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Abstract

Abstract

In this Master Final Work, a new Model for the Risk Adjustment for Longevity
Risk in Life Insurance is proposed and it is compared with the classical techniques for
calculating the Risk Adjustment, discussing its advantages and disadvantages.

In recent years, the insurance sector has evolved to standardize financial, actuarial
and accounting reporting processes in order to be able to assess and compare the insurance
companies’ performance. New standards have emerged to achieve this shared vision, such
as the IFRS 17 - Insurance Contracts.

The objective of this internship was to study the Risk Adjustment in Life Insurance.
The Risk Adjustment is one of the components of liabilities measurement under IFRS 17
which reflects the compensation that an insurance company requires to support the un-
certainty arising from non-financial risks. The standard does not prescribe any technique
for its calculation, making it one of the major challenges for insurance companies in
implementing the IFRS 17.

In this work, an original model for calculating the Risk Adjustment for Longevity
Risk in Life Insurance is developed. It is based on statistical concepts, such as: Con-
vex Ordering of Risks; Comonotonicity; and the Bounds of Sums of Random Variables.
The new model creates an interval containing the Risk Adjustment to be applied to a
given life insurance portfolio under longevity risk by applying an analytical formula. The
analytical expression for the bounding interval is easy to implement and obtain results
from. By using data inspired on a real life insurance portfolio of a leading insurance com-
pany operating in Portugal, it is shown that this model, which focuses on the volatility
of the historical behavior of the portfolio in terms of exposure and deaths, has several
good characteristics when compared to the classical techniques for calculating the Risk
Adjustment: the Quantile Techniques; and the Cost-of-Capital Technique.

Keywords: Risk Adjustment; Longevity Risk; IFRS 17; Comonotonicity; Convex
Ordering; Life Insurance.
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Resumo

Resumo

Neste Trabalho Final de Mestrado, um novo Modelo para o Risk Adjustment para
o Risco de Longevidade em Seguros de Vida é proposto e comparado com as técnicas
clássicas de cálculo do Risk Adjustment, discutindo as suas vantagens e desvantagens.

Nos últimos anos, o setor segurador tem evoluído no sentido de uniformizar os pro-
cessos de relato financeiro, atuarial e contabilístico, de forma a poder avaliar e comparar
o desempenho das seguradoras. Novas normas têm surgido para alcançar esta visão par-
tilhada, como é o caso da IFRS 17 - Contratos de Seguro.

O objetivo deste estágio foi estudar o Risk Adjustment em Seguros de Vida. O Risk
Adjustment é uma das componentes da mensuração de responsabilidades ao abrigo da
IFRS 17 que reflete a compensação que uma seguradora necessita para suportar a incerteza
decorrente de riscos não financeiros. A norma não prescreve qualquer técnica para o seu
cálculo, tornando-o num dos maiores desafios para as seguradoras na implementação da
IFRS 17.

Neste trabalho, desenvolve-se um modelo original para o cálculo do Risk Adjustment
para o Risco de Longevidade em Seguros de Vida. Este é baseado em conceitos estatísticos,
tais como: Ordenação Convexa de Riscos; Comonotonicidade; e os Limites de Somas de
Variáveis Aleatórias. O novo modelo cria um intervalo que contém o Risk Adjustment a
aplicar a um determinado portfólio de seguros de vida sob o risco de longevidade, através
da aplicação de uma fórmula analítica. A expressão analítica para o intervalo é de fácil
implementação e obtenção de resultados. Utilizando dados inspirados num portfólio real
de seguros de vida de uma companhia de seguros líder a operar em Portugal, mostra-se
que este modelo, que se foca na volatilidade do comportamento histórico do portfólio em
termos de exposição e de mortes, tem várias características positivas quando comparado
com as técnicas clássicas de cálculo do Risk Adjustment : as Técnicas de Quantis; e a
Técnica Cost-of-Capital.

Palavras-Chave: Risk Adjustment ; Risco de Longevidade; IFRS 17; Comono-
tonicidade; Ordenação Convexa; Seguros de Vida.
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Introduction
For decades, insurance companies have worked to create products to cover the most

diverse risks, using a wide range of techniques to model and calculate premiums, expenses
and liabilities inherent to these products. In recent years, the sector has evolved to
standardize financial, accounting and actuarial reporting processes in order to be able
to assess and compare insurance companies’ performance more accurately. The rise of
new standards, such as the Solvency II (SII) in the European Union (EU) and more
recently the IFRS 17 - Insurance Contracts (IFRS 17), are examples of this shared vision.
In part, this concern of the sector stems from the impacts of financial crises, which is
why this new regulations also seeks to protect policyholders and prevent insolvency and
bankruptcy situations through the continuous monitoring of the insurance companies.
Nevertheless, these new standards and their implementation are a major challenge for
insurance companies, consultancies and authorities responsible for the sector worldwide.

This Master Final Work focuses on the Risk Adjustment (RA) quantification, namely
the RA for surrender and longevity risks in life insurance products. The RA is one of
the main challenges of the IFRS 17, since the standard does not prescribe any particular
technique to compute it. This work is the result of a 6-month internship at Ernst &
Young, S.A. (EY) in the Risk & Actuarial Services team. The internship involved several
projects in a specialized team in the actuarial sector. As a result of team discussions,
it was jointly decided to study the RA, given its current importance in the sector and
considering that some insurance companies remain uncertain about which method to use.
This is an important topic nowadays, also because the 1st IFRS 17 financial statements
will be published in 2024, referring to 2023.

There are currently two main techniques used to calculate the RA in IFRS 17: the
Quantile Techniques and the Cost-of-Capital (CoC) Technique. These techniques are well
known in the sector, as they have been used in other actuarial calculations or standards for
several years. Nevertheless, their extensive application has revealed some disadvantages.
These disadvantages have led to the development of internal models in some insurance
companies, after approval by the authorities.

In this Master Final Work, a new Model for RA for Longevity Risk will be developed
as an original generalization of the work of Carlehed (2023) for the surrender risk in
life insurance. With the new model, an analytically calculated interval containing the
longevity RA of the portfolio is obtained. This interval provides the insurance company
the possibility of choosing a more prudent value for the RA, depending on its risk aversion.
Concepts such as Risk Measures, Risk Ordering and Comonotonicity will be applied to
build this model. Focus in given to the volatility of the historical behavior of the portfolio
in terms of exposure and deaths, in comparison to what the insurance company expects.
To better understand the new model, a detailed analysis of the Model for RA for Surrender
Risk by Carlehed (2023) is described, as well as its advantages, disadvantages and possible
improvements.

The Master Final Work is composed by four Chapters. Chapter 1 provides a brief
overview of the IFRS 17, the RA, its main characteristics and the classical techniques
to calculate it. Subsequently, Chapter 2 serves as a theoretical framework to introduce
the concepts required to build the models for the longevity RA. The new Model for RA
for Longevity Risk is explained, after the Model for RA for Surrender Risk by Carlehed
(2023) is presented, in Chapter 3. Finally, Chapter 4 illustrates a practical example of the

1



Introduction

application of the Model for RA for Longevity Risk to a life insurance portfolio inspired
by a real portfolio of a leading insurance company operating in Portugal. This chapter
concludes with a comparison of the Model for RA for Longevity Risk with the classical
techniques, setting out the advantages and disadvantages of each approach.

2



Chapter 1

Risk Adjustment and IFRS 17
This Chapter provides a brief overview of the IFRS 17, as well as the definition,

main characteristics and methods used to calculate the Risk Adjustment (RA). The
focus is only on the fundamental aspects of the standard that will be applied throughout
this work, leaving out many other key concepts and details of the general knowledge of
the IFRS 17.

1.1 IFRS 17 - Insurance Contracts

The IFRS 17 - Insurance Contracts (IFRS 17) is the new international financial re-
porting standard for the insurance sector. It was published by the International Account-
ing Standards Board (IASB) in 2017, with the purpose of promoting the standardization
of international accounting standards in the sector.

The IASB is an independent international organization that develops globally ap-
plicable accounting standards. As described in Flower and Ebbers (2002), it was founded
in 2001 to replace its predecessor, the International Accounting Standards Commit-
tee (IASC), which, since 1973 and until 2001, had been the entity responsible for designing,
developing, publishing and updating accounting standards, known as the International Ac-
counting Standards (IAS). After its creation, the IASB became responsible for publishing
what are known as the International Financial Reporting Standards (IFRS). However,
some of the old IAS are still in force today as they have not been replaced by new stan-
dards.

According to IASB (2018a), the influence of the IFRS at the international level
is notorious, with 166 jurisdictions worldwide applying these standards in line with the
IASB’s main objective. In Portugal, the application of these standards is required, since
the European Union (EU) made it a mandatory rule in the Regulation (EC) No 1606/2002
(2002) for all EU listed companies in 2002.

1.1.1 History Overview, Objective and Scope of IFRS 17

The IFRS 17 enables the standardization of the international accounting standards
for the insurance market. As described in IFRS 17 (2023a, § 1), the standard establishes
“principles for the recognition, measurement, presentation and disclosure of insurance
contracts within the scope of the standard”, with the objective of ensuring that accurate
and relevant information is provided on these contracts in order to assess their effect on
the “entity’s financial position, financial performance and cash flows”.

The IFRS 17 is the result of an IASB project divided into two phases, which began
in 1997 with the IASC, as described in IFRS 17 (2023b, §§ BC2-BC6). At the end of the
first phase in 2004, IFRS 4 - Insurance Contracts emerged as a transitory standard which,
over the years, revealed the weakness of allowing the use of local accounting standards,
making it difficult to understand and compare the results of various insurance companies.
In Portugal, the Autoridade de Supervisão de Seguros e Fundos de Pensões (ASF) has
not fully implemented IFRS 4, adopting only the classifications of insurance contracts, as

3



1.1. IFRS 17 - Insurance Contracts

mentioned in ASF (2005).

Figure 1: Scope of IFRS 9, IFRS 15 and
IFRS 17 in Insurance Contracts.

Taken from EY (2021)

In 2017, the IASB issued the IFRS 17
as the conclusion of the second phase of
the project. The effective adoption of the
standard to the portuguese insurance com-
panies was in 2023, and the first finan-
cial statements will be published in 2024.
In IFRS 17 (2023a, § 3), the scope of the
standard is defined as being: the insur-
ance contracts; the reinsurance contracts;
and the investment contracts with discre-
tionary participation features. The stan-
dard separates the components of an in-
surance contract in IFRS 17 (2023a, §§ 11-
13), excluding from its scope the invest-
ment component which should be assessed under IFRS 9 - Financial Instruments, and
other goods and non-insurance services under IFRS 15 - Revenue from Contracts with
Customers, as shown in Figure 1 taken from EY (2021). The aggregate implementation of
IFRS 9, IFRS 15 and IFRS 17 seeks to standardize the accounting system for the different
types of contracts in order to increase transparency of information in the insurance sector.

1.1.2 Measurement Models and Building Blocks Approach

The IFRS 17 provides three different accounting measurement approaches, due to
its objective of evaluating any type of insurance contract within its scope. As such,
entities need to evaluate different groups of contracts using distinct measurement methods,
depending on the specific conditions inherent in the contracts:

• The Building Blocks Approach (BBA) described in IFRS 17 (2023a, § 32), also
known as the General Measurement Model, since it is the default model of the
IFRS 17. It is based on an approach composed by four blocks that can be ap-
plied to all insurance contracts, except those with direct participation features, and
therefore reported by the entities;

• The Premium Allocation Approach (PAA) introduced in IFRS 17 (2023a, § 53),
which is a simplified model only for insurance contracts with a duration of one year
or less, or if this simplification is a reasonable approximation that does not result in
a materially different measurement of liabilities from that determined in the BBA;

• The Variable Fee Aproach (VFA) presented in IFRS 17 (2023a, § 45), which is ap-
plied to insurance contracts with direct participation features, thus requiring a dif-
ferent approach.

In this study, only the general model of the IFRS 17, the BBA, will be applied. As
described in IFRS 17 (2023a, § 32), and illustrated in Figure 2, taken from EY (2018),
the BBA consists of four Building Blocks:

1. the 1st Building Block (BB) is the Estimate of Future Cash Flows;
2. the 2nd BB includes the discount effect, mentioned in the standard as the adjustment

that “reflects the time value of money and the financial risks related to the future
cash flows”;

4



1. Risk Adjustment and IFRS 17

3. the 3rd BB is Risk Adjustment (RA) for non-financial risks;
4. the 4th BB is the Contractual Service Margin (CSM).

Figure 2: The 4 Building Blocks.
Taken from EY (2018)

The combination of the 1st and 2nd BB’s,
which corresponds to discounting the cash flow
estimates, is known as the Present Value of Fu-
ture Cash Flows (PVFCF). The sum of the 1st,
2nd and 3rd BB’s is known as the Fulfilment Cash
Flows (FCF), which refers to the present value al-
ready accounting for the adjustment for the risks
associated with future cash flows. It is a result of
the entity’s information on the cash flows arising
from the fulfillment of the insurance contracts.

On the other hand, the 4th BB, i.e., the CSM,
is “a component of the asset or liability for the
group of insurance contracts that represents the unearned profit the entity will recog-
nise as it provides insurance contract services in the future”, as described in IFRS 17
(2023a, § 38).

Regarding the measurement of liabilities, as mentioned in IFRS 17 (2023a, § 40), the
standard divides total liabilities into two types: the Liabilities for Remaining Coverage
(LRC), which refer to the FCF related to future services to be provided by the insurance
company, together with the CSM still to be recognized throughout the insurance contract;
and the Liabilities for Incurred Claims (LIC), which refer to the FCF of the insurance
company related to provided past service;

According to IFRS 17 (2023a, § 32 & § 38), on initial recognition, the insurance
company measures a group of insurance contracts as the total of the FCF and the CSM.
This sum will generally be equal to zero due to the fact that, at the inception, the CSM
is considered to be symmetrical to the FCF.

Figure 3: The BBA Balance Sheet.
Taken from IFRS 17 (2018b)

At subsequent measurement, the to-
tal amount of liabilities is given by the
sum of the LRC and the LIC as defined
above and illustrated in Figure 3, taken
from IFRS 17 (2018b). The LRC will be
the FCF arising from future services to be
provided and the CSM yet to be recog-
nized, unless the insurance contract costs
the company more to cover than it will re-
ceive in return. In this case, the CSM will
be zero and a loss component will be rec-
ognized, as described in IFRS 17 (2023a,
§§ 47-52). In the case of the LIC, these are
the FCF resulting from past services provided. There is no CSM on the LIC since it has
already been recognized as a profit or a loss.

1.2 Risk Adjustment

The Risk Adjustment (RA) for non-financial risks is the main subject of this study.
In the following, a deeper understanding of its definition, characteristics, classical tech-
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1.2. Risk Adjustment

niques and their advantages and disadvantages will be presented, which will be useful
for the analysis and development of an original Model for the RA for Longevity Risk, as
described in Chapter 3.

As mentioned above, the RA is the 3rd BB of the BBA. According to IFRS 17
(2023a, § 37), the RA is defined as “the compensation that the entity requires for bearing
the uncertainty about the amount and timing of the cash flows that arises from non-
financial risk”. In IFRS 17 (2023a, §B86), the standard clarifies the concept of non-
financial risk as being the set formed by insurance risks and other non-financial risks, which
include the surrender risk. Therefore, the RA for specific insurance contracts measures the
compensation that the insurance company would require to become indifferent between
covering a liability with a wide range of possible outcomes caused by a non-financial risk or
fulfilling a liability that will produce fixed cash flows with the same expected present value
as those contracts, as described in IFRS 17 (2023a, § B87). Hence, it is the additional
amount that must be added to the PVFCF, the 1st and 2nd BB’s, to calculate the FCF.

It can be concluded that the RA is the BB that reflects the uncertainty in cash flows
arising from non-financial risks. It also reveals the degree of diversification benefit and of
risk aversion of the insurance company, as mentioned in IFRS 17 (2023a, §§B88-B89).

1.2.1 Key Characteristics of Risk Adjustment

The IFRS 17 does not prescribe any technique that should be used to determine the
RA, so the insurance company must assess which is the most appropriate technique to
calculate it. The standard defines, in IFRS 17 (2023a, § B91), the following five criteria,
which correspond to the main characteristics that should be considered when calculating
the RA:

(a) “risks with low frequency and high severity will result in higher risk adjustments for
non-financial risk than risks with high frequency and low severity;”

(b) “for similar risks, contracts with a longer duration will result in higher risk adjust-
ments for non-financial risk than contracts with a shorter duration;”

(c) “risks with a wider probability distribution will result in higher risk adjustments for
non-financial risk than risks with a narrower distribution;”

(d) “the less that is known about the current estimate and its trend, the higher will be
the risk adjustment for non-financial risk; and”

(e) “to the extent that emerging experience reduces uncertainty about the amount and
timing of cash flows, risk adjustments for non-financial risk will decrease and vice
versa.”

1.2.2 Classical Risk Adjustment Techniques

As mentioned above, IFRS 17 does not force the use of a particular technique for
determining the RA. In IAA (2018), two classical techniques are described: the Quantile
Techniques; and the Cost-of-Capital (CoC) Technique. Both have become very attractive
for calculating the RA, since they are well-known methodologies in the insurance sector,
as they are used in actuarial analyses or to comply with other regulations. Indeed, the
Quantile Techniques are risk measures commonly applied in insurance companies, as they
are key risk indicators for understanding the level of exposure of insurance contracts to

6



1. Risk Adjustment and IFRS 17

certain risks. They are applied in the actuarial calculations to carry out various analyses,
including the premium principles and the pricing of insurance contracts. The CoC Tech-
nique is especially well-known in the EU, since it is the applied methodology to calculate
the Risk Margin (RM) under Solvency II (SII).

1.2.2.1 Quantile Techniques

As described in the IAA (2018), there are two types of quantile techniques that are
commonly used by insurance companies to determine maximum risk limits: the Value
at Risk (VaR), also known as the confidence level or percentile; and the Tail Value at
Risk (TVaR), also referred to as the Conditional Tail Expectation (CTE).

The VaR is very popular given its simplicity, making its application and under-
standing easy. With this technique, the RA is determined as the amount added to the
PVFCF such that the probability of the actual liability being less than the FCF is equal
to a confidence level, fixed by the insurance company. On the other hand, the TVaR is
more complex to compute, but it is more sensitive to skewness in the tails of the distri-
butions. With this technique, the RA is calculated as the conditional expected value of
the liabilities that exceed a confidence level, fixed by the insurance company.

To apply the quantile techniques, the company use its portfolio to create a dis-
tribution and then simulate a large number of outcomes in order to calculate the RA.
Typically, simulation methods are applied. The most common simulation methods are
the Monte Carlo Method or the Bootstrap Method. In many cases, fitting the PVFCF to
a known distribution is considered a simplifying assumption.

The mathematical details of these techniques will be presented in Chapter 2.

1.2.2.2 Cost-of-Capital Technique - Solvency II Approach

The CoC Technique is based on the idea that the insurance company determines
the appropriate amount of capital for the RA in order to reflect its risk aversion. As
described in IAA (2018), this amount of capital is calculated using “one or more bench-
marks or types of analyses, such as stress tests, stochastic or probability models”. Most
companies prefer this technique when calculating the RA, especially in the EU, since it is
the approach behind the calculation of the RM under the SII. Therefore, and in parallel
to the calculation of the RM in SII (2015, § 37(2)), the RA would be defined as:

RASII = CoC ·
T∑
t=1

SCRt

(1 + it+1)t+1
, (1.1)

where CoC is the selected cost-of-capital rate for year t, SCRt is the Solvency Capital
Requirement in year t, it is the selected interest rate for year t and T is the maximum
contract boundary, established according to IFRS 17 (2023a, § 34 & § B61).

Despite the similarities between the calculation of the RA under IFRS 17 and the
RM under SII using the CoC Technique, there are significant differences between the
two concepts. Under IFRS 17, the choice of the CoC rate is selected by the insurance
company, while under SII it is prescribed at 6%. The choice of confidence level is chosen in
accordance with the risk aversion of the insurance company under IFRS 17, while under
SII it is prescribed at 99.5%. Also, the RA under IFRS 17 should be calculated on an
ultimate view basis, while the RM under SII is calculated on a one-year view basis, leading
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1.2. Risk Adjustment

some entities to apply a time factor to capture the effect of the duration of liabilities when
applying the CoC Technique to calculate the RA.

In this work, the CoC Technique will not be applied, since the focus will be on the
analysis of the Longevity Risk. Therefore, in order to determine the RA according to the
SII for Longevity Risk for a confidence level of α = 99.5%, an instantaneous permanent
shock of a decrease of 20% in the mortality rates used to calculate the PVFCF will be
applied, based on what is stated in SII (2015, § 138(1)). This is the methodology that
will be applied for the practical example in Chapter 4.

1.2.2.3 Advantages and Disadvantages of each Technique

In order to better understand the classical techniques and to be able to develop the
new methods for calculating the RA, presented in Chapter 3, it is necessary to analyze
the advantages and disadvantages of these techniques.

The Quantile Techniques, combined with the use of simulation methods, have the
advantage of enabling the generation of a wide range of different outcomes, helping to
better understand the behavior of the portfolio and its distribution under certain risks.
Typically, these techniques provide more information about the losses of the insurance
company, since the greater the number of simulations performed, the greater the knowl-
edge of extreme events. On the other hand, the high number of simulations needed is also
seen as a disadvantage, representing a high computational cost. When comparing the two
Quantile Techniques, the VaR has the advantage of being the simplest, as it is simply the
difference between the estimated liability for a given confidence level and the expected
liability. However, it ignores liabilities for situations in which the quantile is higher than
the one chosen by the insurance company, having a huge impact on portfolios with more
skewed distributions. On the other hand, the TVaR overcomes this disadvantage, since
by calculating the conditional expected value of all results above a confidence level it has
greater sensitivity to possible outcomes with high severity and low frequency. It is, thus,
a more suitable technique for assessing the RA in these portfolios. The TVaR will be
the quantile technique used in Chapter 4 for the practical example, due to its advantages
over VaR and its similarity to the original Model for RA for Longevity Risk presented in
Chapter 3.

Finally, regarding the CoC Techique, it is faster to calculate and requires less com-
putational power, because it usually applies fixed shocks as in SII. Also, it does not
require the calculation of a large number of simulations like the Quantile Techniques. It
also has the advantage that, as it is the technique prescribed by the SII in the EU, it
enables the standardization of the technique used to calculate the RA for a considerable
number of insurance companies, making it easier to compare and benchmark the RA
considered by each company. However, it has serious disadvantages, including the use of
shocks predefined by the insurance company or by a standard, such as the SII, leading to
a lack of sensitivity about the historical characteristics and volatility of a given portfolio.
Moreover, if the shocks as defined in the SII are applied to calculate the RA, then the
simplifying assumption of normality of the portfolio is implied, even if that is not the case
in reality.

8



Chapter 2

Risk Measures, Comonotonicity and
Ordering of Risks

This Chapter will serve as the Theoretical Framework for the Model for Risk Ad-
justment for Longevity Risk that will be developed in Chapter 3. The concepts of Risk
Measures, Ordering of Risks and Comonotonicity will be presented, as well as a deeper
look at the Bounds of Sums of Random Variables. The Chapter is mainly based on Kaas
et al. (2000), Dhaene et al. (2006), Vanduffel et al. (2005) and Vanduffel et al. (2008).

2.1 Risk Measures

Risk Measures are important key risk indicators for actuaries to assess the level of
exposure to certain risks to which the insurance company is subject. There is a wide
variety of risk measures analyzed and used nowadays, and there are some well known
properties that are considered important to be verified by a risk measure. Artzner et al.
(1999) introduced the concept of coherent risk measure as a function of the risk X, ρ(X),
where X is a random variable, with the properties of subadditivity, monotonicity, positive
homogeneity and translation invariance (see, for instance, Klugman et al., 2008). These
four properties are typically used to assess the quality of risk measures. Examples of well-
known risk measures (see, for instance, Dhaene et al., 2006) are the Value at Risk (VaR)
and the Tail Value at Risk (TVaR).

The Value at Risk (VaR) of X at a confidence level α (also know as the α-quantile
risk measure), denoted by VaRα(X), is defined by:

VaRα(X) = inf{x ∈ R | FX(x) ≥ α}, α ∈ ]0, 1[. (2.1)

The VaR is a non-decreasing and left-continuous function of α, so it verifies the following
equivalence relation:

VaRα(X) ≤ x ⇐⇒ α ≤ FX(x), ∀x ∈ R ∧ α ∈ ]0, 1[. (2.2)

When FX(x) is continuous, the equivalence relation (2.2) can be rewritten as:

VaRα(X) = x ⇐⇒ α = FX(x), ∀x ∈ R ∧ α ∈ ]0, 1[. (2.3)

Thus, for FX(x) continuous, the VaR can be defined by VaRα(X) = F−1
X (α). Although

VaR is a well-established and popular risk measure, due to its simplicity, it is not coherent
since it does not verify the subadditivity property.

The Tail Value at Risk (TVaR) of X at a confidence level α, denoted by
TVaRα(X), is defined by:

TVaRα(X) =
1

1− α

∫ 1

α

VaRα(X) dq, α ∈ ]0, 1[. (2.4)

.
The Conditional Tail Expectation (CTE) of X at a confidence level α, denoted

by CTEα(X), is another risk measure, defined by:

CTEα(X) = E[X | X > VaRα(X)], α ∈ ]0, 1[. (2.5)
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When FX(x) is continuous, the TVaR and the CTE are equivalent.
Another important property of the TVaR is its relation with the expectation of X:

lim
α→ 0

TVaRα(X) = E[X]. (2.6)

Unlike the VaR, the TVaR has the advantage of being a coherent risk measure.
The Left Tail Value at Risk (LTVaR) is also introduced, which is going to be impor-

tant to understand the results of Carlehed (2023) that are presented in detail in Chapter
3 and that will be the inspiration for the original results of this thesis.

Let X be a random variable such that FX(x) is continuous. The Left Tail Value
at Risk (LTVaR) of X at a confidence level α (also know as Conditional Left Tail
Expectation (CLTE)) and denoted by LTVaRα(X), is defined by:

LTVaRα(X) =
1

α

∫ α

0

VaRα(X) dq = E[X | X < VaRα(X)], α ∈ ]0, 1[. (2.7)

The LTVaR is, in fact, a combination of two definitions (LTVaR and CLTE). How-
ever, it has been decided to present it this way since it will only be used for the case
where FX(x) is continuous. The relations behind it are in everything analogous to the
definitions of TVaR and CTE.

2.2 Ordering of Risks

In the actuarial world, being able to compare random variables is essential for
analyzing and measuring risk, which supports decision making. In the following, the
definitions of three Orders of Risks with important actuarial applications will be presented,
according to Dhaene et al. (2006).

Definition 2.2.1 Consider two random variables X and Y . X is said to precede Y in
the stochastic dominance sense, denoted by X ≤st Y , if the cumulative distribution
function of X always exceeds that of Y :

FX(x) ≥ FY (x), −∞ < x < +∞. (2.8)

Definition 2.2.2 Consider two random variables X and Y . X is said to precede Y in
the stop-loss order sense, denoted by X ≤sl Y , if and only if:

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞. (2.9)

Definition 2.2.3 Consider two random variables X and Y . X is said to precede Y in
the convex order sense, denoted by X ≤cx Y , if and only if, X ≤sl Y and in addition
E[X] = E[Y ].

In the next two theorems (see Dhaene et al., 2006), the relation between ordering
of risks and risk measures is highlighted.

Theorem 2.2.4 Consider two random variables X and Y . X precedes Y in the stochastic
dominance sense if and only if the corresponding VaR are ordered:

X ≤st Y ⇐⇒ VaRα(X) ≤ VaRα(Y ), ∀α ∈ ]0, 1[. (2.10)
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2. Risk Measures, Comonotonicity and Ordering of Risks

Theorem 2.2.5 Consider two random variables X and Y . X precedes Y in the stop-loss
order sense if and only if the corresponding TVaR are ordered:

X ≤sl Y ⇐⇒ TVaRα(X) ≤ TVaRα(Y ), ∀α ∈ ]0, 1[. (2.11)

From Theorem 2.2.5, it is possible to show the following corollary, that will be
essential in Chapter 3.

Corollary 2.2.6 Consider two random variables X and Y . X precedes Y in the convex
order sense if and only if their expected values are equal and their TVaR are ordered:

X ≤cx Y ⇐⇒ E[X] = E[Y ] ∧ TVaRα(X) ≤ TVaRα(Y ), ∀α ∈ ]0, 1[. (2.12)

It is possible to develop similar results to Theorem 2.2.5 and Corollary 2.2.6 for the
risk measure LTVaR, as presented next.

Theorem 2.2.7 Consider two random variables X and Y . X precedes Y in the stop-loss
order sense if and only if the corresponding LTVaR are contrary ordered:

X ≤sl Y ⇐⇒ LTVaRα(X) ≥ LTVaRα(Y ), ∀α ∈ ]0, 1[. (2.13)

Corollary 2.2.8 Consider two random variables X and Y . X precedes Y in the convex
order sense if and only if their expected values are equal and their LTVaR are contrary
ordered:

X ≤cx Y ⇐⇒ E[X] = E[Y ] ∧ LTVaRα(X) ≥ LTVaRα(Y ), ∀α ∈ ]0, 1[. (2.14)

2.3 Comonotonicity

The concept of Comonotonicity is highly important when studying dependent ran-
dom variables. It has applications in copula’s construction and in bounding multi-
dimensional random variables. Below, its definition and some important results linked
with risk measures will be introduced.

Definition 2.3.1 The n-dimensional random vector X = (X1, X2, . . . , Xn) is said to be
comonotonic if and only if:

FX(x1, x2, . . . , xn) = min(FX1(x1), FX2(x2), . . . , FXn(xn)), ∀x1, x2, . . . , xn ∈ R, (2.15)

that is
X

d
=
(
F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)
)
, (2.16)

where U is a uniformly distributed random variable on the unit interval ]0, 1[ and the
notation d

= is used to indicate “equality in distribution”.

The following theorem, based on Dhaene et al. (2006), shows why the use of comono-
tonic bounds has interesting applications in the calculation of risk measures of sums of
dependent random variables.

11



2.4. Bounds for Sums of Random Variables

Theorem 2.3.2 Consider a comonotonic n-dimensional random vector X = (X1, X2, . . . , Xn).
Then, the VaR, TVaR and LTVaR are additive for all α ∈ ]0, 1[:

VaRα

[
n∑

i=1

Xi

]
=

n∑
i=1

VaRα[Xi], ∀α ∈ ]0, 1[, (2.17)

TVaRα

[
n∑

i=1

Xi

]
=

n∑
i=1

TVaRα[Xi], ∀α ∈ ]0, 1[, (2.18)

LTVaRα

[
n∑

i=1

Xi

]
=

n∑
i=1

LTVaRα[Xi], ∀α ∈ ]0, 1[. (2.19)

The concept of Comonotonicity has been exhaustively studied and developed over
the last decades, together with the appearance of a wide variety of applications in actuarial
science and finance. For a better understanding of the theory and its applications, refer
to Dhaene et al. (2002a) and Dhaene et al. (2002b), and to Deelstra et al. (2011) for an
extensive bibliographic overview and for awareness of further developments of the theory
and its applications.

2.4 Bounds for Sums of Random Variables

The sum of random variables has always been a challenging problem. Finding
bounds to the sums of random variables, using different sums with better properties, has
been the subject of active research. Next, results joining the concepts of comonotonicity
and convex order to bound the sum of random variables are presented.

The main result here presented joins two theorems where convex comonotonic (upper
and lower) bounds for the sum of random variables are derived. According to Deelstra
et al. (2011), the first references regarding the upper bound are attributed to Meilijson
and Nádas (1979), Tchen (1980) and Rüschendorf (1983), while Kaas et al. (2000) were
the ones who introduced the lower bound. The theorem here presented is based on the
versions in Deelstra et al. (2011) and Carlehed (2023).

Theorem 2.4.1 Let X = (X1, X2 . . . , Xn) be any n-dimensional random vector, U a uni-
formly distributed random variable on the unit interval ]0, 1[ and Λ any random variable.
Then:

n∑
i=1

E[Xi |Λ] ≤cx

n∑
i=1

Xi ≤cx

n∑
i=1

F−1
Xi

(U). (2.20)

By denoting S =
n∑

i=1

Xi, Sl =
n∑

i=1

E[Xi |Λ] and Su =
n∑

i=1

F−1
Xi

(U), inequality (2.20) can

be rewritten as:
Sl ≤cx S ≤cx Su. (2.21)

Note that the upper bound Su is always a comonotonic sum. Regarding the lower
bound, Kaas et al. (2000) state that if all terms E[Xi |Λ] are increasing (or all are de-
creasing) functions of Λ then Sl is a comonotonic sum. The importance of this remark is
that it may be possible to apply Theorem 2.3.2 to the comonotonic bounds.
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2. Risk Measures, Comonotonicity and Ordering of Risks

The ability to bound the sum of random variables by a convex order has notable
advantages for calculating risk measures or intervals that bound them. The next theorem
clarifies this and it is based on Corollaries 2.2.6 and 2.2.8. Due to the convex order, it is
also possible to relate the variance of the sum of random variables to that of their bounds.
For further details refer to Vanduffel et al. (2008) and Denuit et al. (2005).

Theorem 2.4.2 Let S, Sl and Su be random variables such that the following convex
order relations hold:

Sl ≤cx S ≤cx Su. (2.22)

Then, the relations below are verified:

E[Sl] = E[S] = E[Su], (2.23)

V[Sl] ≤ V[S] ≤ V[Su], (2.24)

TVaRα[Sl] ≤ TVaRα[S] ≤ TVaRα[Su], ∀α ∈ ]0, 1[, (2.25)

LTVaRα[Sl] ≥ LTVaRα[S] ≥ LTVaRα[Su], ∀α ∈ ]0, 1[. (2.26)

2.4.1 Application to the Sum of Lognormals

Theorem 2.4.1 allows to bound the sum of random variables, in particular the Sum
of Lognormals. As stated in Vanduffel et al. (2008), many problems in actuarial science,
finance and even physics and engineering, involve evaluating the cumulative distribution
function of a random variable S of the form:

S =
n∑

i=1

αi e
Zi , (2.27)

where αi ∈ R+
0 ,∀i ∈ {1, 2, . . . , n} and Z = (Z1, Z2 . . . , Zn) is a n-dimensional multivariate

normal random vector. From Theorem 2.4.1, Kaas et al. (2000) introduced the following
theorem that defines comonotonic bounds for the sum of lognormals random variables
(see also Vanduffel et al., 2005).

Theorem 2.4.3 Let S be given by (2.27) and, for some given choice of the γi, consider
the conditioning random variable Λ, given by:

Λ =
n∑

i=1

γiZi. (2.28)

Also, consider the random variables Sl and Su defined by:

Sl =
n∑

i=1

αi e
E[Zi]+

1
2(1−ρ2i )σ2

Zi
+ρiσZi

Φ−1(U), (2.29)

and

Su =
n∑

i=1

αi e
E[Zi]+σZi

Φ−1(U), (2.30)
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where U is a uniformly distributed random variable on the unit interval ]0, 1[, Φ is the cu-
mulative distribution function of the standard normal distribution and ρi is the correlation
between Zi and Λ defined by:

ρi = Corr[Zi,Λ] =
Cov[Zi,Λ]

σZi
σΛ

=
1

σZi
σΛ

n∑
j=1

γjCov[Zi, Zj]. (2.31)

Then, for the random variables S, Sl and Su, the following convex order relations hold:

Sl ≤cx S ≤cx Su. (2.32)

Similar to Theorem 2.4.1, Su is always a comonotonic sum. As for Sl, it is a comono-
tonic sum if all ρi are positive.

Since both Sl and Su are comonotonic sums (in the case where all ρi are positive),
it is possible to apply Theorem 2.3.2, obtaining the following theorem (see Dhaene et al.,
2006).

Theorem 2.4.4 Let Sl and Su be random variables defined as in Theorem 2.4.3 and

Λ =
n∑

i=1

γiZi, for some given choice of the γi such that all ρi are positive.

Then, the risk measures VaR, TVaR and LTVaR for Sl and Su are given by:

VaRα(Sl) =
n∑

i=1

αi e
E[Zi]+

1
2(1−ρ2i )σ2

Zi
+ρiσZi

zα , (2.33)

TVaRα(Sl) =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi · Φ(ρiσZi

− zα)

1− α
, (2.34)

LTVaRα(Sl) =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi · 1− Φ(ρiσZi

− zα)

α
, (2.35)

and

VaRα(Su) =
n∑

i=1

αi e
E[Zi]+σZi

zα , (2.36)

TVaRα(Su) =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi · Φ(σZi

− zα)

1− α
, (2.37)

LTVaRα(Su) =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi · 1− Φ(σZi

− zα)

α
. (2.38)

for all α ∈]0, 1[, where zα is the α-quantile of the standard normal distribution.

2.4.2 Improvements in the Lower Bound of the Sum of Lognor-
mals

The previous section introduced comonotonic bounds for the sum of lognormals.
By using them, it is possible to create intervals for the risk measures TVaR and LTVaR,
according to Theorem 2.4.2. However, the size of the bounding interval for the risk
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2. Risk Measures, Comonotonicity and Ordering of Risks

measure can vary widely in this case, leading to poor quality results and compromising
their applicability.

Looking in detail at the bounds introduced in Theorem 2.4.3, it can be seen that the
upper bound Su is fixed. As for the lower bound Sl, it varies depending on the definition of
Λ and, hence, of the γi. The variability of Sl was seen by several authors as an opportunity
to improve the efficiency of the interval. As such, there is a vast research in the optimal
choices for Λ. In this section, three different choices for Λ are introduced, based on the
works of Kaas et al. (2000), Vanduffel et al. (2005) and Vanduffel et al. (2008).

The way optimal choices for Λ are constructed is intrinsically related to Theorem
2.4.2, and also to the possible approximations that can be made to the variance or the
TVaR of the lower bound Sl. The following theorem introduces the expected value and
variance of the random variables S, Sl and Su, as can be seen in Vanduffel et al. (2005).

Theorem 2.4.5 Let S, Sl and Su be random variables defined as in Theorem 2.4.3. Then,
the expected value and variance of S, Sl and Su are given by:

E[S] = E[Sl] = E[Su] =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi , (2.39)

V[S] =
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2

(
σ2
Zi

+σ2
Zj

) (
eCov(Zi,Zj) − 1

)
, (2.40)

V[Sl] =
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2

(
σ2
Zi

+σ2
Zj

)
(eρiρjσZi

σZj − 1) , (2.41)

V[Su] =
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2

(
σ2
Zi

+σ2
Zj

)
(eσZi

σZj − 1) . (2.42)

2.4.2.1 Optimal choice of Λ according to the “Taylor-based” Approximation

As previously mentioned, Kaas et al. (2000) introduced the lower bound Sl. In their
numerical illustration, γi are defined so that Λ is a linear transformation of the first-order
approximation of S. Indeed, the authors considered that Λ and S should be as similar as
possible. Through this choice, the lower bound Sl is closer to S, resulting in a reduction
of the interval bounding S, making the approximation of the risk measures TVaR and
LTVaR for the random variable S more accurate. Below is the definition of γi and Λ
according to this “Taylor-based” Approximation.

Definition 2.4.6 Let S and Sl be random variables defined as in Theorem 2.4.3. The
“Taylor-based” Approximation is the lower bound Sl which approximates S, based
on the coefficients γTB

i defined by:

γTB
i = αi e

E[Zi], ∀i ∈ {1, 2, . . . , n}. (2.43)

Therefore, the conditioning random variable ΛTB, the correlation between Zi and ΛTB,
ρTB
i , and the standard deviation of ΛTB, σTB

Λ , are, respectively:

ΛTB =
n∑

i=1

αi e
E[Zi]Zi, (2.44)
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ρTB
i =

1

σZi
σTB
Λ

n∑
j=1

αi e
E[Zi] Cov[Zi, Zj], ∀i ∈ {1, 2, . . . , n}, (2.45)

σTB
Λ =

(
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ] Cov[Zi, Zj]

) 1
2

. (2.46)

2.4.2.2 Optimal choice of Λ according to the “Maximal Variance” Approxi-
mation

The “Taylor-based” Approximation consisted on an intuitive approach. Vanduf-
fel et al. (2005) developed instead an explicit approach for calculating Λ based on the
maximization of the variance of Sl.

As can be seen from Theorem 2.4.2, one has Sl ≤cx S, E[Sl] = E[S] and V[Sl] ≤ V[S].
Therefore, the larger the variance of Sl, the closer Sl will be to S and the better the
bounding interval for the random variable S. Thus, Vanduffel et al. (2005) obtained the
following approximation for the variance of Sl based on Theorem 2.4.5 and the fact that
ex − 1 ≈ x by the first-order Taylor expansion:

V[Sl] =
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2

(
σ2
Zi

+σ2
Zj

)
(eρiρjσZi

σZj − 1) ≈

≈
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2

(
σ2
Zi

+σ2
Zj

) (
ρiρjσZi

σZj

)
=

=

(
Corr

[
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi Zi,Λ

])2

V

[
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi Zi

]
.

(2.47)

Using this approximation of the variance of Sl, Vanduffel et al. (2005) defined the
“Maximum Variance” Approximation as the lower bound Sl based on the coefficients γi,
i.e. Λ, that maximize the first-order approximation of V[Sl].

Definition 2.4.7 Let S and Sl be random variables defined as in Theorem 2.4.3. The
“Maximum Variance” Approximation is the lower bound Sl which approximates S,
based on the coefficients γMV

i defined by:

γMV
i = αi e

E[Zi]+
1
2
σ2
Zi , ∀i ∈ {1, 2, . . . , n}. (2.48)

Therefore, the conditioning random variable ΛMV , the correlation between Zi and ΛMV ,
ρMV
i , and the standard deviation of ΛMV , σMV

Λ , are, respectively:

ΛMV =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
ZiZi, (2.49)

ρMV
i =

1

σZi
σMV
Λ

n∑
j=1

αi e
E[Zi]+

1
2
σ2
Zi Cov[Zi, Zj], ∀i ∈ {1, 2, . . . , n}, (2.50)

σMV
Λ =

(
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2

(
σ2
Zi

+σ2
Zj

)
Cov[Zi, Zj]

) 1
2

. (2.51)
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2.4.2.3 Optimal choice of Λ according to the “TVaRα-based” Approximation

The “Maximum Variance” Approximation is a globally optimal choice to define the
coefficients γi and Λ. However, sometimes one is interested in calculating the risk measures
TVaR and LTVaR of S. Recall that, by Theorem 2.4.2, when Sl ≤cx S occurs one has
that TVaRα[Sl] ≤ TVaRα[S]. Based on this inequality and taking into account the same
procedure developed for defining the “Maximum Variance” Approximation, Vanduffel et
al. (2008) defined the “TVaRα-based” Approximation by seeking to maximize the TVaR
of S. Thus, the larger the TVaR of Sl is, the closer Sl is to S locally on the right tail of
the distribution of S and, as such, the better the approximation and bounding interval.

Similarly to the “Maximum Variance” Approximation, Vanduffel et al. (2008) ob-
tained an approximation for the TVaR of Sl. This was carried out by expanding the
correlations ρi around ρMV

i , obtained through the ‘Maximum Variance” Approximation.
For that they applied Theorem 2.4.4 and the first-order Taylor approximation around a,
f(x) ≈ f(a) + f ′(a)(x− a). The result is given by:

TVaRα(Sl) =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi · Φ(ρiσZi

− zα)

1− α
≈ (2.52)

≈
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi ·

Φ(ρMV
i σZi

− zα) + ϕ(ρMV
i σZi

− zα)
(
ρi − ρMV

i

)
σZi

1− α
.

where ϕ is the density function of the standard normal distribution.
Maximizing the first-order approximation of TVaR of Sl is the same as maximizing

the following expression:

n∑
i=1

αi e
E[Zi]+

1
2
σ2
Zi ϕ(ρMV

i σZi
− zα)ρiσZi

= Corr

[
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi ϕ(ρMV

i σZi
− zα)Zi,Λ

]

×

(
V

[
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi ϕ(ρMV

i σZi
− zα)Zi

]) 1
2

.

(2.53)

Using this approximation of the TVaR of Sl, Vanduffel et al. (2008) defined the
“TVaRα-based” Approximation as the lower bound Sl based on the coefficients γi, i.e. Λ,
that maximize expression (2.53). Note that this is the same as maximizing the first-order
approximation of TVaRα(Sl).

Definition 2.4.8 Let S and Sl be random variables defined as in Theorem 2.4.3. The
“TVaRα-based” Approximation is the lower bound Sl which approximates S, based
on the coefficients γTVaR

i defined by:

γTVaR
i = αi e

E[Zi]+
1
2
σ2
Zi ϕ(ρMV

i σZi
− zα), ∀i ∈ {1, 2, . . . , n}. (2.54)

Therefore, the conditioning random variable ΛTVaR, the correlation between Zi and ΛTVaR,
ρTVaR
i , and the standard deviation of ΛTVaR, σTVaR

Λ , are, respectively:

ΛTVaR =
n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi ϕ(ρMV

i σZi
− zα)Zi, (2.55)
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ρTVaR
i =

1

σZi
σTVaR
Λ

n∑
j=1

αi e
E[Zi]+

1
2
σ2
Zi ϕ(ρMV

i σZi
− zα)Cov[Zi, Zj], ∀i ∈ {1, 2, . . . , n},

(2.56)

σTVaR
Λ =

(
n∑

i=1

n∑
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2

(
σ2
Zi

+σ2
Zj

)
ϕ(ρMV

i σZi
− zα)ϕ(ρ

MV
j σZj

− zα)Cov[Zi, Zj]

) 1
2

.

(2.57)
Finally, by Theorem 2.4.2, when Sl ≤cx S one has that LTVaRα[Sl] ≥ LTVaRα[S].

Similarly, to have a locally optimal choice of the coefficients γi, and Λ, it is necessary to
minimize LTVaR of Sl. Vanduffel et al. (2008) proved that the coefficients γi that minimize
the first-order approximation of LTVaRα(Sl) are the same as those that maximize the
first-order approximation of TVaRα(Sl), that is, γLTVaR

i = γTVaR
i .
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Chapter 3

Risk Adjustment for Longevity Risk
In this Chapter the Model for Risk Adjustment (RA) for Longevity Risk proposed

in this study is presented. The Chapter is divided into two parts. The first part analyzes
in detail the Model for RA for Surrender Risk presented by Carlehed (2023), as well as,
comments on its advantages and disadvantages and possible improvements. The second
part develops the new Model for RA for Longevity Risk, which is an original generalization
of the work of Carlehed (2023), solving some of its weaknesses.

3.1 Background on the Risk Adjustment for Surrender
Risk

The Surrender Risk is a non-financial risk as described in IFRS 17 (2023a, §B86).
Namely, it is necessary to construct a RA that reflects “the compensation that the entity
requires for bearing the uncertainty about the amount and timing of the cash flows that
arises from non-financial risk” (IFRS 17, 2023a, § 37). The standard does not specify the
method for determining the RA, however, it recommends following five criteria (IFRS 17,
2023a, §B91). In Chapter 1, the main methodologies for calculating the RA were intro-
duced. Smith et al. (2019) stated that 53% of the companies in their sample planned
to use the CoC technique, while 33% intended to use a quantile technique, highlighting
the dominance of these procedures. Nevertheless, several companies still have difficulty
in choosing methods that are quick to calculate and effective in determining a good RA.
Taking that into account, combined with some scientific research on the subject, Carlehed
(2023) developed a method for determining a RA for the surrender risk in life insurance,
as presented in detail below.

Under IFRS 17 (2023a, §§ 32-37), the calculation of the RA is the 3rd BB, and so, it
is preceded by the 1st and 2nd BB which together determine the present value of the future
cash flows, as can be seen in IFRS 17 (2018b). Carlehed (2023) defined cash flow as the
difference between premiums and insurance payments and expenses, so it has a positive
value if the premium amount is greater than the liabilities, and it is negative otherwise.
This definition is different to that conventionally used in IFRS 17, in which cash flow is
defined by the difference between liabilities and premiums, being positive if the liability
amount is greater than the premiums, and negative otherwise. In this work, the definition
of cash flow used in IFRS 17 is considered. However, in order to avoid inconsistencies,
the definition of Carlehed (2023) will be kept throughout the exposition of his Model for
RA for Surrender Risk, in this section.

Consider a portfolio of life insurance contracts with similar risk properties where
customers pay annual premiums and receive a predefined payment at their death if they
continue to be in the portfolio. No new costumers can enter the portfolio but there is
the possibility of surrenders. When analyzing the surrender risk assumptions, a company
usually calculates a best estimate for the surrender rate on an annual basis. This estimate,
together with a historical volatility, will be the starting points for the forecast of the future
volatility for the surrender rates, and for their stochastic modeling.

Let T be the maximum contract boundary of the life insurance contracts belonging
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3.1. Background on the Risk Adjustment for Surrender Risk

to the portfolio, where the contract boundary is the time, usually in years, until the end
of the portfolio liabilities, according to IFRS 17 (2023a, § 34 & §B61). Assume that the
present values of the future net cash flows, at, for each year t ∈ {1, 2, . . . , T}, given a zero
surrender rate, are calculated a priori by the company. Actuarial assumptions, such as
those for mortality, are included in at. Then, the PVFCF given a zero surrender rate,
denoted by S∗, is defined by:

S∗ =
T∑
t=1

at. (3.1)

Naturally, S∗ does not evaluate the PVFCF correctly, since it does not consider the
possibility of surrender. Therefore, assume that the best estimate for the surrender rate,
for each year t ∈ {1, 2, . . . , T}, is denoted by st. Also, let the best estimate for the remain
rate, for each year t ∈ {1, 2, . . . , T}, be denoted by rt and defined as rt = 1 − st. The
modified total PVFCF under surrender risk, which is denoted by S, is defined by:

S =
T∑
t=1

bt, (3.2)

where bt represents the present values of the future net cash flows, for each year t ∈
{1, 2, . . . , T}, under surrender risk and it is defined by:

bt = at

t∏
k=1

rk = at

t∏
k=1

(1− sk), ∀t ∈ {1, 2, . . . , T}. (3.3)

Note that, for each year t, rt ≤ 1 so that bt ≤ at and, finally, S ≤ S∗. By introducing
the model as presented above, Carlehed (2023) considers the assumption of homogeneity,
which states that all contracts belonging to the portfolio have the same remain rate, rt, in
each year t, regardless of whether they refer to different products. Also, it assumes that
the expected remain rate is independent of time, i.e., r = E(rt).

3.1.1 Lognormal Model for remain rates

In order to model the total PVFCF under surrender risk, it is necessary to predict
the value of future remain rates or the range of possible outcomes that they may have.
This allows to understand the impact of surrender risk and, consequently, to compute the
RA to prevent it.

Carlehed (2023) introduced two possible models for the remain rates: the lognormal
model and the sticky model. Here, only the lognormal model is considered, since the
stochastic model of survival rates in the RA for Longevity Risk is based on it. Also, as
stated in Carlehed (2023), both models can produce remain rates rt > 1, however the
frequency and stability of unreasonable outcomes in the sticky model, which in the paper
is considered as a fact of little relevance to the final result, can have, in reality, a huge
impact, especially, in the generalization of the RA for Longevity Risk.

Given X a lognormally distributed random variable, X ∼ Lognormal(µ, σ2), one
has that E(X) = eµ+

σ2

2 , V(X) =
(
eσ

2 − 1
)
e2µ+σ2 , VaRα(X) = eµ+σzα , TVaRα(X) =

eµ+
σ2

2 · Φ(σ − zα)

1− α
and LTVaRα(X) = eµ+

σ2

2 · Φ(zα − σ)

α
. From these properties of the

lognormal distribution, it is possible to derive the following results.
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Theorem 3.1.1 Let X be a lognormally distributed random variable defined by:

X = αeZ , (3.4)

where α > 0 and Z is a normally distributed random variable with parameters µ and σ2

such that µ = −σ2

2
, that is, Z ∼ N

(
−σ2

2
, σ2
)

and eZ ∼ Lognormal
(
−σ2

2
, σ2
)
. Then, X

can be written as:
X = E(X)eZ , (3.5)

where E(X) = α.

Proof To show the result, it is enough to prove that E(X) = α:

E(X) = E
(
αeZ

)
= αeµ+

σ2

2 = αe−
σ2

2
+σ2

2 = αe0 = α.

■

Carlehed (2023) relied on the definition and properties of geometric Brownian motion
to obtain the stochastic model for the remain rates in discrete time.

Definition 3.1.2 Let r be the historical remain rate calculated a priori by the company.
It can be, for example, the last historical remain rate or an average of the last ones. The
Lognormal Model for remain rates based on a single historical remain rate is
defined by:

rt = re−
σ2

2
+σXt , ∀t ∈ {1, 2, . . . , T}, (3.6)

where rt are the future remain rates obtained by the model, X = (X1, X2 . . . , XT ) is a
T -dimensional multivariate standard normal random vector with mutually independent
components, i.e., Xt

i.i.d.∼ N(0, 1), and σ > 0 is a constant parameter that will be associated
with the volatility of the model and that will be estimated later.

Using the lognormal model introduced in Definition 3.1.2, Carlehed (2023) rewrote
the present values of the future net cash flows, bt, as follows:

bt = at

t∏
s=1

rs = at

t∏
s=1

re−
σ2

2
+σXs = atr

te−
σ2t
2

+σVt , (3.7)

where Vt =
t∑

s=1

Xs, so Vt ∼ N(0, t).

To proceed further in the construction of the model, Carlehed (2023) sets the con-
dition that at ∈ R+

0 , i.e., the present values of the future net cash flows needs to be
non-negative, for each year t ∈ {1, , 2, . . . , T}, given a zero surrender rate. This assump-
tion is very restrictive considering that at corresponds to the difference between premiums
and insurance payments and expenses. In most scenarios, it is not possible to guarantee
that this condition is fulfilled, which is a clear disadvantage of this method. This will be
one of the points taken into account when developing the new Model for RA for Longevity
Risk.

Assuming that at ∈ R+
0 , it is possible to simplify the expression (3.7) for the

present values of the future net cash flows, bt, by taking into account that e−
σ2t
2

+σVt ∼
Lognormal

(
−σ2t

2
, σ2t

)
and that:

E(bt) = E
(
atr

te−
σ2t
2

+σVt

)
= atr

t E
(
e−

σ2t
2

+σVt

)
= atr

t. (3.8)
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Therefore, applying Theorem 3.1.1, bt can be reduced to:

bt = E(bt)e−
σ2t
2

+σVt , ∀t ∈ {1, 2, . . . , T}, (3.9)

where E(bt) = atr
t and Vt =

t∑
s=1

Xs, so Vt ∼ N(0, t).

Finally, using the properties of the lognormal distribution, it follows that the VaR,
TVaR and LTVaR of bt are given by:

VaRα(bt) = E(bt)e−
σ2t
2

+σzα
√
t, (3.10)

TVaRα(bt) = E(bt)
Φ
(
σ
√
t− zα

)
1− α

, (3.11)

LTVaRα(bt) = E(bt)
Φ
(
zα − σ

√
t
)

α
. (3.12)

3.1.1.1 Term Structure for remain rates

In order to develop the Model for RA for Surrender Risk, Carlehed (2023) estab-
lished a quite restrictive initial assumption that the expected remain rate is independent
of time, as mentioned earlier. However, throughout the paper, it is demonstrated that
using a term structure of remain rates, v(t), instead of a single historical remain rate, r,
does not complicate the lognormal model. This improvement is very advantageous for
increasing the effectiveness of the lognormal model for remain rates.

The definition below is an update of Definition 3.1.2, considering the use of a term
structure of remain rates.

Definition 3.1.3 Let v(t) be a term structure of expected remain rates calculated a
priori by the company. The Lognormal Model for remain rates based on a term
structure of expected remain rates is defined by:

rt = v(t)e−
σ2

2
+σXt , (3.13)

where rt is the future remain rates obtained by the model, X = (X1, X2 . . . , XT ) is a
T -dimensional multivariate standard normal random vector with mutually independent
components, i.e., Xt

i.i.d.∼ N(0, 1), and σ > 0 is a constant parameter associated with the
volatility of the model (that will be estimated later).

Analogously to what was developed to obtain expressions (3.7) and (3.9), from
Definition 3.1.3, the present values of the future net cash flows, bt, is now given by:

bt = at

t∏
s=1

rs = at

t∏
s=1

v(s) e−
σ2

2
+σXs = at

(
t∏

s=1

v(s)

)
e−

σ2t
2

+σVt = E(bt)e−
σ2t
2

+σVt , (3.14)

where E(bt) = at

(
t∏

s=1

v(s)

)
and Vt =

t∑
s=1

Xs, so Vt ∼ N(0, t).

From Theorem 3.1.1, the final expression of bt by Definition 3.1.3 is the same as that
by Definition 3.1.2, differing only in the expected value of bt, E(bt). Therefore, expressions
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(3.10), (3.11) and (3.12) concerning the risk measures VaR, TVaR and LTVaR of bt,

respectively, can be applied in this case, considering now E(bt) = at

(
t∏

s=1

v(s)

)
.

Using a term structure for the lognormal model for the remain rates increases the
model quality, but, in reality, it is hard to apply due to the complexity in obtaining a term
structure for remain rates. By contrast, in the case of longevity risk, it is very simple to
obtain a term structure of survival rates by applying a mortality table or a method that
models the expected survival rates. This will be the basis for building the new Model for
RA for Longevity Risk.

3.1.1.2 Reliability of the Lognormal Model for remain rates

The lognormal model is a very robust model in fitting future remain rates, if the
assumptions of the model are verified. Otherwise, the results can be weak. As such, these
assumptions must first be tested on historical data to ascertain the applicability of the
model.

One of the key assumptions is the normality of the logarithm of the time series
of remain rates, i.e., one must ensure that there are µ ∈ R and σ2 ∈ R+ such that
log(rt) ∼ N(µ, σ2). In the case of using a term structure, it is necessary to ensure the
normality of the logarithm of the ratio between the remain rates and the term structure,

that is, there must be µ ∈ R and σ2 ∈ R+ such that log

(
rt
v(t)

)
∼ N(µ, σ2).

To test the normality, a goodness-of-fit test should be perform on historical data.
Carlehed (2023) proposes using the Shapiro-Wilk test or constructing a Q-Q plot of log(rt)

against the normal distribution, or of log
(

rt
v(t)

)
in the case of using a term structure, v(t).

These two approaches make it possible not only to check the adequacy of the lognormal
model to the case study, but also to decide which is the best option between using a single
historic remain rate, as in Definition 3.1.2, or a term structure, as in Definition 3.1.3.

It is essential to have a sample of historical data of significant length and represen-
tative of the reality, otherwise both the normality test and the estimation of the volatility
parameter, σ, which will be seen later, may be compromised and lead to unreliable results.

3.1.2 PVFCF for the Total Portfolio

So far, the present values of the future net cash flows, for each year t ∈ {1, , 2, . . . , T},
under surrender risk, bt, has been studied. However, since the final objective is to calculate
a RA for the modified total PVFCF under surrender risk, it is necessary to look at the
sum of bt, S, as defined in (3.2), and not to each bt, for each year t. It is relevant to note
that, from expressions (3.9) and (3.14), one concludes that regardless of which definition,
3.1.2 or 3.1.3, is used, the present values of the future net cash flows, for each year t, is
always bt = E(bt)e−

σ2t
2

+σVt , where Vt ∼ N(0, t). The difference is in the expected value
of bt, E(bt). Therefore, the analysis and development of the Model for RA for Surrender
Risk that will be presented next is valid for both definitions, since all the expressions
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introduced depend only on the definition of E(bt):

S =
T∑
t=1

bt =
T∑
t=1

E(bt)e−
σ2t
2

+σVt . (3.15)

This expression corresponds to the sum of lognormally distributed random variables,
and it needs to be simplified in order to be used in the study of the RA under surrender
risk, using the stated in Chapter 2. Carlehed (2023) performs this analysis but only for
the case in Definition 3.1.2. The modified total PVFCF under surrender risk, denoted by
S, can be defined by:

S =
T∑
t=1

E(bt)e−
σ2t
2 eσVt =

T∑
t=1

αt e
Zt , (3.16)

where αt = E(bt)e−
σ2t
2 and Zt = σVt, for all t ∈ {1, , 2, . . . , T}.

The expected value, E[Zt], variance, V[Zt], and covariance, Cov[Zs, Zt], of Zt are
given by:

E[Zt] = E[σVt] = σ

t∑
s=1

E[Xs] = 0, ∀t ∈ {1, 2, . . . , T}, (3.17)

σ2
Zt

= V[Zt] = V[σVt] = σ2

t∑
s=1

V[Xs] = σ2t, ∀t ∈ {1, 2, . . . , T}, (3.18)

Cov[Zs, Zt] = Cov[σVs, σVt] = σ2

min(s,t)∑
t=1

V[Xs] = σ2min(s, t), ∀s, t ∈ {1, 2, . . . , T}.

(3.19)
Notice that E(bt) ∈ R+

0 , regardless of whether the lognormal model is used according
to Definition 3.1.2 or 3.1.3, given that r, v(t) ∈ [0, 1] and Carlehed (2023) restricts all at
to non-negative real numbers, i.e., at ∈ R+

0 . Consequently, it follows that αt ∈ R+
0 for

all t ∈ {1, 2, . . . , T}. On the other hand, Vt ∼ N(0, t), and hence Zt ∼ N(0, σ2t), for all
t ∈ {1, 2, . . . , T}.

This shows that the assumptions of Theorem 2.4.3 are guaranteed. Then, for any
given choice of the γt such that the conditioning random variable Λ is given by Λ =
T∑
t=1

γtZt, it follows that the random variables S, Sl and Su have the following convex

order:
Sl ≤cx S ≤cx Su, (3.20)

where the random variables Sl and Su are defined through expressions (3.17) and (3.18),
as follows:

Sl =
T∑
t=1

αt e
1
2(1−ρ2t)σ2t+ρtσ

√
tΦ−1(U), (3.21)

Su =
T∑
t=1

αt e
σ
√
tΦ−1(U), (3.22)

with U being a uniformly distributed random variable on the unit interval ]0, 1[, Φ the
cumulative distribution function of the standard normal distribution and ρt the correlation
between Zt and Λ.
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As mentioned in Chapter 2, the upper bound Su is fixed, unlike the lower bound
Sl which depends on Λ and, thus, on the correlation, ρt, between Zt and Λ. Definitions
2.4.6, 2.4.7 and 2.4.8 introduce three possible optimal choices for Λ and its correlation, ρt.
Nevertheless, it is possible to come up with a general expression for ρt that is applicable for
any choice of Λ and the respective γt. Kaas et al. (2000) presented a simplified version of
this expression for the optimal choice of Λ according to the “Taylor-based” Approximation,
that was later used by Carlehed (2023) in the Model for RA for Surrender Risk. Vanduffel
et al. (2005) used the expression when applying the optimal choice of Λ according to the
“Maximal Variance” Approximation. However, to the best of our knowledge, a general
version of this result has not been developed in the relevant literature, so it will be
presented in the following original theorem.

Theorem 3.1.4 Let Z = (Z1, Z2 . . . , ZT ) be a T -dimensional multivariate normal ran-
dom vector such that Zt ∼ N(0, σ2t), for all t ∈ {1, 2, . . . , T}, where σ ∈ R+ is a constant
parameter. Consider also that for some given choice of γt, the conditioning random vari-

able Λ, is given by Λ =
T∑
t=1

γtZt. Then, the correlation between Zt and Λ, ρt, is defined

by:

ρt =

t∑
s=1

T∑
k=s

γk√√√√t
T∑

s=1

(
T∑

k=s

γk

)2
=

t∑
s=1

βs√√√√t
T∑

s=1

β2
s

, (3.23)

where βs =
T∑

k=s

γk.

Further, let X = (X1, X2 . . . , XT ) be a T -dimensional multivariate standard normal ran-
dom vector with mutually independent components, i.e., Xt

i.i.d.∼ N(0, 1). Then, it follows

that Λ =
T∑
t=1

βtYt =
T∑
t=1

γtZt, where Yt = σXt, for all t ∈ {1, 2, . . . , T}.

Proof The theorem is divided into two parts: the calculation of the correlation between
Zt and Λ, ρt, and the relationship between the two definitions of Λ.

Regarding the computation of the correlation, one has that ρt = Corr(Zt,Λ) =
Cov(Zt,Λ)

σZtσΛ

.

From the definition of Zt, it automatically follows that the variance of Zt is given by
σ2
Zt

= V[Zt] = σ2t, for all t ∈ {1, 2, . . . , T}. By using the expression of the covariance of
Zt, Cov[Zs, Zt], introduced in the expression (3.19), one has that:

Cov(Zt,Λ) =
T∑

s=1

γsCov(Zt, Zs) = σ2

T∑
s=1

γs min(t, s) = σ2

t∑
s=1

T∑
k=s

γk,

σ2
Λ = V(Λ) =

T∑
t=1

T∑
s=1

γtγsCov(Zt, Zs) = σ2

T∑
t=1

T∑
s=1

γtγsmin(t, s) = σ2

T∑
s=1

(
T∑

k=s

γk

)2

.
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Thus, the correlation between Zt and Λ, ρt, is given by:

ρt = Corr(Zt,Λ) =
Cov(Zt,Λ)

σZtσΛ

=

σ2

t∑
s=1

T∑
k=s

γk√√√√σ4t

T∑
s=1

(
T∑

k=s

γk

)2
=

t∑
s=1

T∑
k=s

γk√√√√t

T∑
s=1

(
T∑

k=s

γk

)2
=

t∑
s=1

βs√√√√t

T∑
s=1

β2
s

.

Finally, it is necessary to prove the relationship between the two definitions of Λ. Indeed:

Λ =
T∑
t=1

βtYt =
T∑
t=1

T∑
k=t

γkYt =
T∑
t=1

t∑
s=1

γtYs =
T∑
t=1

γtσ

t∑
s=1

Xs =
T∑
t=1

γtσVt =
T∑
t=1

γtZt.

■

There are two significant advantages associated with Theorem 3.1.4. On the one
hand, the expression for computing the correlation between Zt and Λ, ρt, is a simple
formula to implement and generic for any choice of Λ and hence γt, including the three
optimal choices presented in Chapter 2. On the other hand, the relationship between the
two definitions for Λ allows to unify the methodologies developed by different authors.
More specifically, those of Kaas et al. (2000), Dhaene et al. (2006) and Carlehed (2023),
that use the formulation of Λ through the βt, in contrast to those of Vanduffel et al. (2005)
and Vanduffel et al. (2008), where the definition of Λ is done through γt, as used in this
document.

3.1.3 Risk Adjustment for Surrender Risk

In the previous section, Theorem 2.4.3 was applied to the modified total PVFCF
under surrender risk, S, making it possible to use the remaining theorems and definitions
introduced in Chapter 2. More precisely, Theorems 2.4.4 and 2.4.5 allow the calculation of
the expected value and the risk measures of S, Sl and Su, and Definitions 2.4.6, 2.4.7 and
2.4.8, introduce optimal choices of Λ and, therefore, improvements in the lower bound Sl.
This will be the starting point to develop a RA for Surrender Risk with good properties,
allowing to better model this non-financial risk.

Before calculating the RA for the modified total PVFCF under surrender risk, S, it
is appropriate to calculate the RA for the present values of the future net cash flows, bt,
for each year t ∈ {1, , 2, . . . , T}. Remember that, to study the RA that should be reserved
for bt, one is interested in the left tail of the distribution, since Carlehed (2023) defines
cash flow as the difference between premiums and liabilities, and so severe scenarios occur
when bt has smaller values. As such, Carlehed (2023) has introduced a definition for RA
for bt, through the risk measure VaR, using expression (3.10), as presented below:

RAVaR
α (bt) = E(bt)− VaRα(bt) = E(bt)

(
1− e−

σ2t
2

+σzα
√
t
)
, (3.24)

for all α ∈]0, 1[, where zα is the α-quantile of the standard normal distribution.
The definition for RA presented by Carlehed (2023) verifies one of the fundamental

conditions described in the standard: the need to disclose the confidence level of the
RA according to IFRS 17 (2023a, § 119). Nevertheless, this definition has two significant
disadvantages: the possibility of taking negative values depending on the confidence level
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3. Risk Adjustment for Longevity Risk

used; the inability to use the results associated with convex order relations introduced in
Chapter 2. Therefore, given that one is interested in analyzing the risk associated with
the left tail of the distribution, it would be better to define the RA for bt using the risk
measure LTVaR, as shown below:

RAα(bt) = E(bt)− LTVaRα(bt) =

= E(bt)

(
1−

Φ
(
zα − σ

√
t
)

α

)
= E(bt) ·

α− Φ
(
zα − σ

√
t
)

α
,

(3.25)

for all α ∈]0, 1[, where zα is the α-quantile of the standard normal distribution.

Carlehed (2023) mentions in his paper the possibility of defining RA as in (3.25), but
he does not use it, because the confidence level applied here to define the RA is distinct
from α, since LTVaRα(bt) ≤ VaRα(bt). This fact can be seen as a disadvantage of this new
definition of RA. However, although the exact value of the confidence level is unknown,
it is known that it is better than α by the definition of LTVaR. On the other hand,
this definition of RA fixes the two disadvantages associated with that of Carlehed (2023).
If RA is defined using the expression (3.25), its value will always be non-negative, i.e.
RAα(bt) ≥ 0, for all α ∈]0, 1[; and it will also be possible to apply the results associated
with convex order relations stated in Chapter 2.

It is now possible to develop a calculation method for the RA for the modified total
PVFCF under surrender risk, S. It is known that S is the sum of lognormally distributed
random variables, so there is no simple analytical formula for its risk measures VaR, TVaR
and LTVaR. However, through convex order relations, it is possible to develop an interval
where the RA of S is guaranteed to be. To this end, given that there are advantages to
applying the risk measure LTVaR, one begins by using Theorem 2.4.2. Then, by applying
Theorems 2.4.2 and 2.4.4, expressions (3.17) and (3.18) and knowing that αt = E(bt)e−

σ2t
2 ,

it follows that LTVaRα(S) is bounded by the next interval:

LTVaRα(S) ∈
[
LTVaRα(Su) ;LTVaRα(Sl)

]
∈

[
T∑
t=1

αt e
σ2t
2 ·

Φ
(
zα − σ

√
t
)

α
;

T∑
t=1

αt e
σ2t
2 ·

Φ
(
zα − ρtσ

√
t
)

α

]

∈

[
T∑
t=1

E(bt) ·
Φ
(
zα − σ

√
t
)

α
;

T∑
t=1

E(bt) ·
Φ
(
zα − ρtσ

√
t
)

α

]
,

(3.26)

for all α ∈]0, 1[, where zα is the α-quantile of the standard normal distribution.

Knowing the interval that constrains LTVaRα(S), it is reasonable to define the RA
using this risk measure, similarly to what was done in expression (3.25) for the calculation
of the RA of bt. Therefore, the definition that is considered to be the most appropriate
for the RA for the modified total PVFCF under surrender risk, S, is presented below,
together with a theorem for the RAα(S) bounds.

Definition 3.1.5 Let the modified total PVFCF under surrender risk, S, be defined
as in (3.16), where bt are the present values of the future net cash flows as introduced
by Carlehed (2023) (the difference between premiums and liabilities). The RA for the
modified total PVFCF under Surrender Risk, denoted by RAα(S), is defined by:

RAα(S) = E(S)− LTVaRα(S). (3.27)
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3.1. Background on the Risk Adjustment for Surrender Risk

Let Sl and Su be defined by expressions (3.21) and (3.22), respectively, according to the
application of Theorem 2.4.3. Then, RAα(Sl) and RAα(Su) are also defined by expression
(3.27), replacing S by Sl and Su, respectively.

As mentioned before, there is no simple analytical formula for LTVaRα(S), so it is
necessary to construct an interval to limit it. Analogously, it is necessary to construct
an interval for RAα(S), given the complexity of calculating its exact value analytically.
The next theorem provides an interval that bounds RAα(S), by using Definition 3.1.5,
Theorem 2.4.5 and expression (3.26).

Theorem 3.1.6 Let the RA for the modified total PVFCF under Surrender Risk, RAα(S),
be defined according to Definition 3.1.5. Then:

RAα(S) ∈
[
RAα(Sl) ;RAα(Su)

]
∈

[
T∑
t=1

E(bt) ·

(
1−

Φ
(
zα − ρtσ

√
t
)

α

)
;

T∑
t=1

E(bt) ·

(
1−

Φ
(
zα − σ

√
t
)

α

)]

∈

[
T∑
t=1

E(bt) ·
α− Φ

(
zα − ρtσ

√
t
)

α
;

T∑
t=1

E(bt) ·
α− Φ

(
zα − σ

√
t
)

α

]
.

(3.28)

It should be noted that the upper bound of RAα(S) in (3.28), is actually the
sum of the RA for the present values of the future net cash flows, bt, for each year

t ∈ {1, , 2, . . . , T}, i.e., RAα(Su) =
T∑
t=1

RAα(bt), as can be seen from expression (3.25).

This shows that the maximum value that should be considered for the RA for the
modified total PVFCF under surrender risk is actually the sum of all RAα(bt), with
t ∈ {1, , 2, . . . , T}.

Using the bounds in Theorem 3.1.6 can be seen as a disadvantage of the Model for
RA for Surrender Risk, as RAα(S) is not exactly computed. However, given the nature of
the comonotonic bounds Sl and Su, the RA for the modified total PVFCF under surrender
risk will be closer to that of its lower bound, that is, RAα(S) will be closer to RAα(Sl).
Therefore, the RA of the lower bound Sl can be seen as an approximation of the RA for
the modified total PVFCF under surrender risk, i.e., RAα(S) ≈ RAα(Sl).

Therefore, the choice of Λ is essential to obtain the best possible approximation
of RAα(S). At this point the three optimal choices of Λ, defined in Chapter 2, become
especially relevant. Given the construction of the optimal choices introduced in Definitions
2.4.6, 2.4.7 and 2.4.8 and the way the RA for the modified total PVFCF under surrender
risk, RAα(S), is defined in Definition 3.1.5, it is not surprising that the optimal choice of
Λ, leading to the best approximation of RAα(S), is the “TVaRα-based” Approximation.
Although RAα(S) ≈ RAα(Sl), this approximation may underestimate the value of the RA
for the modified total PVFCF under surrender risk, derived from the short experience or
uncertainties associated with the estimation of the volatility parameter, σ. In case of
uncertainty, it is preferable to use a value in the interval, rather than its lower bound to
approximate RAα(S).

Also note that the use of the risk measure VaR to calculate the RA of the total
modified PVFCF under surrender risk, RAα(S), is not considered a better alternative,
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3. Risk Adjustment for Longevity Risk

since convex order relations do not preserve the order of this risk measure, making it not
straightforward to construct an interval that bounds RAα(S).

Finally, it is necessary to discuss the adequacy of the model and the fulfillment
of the five criteria established by IFRS 17 (2023a, §B91) as described in Chapter 1.
Regarding criterion (a), surrenders are usually characterized as high frequency but low
severity scenarios, as stated by Carlehed (2023). So, in these cases, the model will fit
reality well. The case of a mass lapse (a low frequency but high severity situation) is a
weakness of this model, unless the historical data includes such situations. In that case,
the historical information is incorporated in the estimation of the volatility parameter, σ,
leading to an increment of the RAα(S). With respect to criteria (b) and (c), as can be seen
from the interval created to bound the RA for the modified total PVFCF under surrender
risk, in Theorem 3.1.6, their limits increase when the volatility parameter, σ, increases
or the maximum contract boundary, T , increases, so the criteria are satisfied. Finally,
for criteria (d) and (e), which concern the uncertainty of the parameter estimations, one
should consider values contained in the interval defined in Theorem 3.1.6, rather than its
lower limit to approximate RAα(S), in order to compensate for the lack of experience or
the fragility of the estimations.

3.1.4 Volatility Estimation

To conclude the study of the Model for RA for Surrender Risk, it is necessary
to estimate the volatility parameter, σ, the most important parameter of the model.
As mentioned, one of the key assumptions for the lognormal model to work well is the
normality of the logarithm of the time series of remain rates, that is, log(rt) ∼ N(µ, σ2),
or in case of using a term structure, the normality of the logarithm of the ratio between

the remain rates and the term structure, i.e., log
(

rt
v(t)

)
∼ N(µ, σ2). This fact is directly

related to how the estimate for the volatility parameter, σ, is computed. Namely, the
application of the Maximum Likelihood Estimate (MLE) for the volatility parameter, σ,
can be applied.

Theorem 3.1.7 Let Z be a normally distributed random variable with parameters µ and
σ2 such that µ = −σ2

2
, that is, Z ∼ N

(
−σ2

2
, σ2
)
. Then, the Maximum Likelihood

Estimate (MLE) for the volatility parameter, σ, is given by:

σ̂ =

√√√√√−2 + 2

√√√√1 +
1

n

n∑
k=1

z2k, (3.29)

where (z1, . . . , zn) are n observations of a random sample (Z1, . . . , Zn) of size n, such that,
Zk

i.i.d.∼ N
(
−σ2

2
, σ2
)
, for all k ∈ {1, 2, . . . , n}.

Proof Consider Zk
i.i.d.∼ N

(
−σ2

2
, σ2
)

for all k ∈ {1, 2, . . . , n}, then the likelihood function
is given by:

L(σ) =
n∏

k=1

fZk
(zk |σ) =

n∏
k=1

1

σ
√
2π

e
− 1

2σ2

(
zk+

σ2

2

)2

.
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3.2. Generalization of the Model for Risk Adjustment for Longevity Risk

In order to maximize the likelihood function, consider the log-likelihood function and its
first and second derivatives:

l(σ) = −n

2
log(2π)− n log σ − 1

2σ2

n∑
k=1

(
zk +

σ2

2

)2

,

l′(σ) = −n

(
1

σ
+

σ

4

)
+

1

σ3

n∑
k=1

z2k,

l′′(σ) = −n

4
− n

σ2

(
3

nσ2

n∑
k=1

z2k − 1

)
.

Let σ̂ be defined as given in expression (3.29), it is easy to see that it is the zero of the

first derivative of the log-likelihood function. Let y be given by y =
1

n

n∑
k=1

z2k, which is

always positive, i.e., y > 0. Then, σ̂ =
√
−2 + 2

√
1 + y and to show that the second

derivative of the log-likelihood function is negative at that point, note that:

y > 0 =⇒ 3y

−2 + 2
√
1 + y

− 1 > 0 =⇒ 3y

σ̂2
− 1 > 0 =⇒ l′′(σ̂) < 0.

■

From Definitions 3.1.2 and 3.1.3, both the Lognormal Models, the one with remain
rates based on a single historical remain rate and the one based on a term structure of
expected remain rates, use a T -dimensional multivariate standard normal random vec-
tor with mutually independent components, X = (X1, X2 . . . , XT ) where Xt

i.i.d.∼ N(0, 1).
Considering Z = −σ2

2
+ σXt where σ > 0 is the volatility parameter, regardless of the

t chosen in the interval {1, , 2, . . . , T}, it can be concluded that Z ∼ N
(
−σ2

2
, σ2
)
. On

the other hand, it should be noted that according to Definition 3.1.2, Z = log(rt), while

according to Definition 3.1.3, Z = log

(
rt
v(t)

)
. This fact proves the importance of the key

assumption that log(rt) ∼ N(µ, σ2) or log

(
rt
v(t)

)
∼ N(µ, σ2). Given Z ∼ N

(
−σ2

2
, σ2
)
,

it is possible to apply Theorem 3.1.7 so that the MLE for the volatility parameter, σ,
is given by the expression (3.29). Carlehed (2023) used this approach in constructing
the Model for RA for Surrender Risk. In practical terms, to calculate the MLE for σ
according to expression (3.29), consider that (z1, . . . , zn) are n observations, such that,

zk = log(r(t,k)), if applying Definition 3.1.2, and zk = log

(
r(t,k)
v(t)

)
, when applying Defi-

nition 3.1.3, where r(t,k) are historical remain rates, for all k ∈ {1, 2, . . . , n}. Note that
the data on historical remain rates are considered independently of t, since the volatility
parameter, σ, does not vary with t.

Through the MLE of the volatility parameter, σ, it becomes possible to apply the
Model for RA for Surrender Risk. However, as mentioned, it is essential that the sample of
historical data used to calculate the MLE of σ has significant length and is representative
of reality, otherwise it may compromise the results obtained.

30



3. Risk Adjustment for Longevity Risk

3.2 Generalization of the Model for Risk Adjustment
for Longevity Risk

In this section, our original generalization of the work of Carlehed (2023) is de-
scribed, more precisely, the Model for RA for Longevity Risk.

The Longevity Risk is an insurance risk with a strong impact on many types of life
insurance, particularly in the annuity contracts. As described in IAA (2018), in this kind
of products, mortality and survival rates are the key assumptions to study the expected
decrements of an insured population. An incorrect estimation of future mortality or
survival rates may result in an unrealistic calculation of the present value of the future
cash flows, i.e. the 1st and 2nd BB’s under IFRS 17, as shown in IFRS 17 (2018b). This
effect may have a negative impact on the management of reserves to cover insurance
liabilities. According to IFRS 17 (2023a, §B86), insurance risks require the calculation of
a RA, the 3rd BB, so, since Longevity Risk is one of them, it is necessary to build a good
and appropriate Model for RA for this risk.

Let us first introduce a proposed change to the definition of cash flow, different
from the one used by Carlehed (2023). As described in IFRS 17 (2023a, §B87), the RA
for an insurance contract is the compensation that a company would demand to become
indifferent between fulfilling a liability that has a wide range of possible outcomes or a
liability that will produce fixed cash flows with the same expected present value as the
insurance contract. Therefore, given the dependency between the RA and the liabilities
arising from insurance contracts as established in the standard, the cash flow will be
defined as the sum of insurance payments and expenses. There are two main reasons for
choosing this definition. First, guarenteeing a positive value of the liabilities, an actuarial
perspective is chosen in which severe scenarios are in the right tail of the distribution,
contrary to the financial perspective developed by Carlehed (2023). This will have a
major impact on the risk measures chosen when constructing the RA for Longevity Risk.
On the other hand, in this new definition, premiums will not be subtracted, so that the
amounts are always non-negative. This detail is of utmost importance to ensure that all
assumptions of Theorem 2.4.3 are fulfilled.

Consider a portfolio of life insurance contracts with similar risk properties where,
after paying the premium, customers receive predefined (constant or variable) payments
each year until their death. There is a huge variety of insurance products in these cir-
cumstances, such as whole life, term and deferred annuities, as well as annuities with
predefined variable payments, such as arithmetically or geometrically increasing annu-
ities. All these products are described in detail in Dickson et al. (2009), as well as their
expected present values and other properties. No new costumers can enter the portfolio
and there is no possibility of surrender, so the only cause for leaving the portfolio is by
the death of insurance policyholders. When analyzing the longevity risk assumptions,
the company usually calculates the best estimate for the mortality rate for each age on
an annual basis, which is summarized in a mortality table. This estimate, together with
the historical volatility will be the initial inputs for developing a forecast of the future
volatility for the mortality rates and their stochastic modeling.

Let T be the maximum contract boundary of the life insurance contracts belonging
to the portfolio, according to IFRS 17 (2023a, § 34 & §B61), and ω the maximum age that
a customer can reach, which, as such, is the highest age included in the mortality table
applied by the company. Let us assume that the present values of the future net cash
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3.2. Generalization of the Model for Risk Adjustment for Longevity Risk

flows of liabilities, a(x,t), for each year t ∈ {1, 2, . . . , T} and initial age x ∈ {1, 2, . . . , ω},
given a zero mortality rate, are calculated a priori by the company. Initial age is defined
as the age of the customer at the present date, i.e. t = 0. Consider, also, that the present
values of future net cash flows of liabilities, at, for each year t ∈ {1, 2, . . . , T}, are given

by the sum of all present values in that year for each initial age x, i.e. at =
ω∑

x=0

a(x,t).

Then, the PVFCF given a zero mortality rate, denoted by S∗, is defined by:

S∗ =
T∑
t=1

at =
T∑
t=1

ω∑
x=0

a(x,t). (3.30)

Clearly, S∗ does not evaluate the PVFCF correctly, since it does not consider the
longevity risk. Assume that the best estimate for the mortality rate, for each year
t ∈ {1, 2, . . . , T} and initial age x ∈ {1, 2, . . . , ω}, is denoted by q∗x+t. Also, let the best es-
timate for the survival rate, for each year t ∈ {1, 2, . . . , T} and initial age x ∈ {1, 2, . . . , ω},
be denoted by p∗x+t and defined by p∗x+t = 1 − q∗x+t. The symbol ∗ in the mortality and
survival rates, q∗x+t and p∗x+t, respectively, is introduced to distinguish from the proba-
bility of mortality and survival, qx+t and px+t, respectively, which can be obtained from
the mortality table applied by the company, and which will be particularly relevant later
on, when defining the term structure for survival rates. Thus, the modified total PVFCF
under longevity risk, denoted by S, is defined by:

S =
T∑
t=1

bt =
T∑
t=1

ω∑
x=0

b(x,t), (3.31)

where bt are the present values of future net cash flows of liabilities, for each year t ∈
{1, 2, . . . , T}, under longevity risk, and b(x,t) are the present values of future net cash
flows of liabilities, for each year t ∈ {1, 2, . . . , T} and initial age x ∈ {1, 2, . . . , ω}, under
longevity risk, defined by:

b(x,t) = a(x,t)

t∏
s=1

p∗x+s−1 ∀t ∈ {1, 2, . . . , T} ∀x ∈ {1, 2, . . . , ω}. (3.32)

Similarly to the relation between the definitions of at and a(x,t), the present values
of future net cash flows of liabilities, bt, for each year t, under longevity risk are given by
the sum of all present values under longevity risk in that year for each initial age x, i.e.

bt =
ω∑

x=0

b(x,t), for all t ∈ {1, 2, . . . , T}. Hence, note that for each year t and initial age x,

p∗x+t ≤ 1 so that b(x,t) ≤ a(x,t). By the definition of at and bt, it follows that, for each year
t, bt ≤ at and, finally, S < S∗.

By the definition of S and b(x,t), it can be assumed that there is an inconsistency
with respect to the maximum age, ω, since S includes cases where x+t > ω. Of course, for
these scenarios, the company does not expect to have any liabilities, since the maximum
age has already been surpassed and, for all year t and initial age x such that x + t > ω,
it follows that a(x,t) = 0 and b(x,t) = 0, having consequently no impact on S∗ nor on S.

Finally, notice that by introducing the new model as presented above, one is using
the same homogeneity assumption applied by Carlehed (2023) in his Model for RA for
Surrender Risk, which states that all contracts belonging to the portfolio have the same
survival rate, p∗x+t, in each year t and initial age x, regardless of whether they refer to
different products or not.
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3.2.1 Term Structure and Lognormal Model for Longevity Risk

Similarly to the importance of the remain rates for measuring the total PVFCF in
the Model for RA for Surrender Risk by Carlehed (2023), survival rates are also the key
for creating the lognormal model inherent to the Model developed for RA for Longevity
Risk. However, despite the parallels, there are some differences in the prediction of these
rates using the lognormal model.

For the surrender risk presented above, it was necessary to use a single historical
remain rate or to create a term structure for the remain rates, which significantly improved
the quality of the lognormal model used, as described in Definitions 3.1.2 and 3.1.3,
respectively. Nevertheless, in the case of longevity risk, survival rates do not depend
exclusively on time but also on the age of the customers. It is therefore essential that
both variables are taken into account when modeling survival rates.

As such, the following definition is proposed to replace Definitions 3.1.2 or 3.1.3 in
the study of longevity risk, which uses survival probabilities calculated a priori by the
company as a term structure of expected survival rates that depends on both the year, t,
and the initial age of the customers, x.

Definition 3.2.1 Let v(x, t) = px+t−1 be the survival probabilities calculated a priori
by the company, which will be used as the term structure of the expected survival rates.
The Lognormal Model for survival rates based on a term structure of expected
survival rates is defined by:

p∗x+t−1 = v(x, t)e−
σ2

2
+σXt = px+t−1 e

−σ2

2
+σXt , (3.33)

where p∗x+t−1 is the future survival rate obtained by the model, X = (X1, X2 . . . , XT ) is
a T -dimensional multivariate standard normal random vector with mutually independent
components, i.e., Xt

i.i.d.∼ N(0, 1), and σ > 0 is a constant parameter associated with the
volatility.

Contrary to the complexity of obtaining a term structure for remain rates in the
Model for RA for Surrender Risk, it is possible to develop a term structure for survival
rates based on the survival probabilities from the mortality table applied by a company.
In order to calculate the present value of future cash flows, i.e. the 1st and 2nd BB’s under
IFRS 17, it is necessary to apply a mortality table previously defined by the company as
being best suited to the business or products under study. Therefore, this table can be
used to build a term structure of expected survival rates, necessary for calculating the
RA for Longevity Risk, the 3rd BB.

Applying the lognormal model introduced in Definition 3.2.1, and using the well-
known multiplicative property of the survival probabilities stated in Dickson et al. (2009),

that tpx =
t∏

s=1

px+s−1, the present value of the future net cash flows of liabilities under

longevity risk, b(x,t), for each year t ∈ {1, 2, . . . , T} and initial age x ∈ {1, 2, . . . , ω}, can
be rewritten as follows:

b(x,t) = a(x,t)

t∏
s=1

p∗x+s−1 = a(x,t)

t∏
s=1

px+s−1 e
−σ2

2
+σXs = a(x,t) tpx e

−σ2t
2

+σVt , (3.34)

where Vt =
t∑

s=1

Xs, so Vt ∼ N(0, t).
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Analogously to what was developed to obtain expressions (3.9) and (3.14), through
Definitions 3.1.2 and 3.1.3, respectively, the formula for the present value of the future
net cash flows of liabilities, bt, for each year t, under the longevity risk is presented below,
taking into account Definition 3.2.1 and applying Theorem 3.1.1:

bt =
ω∑

x=0

b(x,t) =
ω∑

x=0

a(x,t) tpx e
−σ2t

2
+σVt =

(
ω∑

x=0

a(x,t) tpx

)
e−

σ2t
2

+σVt = E(bt)e−
σ2t
2

+σVt ,

(3.35)

where E(bt) =
ω∑

x=0

a(x,t) tpx and Vt =
t∑

s=1

Xs, so Vt ∼ N(0, t).

Again, from Theorem 3.1.1, the final formula of bt by Definition 3.2.1 is the same
as that by Definitions 3.1.2 and 3.1.3, differing only in the expected value of bt, E(bt).
Therefore, expressions (3.10), (3.11) and (3.12) for the risk measures VaR, TVaR and
LTVaR of bt, respectively, can also be applied in this case, with the small change that

now E(bt) =
ω∑

x=0

a(x,t) tpx.

Finally, it is important to discuss the applicability of the lognormal model for sur-
vival rates. Similarly to the Model for RA for Surrender Risk, it is essential to verify
the normality of the logarithm of the ratio between the survival rates and the survival
probabilities, which act as a term structure, in order to guarantee the quality of the fit of
future survival rates. Namely, one must ensure that there are µ ∈ R and σ2 > 0 such that

log

(
p∗x+t−1

px+t−1

)
∼ N(µ, σ2). A goodness-of-fit test must be applied to the historical data,

as for instance the Shapiro-Wilk test or the use of a Q-Q plot of log
(
p∗x+t−1

px+t−1

)
against the

normal distribution should be performed, as proposed by Carlehed (2023). Other tests,
such as the Kolmogorov-Smirnov or Anderson-Darling tests can also be used.

There is an additional difficulty in obtaining the normality of the lognormal model
for survival rates, which comes from the fact that there are two variables associated with
the term structure, year, t, and initial age, x, unlike the Model for RA for Surrender
Risk. The lognormal model for survival rates assumes the independence between the
volatility parameter, σ, and the term structure variables, t and x. Regarding t, there
is no dependence between the volatility parameter, σ, and year t, since the behavior of
mortality is considered to be similar in each future year. However, it is sometimes difficult
to verify the independency between the volatility parameter, σ, and the initial age, x, since
this relationship is heavily influenced by the composition of the company’s portfolio and
the mortality table best suited to it.

Ideally, a volatility parameter should be constructed for each initial age, x, i.e., σx.
However, this would require historical data for a large number of years in order to test
the normality. Therefore, in order to build the lognormal model for survival rates, it is
assumed that the volatility parameter, σ, and the initial age, x, are independent, which
simplifies the model but also reduces its applicability. If normality is verified, then the
model will provide a good fit for future survival rates. Otherwise, a possible solution is
to subdivide the range of initial ages into subsets of consecutive initial ages, constructing
a volatility parameter for each of these subsets and testing for normality separately. This
process will not be presented in detail in this work, but can be left as a recommendation
for possible future research.
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3. Risk Adjustment for Longevity Risk

3.2.2 PVFCF for the Total Portfolio

The objective now is to calculate the RA for the modified total PVFCF under
longevity risk, S, as defined in (3.31), and not just its results for each year t. To this
end, note that the expression (3.35) obtained for bt using Definition 3.2.1 is analogous
to the expressions (3.9) and (3.14), previously obtained using Definitions 3.1.2 and 3.1.3,
respectively. The analysis previously developed in the Model for RA for Surrender Risk
for calculating the modified total PVFCF is valid and can also be generalized to the Model
for RA for Longevity Risk, since it only depends on the definition of E(bt), which now is

E(bt) =
ω∑

x=0

a(x,t) tpx.

Expression (3.35), obtained for bt, can be used to rewrite expression (3.31). Fur-
thermore, the notation can be changed so that the results presented in Chapter 2 can be
immediately applied, as follows:

S =
T∑
t=1

bt =
T∑
t=1

E(bt)e−
σ2t
2

+σVt =
T∑
t=1

αt e
Zt , (3.36)

where αt = E(bt)e−
σ2t
2 and Zt = σVt, for all t ∈ {1, , 2, . . . , T}.

Given that the characteristics of S established in expression (3.36) are analogous to
those present in expression (3.16) of the Model for RA for Surrender Risk, it is possible
to conclude that the expected value, E[Zt], variance, V[Zt], and covariance, Cov[Zs, Zt],
of Zt are given by expressions (3.17), (3.18) and (3.19), respectively.

It also follows that E(bt) ∈ R+
0 , given that a(x,t) are non-negative real numbers, i.e.,

a(x,t) ∈ R+
0 , since these correspond to the present value of the future net cash flows of

liabilities, and tpx ∈ [0, 1]. Consequently, it follows that αt ∈ R+
0 for all t ∈ {1, 2, . . . , T}.

On the other hand, Vt ∼ N(0, t), and hence Zt ∼ N(0, σ2t), for all t ∈ {1, 2, . . . , T}. So,
given that the assumptions of Theorem 2.4.3 are verified, it is possible to apply it. Then,
for any given choice of the γt such that the conditioning random variable Λ is given by

Λ =
T∑
t=1

γtZt, it follows that the random variables S, Sl and Su follow the abovementioned

convex order relation, described by Sl ≤cx S ≤cx Su, where the random variables Sl and
Su are defined as previously presented in expressions (3.21) and (3.22), respectively.

It should be remarked that if premiums were considered and subtracted in the
definition of cash flow, it would not be possible to guarantee that αt ∈ R+

0 for all t ∈
{1, 2, . . . , T}, which would compromise the application of Theorem 2.4.3.

Finally, regarding the bounds of S, the upper limit Su is once again fixed, unlike
the lower limit Sl, which depends significantly on the definition of Λ and the consequent
correlation, ρt, between Zt and Λ. To apply the three possible optimal choices for Λ
and its correlation, ρt, established in Definitions 2.4.6, 2.4.7 and 2.4.8, one can apply the
original Theorem 3.1.4 as in the Model for RA for Surrender Risk.

3.2.3 Risk Adjustment for Longevity Risk

First, let us calculate the RA for the present value of the future net cash flows of
liabilities, bt, for each year t ∈ {1, , 2, . . . , T}. Note that one is interested in the right
tail of the distribution, since severe cases occur when bt has higher values, contrary to
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3.2. Generalization of the Model for Risk Adjustment for Longevity Risk

the Model for RA for Surrender Risk. Therefore, the RA for bt is defined using the risk
measure TVaR instead of the risk measure LTVaR:

RAα(bt) = TVaRα(bt)− E(bt) =

= E(bt)

(
Φ
(
σ
√
t− zα

)
1− α

− 1

)
= E(bt) ·

α− Φ
(
zα − σ

√
t
)

1− α
.

(3.37)

The use of the risk measure TVaR to define the RA for bt can be seen as a disad-
vantage, given the difficulty of disclosing the exact value of the confidence level, as it is
required under IFRS 17 (2023a, § 119), since it is unknown. However, it is known that
TVaRα(bt) ≥ VaRα(bt), so although the applied confidence level is distinct from α, it is
known that it is better than α by the definition of TVaR. Furthermore, if the RA is
defined using the expression (3.37), its value is always non-negative, i.e. RAα(bt) ≥ 0, for
all α ∈]0, 1[; and it is also possible to apply the results associated with the convex order
relations established in Chapter 2.

After having studied the RA for the present value of the future net cash flows
of liabilities, bt, it is now possible to develop a calculation method for the RA for the
modified total PVFCF under longevity risk, S. Let us use the convex order relations to
obtain an interval where the TVaR of S is guaranteed to be. Using Theorems 2.4.2 and
2.4.4, expressions (3.17) and (3.18) and knowing that αt = E(bt)e−

σ2t
2 , it follows that

TVaRα(S) is bounded by the interval:

TVaRα(S) ∈
[
TVaRα(Sl) ;TVaRα(Su)

]
∈

[
T∑
t=1

αt e
σ2t
2 ·

Φ
(
ρtσ

√
t− zα

)
1− α

;
T∑
t=1

αt e
σ2t
2 ·

Φ
(
σ
√
t− zα

)
1− α

]

∈

[
T∑
t=1

E(bt) ·
Φ
(
ρtσ

√
t− zα

)
1− α

;
T∑
t=1

E(bt) ·
Φ
(
σ
√
t− zα

)
1− α

]
.

(3.38)

Knowing the interval that constrains TVaRα(S), it is reasonable to define the RA
using this risk measure, as it was done in the construction of Definition 3.1.5 by using the
expression (3.26).

Definition 3.2.2 Let the modified total PVFCF under longevity risk, S, be defined as
given in expression (3.36), where bt is the the present value of the future net cash flows of
liabilities. The RA for the modified total PVFCF under Longevity Risk, denoted
by RAα(S), is defined by:

RAα(S) = TVaRα(S)− E(S). (3.39)

Let Sl and Su be defined by expressions (3.21) and (3.22), respectively, according to the
application of Theorem 2.4.3. Then, RAα(Sl) and RAα(Su) are also defined by expression
(3.39), replacing S by Sl and Su, respectively.

The theorem below shows an interval where RAα(S) is bounded, using Definition
3.2.2, Theorem 2.4.5 and expression (3.38).
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3. Risk Adjustment for Longevity Risk

Theorem 3.2.3 Let the RA for the modified total PVFCF under Longevity Risk, RAα(S),
be defined according to Definition 3.2.2. Then:

RAα(S) ∈
[
RAα(Sl) ;RAα(Su)

]
∈

[
T∑
t=1

E(bt) ·

(
Φ
(
ρtσ

√
t− zα

)
1− α

− 1

)
;

T∑
t=1

E(bt) ·

(
Φ
(
σ
√
t− zα

)
1− α

− 1

)]

∈

[
T∑
t=1

E(bt) ·
α− Φ

(
zα − ρtσ

√
t
)

1− α
;

T∑
t=1

E(bt) ·
α− Φ

(
zα − σ

√
t
)

1− α

]
.

(3.40)

Note that, as in the Model for RA for Surrender Risk, the upper bound of the inter-
val, RAα(Su), is actually the sum of the RA for the present values of the future net cash

flows of liabilities, bt, for each year t ∈ {1, 2, . . . , T}, i.e., RAα(Su) =
T∑
t=1

RAα(bt). This

can be seen from expression (3.37), which shows that this sum should be the maximum
value to be considered for RA.

Definition 3.2.2 and Theorem 3.2.3 establish how the RA is calculated for the modi-
fied total PVFCF under longevity risk, RAα(S). Again, although the model for calculating
the RAα(S) is not an exact value, there is certainty that the interval defined by Theorem
3.2.3 contains RAα(S). Furthermore, given the nature of the comonotonic bounds Sl

and Su, the RA for the modified total PVFCF under longevity risk will be closer to its
lower bound, that is, RAα(S) will be closer to RAα(Sl). Therefore, the RA of the lower
bound Sl can be seen as an approximation of the RA for the modified total PVFCF under
longevity risk, i.e., RAα(S) ≈ RAα(Sl).

This fact justifies the importance of the choice of Λ to obtain the best possible
approximation of RAα(S). Given the construction of the three optimal choices of Λ
introduced in the Definitions 2.4.6, 2.4.7 and 2.4.8 and how the RA for the modified to-
tal PVFCF under longevity risk, RAα(S), is defined in Definition 3.2.2, it is expected
that the optimal choice of Λ that will lead to the best approximation of RAα(S) is the
“TVaRα-based” Approximation. However, like in the Model for RA for Surrender Risk,
this approximation may underestimate the value of RA for the total modified PVFCF
under longevity risk, leading to some error, derived from short experience or the uncer-
tainties associated with the estimation of the volatility parameter, σ. Because of this,
considering an interval that contains RAα(S), as introduced in Theorem 3.2.3, becomes
more relevant given that, in case of uncertainty, it would be preferable to use a value in
the interval different from its lower bound to approximate RAα(S) and compensate for
the underestimated approximation of it.

It should also be remarked that the use of the risk measure VaR to calculate the
RA of the modified total PVFCF under longevity risk, RAα(S), is not considered to be a
better alternative, since the convex order relations do not preserve the order of this risk
measure, making it not straightforward to construct an interval that bounds the RAα(S).

Finally, regarding the discussion of the adequacy of the model and the fulfillment
of the five criteria established by IFRS 17 (2023a, §B91) as described in Chapter 1, this
debate will be left to Chapter 4 to be complemented by the practical example.
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3.2. Generalization of the Model for Risk Adjustment for Longevity Risk

3.2.4 Volatility Estimation

To conclude the study of the Model for RA for Longevity Risk, it is necessary to
calculate the fundamental parameter of the model: the volatility parameter, σ. As al-
ready mentioned, one of the key assumptions for the lognormal model to work well is the
normality of the logarithm of the ratio between the survival rates and the survival proba-

bilities, i.e., log
(
p∗x+t−1

px+t−1

)
∼ N(µ, σ2). Similarly to the Model for RA for Surrender Risk,

this fact is directly connected to the method used to estimate the volatility parameter, σ,
through the MLE established in Theorem 3.1.7.

The Lognormal Model for survival rates based on a term structure of expected
survival rates presented in Definition 3.2.1 uses a T -dimensional multivariate standard
normal random vector with mutually independent components, X = (X1, X2 . . . , XT )

where Xt
i.i.d.∼ N(0, 1). When considering Z = −σ2

2
+ σXt where σ > 0 is the volatility

parameter, regardless of the t chosen in the interval {1, , 2, . . . , T}, it follows that Z ∼

N
(
−σ2

2
, σ2
)
. Note that according to Definition 3.2.1, Z = log

(
p∗x+t−1

px+t−1

)
. Given that

Z ∼ N
(
−σ2

2
, σ2
)
, it is possible to apply expression (3.29). To calculate the MLE for

σ consider that (z1, . . . , zn) are n observations, such that, zk = log

(
p∗x+t−1 ; k

px+t−1

)
, where

p∗x+t−1 ; k are the historical survival rates and px+t−1 are the survival probabilities, which
are used as the term structure of the expected survival rates. It should be noted that the
data on historical survival rates are considered independently of the year t and the initial
age x, since the volatility parameter, σ, does not vary with t and x.

In conclusion, through the MLE of the volatility parameter, σ, it is possible to
apply the Model for RA for Longevity Risk, not forgetting, as mentioned above, that it is
essential that the sample of historical data used to calculate the MLE of σ has significant
length and is representative of reality, otherwise it may compromise the results obtained.
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Chapter 4

Practical Example
This Chapter illustrates a practical example of the application of the Model for

Risk Adjustment (RA) for Longevity Risk developed in Chapter 3, using a database
inspired by a portfolio of products susceptible to longevity risk belonging to one of the
leading insurance companies operating in Portugal. The Chapter is divided into two
parts: the first part that describes the database used and the software programs needed
for implementing the model; the second part where the results are presented and discussed,
namely through comparison with other methodologies.

4.1 Database Description and Calculating Tools

The practical example in this Chapter uses simulated data inspired by a database
of an annuity portfolio provided by EY. For confidentiality reasons, the data has been
modified, as well as some of the assumptions and additional information about it. Some
possible inconsistencies in the results may arise from these changes.

The database refers to an annuity product in which the policyholder, after paying
the premium, receives, at the end of each year, an annuity between the ages of 60 and 80,
if he/she is still alive. This amount paid annually is not fixed, i.e., each client receives an
annual amount defined at the beginning of the contract which can vary each year and be
different from that received by other clients.

The portfolio consists of 11474 policies still in force at the beginning of 2022, from
an annuity product that started in 2015 with 13630 policies linked to individuals aged
between 60 and 80. It should be noted that no new customers are allowed to enter the
portfolio, so the 2156 policies that were closed between 2015 and 2022 relate only to the
death of the insurance policyholders. Moreover, it should also be remarked that at the
beginning of 2022, all the individuals still in the portfolio are aged 67 or more, so the
insurance company expects to have liabilities with this portfolio for a maximum of 14
more years, which means until the end of 2035. For this reason, 14 years is taken as the
maximum contract boundary, i.e., T = 14.

In terms of the assumptions made, the Mortality Table for Portugal (2010 - 2012)
developed by INE (2013) was used to calculate the present value of the future net cash
flows of liabilities, as well as to build the term structure of the expected survival rates to
be used. This table was considered instead of other more recent versions published by INE
for two main reasons: the first is that this table was a common choice used by insurance
companies for assessing mortality at the time the portfolio was created; the second is that
by considering an older and outdated mortality table and taking into account the trend of
growth in average life expectancy in Portugal, there will be a greater volatility associated
with the Model for RA for Longevity Risk, which is more interesting from the analysis
point of view. Obviously, other mortality tables could naturally be used, as long as there
is consistency in their continuous application, i.e., as long as no more than one mortality
table is used. Regarding the interest rate, a fixed annual rate around 3% of was applied
for all the years in which the portfolio is in force, according to the choice used by the
company. In fact, that rate is in line with the decreasing pattern of the UFR, which since
2017 has fallen from 4.2% to 3.3%, as published by EIOPA (2023) for the year 2024.
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4.2. Results and Discussion

For the implementation of the Model for RA for Longevity Risk, two software pro-
grams were used. The data inputs were cleaned and modified in Microsoft Excel. The data
was afterwards uploaded into R Studio tool, where a computer program was developed
to compute the Model for RA for Longevity Risk and generate the outputs.

The computational tool is designed to receive portfolios different from the one dis-
cussed in this practical example, and requires the following 4 inputs:

• a table with the present value of the future net cash flows of liabilities given a zero
mortality rate, for each year and initial age considered. This table represents what
was defined in Chapter 3 by a(x,t), for each year t ∈ {1, 2, . . . , T} and initial age
x ∈ {1, 2, . . . , ω};

• the mortality table applied by the insurance company for the portfolio under study.
This table will be used to calculate the survival probabilities, tpx;

• a table of the portfolio’s historical exposure, i.e., the number of individuals by age
for each historical year in which the portfolio was in force and of which there is
a record. Naturally, the more years of historical portfolio behavior, the better the
results, unless the assumptions suffer major changes during that period and no
longer represent reality;

• a table of the portfolio’s historical deaths, i.e., the number of individuals by age who
died in each historical year in which the portfolio is in force and for which there is
a record. The number of years considered should be the same as in the exposure
data.

Finally, it should be noted that the inputs described above are essential for calcu-
lating the bounding interval for the RA of the portfolio, RAα(S), according to Theorem
3.2.3. The first and second inputs are used to calculate the expected present values of
future net cash flows of liabilities, E(bt), while the third and fourth inputs are necessary
for the MLE of the volatility parameter, σ, of the model. If the first input cannot be
obtained, a table of present values of future net cash flows of liabilities under longevity
risk, b(x,t), for each year t ∈ {1, 2, . . . , T} and initial age x ∈ {1, 2, . . . , ω}, can be used
instead.

4.2 Results and Discussion

In order to illustrate the application of the Model for RA for Longevity Risk, four
key aspects were considered so as to obtain results and discuss some of the relevant ones:

• a comparison of the 3 Optimal Choices for the Lower Bound presented in Definitions
2.4.6, 2.4.7 and 2.4.8, in order to conclude which one results in the best outcomes
for bounding the RA in the Model for RA for Longevity Risk;

• an analysis of the 5 criteria established by IFRS 17 (2023a, §B91) and their fulfill-
ment in the shown example;

• the verification of the assumption of the normality of the logarithm of the ratio
between survival rates and survival probabilities, which is crucial for achieving good
results with the new Model for RA for Longevity Risk;

• a comparison of the 2 classic techniques for calculating the RA versus the original
method here developed, including a discussion of the advantages and disadvantages
of each.
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4. Practical Example

4.2.1 Comparison of the 3 Optimal Choices for the Lower Bound

In Chapter 2, 3 optimal choices for the lower bound, Sl, were presented, according to
Definitions 2.4.6, 2.4.7 and 2.4.8. Any of these 3 choices can be used to calculate the RA
using the Model for RA for Longevity Risk. However, due to how the RA is enunciated
in Definition 3.2.2 and the way in which the interval that bounds RAα(S) is created in
Theorem 3.2.3, the “TVaRα-based” Approximation is expected to better approximate the
RA of the lower bound, Sl, to the RA for the modified total PVFCF under longevity risk,
S, i.e., RAα(S) ≈ RAα(Sl).

In order to demonstrate this fact in the practical example, the Monte Carlo Method
is used to simulate the RA for the modified total PVFCF under longevity risk, S, for
5 possible values for the volatility parameter, σ, and with α = 0.95. Recall that the
confidence level associated to the Model for RA for Longevity Risk is not equal but
higher than α, given the definition of TVaR, as mentioned in Chapter 3. For each of these
5 volatility values, σ, 107 simulations were carried out in order to calculate the RA, which
is denoted by RAα(SMC). The analytical calculation of the RA of the upper and lower
bounds was also carried out, according to the Model for RA for Longevity Risk, using
Theorem 3.2.3. The RA of the upper bound, Su, will be denoted by RAα(Su), while the
RA of the 3 optimal choices for the lower bound, Sl, presented in Definitions 2.4.6, 2.4.7
and 2.4.8 will be denoted by RAα(S

TB
l ), RAα(S

MV
l ) and RAα(S

TVaR
l ), respectively.

The results of the Monte Carlo Simulation and the analytical calculations using the
Model for RA for Longevity Risk are shown in Table 1.

Table 1: RA of the 3 Optimal Choices for Sl, depending on σ

It can be seen that, the value obtained by Monte Carlo simulation, RAα(SMC), is
between the RA of the upper and lower bounds, RAα(Su) and RAα(Sl), respectively.
Furthermore, whatever the volatility value, the simulated RAα(SMC) is closer to the lower
bound, RAα(Sl).

Table 2: Percentage of RA of the 3 Optimal Choices
for Sl different from RAα(SMC), depending on σ

In Table 2, it can be observed the relative differences between the RA of the upper
bound and the 3 optimal choices of the lower bound, RAα(Su), RAα(S

TB
l ), RAα(S

MV
l ) and
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4.2. Results and Discussion

RAα(S
TVaR
l ), respectively, and the simulation of the RA for the modified total PVFCF

under longevity risk, RAα(SMC).
Looking at Table 2, it is clear how much higher, between 18% and 24% higher,

the RA of the upper bound, RAα(Su), is in comparison to the simulated RA for the
modified total PVFCF under longevity risk, RAα(SMC), and with an increasing trend as
the associated volatility increases. These are expected results, due to how the RA of the
upper bound is constructed. Indeed, the upper bound seeks to obtain the maximum value
for the RA, which is the sum of the RA for the present values of the future net cash flows

of liabilities, bt, for each year t ∈ {1, , 2, . . . , T}, i.e., RAα(Su) =
T∑
t=1

RAα(bt).

Regarding the lower bound, Sl, the values obtained for the RA from the 3 optimal
choices of the lower bound, RAα(S

TB
l ), RAα(S

MV
l ) and RAα(S

TVaR
l ), are 0.037% to 1.072%

lower than RAα(SMC), and they have a decreasing behavior with the increase in the asso-
ciated volatility. These results support the fact that the RA of the lower bound, RAα(Sl),
can be used to approximate the RA for the modified total PVFCF under longevity risk,
RAα(S). Notice that these percentages could be even more reduced as the number of
simulations increases.

As expected, of the 3 optimal choices for the lower bound, Sl, the one that gives
the best approximation to the simulated value, RAα(SMC), regardless of the value of the
volatility parameter, σ, is the “TVaRα-based” Approximation. Therefore, from now on,
only this approximation will be considered for calculating the RA of the lower bound.

4.2.2 Adequacy of the Model and Fulfillment of IFRS 17

As mentioned, when discussing the Model for RA for Surrender Risk, a proposed
method for calculating the RA has to verify the 5 criteria established in IFRS 17 (2023a,
§B91) as described in Chapter 1. The adequacy of the Model for RA for Longevity Risk
and its fulfillment of the 5 criteria will be discussed through the analysis of tables and
figures associated with the practical example under study.

According to criterion (a), risks with low frequency and high severity need to have
a higher RA than those risks with high frequency and low severity. This implies that,
not only should there be an increase in the RA when considering a higher α, but also
this increase should be more pronounced for values of α closer to 1, since this situation
corresponds to risks with low frequency and high severity.

In order to demonstrate this fact in the practical example, the RA of the upper
and lower bounds, RAα(Su) and RAα(S

TVaR
l ), respectively, were calculated, as well as the

simulated RA for the modified total PVFCF under longevity risk, RAα(SMC). The results
are shown in Table 3 for 5 different values of α, as well as in Figure 4 for the whole range
of possible values for α, i.e., for α ∈]0, 1[.

Table 3: RA for SMC, STVaR
l and Su, depending on α
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4. Practical Example

Figure 4: Graphical display of the RA for
SMC, STVaR

l and Su, depending on α

As expected, RAα(SMC) is be-
tween the RA of the upper and lower
bounds, RAα(Su) and RAα(S

TVaR
l ), respec-

tively. Furthermore, the difference between
RAα(SMC) and RAα(S

TVaR
l ) is small.

There is an increasing behavior w.r.t.
α of the 3 values of RA, and this growth
is faster closer to 1. Therefore, the com-
pliance of the Model for RA for Longevity
Risk with criterion (a) is verified.

Moving on to criterion (b), risks with
a longer duration, in other words, with a
higher maximum contract boundary, must
have a higher RA than risks with a shorter
duration. The results are presented in Ta-
ble 4 for 5 different values of the maximum contract boundary, T , as well as in Figure 5
for the whole range of possible values for T in this example, i.e., for T ∈ {1, . . . , 14}, and
with α = 0.95.

Table 4: RA for SMC, STVaR
l and Su, depending on T

Figure 5: Graphical display of the RA for
SMC, STVaR

l and Su, depending on T

The RAα(SMC) remains bounded by
the RA of the upper and lower bounds,
RAα(Su) and RAα(S

TVaR
l ), respectively,

showing again the convex order relation
between them. The proximity between
RAα(SMC) and RAα(S

TVaR
l ) is also main-

tained.
The 3 values of RA show an increas-

ing behavior, regardless of the value of T ,
demonstrating the fulfillment of criterion
(b). The drop in the slope of the curves for
higher years is justified by the type of prod-
uct under study. As the annuity is only
paid for individuals up to the age of 80,
as the years go by more customers surpass
this threshold and are no longer a liability for the insurance company, even if they are
still alive.

Criterion (c) states that risks with higher volatility are associated with higher RA
than risks with lower volatility. The results for 5 different values of the volatility param-
eter, σ, are shown in Table 5, as well as in Figure 5 for a range of possible values of σ up
to 0.4, i.e., for σ ∈]0, 0.4], and with α = 0.95.
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4.2. Results and Discussion

Table 5: RA for SMC, STVaR
l and Su, depending on σ

Figure 6: Graphical display of the RA for
SMC, STVaR

l and Su, depending on σ

Once again, the convex order relation
is preserved between the 3 values of RA,
regardless of the value of σ, highlighting
the closeness between SMC and STVaR

l .
The behavior of the RA w.r.t. the

volatility parameter, σ, is similar to that of
the variation of RA with α. For all 3 values
of RA, there is an increasing trend, which
becomes more pronounced as σ increases.
This is explained mainly by the fact that
higher levels of volatility are directly as-
sociated with a higher frequency of cases
with greater severity. It can be concluded
that the Model for RA for Longevity Risk
complies with criterion (c).

Finally, regarding to criteria (d) and (e), concerning the uncertainty of parameter
estimation due to lack of information or experience, there is no way of graphically rep-
resenting these situations in the practical example. However, one of the advantages of
the Model for RA for Longevity Risk is the construction of an interval that bounds the
RA for the modified total PVFCF under longevity risk, RAα(S), instead of presenting
just a single exact value. It is known, and became clear from Figures 4, 5 and 6, that
RAα(S

TVaR
l ) serves as an approximation for RAα(S) but, this approximation may un-

derestimate the value of the RA for the modified total PVFCF under longevity risk due
to the lack of experience and uncertainty associated with estimating the parameters. In
these situations, it is preferable to use a value within the interval defined in Theorem
3.2.3 that is higher than the lower bound, in order to better approximate RAα(S).

Figure 7: Graphical display of the upgrade
of the RA for SMC, depending on σ

According to the details presented
above for each criterion, it can be
concluded that the Model for RA for
Longevity Risk complies with the 5 criteria
required in IFRS 17 (2023a, § B91).

From the analysis of Figures 4, 5
and 6, it can be incorrectly inferred
that, although RAα(S

TVaR
l ) approximates

RAα(S), it greatly underestimates its real
value. These figures were constructed on
the basis of 103 simulations. Figure 7
shows the case in which 106 simulations
are carried out to calculate the simulated
RA, RAα(SMC), for different values of the
volatility parameter, σ. Figure 7 is there-
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4. Practical Example

fore a version of Figure 6, but with 1000 times more simulations to calculate RAα(SMC).
It can be seen that the curves of RAα(SMC) and RAα(S

TVaR
l ) are practically over-

lapping, corroborating the conclusion that the lower bound applying the “TVaRα-based”
Approximation is the one that best approximates RAα(S).

It was decided not to use such a large number of simulations for the construction
of Tables 3, 4 and 5 and Figures 4, 5 and 6 for the simple reason that it would be
quite difficult to demonstrate the convex order relation inherent to the Model for RA for
Longevity Risk due to an almost total overlap of curves, as is the case in Figure 7.

4.2.3 Volatility Estimation and Normality Tests

It is necessary to calculate the MLE of the volatility parameter, σ. For this purpose,
the tables of the portfolio’s historical exposure and historical deaths are used to obtain
the historical survival rates and, consequently, the MLE of the volatility parameter, σ.

In the practical example, there is a 7-year history associated with the annuity under
study, between 2015 and 2022, resulting in a sample of 126 ratios between the survival
rates and the survival probabilities. Using Theorem 3.1.7, the MLE of the volatility
parameter, σ, of the portfolio under study is σ̂ = 0.006298827. This estimate has already
been used to construct Tables 3 and 4 and Figures 4 and 5, and it is one of the 5 values
applied in Table 5 for the volatility parameter, σ.

Table 6: p-values of the
Sample Normality TestsHowever, it is not enough to estimate the volatil-

ity parameter, σ. As already mentioned in Chapter 3,
to be realistic, the model must verify the normality as-
sumption of the logarithm of the ratio between the sur-
vival rates and the survival probabilities. Only in this
case, it is possible to be comfortable with the results
obtained by the Model for RA for Longevity Risk.

To this end, several goodness-of-fit tests were car-
ried out, as described in Chapter 3. The results are
summarized in Table 6. As can be seen, the p-values
of all the tests are significantly higher than 0.05, so the
null hypothesis of normality is not rejected.

(a) Histogram of the Sample and
Density of the Normal Distribution

(b) Q-Q plot of the Sample against
the Normal Distribution

Figure 8: Additional Graphs to Prove Sample Normality
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4.2. Results and Discussion

In addition to the goodness-of-fit tests, Figure 8 shows: the histogram of the sample
overlapped by the probability density curve of a normal distribution; the Q-Q plot of
the sample against the normal distribution. It can be seen that there is a significant fit
between the sample and the normal distribution.

According to the goodness-of-fit tests and the additional graphs, the assumption of
normality is satisfied, making it possible to apply the Model for RA for Longevity Risk.

4.2.4 Comparison of the Risk Adjustment Techniques

The 3 RA techniques will be applied to calculate the RA in the practical example
under the same conditions. In this example, the expected modified total PVFCF under
the longevity risk is equal to E[S] = 147911334. In order to compare the value of the
RA according to the 3 techniques, the RA of the upper and lower bounds, RAα(Su)
and RAα(S

TVaR
l ), respectively, are calculated, as well as a total of 2 · 107 simulations are

performed to calculate the RA for the modified total PVFCF under longevity risk using
the Monte Carlo Method, RAα(SMC). An instantaneous permanent shock of a decrease
in 20% of the mortality rates used to calculate the PVFCF is also applied to assess the
RA under SII, denoted by RAα(SSII), as stated in SII (2015, § 138(1)). The VaR will
not be studied in this example, since it is a quantile technique that is less sensitive to
the tails of distributions when compared to the TVaR, as described in Chapter 1, and
the convex order relations do not preserve the order of this risk measure, making it not
straightforward to construct an interval that bounds it, as mentioned in Chapter 3.

Table 7: RAα(S) by the
3 Calculation Techniques

The values of the RA are shown in Ta-
ble 7 for α = 99.5%, as well as the percent-
age they represent of the expected modified to-
tal PVFCF under the longevity risk, E[S]. For
that, the MLE of the volatility parameter cal-
culated above, σ̂ = 0.006298827, and the max-
imum contract boundary of the portfolio, i.e.,
T = 14 years, were applied. The calculation of
the RA under SII assumes that α = 99.5% and
the methods used by the insurance sector to obtain the RA for other values of α are
based on VaR and normal distribution characteristics. Hence, these values were not used
to calculate the RA under SII because their results would not be comparable with those
of the Model for RA for Longevity Risk and TVaR using the Monte Carlo Method.

As expected, RAα(SMC) remains between the RA of the upper and lower bounds,
RAα(Su) and RAα(S

TVaR
l ), respectively. Once again, the proximity of RAα(SMC) and

RAα(S
TVaR
l ) is good. However, the RA calculated under SII, RAα(SSII), has a much

higher value than the others, being over 1% higher than the RA of the upper bound,
RAα(Su), when comparing the percentage they represent of E[S], as shown in the second
column of Table 7.

The RA calculated according to the quantile technique TVaR using the Monte Carlo
Method, RAα(SMC), is the most accurate result for the RA of the 3 techniques applied
in the practical example and so it will be the reference technique. Because it is based on
a very large number of simulations, this technique is more sensitive to skewness in the
tails of the distributions. However, this technique is time consuming and requires more
computational power as the number of simulations or the complexity of the model to be
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4. Practical Example

simulated increase, taking several times longer to obtain results when compared to the
other 2 techniques.

On the other hand, the original Model for RA for Longevity Risk calculates an
interval that bounds the RA for the modified total PVFCF under longevity risk, RAα(S).
As can be seen in Table 7, the interval obtained by this technique contains RAα(SMC). As
already mentioned, the RA of the lower bound, RAα(S

TVaR
l ), is very close to RAα(SMC)

and is therefore a good approximation of the exact value of RAα(S). The RAα(S
TVaR
l ) has

the advantage of being faster to calculate than the RAα(SMC), thus proving the usefulness
of the Model for RA for Longevity Risk for calculating the RA of the portfolio. As for
the RA of the upper bound, RAα(Su), it is significantly higher than RAα(S

TVaR
l ) and

RAα(SMC), as was expected since it is the maximum value to be considered for the RA.
In case the insurance company considers that the RA of the lower bound, RAα(S

TVaR
l ),

underestimates the value of the RAα(S), a higher value contained in the interval calculated
by the Model for RA for Longevity Risk can be considered.

The RA under SII has a much higher value than the RA of the upper bound,
RAα(Su), which is the highest value that the RA for the modified total PVFCF under
longevity risk, RAα(S), can have. This means that the RA under SII greatly overestimates
the value that the RAα(S) can have in the worst case scenario, which is why it is not a good
technique to apply in this portfolio. This practical example does not prove that the RA
under SII overestimates the RAα(S) independently of the portfolio analyzed, but rather
it shows that this technique is not sensitive to the historical characteristics and volatility
of the portfolio. In this example, the RA under SII is much higher than the RAα(S) since
the MLE for the volatility parameter is low, which means that the shock predefined by SII
is excessive compared with the actual risk of the portfolio. If the value of the volatility
parameter were very high, leaving the other conditions unchanged, the RA under SII
would be the same, but much lower than RAα(S), meaning that the predefined shock
would underestimate the actual risk of the portfolio. This phenomenon occurs because
the RA under SII is a technique that only uses the first 2 inputs associated with the
Model for RA for Longevity Risk, neglecting the importance that the historical behavior
of exposure and deaths have for the uncertainty inherent to the portfolio. Therefore, it
is questionable whether or not the technique of the RA under SII complies with criteria
(c), (d) and (e) stated in IFRS 17 (2023a, §B91).

In conclusion, the technique that calculates the most accurate value for RA in
this practical example is the quantile technique TVaR using the Monte Carlo Method,
RAα(SMC), due to its sensitivity to the tails of the distribution of the portfolio, as a result
of the large number of simulations performed. However, the Model for RA for Longevity
Risk is a much faster technique to calculate the RA when compared to the RAα(SMC)
and its result for the RA of the lower bound, RAα(S

TVaR
l ), is nearly the same, as can be

seen in Table 7. Furthermore, if the RAα(S
TVaR
l ) value is considered to be an underesti-

mate of RAα(S) by the insurance company, the Model for RA for Longevity Risk allows
a higher value to be chosen as long as it is contained in the bounding interval. Thus, the
Model for RA for Longevity Risk has a double advantage: it is a technique based on an
analytical calculation which makes it faster to obtain a result for the RA; it produces an
interval rather than an exact value, giving the company the possibility to choose a more
prudent value depending on its risk aversion. Finally, the RA under SII leads to the worst
performance of the 3 techniques in this example, mainly due to its lack of sensitivity to
the historical behavior of the portfolio in terms of exposure and deaths.
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Conclusion
The choice of technique and the calculation of the RA of the IFRS 17 is one of the

major challenge for insurance companies. Since the standard does not prescribe the use of
a specific technique for calculating the RA, companies are uncertain of which technique
to implement, especially knowing from experience in application the disadvantages of
the classical techniques. These uncertainties and disadvantages associated with existing
methods create the opportunity to study new approaches or improvements to existing
techniques for calculating the RA.

In this work, a Model for RA for Longevity Risk is developed as an original gen-
eralization of the Model for RA for Surrender Risk introduced by Carlehed (2023). The
application of this new model produces an interval containing the RA of the portfolio that
focuses on the volatility of the historical behavior of the portfolio in terms of exposure and
deaths in comparison to what the insurance company expects. This approach provides
the model with greater sensitivity to the characteristics of the portfolio when compared to
the shocks predefined by the SII. On the other hand, the interval calculated by the model
is obtained through an analytical formula, which makes it easier to apply and obtain a
result when compared with the Quantile Techniques, that are time consuming and require
computational power due to the use of simulation. The lower bound of this interval is
a good approximation of the RA of the portfolio, yet the model constructs an interval
giving the insurance company the possibility of choosing the most prudent value for the
RA depending on its risk aversion.

The Model for RA for Longevity Risk has a number of advantages when compared
to classical techniques, however, its application is quite restrictive and subject to strict
assumptions. As such, this new model has a lot of space for improvement, so the following
three recommendations are left for possible future research: extend the assumption of the
normality of the logarithm of the ratio between survival rates and survival probabilities
to other elliptical distributions, based on the work of Valdez et al. (2009); generalize the
model when the interval of initial ages is subdivided into subsets of consecutive initial ages
so as to obtain a volatility parameter for each subset, in cases where a single volatility
parameter for all initial ages would compromise the verification of the assumption of the
normality; build a Model for RA for Mortality Risk using the same methodology as for
the Model for RA for Longevity Risk, and then obtain an Aggregate Model for RA for
Mortality and Longevity Risks that reflects the level of diversification benefit.

Finally, the improvements in the techniques for calculating the RA presented in
this work are particularly relevant for insurance companies, helping them deciding which
technique to apply, as well as for future discussions on the review of the IFRS 17 or
the development of supporting legislation by the authorities responsible for the sector
worldwide.
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