of interest. The fourth chapter explores how the ranking of the models changes when the 

estimation window is varied. Moreover, the first and second analyses mentioned above are also performed 

for the RMSSE. In all these subchapters focusing on the RMSE and RMSSE, each analysis is performed 

both for all models (with original and log-transformed variables) and for ten selected models. For the ten 

models, each model type appears only once in the analysis with either the original or the log-transformed 

variable, depending on the lower RMSE for the forecasts from 2010 to 2022. 

In the final section, “Improving Forecasting Accuracy following Data Anomalies”, the outliers are 

adjusted in various ways and, using only one forecasting model, the RMSE of the forecasts based on the 

adjusted time series is compared with that based on the original time series. For each region there are two 

cases: In the first case, the observations from March 2020 to June 2021 are classified as outliers and the 

forecasts are performed for July 2021 to June 2022; and in the second case, the observations from March 

2020 to December 2021 are classified as outliers and the forecasts are performed for January 2022 to June 

2022. Within these two cases, six different types of outlier adjustment were applied to the recursive CV 

datasets of the three regions. The last subchapter “Overall Summary” summarises the results of this section. 


