

MESTRADO EM

MÉTODOS QUANTITATIVOS PARA A DECISÃO

ECONÓMICA E EMPRESARIAL

TRABALHO FINAL DE MESTRADO

DISSERTAÇÃO

AN ITERATED LOCAL SEARCH ALGORITHM FOR

THE TRAVELING PURCHASER PROBLEM

TOMÁS SILVA KAPANCIOGLU

ORIENTAÇÃO:

PROFª DOUTORA RAQUEL MONTEIRO DE NOBRE COSTA BERNARDINO

DOCUMENTO ESPECIALMENTE ELABORADO PARA OBTENÇÃO DO GRAU DE MESTRE

MARÇO – 2024

Acknowledgements

I am very fortunate to have been able to learn so much from my supervisor,
Dr. Raquel Bernardino. Thank you for your kindness and patience.

i

Abstract

The Traveling Purchaser Problem (TPP) is a generalization of the Travel-
ing Salesman Problem (TSP) in which a list of items must be acquired by
visiting a subset of markets. The objective is to minimize the total cost
sustained along the route, including purchasing and traveling costs. Due to
the NP-hard nature of the problem, solving the TPP in an exact manner
is computationally challenging, implying the need for heuristic approaches
in order to obtain quality solutions efficiently. This study proposes an algo-
rithm based on the metaheuristic Iterated Local Search (ILS), complemented
by a route configuration procedure that adjusts the subset of markets in the
solution. The algorithm is tested in benchmark instances, providing a per-
formance comparison with other methods. The computational experiment
for the asymmetric instances reveals the effectiveness and efficiency of the
algorithm, outperforming previously published results with statistical signif-
icance. Additional experiments are presented for the symmetric instances,
pointing to the competitiveness and versatility of the algorithm in relation
to other heuristic approaches used in the literature.

Keywords: Traveling purchaser problem, Metaheuristics, Iterated local
search, Route configuration.

ii

Resumo

O problema do comprador viajante é uma generalização do problema do caix-
eiro viajante, no qual uma lista de itens tem de ser adquirida ao visitar um
subconjunto de mercados. O objetivo consiste em minimizar o custo total
que inclui os custos de compra dos itens e os custos de deslocação. Trata-se
de um problema NP-dif́ıcil, pelo que resolvê-lo de forma exata é ineficiente
em termos computacionais, implicando a necessidade de recorrer a métodos
heuŕısticos de modo a obter soluções de qualidade de forma eficiente. Este
estudo propõe um algoritmo baseado no conceito metaheuŕıstico de pesquisa
local iterativa, complementado com um procedimento de configuração de
rota que ajusta o subconjunto de mercados da solução. O algoritmo é tes-
tado em instâncias de referência, proporcionando uma comparação de de-
sempenho com outros resultados na literatura. A experiência computacional
para as instâncias assimétricas revela a eficácia e eficiência do algoritmo,
obtendo melhores resultados com significância estat́ıstica. São apresentadas
experiências computacionais adicionais para as instâncias simétricas, apon-
tando a competitividade e versatilidade do algoritmo em relação a outros
métodos heuŕısticos usados na literatura.

Palavras-Chave: Problema do comprador viajante, Meta-heuŕısticas, Pesquisa
local iterativa, Configuração de rota.

iii

Contents

1 Introduction 1

2 Traveling Purchaser Problem 3
2.1 Literature Review . 3
2.2 Definition . 7
2.3 Mathematical Formulation . 9

3 Methodology 11
3.1 Iterated Local Search . 11
3.2 Constructive Heuristic . 12
3.3 Neighborhoods . 14
3.4 Route Configuration . 18
3.5 Local Search . 19
3.6 Perturbation . 20

3.6.1 Destroy Operator . 20
3.6.2 Repair Operator . 20

3.7 Diversity Control . 22
3.8 Iterated Local Search with Route Configuration 22

4 Computational Results 25
4.1 Parameter Analysis . 26

4.1.1 Number of Iterations kmax 26
4.1.2 Diversity Control λmax 27
4.1.3 Search Limit δadd . 28
4.1.4 Search Limit δdrop . 28
4.1.5 Search Limit δexchange 29
4.1.6 Destroy Percentage α 30
4.1.7 Summary . 30

iv

4.2 Randomization Analysis . 31
4.3 Comparison Details . 35

4.3.1 Asymmetric Instances: Class 6 36
4.3.2 Symmetric Instances: Class 1 37
4.3.3 Symmetric Instances: Class 3 40

4.4 Wilcoxon Signed-Rank Tests 43

5 Conclusion 45

Appendix 51
A.1 Neighborhood Search Algorithms 52
A.2 Generation of the Euclidean Distances 55

v

List of Algorithms

3.1 Pseudocode of ILS. 12
3.2 ConstructiveHeuristic(). 13
3.3 Explore(x, N , δ). 17
3.4 RouteConfiguration(x, δadd, δdrop, δexchange). 18
3.5 LocalSearch(x). 19
3.6 Destroy(x, α). 20
3.7 Repair(x). 21
3.8 DiversityConstructiveHeuristic(). 22
3.9 ILS-RC(kmax, λmax, δadd, δdrop, δexchange, α). 23
A.1 Search within neighborhood Nadd(x). 52
A.2 Search within neighborhood Ndrop(x). 52
A.3 Search within neighborhood Nexchange(x). 53
A.4 Search within neighborhood Nmove(x). 53
A.5 Search within neighborhood Nswitch(x). 54

vi

List of Figures

2.1 Asymmetric traveling cost matrix. 8
2.2 Purchasing cost matrix. 8
2.3 Examples of feasible routing solutions. 9
2.4 Example of an unfeasible routing solution. 9

3.1 Route example of a neighbor solution x′ in Nadd(x). 15
3.2 Route example of a neighbor solution x′ in Ndrop(x). 15
3.3 Route example of a neighbor solution x′ in Nexchange(x). 16
3.4 Route example of a neighbor solution x′ in Nmove(x). 16
3.5 Route example of a neighbor solution x′ in Nswitch(x). 17

4.1 Average gap (%) for different values of kmax. 27
4.2 Average computational time for different values of kmax. 27
4.3 Average gap (%) for different values of λmax. 27
4.4 Average computational time for different values of λmax. . . . 27
4.5 Average gap (%) for different values of δadd. 28
4.6 Average computational time for different values of δadd. 28
4.7 Average gap (%) for different values of δdrop. 29
4.8 Average computational time for different values of δdrop. 29
4.9 Average gap (%) for different values of δexchange. 29
4.10 Average computational time for different values of δexchange. . . 29
4.11 Average gap (%) for different values of α. 30
4.12 Average computational time for different values of α. 30
4.13 Boxplots of the average gaps and computational times for 30

different seeds. 31

A.1 Generation of the Euclidean distances for the Class 3 instances. 55

vii

List of Tables

4.1 Parameters used for each set of benchmark instances. 30
4.2 Summary per instance for the 30 different seeds. 32
4.3 Summary of characteristics of the compared approaches. . . . 35
4.4 Gaps and computational times for the Class 6 instances. . . . 37
4.5 Gaps and computational times for the Class 1 closed instances. 38
4.6 Class 1 optima obtained with the implemented MIP formulation. 38
4.7 Objective function values for the Class 1 open instances. . . . 39
4.8 Gaps and computational times for the Class 3 closed instances. 40
4.9 Objective function values for Class 3 open instances. 41
4.10 Wilcoxon signed-rank one-tailed tests between the work of

Cuellar-Usaquén et al. (2023) and the ILS-RC. 43
4.11 Wilcoxon signed-rank one-tailed tests between the ILS-RC and

the work of Goldbarg et al. (2009). 44

viii

Chapter 1

Introduction

Procurement activities stand as an opportunity for businesses to secure com-
petitive advantages. Supplier selection is revealed to be a common challenge
that companies are faced with, as it affects the overall business performance.
Bearing this in mind, companies may resort to Operational Research tools
to improve their decision-making processes.

Considering a list of items and multiple markets, a purchaser must deter-
mine which markets to visit and which items to acquire at each market. The
route begins and ends at a depot, visiting a sequence of markets. Moving
from one location to another incurs a specific traveling cost, which may vary
between every pair of locations. Additionally, the price of an item can differ
across different markets. The purchaser seeks to determine the optimal set
of markets to visit, the sequence in which to visit them, and the items to
purchase at each market to minimize the total costs, composed of the trav-
eling and purchasing costs. This is the Traveling Purchaser Problem (TPP),
a widely known combinatorial optimization problem (Ramesh, 1981). Tack-
ling the TPP can be very beneficial for many companies as it generates the
purchasing plan, determines the route to follow, and resolves the supplier
selection intricacy.

The TPP is classified as NP-hard (Golden et al., 1981) because it general-
izes the Traveling Salesman Problem (TSP). Hence, heuristic approaches are
essential to obtain quality solutions efficiently. This study proposes an algo-
rithm based on the metaheuristic Iterated Local Search (ILS) complemented
with a route configuration procedure that adjusts the subset of markets in
the solution. Benchmark instances are considered to test the performance of
the algorithm, providing a comparison with the best results in the literature.

1

Chapter 2 introduces the TPP and some of its most studied variants,
along with the adopted notation and mathematical formulation. Chapter 3
presents the proposed algorithm, including the ILS pseudocode, the consid-
ered neighborhoods, and the complementary procedures. Chapter 4 presents
the computational experiment, including a parameter examination and an
analysis to ascertain the consistency of the algorithm in relation to the in-
corporated randomized features. Subsequently, a comparison is presented
with other methods used in the literature for asymmetric and symmetric
TPP benchmark instances. Chapter 5 concludes the study and provides op-
portunities for future work.

2

Chapter 2

Traveling Purchaser Problem

This chapter begins by providing an overview of the state of the art regarding
the TPP and its variants in Section 2.1. Section 2.2 presents the problem
definition and the variant addressed in this study, followed by the adopted
notation and an instance example. Section 2.3 presents the mathematical
formulation used in this study to attain the optimal solutions for the bench-
mark instances.

2.1 Literature Review

The TPP was initially introduced as a routing problem by Ramesh (1981),
although the corresponding combinatorial structure can be traced back to
scheduling problems (Burstall, 1966). It is a generalization of the known TSP,
making it NP-hard since it can be reduced to the TSP when every market
offers a unique item that cannot be purchased anywhere else (Golden et al.,
1981). As a result of its complexity, no exact algorithm can solve all large
TPP instances efficiently, implying the necessity for heuristic approaches.

The most evident applications of the TPP revolve around procurement
activities. Nonetheless, it has practical applications in other areas, including
warehousing operations, job scheduling, telecommunication network design,
nurse routing, and school bus routing. Due to the wide variety of applications,
the TPP remains a topic of interest for researchers, as reflected by the number
of papers published in recent years (Manerba et al., 2017).

A common classification of the TPP relates to quantity restrictions. Ev-
ery item on the list has a specific demand that must be met. However,

3

limited quantities across different markets may require purchasing the same
item from multiple markets. Under these circumstances, the TPP is clas-
sified as restricted (R-TPP). In contrast, the unrestricted version (U-TPP)
assumes that if an item is sold at a given market, the available quantity can
completely satisfy the respective demand. Another common classification
revolves around graph symmetry. The symmetric version (STPP) assumes
that traveling from location A to location B incurs the same cost as traveling
from location B to location A. Conversely, in the asymmetric version (ATPP),
traveling costs may differ depending on the traversal direction between two
locations.

During the past decades, several variants have been introduced in the lit-
erature. The multi-vehicle TPP (MVTPP) considers a fleet of vehicles rather
than a single one. Most studies of this variant focus on a homogeneous fleet
of vehicles possessing equal carrying capacity. Collectively, the fleet attempts
to acquire the item list efficiently. Resorting to multiple vehicles is crucial
when specific items are unable to be carried in the same vehicle, as addressed
by Manerba and Mansini (2015) and subsequently in the work of Gendreau
et al. (2016) in variants of the MVTPP with pairwise incompatibility con-
straints (MVTPP-PIC). The transportation of incompatible dangerous goods
is one of the real-world situations in which these constraints are necessary.
Additional applications of the MVTPP and corresponding variants include
the school bus routing problem (Riera-Ledesma and Salazar-Gonzalez, 2012)
and the nurse routing problem (Manerba and Mansini, 2016). In the first ap-
plication, each student (item) resides within a specific distance from multiple
bus stops (markets). The objective is to collect all students while minimiz-
ing the total distance traveled by both the vehicles and the students. In the
second application, the nurse routing problem links the concept of items to
a range of timed services offered to geographically dispersed patients. Each
patient (market) may be subject to a subset of services (items). Under pre-
determined priorities, the nurses must deliver various services throughout
the day, maximizing the overall benefit provided while ensuring that a min-
imum amount of each service is delivered to the patients. More recently,
Bianchessi et al. (2021) proposed a branch-price-and-cut algorithm to solve
diverse variants of the MVTPP with unitary demands.

The total cost is composed by the sum of the traveling and purchasing
costs. However, one of the components may hold a higher degree of pri-
ority in terms of optimization, as both components are often conflicting.
This originates the bi-objective TPP (2TPP), initially introduced by Riera-

4

Ledesma and Salazar-González (2005). Developments of the 2TPP have been
explored, namely the use of transgenetic algorithms in the work of Almeida
et al. (2012). Palomo-Mart́ınez and Salazar-Aguilar (2019) considered the
traveling time spent under a variant of the 2TPP where the purchased items
are meant to be delivered to a set of waiting customers. Due to the impact
of road transportation on the emission of greenhouse gases, the bi-objective
approach has been used to model fuel consumption and respective emissions,
as addressed in the work of Cheaitou et al. (2021).

A wide variety of additional constraints have been considered, including
a limit to the total traveling distance (Bianchessi et al., 2014), procurement
budget restrictions (Mansini and Tocchella, 2009), and limitations to the
number of visited markets, and purchased items at each market (Gouveia
et al., 2011). More recently, Kucukoglu (2022) considered a time limit to
complete the route, with the possibility of the fast service option. Traveling
time was taken into account, as well as purchasing times. At each market,
the purchaser can request the fast service option, reducing the purchasing
time by paying an additional cost. This may be necessary to accelerate the
process to avoid exceeding the stipulated time limit.

The introduction of uncertainty to specific elements of the problem has led
to the use of stochastic methods in the literature. For instance, the available
quantities may be unknown until the markets are visited. Furthermore, these
quantities may decay over time according to a random process (Angelelli
et al., 2009, 2016), as items may be sold to third parties. The item price
has also been presumed random, following a given probabilistic distribution
(Kang and Ouyang, 2011). Both of the previously mentioned characteristics
were jointly addressed in the work of Beraldi et al. (2017).

Despite the degree of complexity, exact algorithms have been able to
solve TPP instances of considerable size. Laporte et al. (2003) proposed a
branch-and-cut method for the symmetric version of the R-TPP, able to solve
instances up to 200 nodes and 200 items. Later, Riera-Ledesma and Salazar-
González (2006) proposed an extension of the branch-and-cut method for
the asymmetric version of the R-TPP, able to solve instances of similar size.
Other methods proposed in earlier years solved smaller instances, including
the lexicographic search from Ramesh (1981) and the branch-and-bound ap-
proach by Singh and van Oudheusden (1997). For an extensive survey of the
TPP literature, see the work of Manerba et al. (2017). Although exact meth-
ods have been developed, the computational efforts revealed to be restrained
in terms of efficiency due to the NP-hard nature of the problem, alluding to

5

the necessity for alternative techniques such as approximation methods.
Heuristic approaches have been applied to the TPP to provide quality

solutions efficiently. The Generalized Savings Heuristic (Golden et al., 1981)
constructs a solution for the unrestricted TPP by selecting the market that
sells the most items at lower purchasing costs and then successively adds
markets to the specific route position that results in the most significant im-
provement. The Tour Reduction Heuristic (Ong, 1982) modifies a feasible
solution by removing the market that yields the most improvement in each
iteration. The Commodity Adding Heuristic (Pearn and Chien, 1998) con-
siders each item, forming a route that includes the market that minimizes
the cost of acquiring that particular item. In every iteration, the cost of ac-
quiring a new item is pondered by either choosing a visited market or adding
an unvisited one to the route.

Some of the metaheuristics that have been used in TPP studies and
respective variants include Ant Colony Optimization (Bontoux and Feil-
let, 2008), Genetic Algorithms combined with a local search (Bernardino
and Paias, 2018), Adaptive Large Neighborhood Search (Kucukoglu, 2022),
Simulated Annealing and Tabu Search (Voß, 1996). Most recently, Cuellar-
Usaquén et al. (2023) proposed a GRASP-based methodology complemented
with a Filtering and Path-Relinking strategy, providing the best results in
the literature to our knowledge, in relation to the asymmetric instances ad-
dressed in this study.

6

2.2 Definition

The TPP consists of determining the most efficient method to purchase a
list of items by visiting a subset of markets. The route begins and ends
at a depot. Traveling from one location to another has an associated cost.
Each item has a specific demand that must be fulfilled, and the price of
each item may vary across different markets. Specific markets may not offer
certain items, and even the items available for purchase might be limited in
quantity. It is important to note that every item must be sold in at least one
market, otherwise the problem is impossible. Visiting a greater number of
markets tends to result in increased traveling costs and reduced purchasing
costs, as items can be acquired where they are sold cheapest. Conversely,
visiting fewer markets tends to decrease the traveling costs at the expense
of increased purchasing costs. Feasible TPP solutions come in the form of a
route that covers the item list, meaning the demand for every item can be
fulfilled by visiting the respective subset of markets. To efficiently acquire
all items is to minimize the total expenditure by balancing the traveling and
purchasing costs sustained along the route.

Let M be the node set composed by the depot (0) and the markets. Let
the arc set be A = {(i, j) : i, j ∈ M ∧ i ̸= j} and cij the traveling cost
associated with arc (i, j) ∈ A. The problem can be modeled in a complete
and directed graph G = (M,A). Consider an item set K and a subset of
markets M(k) ⊆ M \ {0} where item k ∈ K is available for purchase at the
price of pki, such that i ∈M(k).

This study addresses the unrestricted asymmetric TPP variant (UATPP).
The asymmetric property implies a potential difference in traveling costs in
relation to the traversal direction between two locations. The unrestricted
property implies that the demand for each item can be fulfilled by visiting
any single market that sells the item. This is equivalent to assuming each
item has unitary demand with the respective price adjustments. A single
vehicle and depot are considered and each pair of nodes is connected by two
opposite arcs, enabling the purchaser to traverse between any two locations,
since G is a complete graph. Every traveling cost for each arc and every item
cost for each market that sells the item are known.

The following is an example of a UATPP instance with four markets
(M = {0, 1, 2, 3, 4}) and three items (K = {1, 2, 3}). The traveling and
purchasing costs are represented in Figures 2.1 and 2.2, respectively. The
dash symbol (-) in Figure 2.2 means the item is not available in the market.

7

Depot Market 1 Market 2 Market 3 Market 4

Depot - 15 30 18 16
Market 1 30 - 19 24 27
Market 2 24 30 - 27 20
Market 3 24 18 15 - 24
Market 4 19 15 23 26 -

Figure 2.1: Asymmetric traveling cost matrix.

Item 1 Item 2 Item 3

Market 1 - - 24
Market 2 - 21 26
Market 3 23 - 20
Market 4 29 30 28

Figure 2.2: Purchasing cost matrix.

All items can be acquired by solely visiting Market 4, resulting in min-
imal traveling expenses of c04 + c40 = 16 + 19 = 35 and a purchasing ex-
pense of p14 + p24 + p34 = 29 + 30 + 28 = 87. The total cost associated
with this route is the sum of the traveling and purchasing costs, resulting
in 35 + 87 = 122. Another option is to visit Market 2 and Market 3, as
they cover the item list. Since Item 3 is available in both markets, the
cheapest alternative is selected. The traveling cost associated with this
route is c02 + c23 + c30 = 30 + 27 + 24 = 81 and the purchasing cost is
p13+ p22+ p33 = 23+21+20 = 64, resulting in a total cost of 81+64 = 145.
Figure 2.3 portrays the feasible routing solutions mentioned previously for
this instance. Conversely, Figure 2.4 illustrates an unfeasible routing solu-
tion, as Item 2 can not be acquired at the visited markets.

8

0

1

2

4 3

0

1

2

34

Figure 2.3: Examples of feasible routing solutions.

0

1

2

4 3

Figure 2.4: Example of an unfeasible routing solution.

2.3 Mathematical Formulation

The UATPP can be formulated in mixed integer linear programming to at-
tain the optimal solutions for the benchmark instances under study. A single-
commodity flow formulation is presented with three sets of decision variables.
The single-commodity flow formulation is compact, meaning the number of
constraints does not grow exponentially as instances increase in complexity.
The sets of variables are:

fij: flow that traverses arc (i, j) ∈ A, which represents the number of
items that still have to be acquired.

xij =

{
1, if arc (i, j) ∈ A is traversed.

0, otherwise.

yki =

{
1, if item k ∈ K is purchased at market i ∈M(k).

0, otherwise.

9

Minimize
∑

(i,j)∈A

cijxij +
∑
k∈K

∑
i∈M(k)

pkiyki (1)

Subject to: ∑
i∈M(k)

yki = 1 ∀ k ∈ K (2)

∑
j∈M

xij ≤ 1 ∀ i ∈M (3)∑
j∈M

xji −
∑
j∈M

xij = 0 ∀ i ∈M (4)∑
j∈M\{0}

f0j = |K| (5)

∑
j∈M

fji =
∑
j∈M

fij +
∑
k∈K

yki ∀ i ∈M \ {0} (6)

0 ≤ fij ≤ |K|xij ∀ (i, j) ∈ A (7)

xij ∈ {0, 1} ∀ (i, j) ∈ A (8)

yki ∈ {0, 1} ∀ k ∈ K, i ∈M(k) (9)

The objective (1) is to minimize the total cost comprised by the traveling
and purchasing costs. Constraints (2) ensure each item is purchased once.
Constraints (3) guarantee that each market is visited no more than once.
Constraints (4) guarantee that, for each node, the number of arcs that enter
the node equals the number of arcs that leave it. Constraint (5) ensures the
amount of missing items at the beginning of the route is |K|. Constraints
(6), in conjunction with (7), ensures items are only purchased at visited
markets. Moreover, constraints (6) prevent the existence of sub-routes since
every visited market absorbs a portion of the single commodity that stemmed
from the depot in (5). In order for each flow variable fij to take a positive
value, the associated arc must be traversed due to constraints (7). Although
the flow variables represent integer values by concept, their integrality is
ensured by the other constraints of the model. Constraints (8) and (9) define
the domain of xij and yki, respectively.

10

Chapter 3

Methodology

This study uses the metaheuristic ILS complemented with a route configura-
tion procedure to address the UATPP. Section 3.1 introduces the metaheuris-
tic and the corresponding pseudocode. Section 3.2 presents a constructive
heuristic that creates a feasible solution. Section 3.3 presents the neighbor-
hoods considered for the route configuration procedure in Section 3.4 and
for the local search in Section 3.5. Section 3.6 presents the perturbation
operators, followed by a diversity control technique in Section 3.7, and the
proposed algorithm in Section 3.8.

3.1 Iterated Local Search

The ILS pseudocode for minimization problems is presented in Algorithm
3.1. A feasible solution is initially created, followed by a local search proce-
dure to reach a local optimum. Each iteration of the ILS encompasses two
main components. The first component constitutes a perturbation involving
a transformation to escape from local optima. The second component in-
volves a local search to find the new local optimum and hopefully an overall
improvement. These two steps are repeated until the termination criterion is
met. Ultimately, the best-found solution x with the lowest objective function
value Z(x) is returned.

11

Algorithm 3.1 Pseudocode of ILS.

1: Create a feasible solution x
2: x← LocalSearch(x)
3: incumbent ← x
4: while termination criterion is not met do
5: x← Perturbation(x)
6: x← LocalSearch(x)
7: if Z(x) < Z(incumbent) then
8: incumbent ← x
9: end if

10: end while
11: return incumbent

3.2 Constructive Heuristic

The starting point for the metaheuristic requires a feasible solution. There-
fore, a constructive heuristic is introduced in Algorithm 3.2, aiming to gener-
ate a route that covers the item list. If the list is covered, every item can be
purchased in the visited markets. Hence, the feasible solution can be deduced
since the items are purchased where they are sold cheapest. In each iteration,
the market selection is based on the amount of items each market can cover
and the respective average price. Subsequently, the markets are arranged by
a nearest neighbor heuristic. The following notation is considered:

• P : set of unvisited markets.

• S: set of markets to include in the route.

• I: items unavailable for purchase in the selected markets S.

• r: route solution.

• wi: number of items in I that can be purchased at market i ∈ P .

• ai: average cost of the items in I that are available at market i ∈ P ,
that is,

ai =

∑
[k∈I : i∈M(k)] pki

wi

.

12

Algorithm 3.2 ConstructiveHeuristic().

1: P ←M \ {0}
2: S ← ∅
3: I ← K
4: while I ̸= ∅ do
5: for i in P do
6: Calculate wi and ai
7: end for
8: wmax ← max{wi : i ∈ P}
9: amin ← min{ai : i ∈ P ∧ wi = wmax}

10: Compute i∗ ∈ P such that ai∗ = amin and wi∗ = wmax

11: S ← S ∪ {i∗}
12: P ← P \ {i∗}
13: for k in I do
14: if i∗ ∈M(k) then
15: I ← I \ {k}
16: end if
17: end for
18: end while
19: Insert the depot (0) at the start of route r
20: v ← 0
21: while S ̸= ∅ do
22: Compute market i∗ ∈ S such that cvi∗ = min{cvj : j ∈ S}
23: Insert i∗ at the end of route r
24: S ← S \ {i∗}
25: v ← i∗

26: end while
27: Insert the depot (0) at the end of route r
28: Purchase the items where they are cheapest within the visited markets

and construct feasible solution x
29: return x

The first while statement (lines 4 to 18) selects a subset of markets S to
cover the item list. In each iteration, the selection of markets is primarily
determined by their ability to cover the remaining items in I, in order to
obtain feasibility. Amongst the markets that can cover the highest number
of missing items (wmax), the one with the lowest average purchasing cost

13

(amin) is selected. Since the subset of markets S covers the item list, all that
is required to obtain a feasible solution is to establish the order by which the
markets are visited, which is done with the known nearest neighbor heuristic
for the TSP (lines 19 to 27).

3.3 Neighborhoods

The quality of the solution may be improved by searching different neigh-
borhoods. This section presents the neighborhoods considered by the route
configuration procedure introduced in Section 3.4 and by the local search
introduced in Section 3.5. Given a feasible solution x, the following neigh-
borhoods are considered:

• Nadd(x) = {x′ feasible : x′ can be obtained from x by adding an unvis-
ited market to the route} ∪ {x}.

• Ndrop(x) = {x′ feasible : x′ can be obtained from x by removing a
visited market from the route} ∪ {x}.

• Nexchange(x) = {x′ feasible : x′ can be obtained from x by exchanging
a visited market in the route with an unvisited market} ∪ {x}.

• Nmove(x) = {x′ feasible : x′ can be obtained from x by moving a visited
market to another position in the route} ∪ {x}.

• Nswitch(x) = {x′ feasible : x′ can be obtained from x by switching the
positions of two visited markets in the route} ∪ {x}.

Items are always acquired where they are cheapest within the visited mar-
kets. Hence, if the subset of visited markets is altered by a given neighbor-
hood search, the purchasing decisions are adjusted accordingly. Route exam-
ples of neighbor solutions are presented next. Letm be the number of markets
in solution x. The size of neighborhoodNadd(x) is O([|M\{0}|−m]×[m+1]),
as there are |M\{0}|−m unvisited markets that can be added acrossm+1 dif-
ferent positions in the route. Each unvisited market may sell up to |K| items,
potentially improving the purchasing cost of every one of those items. Figure
3.1 displays the routes of a solution x and a neighbor solution x′ ∈ Nadd(x).

14

Route of x :

Route of x′ :

0 1 2 3 0

0 1 4 2 3 0

Figure 3.1: Route example of a neighbor solution x′ in Nadd(x).

The size of neighborhood Ndrop(x) is O(m), as there are m markets that
may be dropped and each choice may increase the purchasing cost of up to
|K| items at the expense of decreased traveling costs. Figure 3.2 displays the
routes of a solution x and a neighbor solution x′ ∈ Ndrop(x).

Route of x :

Route of x′ :

0 1 2 3 4 0

0 1 3 4 0

Figure 3.2: Route example of a neighbor solution x′ in Ndrop(x).

The size of neighborhood Nexchange(x) is O([|M \ {0}|−m]×m), as there
are |M \ {0}| − m unvisited markets to compare with each one of the m
markets in the route. Each exchange may update the purchasing cost of up
to |K| items. Figure 3.3 displays the routes of a solution x and a neighbor
solution x′ ∈ Nexchange(x).

15

Route of x :

Route of x′ :

0 1 2 3 4 0

0 1 2 5 4 0

Figure 3.3: Route example of a neighbor solution x′ in Nexchange(x).

The size of neighborhood Nmove(x) is O(m × [m − 1]), as each of the m
markets may be moved to one of the m−1 remaining positions. Unlike in the
previous neighborhoods, the subset of visited markets remains equal. Figure
3.4 displays the routes of a solution x and a neighbor solution x′ ∈ Nmove(x).

Route of x :

Route of x′ :

0 1 2 3 4 0

0 4 1 2 3 0

Figure 3.4: Route example of a neighbor solution x′ in Nmove(x).

The size of neighborhood Nswitch(x) is O(
(
m
2

)
), as there are

(
m
2

)
unique

pairs of markets in the route to consider switching positions. Similarly to
the previous neighborhood, the subset of visited markets remains the same.
Figure 3.5 displays the routes of a solution x and a neighbor solution x′ ∈
Nswitch(x).

16

Route of x :

Route of x′ :

0 1 2 3 4 0

0 4 2 3 1 0

Figure 3.5: Route example of a neighbor solution x′ in Nswitch(x).

Algorithm 3.3 presents the Explore algorithm, which considers a solution
x and successively searches a neighborhoodN until either a certain maximum
number of searches δ is reached or no improvement is found. Considering
δ = +∞, a neighborhood is searched until the local optimum is reached.
In each search of N (x) (line 2), the solution with the best improvement is
selected. For instance, a market may be moved to different positions in the
route, but the best position is always chosen as long as it yields improvement.
Section A.1 provides the search algorithms for each defined neighborhood.

Algorithm 3.3 Explore(x, N , δ).

Parameters: N , δ

Require: initial solution x
1: for i = 1 to δ do
2: Search N (x) and obtain x′.
3: if x = x′ then
4: break
5: end if
6: x← x′

7: end for
8: return x

17

3.4 Route Configuration

Following a constructive heuristic or a perturbation, the solution is subject
to a route configuration procedure. The main purpose of this phase is to
adjust the average route size throughout the algorithm, providing the local
search with the appropriate number of markets. This is achieved by limiting
the amount of searches in Nadd(x) and Ndrop(x). Furthermore, neighborhood
Nexchange(x) is also subject to a search limit, as fully exploring this neighbor-
hood may have negative impacts on the main algorithm in terms of solution
quality and computational times, as shall be seen in Subsection 4.1.5.

The procedure presented in Algorithm 3.4 intends to configure the route
in each iteration of the ILS algorithm. Unlike in the local search, these neigh-
borhoods are not necessarily searched until a local optimum is reached, as the
route may deviate from the appropriate size and the optimum subset of mar-
kets. For instance, fully exploring neighborhood Nadd(x) increases the route
size on average throughout the algorithm, which may hinder the discovery
of the optimal solution if it is of small size. Hence, let δadd, δdrop, δexchange
be the maximum number of searches in Nadd(x), Ndrop(x), and Nexchange(x)
respectively. Neighborhood Nadd(x) is explored first since inserting new mar-
kets may reveal other markets in the route where the purchasing cost benefit
of visiting them is overshadowed by the traveling cost increase, enabling the
search in Ndrop(x) to produced better results. After the markets have been
removed, which implies a lower route size, the neighborhood Nexchange(x) is
searched. Due to the complexity of searching Nexchange(x), shorter route sizes
significantly improve the computational time of the algorithm. In the end,
neighborhood Ndrop(x) is searched until the local optimum is reached to re-
move markets not necessary to obtain a feasible solution, stabilizing the route
size and subset of visited markets for the local search.

Algorithm 3.4 RouteConfiguration(x, δadd, δdrop, δexchange).

Parameters: δadd, δdrop, δexchange

Require: initial solution x
1: x← Explore(x, Nadd(x), δadd)
2: x← Explore(x, Ndrop(x), δdrop)
3: x← Explore(x, Nexchange(x), δexchange)
4: x← Explore(x, Ndrop(x), +∞)
5: return x

18

3.5 Local Search

The local search determines a local optimum. Different neighborhoods may
be searched, and in distinct sequences. It is important to note that only
improved feasible solutions are accepted in this component of the algorithm.
These searches are implemented successively until no further improvement is
found.

Algorithm 3.5 presents the proposed local search. Different search se-
quences of the Nmove(x) and Nswitch(x) neighborhoods are considered. Each
one of these sequences is repeated until the local optimum is reached. First,
x1 is subject to an extensive search in the Nmove(x) neighborhood, followed
by an extensive search in Nswitch(x). Conversely, x2 considers exploring
Nswitch(x) first, which may yield a different outcome. Finally, x3 is sub-
ject to a single search in each neighborhood, repeating this process un-
til neither neighborhood can be further explored. Ultimately, the solution
xk ∈ {x1, x2, x3} with the lowest objective function value Z(xk) is chosen.

Algorithm 3.5 LocalSearch(x).

Require: initial solution x
1: x1 ← x2 ← x3 ← x
2: x1 ← Explore(x1, Nmove(x1), +∞)
3: x1 ← Explore(x1, Nswitch(x1), +∞)
4: x2 ← Explore(x2, Nswitch(x2), +∞)
5: x2 ← Explore(x2, Nmove(x2), +∞)
6: repeat
7: x3 ← Explore(x3, Nswitch(x3), 1)
8: x3 ← Explore(x3, Nmove(x3), 1)
9: until no improvement is found

10: Select xk ∈ {x1, x2, x3} such that Z(xk) is the minimum value obtained
11: return xk

19

3.6 Perturbation

The local search eventually comes to a stop, as a local optimum was reached.
However, the global optimum may remain elusive, implying the need to ex-
plore new areas in the solution space. Bearing this in mind, a perturbation
is applied to escape the local optimum, promoting diversity by transforming
the solution under specific criteria. In the perturbation procedure, two op-
erators are considered. Firstly, a destroy operator, presented in Subsection
3.6.1, removes markets from the solution, likely turning it unfeasible. Subse-
quently, a repair operator, presented in Subsection 3.6.2, restores feasibility
by adding markets to the solution in order to cover the item list.

3.6.1 Destroy Operator

The destroy operator randomly removes markets from the solution, as pre-
sented in Algorithm 3.6. All markets have the same probability of being
removed following a uniform distribution. The amount of markets to remove
is a percentage α of the route size m, rounded up. For instance, considering
α = 20% on a route with ten markets will result in the removal of two mar-
kets. Rounding up α×m ensures that at least one market is removed in each
perturbation. Items that become unavailable for purchase in the remaining
subset of markets are referred to as missing items.

Algorithm 3.6 Destroy(x, α).

Parameters: α

Require: initial solution x
1: k = RoundUp(α ×m)
2: Randomly remove k markets from the route in solution x
3: return x

3.6.2 Repair Operator

The repair operator restores feasibility by adding markets to the destroyed
route. In the rare event where the item list remains covered after the destroy
operator, the repair operator is not applied. Exploring new areas of the
feasible region involves the addition of markets that lead to a distinct subset.

20

Thus, a new metric ∆ij is introduced, resembling the concept implemented
in the work of Bernardino and Paias (2024).

• ∆ij: number of times that nodes i, j ∈ M were in the same route to-
gether, following a perturbation or constructive heuristic. To be noted
that ∆ij = ∆ji, with i, j ∈M : i ̸= j.

• G iR =
∑
j∈R

∆ij, where R is the subset of nodes in the route.

Using this metric promotes diversity by selecting market i such that G iR

is minimized, which is the market that has shared the same route with the
nodes in R the least amount of times. Algorithm 3.7 presents the repair
operator which selects the markets based on the lowest value ofG iR across the
unvisited markets that sell at least one missing item. This last requirement
is essential to ensure feasibility is being restored. If multiple markets possess
the minimum value in G iR, the market that sells the most missing items is
selected. Following a perturbation or constructive heuristic, the metric ∆ij

is incremented for each node pair (i, j) in R such that i ̸= j. In every repair
iteration, the selected market is inserted at the best position. Considering
the depot in the metric is essential, as a route may have no markets after the
destroy operator.

Algorithm 3.7 Repair(x).

Require: initial solution x
1: Q←M \R
2: while item list is not covered do
3: L← markets in Q that minimize G iR

4: if no market in L sells missing items then
5: Q← Q \ L
6: else
7: i← market in L with the highest amount of missing items
8: Insert market i at the best position within the route of solution x
9: Q← Q \ {i}

10: end if
11: end while
12: Purchase the items where they are cheapest within the visited markets

and construct feasible solution x
13: return x

21

3.7 Diversity Control

The perturbation component of the algorithm has a partial effect on the solu-
tion. Alternatively, generating an entirely new solution can reinforce diversity
to a greater degree. This may be prudent to avoid extensively exploring solu-
tion regions that result in no improvement in the incumbent solution. After
a given number of consecutive iterations λmax without improving the best-
known solution, a constructive heuristic is applied as presented in Algorithm
3.8, based on the previously mentioned diversity metric ∆ij.

Algorithm 3.8 DiversityConstructiveHeuristic().

1: x← ∅
2: Insert the depot (0) at the start and at the end of the route in x
3: Q←M \ {0}
4: while item list is not covered do
5: L← markets in Q that minimize G iR

6: if no market in L sells missing items then
7: Q← Q \ L
8: else
9: i← market in L with the highest amount of missing items

10: Insert market i at the best position within the route of solution x
11: Q← Q \ {i}
12: end if
13: end while
14: Purchase the items where they are cheapest within the visited markets

and construct feasible solution x
15: return x

3.8 Iterated Local Search with Route Config-

uration

The optimal route possesses certain characteristics, including a specific di-
mension, a distinct subset of markets, and a sequence in which to visit them.
The proposed algorithm is based on two main steps. Firstly, it aims to adjust
the route size and respective subset of markets with the route configuration

22

procedure. Secondly, the local search arranges the remaining subset to reach
the local optimum.

Algorithm 3.9 presents the Iterated Local Search with Route Configura-
tion (ILS-RC). An initial solution x is created with the constructive heuristic
presented in Algorithm 3.2. The route configuration procedure presented in
Algorithm 3.4 adjusts the route size and respective subset of visited markets.
Subsequently, the local search presented in Algorithm 3.5 reaches the local
optimum. In each iteration of the ILS-RC, the perturbation presented in
Section 3.6 is applied to escape the local optimum, using the destroy and
repair operators presented in Algorithms 3.6 and 3.7, respectively. However,

Algorithm 3.9 ILS-RC(kmax, λmax, δadd, δdrop, δexchange, α).

Parameters: kmax, λmax, δadd, δdrop, δexchange, α

1: x← ConstructiveHeuristic()
2: x← RouteConfiguration(x, δadd, δdrop, δexchange)
3: x← LocalSearch(x)
4: incumbent ← x
5: z = Z(x)
6: λ = 0
7: for k = 1 to kmax do
8: if λ = λmax then
9: x← DiversityConstructiveHeuristic()

10: λ = 0
11: else
12: x← Repair(Destroy(x, α))
13: end if
14: x← RouteConfiguration(x, δadd, δdrop, δexchange)
15: x← LocalSearch(x)
16: if Z(x) < z then
17: incumbent ← x
18: z = Z(x)
19: λ = 0
20: else
21: λ = λ+ 1
22: end if
23: end for
24: return incumbent

23

if a certain number of consecutive iterations without an overall improvement
λmax is reached, the diversity constructive heuristic presented in Algorithm
3.8 is applied instead. The route configuration and subsequent local search
are applied to the perturbed solution, reaching a new local optimum and
hopefully an overall improvement. This process is repeated until the termi-
nation criterion is met, given by the maximum number of iterations kmax.
Ultimately, the best-found solution with the lowest objective function value
Z(x) is returned, providing an approximation to the global optimum value.

24

Chapter 4

Computational Results

This chapter presents the computational results obtained by applying the
ILS-RC in benchmark instances referenced in the literature, which are avail-
able at https://webpages.ull.es/users/jriera/TPP.htm. The main focus of
this study is the Class 6 instances proposed by Singh and van Oudheusden
(1997), which are asymmetric. Results are compared with those of Cuellar-
Usaquén et al. (2023), the article reporting the best results to our knowledge.
Additional experiments are executed for the Class 1 and Class 3 symmetric
instances, available on the same website.

To measure the performance of the ILS-RC, the gap formula (10) is used
for instances that have been solved to optimality by other authors. Regard-
ing instances that have not been solved to optimality, the performance is
measured by comparing the solution value obtained by the ILS-RC with the
best-known upper bounds reported by Cuellar-Usaquén et al. (2023), Gold-
barg et al. (2009), and Bontoux and Feillet (2008).

Gap(%) = 100× Z(x)− Z(x∗)

Z(x∗)
(10)

Section 4.1 provides an analysis to each parameter considered in the ILS-
RC, followed by an analysis of the randomized features in Section 4.2. The
comparison details are presented in Section 4.3 regarding the TPP benchmark
instances addressed by the previously mentioned works. Section 4.4 presents
the Wilcoxon signed-rank tests between the ILS-RC and the best results
in the literature. The detailed results of the computational experiments
are available online at https://www.dropbox.com/scl/fi/n2ti0cu626g3hycv
91kcf/ILS RC appendix.pdf?rlkey=af93s5c6m7ii4w9rod9rqybqu&dl=0.

25

https://webpages.ull.es/users/jriera/TPP.htm
https://www.dropbox.com/scl/fi/n2ti0cu626g3hycv91kcf/ILS_RC_appendix.pdf?rlkey=af93s5c6m7ii4w9rod9rqybqu&dl=0
https://www.dropbox.com/scl/fi/n2ti0cu626g3hycv91kcf/ILS_RC_appendix.pdf?rlkey=af93s5c6m7ii4w9rod9rqybqu&dl=0

4.1 Parameter Analysis

In order to improve performance, the ILS-RC was subject to various simula-
tions considering different parameter values. The three classes of instances
possess different characteristics. Hence, adjusting the parameters to each
class separately may be prudent to provide a better fit.

This section provides a ceteris paribus analysis of each parameter in the
ILS-RC in relation to the best combination found during the simulations. To
highlight the impact of each parameter, only a subset of the largest Class 6
instances was considered for this analysis, as the ILS-RC reaches the optima
in instances of smaller size regardless of the assigned parameter values. More
precisely, five instances with 300 nodes and 200 items were considered, and
each instance was executed five times for each parameter value to stabilize
the randomized features associated with the ILS-RC.

The following subsections present the impact of the parameters, both in
terms of solution quality and computational time. Subsection 4.1.1 addresses
the number of iterations kmax, followed by the analysis of the λmax parameter
in Subsection 4.1.2. Subsections 4.1.3, 4.1.4, and 4.1.5 present the analysis
for the δadd, δdrop, and δexchange, respectively. Finally, the destroy percentage
α is analyzed in Subsection 4.1.6. Each parameter is analyzed individually,
while the rest remain fixed on the values summarized in Table 4.1 under
Class 6, which is presented in Subsection 4.1.7. This last subsection also
summarizes the parameters used for the Class 1 and Class 3 instances.

4.1.1 Number of Iterations kmax

As the number of iterations increases, the solution quality tends to improve at
the expense of increased computational time. However, after a certain point,
the quality stops improving significantly while the computational time keeps
increasing. Figures 4.1 and 4.2 present the average gaps and computational
times, respectively, provided by running the ILS-RC with different values of
kmax, across the previously mentioned subset of instances. All other parame-
ters remained unchanged, as presented in Table 4.1. Although running 10000
iterations results in the best average gap, the corresponding computational
time restrains the ILS-RC in terms of efficiency. Conversely, considering
5000 iterations provides a noticeable time improvement at minimal solution
quality expense (0.006%). Based on these results, kmax was set to 5000.

26

1000 3000 5000 10000

0.10

0.15

kmax

Average Gap (%)

Figure 4.1: Average gap (%) for different
values of kmax.

1000 3000 5000 10000

10

40

70

130
150

kmax

Average Time (s)

Figure 4.2: Average computational time
for different values of kmax.

4.1.2 Diversity Control λmax

Figures 4.3 and 4.4 present the average gaps and computational times, respec-
tively, that resulted from considering different values of λmax. Although this
parameter does not significantly impact the time efficiency of the ILS-RC, an
improvement in the solution quality occurs when λmax = 500, implying that
the diversity constructive heuristic provides benefit. Conversely, the average
gaps tend to increase when λmax is decreased below this point, as this may
generate a new solution too early, not allowing the algorithm to explore a
series of perturbed solutions. Based on these results, λmax was set to 500.

100 250 500 750 ∞

0.10

0.15

λmax

Average Gap (%)

Figure 4.3: Average gap (%) for different
values of λmax.

100 250 500 750 ∞

60

70

80

90

λmax

Average Time (s)

Figure 4.4: Average computational time
for different values of λmax.

27

4.1.3 Search Limit δadd

Figures 4.5 and 4.6 present the average gaps and computational times, respec-
tively, that resulted from considering different values of δadd. No significant
improvement in the solution quality occurs after a maximum of two searches
in this neighborhood. Hence, a limit is worth imposing, as the computational
times also tend to increase with every increment of δadd. This is because the
average route size produced throughout the ILS-RC is larger, resulting in in-
creased complexity in all the neighborhood searches, as mentioned in Section
3.3. Based on these results, the parameter was set to δadd = 2.

4 8 ∞

0.10

0.20

0.40

δadd

Average Gap (%)

Figure 4.5: Average gap (%) for different
values of δadd.

4 8 ∞

45

60

75

90

δadd

Average Time (s)

Figure 4.6: Average computational time
for different values of δadd.

4.1.4 Search Limit δdrop

Figures 4.7 and 4.8 present the average gaps and computational times, re-
spectively, that resulted from considering different values of δdrop. The lowest
average gaps occur after a maximum of two and four searches. Considering
no searches has a significant impact on the computational time, as the aver-
age route size produced throughout the ILS-RC tends to grow considerably.
Conversely, fully exploring this neighborhood decreases the solution quality,
as the route size may be smaller on average, hindering the discovery of op-
timal solutions with a larger number of markets. The best gaps result from
finding a balanced parameter value, enabling the ILS-RC to reach optimal
routes of small and large sizes. Based on these results, the parameter was
set to δdrop = 4, although a tie appears to happen with δdrop = 2.

28

4 8 ∞

0.10

0.15

δdrop

Average Gap (%)

Figure 4.7: Average gap (%) for different
values of δdrop.

4 8 ∞

60

70

80

90

100

δdrop

Average Time (s)

Figure 4.8: Average computational time
for different values of δdrop.

4.1.5 Search Limit δexchange

Figure 4.9 displays the average gaps that resulted by considering different
values of δexchange. No significant improvement in the solution quality occurs
after a maximum of two searches. Moreover, the corresponding average times
presented in Figure 4.10 tend to grow considerably. Hence, limiting the
number of searches in Nexchange(x) is prudent in order to promote solution
quality at minimal time expense. The average gaps may stop improving past
a certain point since the best-found subset of markets is reached in every run
of the ILS-RC, despite different values of δexchange. Based on these results,
the parameter was set to δexchange = 2.

4 8 ∞

0.10

0.15

0.20

0.25

δexchange

Average Gap (%)

Figure 4.9: Average gap (%) for different
values of δexchange.

4 8 ∞

30

60

90

120

150

δexchange

Average Time (s)

Figure 4.10: Average computational time
for different values of δexchange.

29

4.1.6 Destroy Percentage α

Figures 4.11 and 4.12 present the average gaps and computational times,
respectively, resulting from considering different values of α. No significant
improvement in the solution quality occurs after α = 10%, since considering
large percentages may hinder the exploration of routes with a similar subset
of markets, preventing minor adjustments to come to fruition. The compu-
tational times tend to grow as resorting to the diversity metric ∆ij usually
increases the route size, since markets are inserted based on the number of
times they have been joined together rather than on their ability to cover
the item list. Based on these results, the parameter was set to α = 10%.

5% 10% 20% 30%

0.10

0.20

0.30

0.40

α

Average Gap (%)

Figure 4.11: Average gap (%) for different
values of α.

5% 10% 20% 30%

60
70

90
100
110

α

Average Time (s)

Figure 4.12: Average computational time
for different values of α.

4.1.7 Summary

Table 4.1 summarizes the parameters used by the current study for each
class of instances, adjusting the ILS-RC to the features of each class. The
parameters were chosen based on the previous simulations. As the additional

Table 4.1: Parameters used for each set of benchmark instances.

kmax λmax δadd δdrop δexchange α

Class 6 5000 500 2 4 2 10%
Class 1 15000 250 8 0 4 30%
Class 3 8000 500 5 3 4 5%

30

analyses executed for Class 1 and Class 3 instances were similar, they are
omitted. Nevertheless, each parameter followed a similar behaviour in rela-
tion to the solution quality and computational time of the Class 6 analysis,
merely changing the value in which the best result occurred.

4.2 Randomization Analysis

The ILS-RC contains randomized features, as the destroy operator randomly
removes markets from the solution. Hence, the solution quality produced
from the ILS-RC may differ in accordance with the seed used. To ascertain
if the ILS-RC is consistent regardless of the seed used, a simulation was
conducted on every Class 6 instance addressed in this study. A total of 30
runs were conducted, each considering a different seed to test if the ILS-
RC is robust. Figure 4.13 presents the boxplots of the average gaps and
computational times that resulted from this simulation. The ILS-RC is able
to achieve consistent results regardless of the seed used, as the average gaps
range between 0.016% and 0.024%. The differences are only noticeable when
observed to three decimal places. Similarly, the average computational times
are also very stable.

0.015

0.020

0.025

A
ve
ra
ge

G
ap

(%
)

15

16

A
ve
ra
ge

T
im

e
(s
)

Figure 4.13: Boxplots of the average gaps and computational times for 30 different seeds.

In a more detailed perspective, Table 4.2 presents a gap summary for
each considered instance. The columns display the number of nodes |M |,
the number of items |K|, the instance Id, the minimum, maximum, range,
and average gaps for each instance across the 30 runs of the ILS-RC with
different seeds. The average computational time is displayed in the last
column. The ILS-RC is able to reach the optimum solution at least once

31

in the different seeds used, except for six instances with the largest number
of items (|K| = 200). It is important to note that the optimum value for
the instance with |M | = 300, |K| = 200, and Id = 1, remains unknown.
The gap associated with this instance was calculated using a lower bound
for optimal value. Hence, the values portrayed for this instance represent an
upper bound for the respective gap statistics. Beyond this specific instance,
the next largest average gap is 0.15% that corresponds to the instance with
|M | = 300, |K| = 200, and Id = 5, which also holds the largest maximum gap
of 0.20%. These values are relatively small, demonstrating the effectiveness of
the ILS-RC in obtaining quality solutions. All instances report a range lower
than 0.18%, implying that the ILS-RC is consistent despite incorporating
randomized features.

Table 4.2: Summary per instance for the 30 different seeds.

Gap (%) Time (s)

|M | |K| Id Min Max Range Average Average

50 50 1 0.00 0.00 0.00 0.00 1
50 50 2 0.00 0.00 0.00 0.00 2
50 50 3 0.00 0.00 0.00 0.00 2
50 50 4 0.00 0.00 0.00 0.00 1
50 50 5 0.00 0.00 0.00 0.00 2

50 100 1 0.00 0.09 0.09 0.00 3
50 100 2 0.00 0.00 0.00 0.00 4
50 100 3 0.00 0.00 0.00 0.00 3
50 100 4 0.00 0.00 0.00 0.00 3
50 100 5 0.00 0.00 0.00 0.00 3

50 200 1 0.00 0.05 0.05 0.01 6
50 200 2 0.00 0.02 0.02 0.00 6
50 200 3 0.00 0.04 0.04 0.01 6
50 200 4 0.00 0.07 0.07 0.04 6
50 200 5 0.00 0.07 0.07 0.01 6

75 50 1 0.00 0.00 0.00 0.00 2
75 50 2 0.00 0.00 0.00 0.00 3

Continued on next page

32

Table 4.2 – continued from previous page

Gap (%) Time (s)

|M | |K| Id Min Max Range Average Average

75 50 3 0.00 0.00 0.00 0.00 3
75 50 4 0.00 0.00 0.00 0.00 3
75 50 5 0.00 0.00 0.00 0.00 3

75 100 1 0.00 0.00 0.00 0.00 5
75 100 2 0.00 0.00 0.00 0.00 5
75 100 3 0.00 0.00 0.00 0.00 5
75 100 4 0.00 0.00 0.00 0.00 5
75 100 5 0.00 0.00 0.00 0.00 5

75 200 1 0.00 0.02 0.02 0.01 11
75 200 2 0.00 0.04 0.04 0.04 11
75 200 3 0.00 0.09 0.09 0.02 11
75 200 4 0.02 0.13 0.11 0.07 11
75 200 5 0.00 0.05 0.05 0.02 12

100 50 1 0.00 0.00 0.00 0.00 2
100 50 2 0.00 0.00 0.00 0.00 2
100 50 3 0.00 0.00 0.00 0.00 2
100 50 4 0.00 0.00 0.00 0.00 2
100 50 5 0.00 0.09 0.09 0.06 2

100 100 1 0.00 0.00 0.00 0.00 8
100 100 2 0.00 0.00 0.00 0.00 8
100 100 3 0.00 0.00 0.00 0.00 9
100 100 4 0.00 0.00 0.00 0.00 7
100 100 5 0.00 0.04 0.04 0.02 8

100 200 1 0.00 0.07 0.07 0.04 16
100 200 2 0.00 0.07 0.07 0.01 17
100 200 3 0.00 0.05 0.05 0.01 15
100 200 4 0.00 0.00 0.00 0.00 16
100 200 5 0.00 0.11 0.11 0.06 15

200 50 1 0.00 0.00 0.00 0.00 8

Continued on next page

33

Table 4.2 – continued from previous page

Gap (%) Time (s)

|M | |K| Id Min Max Range Average Average

200 50 2 0.00 0.00 0.00 0.00 9
200 50 3 0.00 0.00 0.00 0.00 9
200 50 4 0.00 0.00 0.00 0.00 10
200 50 5 0.00 0.00 0.00 0.00 8

200 100 1 0.00 0.04 0.04 0.00 23
200 100 2 0.00 0.04 0.04 0.01 21
200 100 3 0.00 0.00 0.00 0.00 14
200 100 4 0.00 0.00 0.00 0.00 12
200 100 5 0.00 0.05 0.05 0.00 11

200 200 1 0.00 0.14 0.14 0.07 45
200 200 2 0.09 0.18 0.09 0.13 40
200 200 3 0.05 0.09 0.04 0.06 44
200 200 4 0.05 0.16 0.11 0.10 45
200 200 5 0.00 0.09 0.09 0.06 43

300 50 1 0.00 0.00 0.00 0.00 11
300 50 2 0.00 0.17 0.17 0.01 14
300 50 3 0.00 0.00 0.00 0.00 15
300 50 4 0.00 0.00 0.00 0.00 17
300 50 5 0.00 0.00 0.00 0.00 13

300 100 1 0.00 0.00 0.00 0.00 20
300 100 2 0.00 0.00 0.00 0.00 16
300 100 3 0.00 0.04 0.04 0.02 21
300 100 4 0.00 0.13 0.13 0.02 35
300 100 5 0.00 0.13 0.13 0.01 40

300 200 1 0.30 0.39 0.09 0.34 78
300 200 2 0.00 0.02 0.02 0.00 53
300 200 3 0.00 0.07 0.07 0.04 60
300 200 4 0.00 0.16 0.16 0.07 75
300 200 5 0.09 0.20 0.11 0.15 75

34

4.3 Comparison Details

Cuellar-Usaquén et al. (2023) addressed the Class 6 asymmetric instances,
providing the best results in the literature to our knowledge. A GRASP-
based methodology was proposed, complemented with a Filtering and Path-
Relinking strategy. Two algorithms were considered, each with a different
constructive procedure, namely the purchase-focused (P) and route-focused
(R) procedures. Additional experiments were conducted by the same article,
addressing the Class 1 and Class 3 symmetric instances. Other works that
reported results for the Class 3 instances include the Transgenetic Algorithm
proposed by Goldbarg et al. (2009) and the Ant Colony Algorithm introduced
by Bontoux and Feillet (2008). Table 4.3 summarizes the implementation
details of the articles included in the comparison. Due to differences in
computing architectures, the reported times are not directly comparable.
Cuellar-Usaquén et al. (2023) used the most efficient computing architecture,

Table 4.3: Summary of characteristics of the compared approaches.

Author Solution approach Implementation
details

This work ILS with Route Configuration C++. 11th Gen In-
tel(R) Core(TM) i7-
1165G7 @ 2.80GHz,
Windows 10 with 8
GB RAM

Cuellar-Usaquén
et al. (2023)

GRASP + Filtering\PR C++. AMD Ryzen
7-3800X @ 3.90GHz,
Windows 10 with 32
GB RAM

Goldbarg et al.
(2009)

Transgenetic Algorithm Pentium4 @ 2.80GHz,
Ubuntu Linux with
512 MB of RAM

Bontoux and
Feillet (2008)

Ant Colony Algorithm C++. Pentium4 @
2.00GHz, Linux / De-
bian

35

while the remaining authors used less efficient architectures in relation to the
one used in this work.

Cuellar-Usaquén et al. (2023) implemented a mixed integer programming
(MIP) formulation to verify the optima of the instances that had not been
solved to optimality. Regarding Class 1, the approach resulted in new best-
known values for instances with unknown optima, having reached 19 out of
the 25 optimal solutions. The authors also reported the best performance
in instances with known optima. However, in Class 3, the Transgenetic
Algorithm proposed by Goldbarg et al. (2009) and the Ant Colony Algorithm
introduced by Bontoux and Feillet (2008) still hold the best results in the
literature to our knowledge, although one new best-known value was achieved
by Cuellar-Usaquén et al. (2023).

Subsection 4.3.1 presents the comparison for the Class 6 instances. Sub-
sections 4.3.2 and 4.3.3 present the comparison for the Class 1 and Class 3
instances, respectively.

4.3.1 Asymmetric Instances: Class 6

Table 4.4 presents a comparison of gaps and computational times for the
Class 6 instances considered by Cuellar-Usaquén et al. (2023). The results
correspond to 75 instances of Class 6 with |M | ∈ {50, 75, 100, 200, 300} and
|K| ∈ {50, 100, 200}, including five instances per unique combination of |M |
and |K|. The ILS-RC was executed five times for each instance, providing
the same number of replicates used by Cuellar-Usaquén et al. (2023), as the
algorithm incorporates randomized features. Instances are grouped by the
number of nodes |M | and the number of items |K|. The reported values
correspond to the averages of all instances of the indicated sizes, including
the five replicates considered for each instance. As previously mentioned, the
results from the two procedures considered by the GRASP-based method-
ology are presented, including the purchase-focused (P) and route-focused
(R) procedures. The ILS-RC obtained better results on average in less com-
putational time, although a less efficient computing architecture was used.
The results outperformed for every set of instances grouped by the number
of nodes |M | and number of items |K|, with the greatest improvement for
|K| = 200.

36

Table 4.4: Gaps and computational times for the Class 6 instances.

Gap % Time (s)

GRASP + ILS GRASP + ILS
Filtering/PR - RC Filtering/PR - RC

P R - P R -

|M | 50 0.03 0.04 0.01 33 39 3
75 0.04 0.04 0.01 48 58 6
100 0.03 0.04 0.02 50 62 9
200 0.06 0.06 0.03 71 71 23
300 0.11 0.09 0.05 122 113 36

|K| 50 0.01 0.01 0.00 19 21 6
100 0.03 0.03 0.00 42 44 12
200 0.12 0.12 0.06 133 141 29

Average 0.05 0.05 0.02 65 69 15

4.3.2 Symmetric Instances: Class 1

Class 1 instances have the number of nodes fixed at |M | = 33, and the number
of items ranges in |K| ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}. These
instances are symmetric, in contrast to the instances in Class 6. There are
five instances for each value of |K|, resulting in a total of 50 instances. The
ILS-RC was executed five times for each instance, providing the same number
of replicates used in Cuellar-Usaquén et al. (2023). Instances up to |K| = 250
were solved to optimality by Laporte et al. (2003) and are referred to as Class
1 closed instances, in opposition to the open instances with |K| ⩾ 300 for
which no optimal values were reported in the literature.

Table 4.5 presents a comparison of gaps and computational times for the
Class 1 closed instances considered by Cuellar-Usaquén et al. (2023). The
ILS-RC obtained better results for |K| = 250 and matched the results for
|K| < 250. The number of iterations was able to be increased to kmax =
15000 since the number of nodes is fixed at a relatively low value |M | = 33.
This significantly influences the ILS-RC in terms of efficiency, as the search
complexity of the neighborhoods is connected to |M |.

37

Table 4.5: Gaps and computational times for the Class 1 closed instances.

Gap % Time (s)

GRASP + ILS GRASP + ILS
Filtering/PR - RC Filtering/PR - RC

|M | |K| P R - P R -

33 50 0.00 0.00 0.00 20 20 3
33 100 0.00 0.00 0.00 39 42 5
33 150 0.00 0.00 0.00 68 70 7
33 200 0.00 0.00 0.00 92 97 9
33 250 0.21 0.22 0.00 128 131 11

Average 0.04 0.04 0.00 69 72 7

Regarding the Class 1 open instances, 19 out of 25 optimal values were
reported by Cuellar-Usaquén et al. (2023). The remaining six optimal values
were verified by implementing the MIP formulation presented in Section 2.3,
in order to confirm if the optimum was reached in each instance. Table 4.6
presents the results of this implementation for the six instances. Table 4.7
presents a comparison of the objective function values for the Class 1 open
instances between the ILS-RC and the work of Cuellar-Usaquén et al. (2023).
The values correspond to the best-found solution across the five replicates
that were run for each instance, and values with asterisks correspond to
optimal solutions. As previously mentioned, Cuellar-Usaquén et al. (2023)
reached 19 optimal solutions in the open instances, while the ILS-RC reached
the optimal solution in every instance.

Table 4.6: Class 1 optima obtained with the implemented MIP formulation.

|M | |K| Id Z(x∗) Time (s)

33 300 3 13992 61
33 300 5 14181 40
33 350 5 15789 51
33 400 3 16838 182
33 450 1 17847 42
33 450 4 17522 198

38

Table 4.7: Objective function values for the Class 1 open instances.

Objective Function Value Time(s)

GRASP +
Filtering/PR ILS-RC ILS-RC

|M | |K| Id P R - -

33 300 1 13,883* 13,883* 13,883* 13
33 300 2 13,954* 13,954* 13,954* 13
33 300 3 13,995 14,020 13,992* 14
33 300 4 13,765* 13,765* 13,765* 13
33 300 5 14,281 14,281 14,181* 14

33 350 1 15,306* 15,306* 15,306* 15
33 350 2 14,324* 14,324* 14,324* 15
33 350 3 15,858* 15,858* 15,858* 17
33 350 4 15,550* 15,550* 15,550* 15
33 350 5 15,816 15,810 15,789* 15

33 400 1 17,097 17,084* 17,084* 18
33 400 2 16,158 16,116* 16,116* 17
33 400 3 16,903 16,903 16,838* 17
33 400 4 17,149* 17,149* 17,149* 18
33 400 5 17,162* 17,162* 17,162* 16

33 450 1 17,860 17,860 17,847* 19
33 450 2 17,329* 17,329* 17,329* 17
33 450 3 18,203* 18,203* 18,203* 20
33 450 4 17,530 17,524 17,522* 19
33 450 5 18,424* 18,428 18,424* 19

33 500 1 19,273 19,270* 19,270* 20
33 500 2 19,310* 19,310* 19,310* 20
33 500 3 19,399 19,376* 19,376* 22
33 500 4 19,300* 19,300* 19,300* 21
33 500 5 18,956* 18,956* 18,956* 20

39

4.3.3 Symmetric Instances: Class 3

Class 3 contains the Euclidean instances, which are also symmetric, with
|M | ∈ {50, 100, 150, 200, 250, 300, 350} and |K| ∈ {50, 100, 150, 200}, with
five instances per combination of |M | and |K|. The traveling costs are de-
termined by Euclidean distances, which are generated using the procedure
presented in Figure A.1. Class 3 instances are also distinguished as closed and
open instances, and the ILS-RC was executed five times for each instance.

Table 4.8 provides a comparison of gaps and computational times between
the proposed approach and the best reported results regarding the Class 3
closed instances. The ILS-RC was able to obtain better results for every set of
instances grouped by |M | and |K| in relation to the GRASP/Path-Relinking
algorithm proposed by Cuellar-Usaquén et al. (2023). However, the ILS-RC
underperformed in comparison with the Transgenetic Algorithm proposed by
Goldbarg et al. (2009) for |M | > 100 and for every set of instances grouped
by |K|. Class 3 instances tend to be restraining in terms of computational
time due to an increased average route size in relation to other classes.

Table 4.8: Gaps and computational times for the Class 3 closed instances.

Gap % Time (s)

Trans- GRASP + ILS Trans- GRASP + ILS
genetic Filtering/PR - RC genetic Filtering/PR - RC

- P R - - P R -

|M | 50 0.00 0.27 0.68 0.00 1 35 32 8
100 0.00 1.49 1.16 0.00 1 56 51 24
150 0.03 2.83 3.04 0.11 2 67 73 55
200 0.00 2.26 2.49 0.29 3 83 75 81
250 0.00 2.72 5.03 0.12 3 106 109 88

|K| 50 0.00 1.07 2.06 0.13 1 27 28 18
100 0.00 0.64 0.55 0.06 2 54 45 36
150 0.00 3.68 4.09 0.06 2 74 80 61
200 0.03 2.26 3.22 0.14 3 121 120 78

Average 0.01 1.91 2.48 0.10 2 69 68 47

40

Table 4.9 presents a comparison of the objective function values for the
Class 3 open instances. The values correspond to the best-found solution
across the five replicates that were run for each instance. The ILS-RC could
not reach new best-known values, merely matching best-known values re-
ported by other works. One possible explanation for this is that the reported
values might already be close to the optimal values, leaving less opportunity
for improvement.

Table 4.9: Objective function values for Class 3 open instances.

Objective Function Value

Bontoux Goldbarg Cuellar ILS
|M | |K| Id et al. (2008) et al. (2009) et al. (2023) - RC

200 150 4 2419 2419 2419 2419

200 200 4 2344 2344 2403 2344
250 100 1 1301 1301 1301 1301
250 100 4 1673 1673 1673 1673
250 100 5 1641 1641 1641 1641

250 150 4 1836 1836 1836 1836
250 150 5 1531 1531 1531 1531

250 200 2 2785 2786 2838 2789
250 200 3 1924 1924 1947 1924
250 200 4 2116 2116 2116 2116
250 200 5 1797 1797 1851 1992

300 50 1 1477 1477 1485 1477
300 50 2 813 813 879 813
300 50 3 1117 1117 1117 1117
300 50 4 1176 1176 1176 1176
300 50 5 1257 1256 1256 1257

300 100 1 1035 1035 1035 1035
300 100 2 1179 1180 1179 1179
300 100 3 1498 1498 1498 1498
300 100 4 1749 1749 1770 1749

Continued on next page

41

Table 4.9 – continued from previous page

Objective Function Value

Bontoux Goldbarg Cuellar ILS
|M | |K| Id et al. (2008) et al. (2009) et al. (2023) - RC

300 100 5 1774 1774 1774 1774

300 150 1 1457 1457 1457 1457
300 150 2 1656 1656 1656 1685
300 150 3 2485 2484 2484 2484
300 150 4 1801 1801 1801 1801
300 150 5 1816 1816 1816 1816

300 200 1 1815 1803 1814 1812
300 200 2 1791 1790 1839 1836
300 200 3 2442 2437 2443 2441
300 200 4 1815 1815 1960 1815
300 200 5 2022 2014 2022 2015

350 50 1 723 723 723 723
350 50 2 736 736 736 736
350 50 3 942 942 942 942
350 50 4 805 805 917 805
350 50 5 1125 1225 1225 1225

350 100 1 1317 1317 1317 1317
350 100 2 962 962 962 962
350 100 3 796 796 796 796
350 100 4 1059 1059 1059 1059
350 100 5 1566 1566 1566 1567

350 150 1 1457 1459 1455 1457
350 150 2 1315 1315 1315 1315
350 150 3 2553 2558 2553 2553
350 150 4 1239 1239 1239 1239
350 150 5 2288 2288 2288 2288

350 200 1 1503 1498 1511 1503
350 200 2 1374 1369 1369 1369

Continued on next page

42

Table 4.9 – continued from previous page

Objective Function Value

Bontoux Goldbarg Cuellar ILS
|M | |K| Id et al. (2008) et al. (2009) et al. (2023) - RC

350 200 3 1873 1873 1873 1873
350 200 4 1385 1356 1359 1359
350 200 5 2336 2336 2336 2341

4.4 Wilcoxon Signed-Rank Tests

Table 4.10 presents the Wilcoxon signed-rank one-tailed test statistics and
corresponding p-values computed between the ILS-RC and the work of Cuellar-
Usaquén et al. (2023). Open instances are not included since only the best-
found solutions were reported between the five replicates conducted per in-
stance. The best values from both variations of the GRASP methodology (P
and R) were selected for the tests. Two tests are computed at a significance
level of 5%, one considering the values grouped by |M | and the other by |K|.
Let di represent the differences between the GRASP and the ILS-RC paired
values presented in Tables 4.4, 4.5, and 4.8. The null hypothesis states that
the median for di is equal or inferior to zero. The alternative hypothesis
states that the median for di is greater than zero, that is,

H0 : mediandi ⩽ 0 vs H1 : mediandi > 0

Table 4.10: Wilcoxon signed-rank one-tailed tests between the work of Cuellar-Usaquén
et al. (2023) and the ILS-RC.

Group Test Statistic p-value Decision

|M | 66 0.002 Reject H0

|K| 36 0.007 Reject H0

The p-value is 0.002 for the test that considers the instances grouped by
|M | and it is 0.007 for the test with the instances grouped by |K|. The null
hypothesis is rejected at a significance level of 5% for each test. There is
statistical evidence to claim that the average gaps of the ILS-RC are inferior

43

in relation to the average gaps of the GRASP-based methodology proposed
by Cuellar-Usaquén et al. (2023), including at a significance level of 1%.

Table 4.11 presents additional tests that were computed between the val-
ues obtained by the ILS-RC and the work of Goldbarg et al. (2009). Let
di represent the differences between the ILS-RC and the Transgenetic Algo-
rithm paired values presented in Table 4.8. Two tests were computed using
the values grouped by |M | and |K|, respectively.

Table 4.11: Wilcoxon signed-rank one-tailed tests between the ILS-RC and the work of
Goldbarg et al. (2009).

Group Test Statistic p-value Decision

|M | 6 0.091 Fail to Reject H0

|K| 10 0.049 Reject H0

The p-value is 0.091 for the test that considers the instances grouped
by |M |. The null hypothesis is not rejected at a significance level of 5%,
meaning there is not enough statistical evidence to claim that the average
gaps of the Transgenetic Algorithm proposed by Goldbarg et al. (2009) are
inferior in relation to the average gaps produced by the ILS-RC. However,
it is important to note that the number of unequal observations is small,
which affects the power of the test. The p-value is 0.049 for the test with the
instances grouped by |K|. The null hypothesis is rejected at a significance
level of 5%, meaning there is statistical evidence to claim that the average
gaps of the Transgenetic Algorithm proposed by Goldbarg et al. (2009) are
inferior in relation to the average gaps produced by the ILS-RC for the Class
3 closed instances.

44

Chapter 5

Conclusion

This study proposed the ILS-RC, which is an ILS algorithm complemented
with a route configuration procedure that adjusts the route size and respec-
tive subset of markets. Neighborhoods are not necessarily searched exten-
sively in this complementary procedure, unlike in the local search component
of the ILS-RC. This is prudent in order to produce, on average, routes of a
specific size, aiming at the number of markets in the optimal solutions. Fol-
lowing this procedure, a local search is applied to reach the local optimum
by arranging the sequence in which the markets are visited. The compu-
tational experiment revealed the effectiveness and efficiency of the ILS-RC,
able to consistently obtain quality solutions in reasonable time despite the
incorporated randomized features.

Benchmark instances were considered, providing a comparison with the
best results in the literature to our knowledge. For the Class 6 asymmetric
instances proposed by Singh and van Oudheusden (1997), the results were
compared with the work of Cuellar-Usaquén et al. (2023), achieving better
results in less computational time. Additional experiments were presented
for the Class 1 and Class 3 symmetric instances, also addressed by Cuellar-
Usaquén et al. (2023). The ILS-RC parameters were adjusted for each class,
providing a better fit to the features of each group. Class 1 instances that
have been solved optimally by Laporte et al. (2003) are referred to as closed
instances, in contrast to open instances for which no optimal values were re-
ported. For the closed instances, the ILS-RC was able to reach the optimal so-
lution in every instance, outperforming the previously published results. For
the open instances, the ILS-RC was able to reach every optimum value across
the five replicates executed for each instance. In contrast, the methodology

45

proposed by Cuellar-Usaquén et al. (2023) was only able to reach 19 out of
the 25 optimum solutions. In the Class 3 instances, commonly known as Eu-
clidean instances, the ILS-RC was able to provide better results in relation to
Cuellar-Usaquén et al. (2023) for the closed instances but was outperformed
by the results achieved by Goldbarg et al. (2009). In the open instances, the
ILS-RC displayed competitive performance with the other articles, including
the work of Bontoux and Feillet (2008). Ultimately, the improvements found
in relation to the methodology proposed by Cuellar-Usaquén et al. (2023)
demonstrated to be statistically significant. The ILS-RC proved to be ef-
fective and versatile, able to adjust to the asymmetric and symmetric TPP
instances with reliable performance, both in terms of solution quality and
computational time.

Future works may address the TPP with different methods, namely the
adaptive large neighborhood search (ALNS) metaheuristic. This relatively
new concept has gained increased interest, as reflected by the growing number
of publications in recent years (Mara et al., 2022).

46

References

Almeida, C. P., Gonçalves, R. A., Goldbarg, E. F., Goldbarg, M. C., and
Delgado, M. R. (2012). An experimental analysis of evolutionary heuris-
tics for the biobjective traveling purchaser problem. Annals of Operations
Research, 199:305–341.

Angelelli, E., Mansini, R., and Vindigni, M. (2009). Exploring greedy criteria
for the dynamic traveling purchaser problem. Central European Journal
of Operations Research, 17:141–158.

Angelelli, E., Mansini, R., and Vindigni, M. (2016). The stochastic and
dynamic traveling purchaser problem. Transportation Science, 50(2):642–
658.

Beraldi, P., Bruni, M. E., Manerba, D., and Mansini, R. (2017). A stochastic
programming approach for the traveling purchaser problem. IMA Journal
of Management Mathematics, 28(1):41–63.

Bernardino, R. and Paias, A. (2018). Metaheuristics based on decision hier-
archies for the traveling purchaser problem. International Transactions in
Operational Research, 25(4):1269–1295.

Bernardino, R. and Paias, A. (2024). The family capacitated vehicle routing
problem. European Journal of Operational Research, 314(3):836–853.

Bianchessi, N., Irnich, S., and Tilk, C. (2021). A branch-price-and-cut al-
gorithm for the capacitated multiple vehicle traveling purchaser problem
with unitary demand. Discrete Applied Mathematics, 288:152–170.

Bianchessi, N., Mansini, R., and Speranza, M. G. (2014). The distance con-
strained multiple vehicle traveling purchaser problem. European Journal
of Operational Research, 235(1):73–87.

47

Bontoux, B. and Feillet, D. (2008). Ant colony optimization for the travel-
ing purchaser problem. Computers & Operations Research, 35(2):628–637.
Part Special Issue: Location Modeling Dedicated to the memory of Charles
S. ReVelle.

Burstall, R. M. (1966). A heuristic method for a job-scheduling problem.
Journal of the Operational Research Society, 17:291–304.

Cheaitou, A., Hamdan, S., Larbi, R., and Alsyouf, I. (2021). Sustainable
traveling purchaser problem with speed optimization. International Jour-
nal of Sustainable Transportation, 15(8):621–640.

Cuellar-Usaquén, D., Gomez, C., and Álvarez-Mart́ınez, D. (2023). A
grasp/path-relinking algorithm for the traveling purchaser problem. In-
ternational Transactions in Operational Research, 30(2):831–857.

Gendreau, M., Manerba, D., and Mansini, R. (2016). The multi-vehicle
traveling purchaser problem with pairwise incompatibility constraints and
unitary demands: A branch-and-price approach. European Journal of Op-
erational Research, 248(1):59–71.

Goldbarg, M. C., Bagi, L. B., and Goldbarg, E. F. G. (2009). Transge-
netic algorithm for the traveling purchaser problem. European Journal of
Operational Research, 199(1):36–45.

Golden, B., Levy, L., and Dahl, R. (1981). Two generalizations of the trav-
eling salesman problem. Omega, 9(4):439–441.

Gouveia, L., Paias, A., and Voß, S. (2011). Models for a traveling pur-
chaser problem with additional side-constraints. Computers & Operations
Research, 38(2):550–558.

Kang, S. and Ouyang, Y. (2011). The traveling purchaser problem with
stochastic prices: Exact and approximate algorithms. European Journal
of Operational Research, 209(3):265–272.

Kucukoglu, I. (2022). The traveling purchaser problem with fast service
option. Computers & Operations Research, 141:105700.

Laporte, G., Riera-Ledesma, J., and Salazar-González, J.-J. (2003). A
branch-and-cut algorithm for the undirected traveling purchaser problem.
Operations Research, 51(6):940–951.

48

Manerba, D. and Mansini, R. (2015). A branch-and-cut algorithm for the
multi-vehicle traveling purchaser problem with pairwise incompatibility
constraints. Networks, 65(2):139–154.

Manerba, D. and Mansini, R. (2016). The nurse routing problem with
workload constraints and incompatible services. IFAC-PapersOnLine,
49(12):1192–1197.

Manerba, D., Mansini, R., and Riera-Ledesma, J. (2017). The traveling pur-
chaser problem and its variants. European Journal of Operational Research,
259(1):1–18.

Mansini, R. and Tocchella, B. (2009). The traveling purchaser problem with
budget constraint. Computers & Operations Research, 36(7):2263–2274.

Mara, S. T. W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., and Rifai, A. P.
(2022). A survey of adaptive large neighborhood search algorithms and
applications. Computers & Operations Research, 146:105903.

Ong, H. L. (1982). Approximate algorithms for the travelling purchaser
problem. Operations Research Letters, 1(5):201–205.

Palomo-Mart́ınez, P. J. and Salazar-Aguilar, M. A. (2019). The bi-objective
traveling purchaser problem with deliveries. European Journal of Opera-
tional Research, 273(2):608–622.

Pearn, W. and Chien, R. (1998). Improved solutions for the traveling pur-
chaser problem. Computers & Operations Research, 25(11):879–885.

Ramesh, T. (1981). Traveling purchaser problem. Opsearch, 18(1-3):78–91.

Riera-Ledesma, J. and Salazar-González, J. J. (2005). The biobjective
travelling purchaser problem. European Journal of Operational Research,
160(3):599–613.

Riera-Ledesma, J. and Salazar-González, J.-J. (2006). Solving the asymmet-
ric traveling purchaser problem. Annals of Operations Research, 144(1):83–
97.

Riera-Ledesma, J. and Salazar-Gonzalez, J.-J. (2012). Solving school bus
routing using the multiple vehicle traveling purchaser problem: A branch-
and-cut approach. Computers & Operations Research, 39(2):391–404.

49

Singh, K. N. and van Oudheusden, D. L. (1997). A branch and bound algo-
rithm for the traveling purchaser problem. European Journal of operational
research, 97(3):571–579.

Voß, S. (1996). Dynamic tabu search strategies for the traveling purchaser
problem. Annals of Operations Research, 63:253–275.

50

Appendix

Section A.1 presents the pseudocodes for the neighborhood searches. Section
A.2 presents the procedure used to generate the Euclidean distances in the
Class 3 instances.

51

A.1 Neighborhood Search Algorithms

Algorithms A.1, A.2, A.3, A.4, and A.5, present the search procedures of
neighborhoods Nadd(x), Ndrop(x), Nexchange(x), Nmove(x), and Nswitch(x), re-
spectively.

Algorithm A.1 Search within neighborhood Nadd(x).

Require: initial solution x
1: incumbent ← x
2: z = Z(x)
3: for i in markets unvisited in x do
4: for j = 1 to 1 + number of markets visited in x do
5: y ← x
6: Add market i at position j in the route of solution y
7: if Z(y) < z then
8: incumbent← y
9: z = Z(y)

10: end if
11: end for
12: end for
13: x← incumbent

Algorithm A.2 Search within neighborhood Ndrop(x).

Require: initial solution x
1: incumbent ← x
2: z = Z(x)
3: for i in markets visited in x do
4: y ← x
5: Remove market i from the route of solution y
6: if y covers the item list ∧ Z(y) < z then
7: incumbent ← y
8: z = Z(y)
9: end if

10: end for
11: x← incumbent

52

Algorithm A.3 Search within neighborhood Nexchange(x).

Require: initial solution x
1: incumbent ← x
2: z = Z(x)
3: for i in markets visited in x do
4: for j in markets unvisited in x do
5: y ← x
6: Exchange market i in the route of solution y with market j
7: if y covers the item list ∧ Z(y) < z then
8: incumbent ← y
9: z = Z(y)

10: end if
11: end for
12: end for
13: x← incumbent

Algorithm A.4 Search within neighborhood Nmove(x).

Require: initial solution x
1: incumbent ← x
2: z = Z(x)
3: for i in markets visited in x do
4: y ← x
5: for each position j in the route of solution y do
6: Move market i to position j in the route of solution y
7: if Z(y) < z then
8: incumbent ← y
9: z = Z(y)

10: end if
11: end for
12: end for
13: x← incumbent

53

Algorithm A.5 Search within neighborhood Nswitch(x).

Require: initial solution x
1: incumbent ← x
2: z = Z(x)
3: for i = 1 to number of markets visited in x do
4: for j = i+ 1 to number of visited markets in x do
5: y ← x
6: Switch the markets at the positions i and j in route of solution y
7: if Z(y) < z then
8: incumbent ← y
9: z = Z(y)

10: end if
11: end for
12: end for
13: x← incumbent

54

A.2 Generation of the Euclidean Distances

The Class 3 Euclidean distances are calculated using the procedure pre-
sented in Figure A.1. This procedure was taken from the TPP website
https://webpages.ull.es/users/jriera/TPP.htm.

Figure A.1: Generation of the Euclidean distances for the Class 3 instances.

55

https://webpages.ull.es/users/jriera/TPP.htm

	Introduction
	Traveling Purchaser Problem
	Literature Review
	Definition
	Mathematical Formulation

	Methodology
	Iterated Local Search
	Constructive Heuristic
	Neighborhoods
	Route Configuration
	Local Search
	Perturbation
	Destroy Operator
	Repair Operator

	Diversity Control
	Iterated Local Search with Route Configuration

	Computational Results
	Parameter Analysis
	Number of Iterations kmax
	Diversity Control max
	Search Limit add
	Search Limit drop
	Search Limit exchange
	Destroy Percentage
	Summary

	Randomization Analysis
	Comparison Details
	Asymmetric Instances: Class 6
	Symmetric Instances: Class 1
	Symmetric Instances: Class 3

	Wilcoxon Signed-Rank Tests

	Conclusion
	Appendix
	Neighborhood Search Algorithms
	Generation of the Euclidean Distances

