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Resumo

Este trabalho retira conclusões sobre as expectativas do mercado através da análise

de funções Risk Neutral Density (RND) por via das opções do Standard and Poor’s

500. Após uma revisão da literatura sobre este assunto, é proposta uma abordagem

paramétrica para estimar as funções RND, é usada a abordagem de two lognormal

mixed densities. As medidas descritivas sobre as funções RND permitem concluir

um padrão que parece estar de acordo com grande parte do estudo sobre o assunto.

Quando surgem peŕıodos de stress, há um aumento à esquerda do coeficiente de

assimetria, uma diminuição do coeficiente de curtose e a volatilidade é geralmente

mais elevada. Chega-se à conclusão de que os mercados tiveram dificuldades em

compreender completamente o impacto económico da pandemia. Neste peŕıodo

de choque, os investidores não foram capazes de adaptar as suas perspetivas sobre

a futura trajetória da poĺıtica monetária. Os resultados mostram que mal ante-

ciparam as decisões dos agentes da poĺıtica monetária ou de outros responsáveis,

mudando a perceção à medida que as autoridades alteravam a sua postura. Várias

são as aplicações propostas neste trabalho para a utilização das funções RND.
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Abstract

This paper takes conclusions on markets expectations by analysing risk-neutral

density (RND) functions on options of the Standard and Poor’s 500. After a review

of the literature on this subject a parametric approach is proposed to estimate

RND functions, a two lognormal technique. The descriptive statics on the RND

functions allow to conclude a pattern that seems to be in line with much of the

work on the subject. When distressed periods arise there is an increase in left

skewness, a decrease in kurtosis and volatility is generally higher. It comes to the

conclusion that markets had difficulties in understanding the full economic impact

of the pandemic. In this shock period, investors were not able to adapt their

perspectives on the future path of monetary policy. The results show they barely

anticipated the decisions of monetary policy agents or other officials, changing

beliefs as authorities altered stance. Several are the applications proposed on this

paper for the use of RND functions.
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1 Introduction

Option markets are believed to contain important information about

investor’s future expectations through its implied RND. It is possible to assess

significant changes in market implied expectations as a consequence of, in this case,

the COVID-19 pandemic. As computational capability became more powerful and

broadly accessible and option databases were made available, investors began to

nurture interest on the estimation of the RND. Several techniques were developed

to attain such goal. Which will be the focus of the following section.

In order to make a comparison between the period where the pandemic

stressed the markets and the previous months, the studied span comprises 15

months, January 2019 to March 2020. However, the focus is between December

2019, when the first case of COVID-19 was confirmed, and March 2020, when the

markets registered a significant crash.

In the beginning of 2020 the World Health Organization (WHO) and

the European Center for Disease Prevention and Control published a flagship risk

assessment on the Wuhan cluster of pneumonia. At the time, both were completely

inconclusive as to the cause and consequences of the problem. Rapidly, advance-

ments were being made. On the 11th March 2020, two days after Italy declared a

lockdown, the WHO made an assessment that COVID-19 could be characterized

as a pandemic. This information came as several alarming reports on public health

and safety and on the impacts on the economy were being made on news outlets

all around the world. After this WHO announcement the VIX reached a level of

around 75%, a surge not seen since late 2008, after the failure of Lehman Brothers.
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The S&P 500 decreased by 9.5%, continuing on a downward trend up until March

23rd. On the 25th March the U.S. Senate passed its largest stimulus legislation to

ease the impact of the COVID-19 pandemic, a $2 trillion stimulus package. These

and other important events will be relevant when a analysing the results of the

RND functions.

The following section provides the theoretical framework to be applied

in section 3, data and methodology. The latter presents the data and how it will

be used in the simulation of the method chosen. Finally, section 4 discusses the

results and section 5 concludes.
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2 Theoretical framework

2.1 Black Scholes model and RND

Black and Scholes (1973) built a model under assumptions about the

market and the assets, frequently called the Black-Scholes economy. Among others,

they assume that there is no arbitrage opportunity, the return of the riskless asset

is given by a constant risk-free rate and the underlying price has a lognormal

distribution evolving according to a stochastic process, the geometric Brownian

motion (GBM). This GBM is

dSt = µStdt+ σStdWt (1)

where St represents the price of the underlying asset, which pays no dividends, with

constant volatility σ, µ is the constant expected drift rate and dt are increments

of a standard Wiener process, Wt, under the real world probability P .

Already, this dynamic implies that the underlying risk neutral density

is lognormal. By applying Itô’s Lemma to equation (1), suppose f(x, t) = ln(St),

d(lnSt) = (µ− 1

2
σ2)dt+ σdWt (2)

A variable has a lognormal distribution if the natural logarithm of the

variable is normally distributed. So, the variable lnSt is normally distributed, with

mean (µ− σ2

2
)τ and standard deviation σ

√
τ ,

lnSt ∼ ξ[lnSt + (µ− σ2

2
)τ, σ
√
τ ]

where ξ(m, ν) denotes a normal distribution with mean m, standard deviation ν

3



and time to maturity τ or (T − t). The risk-neutral density of the underlying asset

price, q(St), is a lognormal distribution with parameters m and ν,

q(St) =
1

STν
√

2π
e−

(lnST−m)2

2ν2 (3)

The following subsections lead to the closed-form solution of the Black-

Scholes formula under the equivalent martingale measure and risk neutral valua-

tion.

2.1.1 Change of measure

The Girsanov Theorem allows to change the Brownian motion from a

P -measure, Wt, to another Brownian motion, W t, under the equivalent martingale

measure Q.

Suppose Wt is a P -Brownian motion and θt a P -adapted process. Con-

sider the Itô process

dW t = θtdt+ dWt, W t = 0

Then, an equivalent measure to P such that W t is a Q-Brownian motion

exists. This measure is characterized by a Radon-Nikodym derivative

dQ

dP
= e−

∫ T
0 θtdWt− 1

2

∫ T
0 θ2t dt

Note that for any random variable X, EQ(X) = EP (X dQ
dP

).
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In this way it is possible, changing the probability measure, to change

the drift of the Itô process

dSt = µStdt+ σStdWt

= (µ+ r − r)Stdt+ σStdWt

= rStdt+ σSt(
µ− r
σ

dt+ dWt)

= rStdt+ σStdW t (4)

where Wt is the P -Brownian motion, St follows the GBM, W t a Q-Brownian

motion and dW t = θtdt+ dWt, with the market price of risk constant θt = µ−r
σ

.

2.1.2 Portfolio replication and Black-Scholes derivation

To find the value of X = (ST −K)+ at time t < T , let St = e−rtSt be

the discounted stock price and f(x, t) = e−rtx. By Itôs’s Lemma,

dSt = (−re−rtSt + µe−rtSt)dt+ σe−rtStdWt

= (µ− r)Stdt+ σStdWt (5)

S still follows a GBM. It has an expected growth rate of (µ− r). The growth rate

in S is the excess return of S over the risk-free rate.

It follows three steps to get to X. Find the Q-measure such that St is

a Q-martingale (I), consider a riskless asset Bt = ert such that its dynamic follows

dBt = rBtdt (II) and construct a portfolio with value Vt at time t (III).

(I)
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dSt = (µ− r)Stdt+ σStdWt

= (µ− r)Stdt+ σSt(dW t −
µ− r
σ

dt)

= σStdW t

For s < t ,

EQ(St|Fs) = ertEQ(St|Fs)

= ertSs

= et−sSs

Thus, under theQ-measure, the stock price has a continuously compounded growth

rate given by the risk-free interest rate, r. Hence, the Q-measure is indeed a risk-

neutral measure.

(II)

Consider a riskless asset Bt = ert, so that the dynamic of it follows the

ODE dBt = rBtdt. Similar to St, Mt = EQ( X
BT
|Ft). It is a martingale with respect

to Ft under Q.

(III)

Now, by the martingale representation theorem, dMt = φtdSt, for some

Ft adapted φt.

Creating a portfolio, Vt, with φt stocks and ωt bonds, where ωt = Mt −

φtSt. By definition of Mt, MT = EQ( X
BT
|Ft) = X

B
, so VT = X. The value of the
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portfolio is given by

Vt = φtSt + ωtBt

= φtSt + (Mt − φtSt)Bt

= BtMt

The portfolio is self-financing,

dVt = BtdMt +MtdBt

= BtφtdSt + (ωt + φtSt)dBt

= φtd(BtSt) + ωtdBt

= φtdSt + ωtdBt

Hence, the portfolio is self-financing and replicates the claim. The value of the

portfolio is the same as the discounted expected payoff claim X at time t

Vt = BtMt

= ertEQ(e−rTX|Ft)

= e−r(T−t)EQ(X|Ft) (6)

With equation (6) is possible to derive the Black-Scholes formula. The

discounted European call option pricing formula turns out to be

Vt = e−r(t−t)EQ([ST −K]+|Ft) (7)

Equation (4) has the explicit solution St = S0e
(r− 1

2
σ2)+σW t . With τ =

T − t

ST = Ste
(r− 1

2
σ2)τ+σ(WT−W t)

= Ste
(r− 1

2
σ2)τ+σ

√
τY (8)
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where,

W T −W t ∼ N (0, τ)

Y = −W T −W t√
τ

∼ N (0, 1)

By the independence property of Brownian motion, under theQ-measure,

Vt = e−rτEQ([ST −K]+)

= e−rτEQ([Ste
(r− 1

2
σ2)τ−σ

√
τY ) −K]+)

=
1√
2π
e−rτ

∫ +∞

−∞
([Ste

(r− 1
2
σ2)τ−σ

√
τy −K]+)e−

1
2
y2dy (9)

The integrand is greater than 0 thus, y < d2 :=
log

St
K

+(r− 1
2
σ2)τ

σ
√
τ

. So,

Vt =
1√
2π
e−rτ

∫ d2

−∞
(Ste

(r− 1
2
σ2)τ−σ

√
τy −K)e−

1
2
y2dy

= I1 − I2

where,

I1 =
1√
2π
St

∫ d2

−∞
e−

1
2
σ2τ−σ

√
τy− 1

2
y2dy

=
1√
2π
St

∫ d2+σ
√
τ

−∞
e−

1
2
(y+σ

√
τ)2d(y + σ

√
τ)

I2 =
1√
2π
e−rτK

∫ d2

−∞
e−

1
2
y2dy

Rewriting equation (9) with the standard normal CDF,

Vt = Ct = StN (d2 + σ
√
τ)− e−rτKN (d2)

= StN (d1)− e−rτKN (d2) (10)
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is the value of a call option at time t.

Similarly, for a put option,

Pt = e−rτKN (−d2)− StN (−d1) (11)

where,

d1 = d2 + σ
√
τ =

log(St
K

) + (r + 1
2
σ2)τ

σ
√
τ

d2 = d1 − σ
√
τ =

log(St
K

) + (r − 1
2
σ2)τ

σ
√
τ

To account for the dividend yield, q, on index options pricing the work

by Garman and Kolhagen (1993) should be used. They extended the Black-Scholes

model to account for a new interest rate in such way that not only the strike is

discounted but also the underlying asset is. Although they did it for the pricing

of foreign exchange rates it can be applied to index options where the payment of

continuous dividend yields should be taken into account. Hence, the new closed

form solutions for the pricing of European call and put options in this case are

Ct = StN (d1)e
−qτ − e−rτKN (d2) (12)

Pt = e−rτKN (−d2)− e−qτStN (−d1) (13)

Where,

d1 =
log(St

K
) + (r − q + σ2

2
)τ

σ
√
τ

d2 =
log(St

K
) + (r − q − σ2

2
)τ

σ
√
τ

All but one of the input parameters can be easily found and that is key

to the extent of use of the Black-Scholes formula. However, the implied volatility

can be estimated from historical stock returns by inverting the model.

9



Although this is a good solution it poses another snag. When the implied

volatility is computed for options on the same underlying with different strikes,

its level of moneyness makes the implied volatility change in a “smile” or “smirk”

fashion. Out of the money options present a higher implied volatility than at the

money options. This does not fall in with the assumption of the GBM where the

implied volatility is constant across time and strike. Rubinstein (1994) argued

that investors make more complex assumptions than those allowed by the GBM.

However, this does not keep investors from using Black-Scholes formula as a pricing

method. They use an ad hoc solution where, for short time intervals, different

volatilities are applied to different options at different moneyness levels.

Not only the implied volatility can be extracted from market option

prices but all of the risk-neutral probability distribution. The following section

will show how to retrieve the probability distribution and the next one focuses on

methods, both parametric and non-parametric, used to estimated the RND.

2.2 Option prices and RND

Arrow (1964) and Debreu (1959) developed an important framework

that has been essential for the general theory of economic equilibrium with further

applications to financial theory under uncertainty.

Arrow (1964) showed that it is possible to establish a relation between

an elementary security and the risk-neutral probabilities of each state of a contin-

gent claim. The Arrow-Debreu security or elementary claim (a state contingent

claim), pays $1 at maturity, T, if the underlying of the claim is of a particular

10



state, ST , or pays zero otherwise. The price of these state contingent claims show

investors expectations on the probability of a certain state occurring in the future.

However, since these securities are not traded it is not possible to use them in

order to observe directly the RND function. The Arrow-Debreu security is then

replicated by Breeden and Litzenberger (1978), under an assumption of perfect

capital markets, as a portfolio, Vt, by a butterfly spread1

Vt
∆K

∣∣∣
K=ST

=
Ct(K + ∆K)− 2Ct(K) + Ct(K −∆K)

∆K

∣∣∣
K=ST

(14)

Where Ct is the current price of a European call option with strike K

and expiration date T.

Breeden and Litzenberger (1978) realized a general way to get to the

state pricing function using the butterfly spread. It takes on the risk-neutral

valuation approach used by Cox and Ross (1976) where the price of a European

call option is C(St, t) = e−rτ
∫∞
0

max(ST − K, 0)q(ST |St, t)dST , where q(.) is the

RND. By differentiating the function with respect to strike, K, the discounted

cumulative distribution function is obtained

∂Ct
∂K

= (ST −K)qt(ST )
∣∣∣
K=ST

+ e−rτ
∫ ∞
K

∂(ST −K)qt(ST )

∂K
dST

= −e−rτ
∫ ∞
K

qt(ST )dST (15)

The second partial derivative of a European call option pricing function, again with

respect to the exercise price, gives the discounted probability density function that

corresponds to the discounted RND function,

∂2Ct
∂K2

= e−rτqt(ST )
∣∣∣
K=ST

= e−rτqt(K) (16)

1A butterfly spread is a portfolio strategy consisting of two long European calls with strikes

K-∆K and K+∆K and two short European calls with strike K, with ∆K>0.
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The probability density function is given as in Breeden and Litzenberger

(1978),

qt(K) = erτ
∂2Ct
∂K2

(17)

Thus, the future value of the second partial derivative of a call option

with respect to strike is equivalent to the RND. The same holds to European put

options.

On the case of the portfolio above mentioned, evaluated at ST=K for

a continuum of states or with very small ∆K, an estimate of qt(K), obtained by

approximating the partial derivative in equation (17), is2

qt(K) = erτ
Ct(K + ∆k)− 2Ct(K) + Ct(K −∆k)

(∆K)2
(18)

To yield precise results it would be required to have liquid options across

many strikes and that is not the case in real markets. If it were, it would be possible

to derive, with a good degree of certainty, the probability density for all possible

future states of the underlying. Also, taking differences twice, as illustrated by

Jondeau et al. (2007), will exacerbate even tiny errors in the prices computed.

Alternative methods that put more structure on the option prices were suggested.

2Note that no assumptions on the underlying price dynamics are made and it is possible to

borrow at a risk-free rate, there are no restrictions on short sales and there are no transaction

costs.
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2.3 RND estimation methods

In recent decades, when option data became readily available, several

approaches were developed to build the risk-neutral probability density functions

from option prices. It became a fundamental concept in mathematical finance and

is heavily used in the pricing of financial derivatives.

A simple way of obtaining the RND function is by discrete approxima-

tion of the implied risk-neutral probabilities of a given maturity across a contin-

uum of adjacent strikes, based on the work of Breeden and Litzenberger (1978).

This will yield a risk-neutral histogram as the functional form of the RND. How-

ever, options are not necessarily traded at equally spaced strike intervals. When

strike prices are very high or very low liquidity is always low. Also, observed prices

sometimes exhibit small but sudden changes in convexity across strike prices which

result in large variations in the probabilities over adjoining strike intervals [Bahra

(1997)].

From the mid 1990’s onwards more worldly-wise methods were devel-

oped. Parametric methods, that use few variables to find the best fit for the RND

and non-parametric methods that are more computationally intensive using often

hundreds of variables to attain the same goal. The following two subsections men-

tion both approaches and allude to some of the most mentioned authors on the

subject.

13



2.3.1 Non-parametric methods

Non-parametric methods don’t use any kind of parametric specification,

including any assumption on the RND function. When strike prices are sparse,

fitting a RND non-parametrically may not work well for the tails of the distribution

imposing an additional step to deal with that problem. Although these methods

use a large amount of variables making the simulation more cumbersome, they are

more flexible. Jackwerth (2004) categorizes them in kernel methods, maximum

entropy models and curve fitting methods.

The kernel method assumes that each observed value is in the centre

of a distribution and that the likelihood of having the real function pass through

a given point relates to the distance between that point and the observed data

point. However, this strict non-parametric method, besides being data intensive,

does not work well when observations are sparse, as in the case of discrete strike

prices.

Curve fitting methods try to fit the data with some flexible function or

curve, often by means of sums of squared differences. Several are the authors that

use this method as Jackwerth and Rubinstein (1996) that fit the curve to observed

S&P 500 option prices for the period of the 1987 market crash. However, Shimko

(1993) had previously proposed an alternative way. Instead of interpolating in the

call price domain, he transformed the market option prices in the implied volatility

domain and transformed again the interpolated implied volatility curve back to

the former domain to compute the RND. He fitted a quadratic polynomial to the

implied volatilities that present a smoother curve than option prices. With those,

and inverting the smile curve from the Black-Scholes formula, he obtained the call

14



prices. After that, he employed Breeden and Litzenberger’s (1978) approach to

get to the risk-neutral distribution. He assumed the tails to be lognormal and

added them beyond the traded strikes due to the lack of options data for far-right

and far-left strike values. He matched the frequency and cumulative frequency

of the distribution with a lognormal distribution in each tail. At the minimum

and maximum strike prices he calculated the density and distribution values and

searched for lognormal distributions that had the same values, reaching to a final

distribution by grafting these three pieces. Bahra (1997) used Shimko’s method

in LIFFE options in the short sterling future. Because he attaches a lognormal

distribution to the tails, Bahra argues that there’s not always a smooth transition

from the observable part of the distribution to the tails.

2.3.2 Parametric methods

The basic idea behind a simple parametric case is to use a small set of

parameters to describe the distribution, price all options based on that, confront

the results with observable data and minimize the error between those. With

parametric methods, assumptions need to be made regarding the functional form

of the RND function or the price process of the underlying.

Melick and Thomas (1997) resort to the first way above mentioned.3

3 They assume the functional form of the terminal price distribution and use a

three lognormal mixture approach to American options pricing. On their paper

3Because Melick and Thomas (1997) use American options, due to the possible early exercise,

other rules are crafted before proceeding to the estimation of the RND. These are out of the

scope of this paper.
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they reason that by doing so, the method turns more flexible, general and direct.

Assuming a functional form allows for different many stochastic processes while

the opposite does not hold. However, Bahra (1997) points out that using three

independent lognormal distributions could exceed the limits of the number of pa-

rameters to be used, loosing its tractability. Therefore, he uses a mixture of two

lognormals with exactly five different parameters. This is discussed further.

On the other hand, Bates (1991) resorts to the second way mentioned

above. He assumes a price process for the underlying, an asymmetric jump-

diffusion. His work on expectations for the 1987 crash concluded that the RND

for the S&P 500 options did not show a predictive power for the month the crash

happened. Another example is the known case of the Black and Scholes. It as-

sumes the underlying evolves according to a GBM with constant drift rate and

volatility, implying a lognormal RND function. Other authors used different para-

metric methods to find the most suitable RND. Jackwerth (2004) categorizes these

in expansion methods, generalized distribution methods and mixture methods.

The following section and the model used in this paper will focus on a

mixture method, the two-lognormal mixture method. It encompasses the normal

distribution, offers flexibility in the computation of the RND, is relatively fast to

simulate and allows for a bimodal distribution which is useful when the market is

in doubt between two possible states.
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2.4 Two-lognormal mixture method

The mixture of distributions to describe the RND function of European

options and other derivatives was worked by Ritchey (1990), Melick and Thomas

(1997), Bahra (1997), Söderlind and Svensson (1997) and Gemmill and Saflekos

(2000). The approach used follows Bahra (1997) that applied the mixture of

two-lognormal densities to the pricing of, among others, LIFFE equity European

options. As he points out, assuming daily prices are lognormal then, for any

arbitrary holding period, price distributions must also be lognormal. The method

consists of estimating the functional form of the RND by minimizing the squared

difference between the prices generated by the assumed parametric form and the

observed prices in the market. The probability is built as a weighted average

of tow lognormal distributions. The mixture method does not impose an overly

restrictive functional form for the density. It allows to capture skewness and excess

kurtosis for many functional forms, including a bimodal shape [Bahra (1997)].

The prices of European call and put options are taken with respect to

the risk-neutral probabilities and using the risk-free rate as a discounting factor.

It can be written as the discounted sum of all expected future payoffs on the

expiration date:

C(K, τ) = e−rτ
∫ ∞
K

q(ST )(ST −K)dST (19)

P (K, τ) = e−rτ
∫ K

0

q(ST )(K − ST )dST (20)

Bahra assumes that price distributions are close to a lognormal distri-

bution and, as suggested by Ritchey (1990), assumes that q(ST ) is the weighted

17



sum of k lognormal distributions, given by Black and Scholes (1973). In this case

two lognormals:

qt(ST ;µ1, µ2, σ1, σ2, θ) = θ
e
− (log(ST )−µ1)

2

2σ21

STσ1
√

2π
+ (1− θ)e

− (log(ST )−µ2)
2

2σ22

STσ2
√

2π
, ST > 0 (21)

Where θ ∈ [0, 1] and its sum is one.

So, the closed form solution for the European call and put options are

written as:

Ct = e−rτ (θ(eµ1+
1
2
σ2
1Φ(d1)−KΦ(d2)) + (1− θ)(eµ2+

1
2
σ2
2Φ(d3)−KΦ(d4))) (22)

Pt = e−rτ (θ(KΦ(−d2)− eµ1+
1
2
σ2
1Φ(−d1)) + (1− θ)(KΦ(−d4)− eµ2+

1
2
σ2
2Φ(−d3)))(23)

Where,

d1 =
−log(K)+µ1+σ2

1

σ1

d2 = d1 − σ1

d3 =
−log(K)+µ2+σ2

2

σ2

d4 = d3 − σ2

Now, given the closed pricing formulas above, it is possible to use them

in the minimization problem. The closed form solutions of Ct and Pt will be

used for the minimization of the sum of squared errors between the option prices

computed by the model and the actual market prices, across all strikes, fitting the

two log-normal RND function to the real prices.
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min
µ1,µ2,σ1,σ2,θ

n∑
i=1

(Ct(Ki)− Ĉt(Ki))
2 +

n∑
i=1

(Pt(Ki)− P̂t(Ki))
2 + (24)

(θeµ1+
1
2
σ2
1 + (1− θ)eµ2+

1
2
σ2
2 − erτSt)2

Also, to ensure absence of arbitrage the mean of the implied RND func-

tion should equal the forward price of the underlying asset, as assure by the last

term of the equation.
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3 Data and methodology

The Standard and Poor’s 500 Index (S&P 500) is a market-capitalization-

weighted index on approximately the 500 largest public traded companies, from

a broad range of industries, in the United States. Because this index is a good

gauge of the U.S. large-cap equities it is considered to be a good reflection of the

U.S. financial and economic shape. Options on the S&P 500 are the ones used in

this paper.

The Chicago Board of Exchange offers a comprehensive suite of listed

options on the S&P 500. For the purpose of this paper the SPX Options Traditional

were used. These options are of European style with up to twelve near-term

expiration months and expiring on the third Friday of the respective expiration

month. These are AM settled – the index value is usually computed with the

opening price of the bundle of the index’s component securities on the day of

exercise.

Three-month maturity options were chosen. Short-term options have

higher liquidity, but only up to a certain point, since when it gets closer to ex-

piration uncertainty falls and so does liquidity. With 3-month maturity options

there should be a good balance between uncertainty and liquidity. After doing

several simulations it was found that the results around the exact 3-month matu-

rity mark were not significantly different. So, the dates were chosen assuring the

best liquidity possible around that same mark.

The data comprises the period from January 2019 to March 2020. The

reason for this span is to have an idea of how the functional form of the RND
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behaves in months not affected by the consequences of the pandemic, or other

major events, and to understand when, in fact, the functional form of the RND

starts to change.4 Therefore, for this purpose, one RND was estimated for each

of those months. Notwithstanding, other RND’s were computed in light of events

mentioned further on.

The data set was exported from Thomson Reuters’ Datastream, pro-

vided by the Option Price Reporting Authority. To make sure the information

retrieved was well grounded, the options were filtered guaranteeing that the to-

tal cumulative volume and/or the total open positions for all individual option

series were above zero. The options’ price used was the last traded price, pro-

vided last trade is within bid/ask range at the end of the closing session. The puts

were disregarded for the evaluation at hand since, according to Birru and Figlweski

(2010), calls and puts at the same strike price trade at different implied volatilities,

creating jumps in the implied volatility curves and badly behaved RND functions.

Since many announcements and measures made public from the be-

ginning of the COVID-19 outbreak and some exceptional market activities were

observed, several are the dates that should be taken into more attentive consid-

eration. The introduction of this paper mentioned several of these key moments,

but it will be giving special thought to the following weeks: 20th January 2020,5

when the first U.S. case was confirmed (20th January) and the Chinese govern-

ment enforced several large-scale interventions to control the spread of the virus,

4One should note that the second semester of 2019 and beginning of 2020 was also marked

by the US-China phase one agreement on trade, weakening international trade and bringing

uncertainty on the two major global partners relationship.
5The 20th January is a U.S. national holiday, for that reason no data is available on this day.
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namely a major lockdown in Wuhan affecting 9 million people (23rd January); 9th

March 2020,6 when the Italian government expanded its quarantine restrictions to

an area affecting over 16 million residents (9th March), the World Health Orga-

nization briefed the media that the outbreak could be categorized as a pandemic

(11th March) and the VIX surged to 75 points (12th March) and 16th March 2020,

when the VIX surged to its second all time peak, 82.69 points at close, while the

major U.S. indexes kept their receding trends.

These were not the only factors taken into consideration when deciding

where to place a more particular interest. Analysing the data around this period,

it was noticed that the week of 24th February 2020 manifested some visible change.

Hence, this week is also examined closer. Daily RND’s were retrieved for these

four weeks.

The mixture of lognormal distributions allows to capture very flexible

distributions. This could be considered as a furtherance of the BS model, since

it uses two log-normal densities. The implied RND functions were retrieved using

it. For that purpose MATLAB was chosen. The model was translated to code

allowing to minimize the sum of squared residuals.

6Although the energy industry on S&P 500, at the time considered, only accounts for less

than 3%, one should be mindful of the price war Saudi Arabia started with Russia on the 8th of

March 2020 that encourage a great decrease in oil prices.
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4 Results

In this section the results of the methods used are examined. It was

thought appropriate to outline some crucial announcements from policy makers

and news outlets, since these usually bear a relevant weight on investors’ deci-

sions. Looking at the shape of the various RND functional forms and some of

its relevant statistics conclusions can be withdrawn. Appendix A presents the

method’s minimized parameters. The functions can be observed in Appendix B.

While the table on Appendix C summarizes the monthly RND functions’ key de-

scriptive statistics, Chart 1, on this section, displays it on a chart and Table 1

exhibits the daily RND functions’ descriptive statistics of four of the weeks closer

examined.

The period chosen for the purpose of comparing the functional form of

the RND, starting at January 2019, shows that the RND for three month matu-

rity options do not show a significant variation. Throughout the year, the monthly

RND computed always presents a clear left tail with no noteworthy protuberance.

At least until August 2019. Although more relevant changes will be seen further

on, looking at the August RND is obvious that a small hump occurs on the left

tail of the distribution, changing its skewness from -0.19983 to -0.29874 and low-

ering kurtosis values to below 5.7 This change could possibly be explained by the

escalation of the U.S.-China trade war and the talks of Chinese currency manipu-

lation that coincided with a VIX surge to 24.59 on the 5th of August 2019. Also,

the U.S. 2-10 year yield curve inverted, signalling for many investors a looming

7Because kurtosis is sensitive to values far on the tails and since such observations are sparser,

these considerations should be taken into account when analysing its values.

23



Chart 1: Standard deviation, skewness and kurtosis of the monthly RND functions from

January 2019 to March 2020. The corresponding values can be seen in Appendix C

recession. As a consequence investors apparently tend to loose some confidence

in the markets and start dumping stocks and taking positions on long-term U.S.

debt and other safer investments. In due course, by the end of the third quarter

and beginning of the last quarter, U.S. and China displayed intentions of softening

their rhetoric on trade discussions and the yield of the 10-year bond exceeded that

of 2-year bond. Indeed, by the end of the year the RND function sprang back to

is preceding form.

Meanwhile, as China imposes its first lockdown and the U.S. confirms its
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Descriptive Statistics

Date E D S K Date E D S K

9MAR20 2731.5 545.73 -0.59822 2.4689

21JAN20 3311 241.42 -0.23619 7.9007 10MAR20 2681.6 568.61 -0.64608 2.5432

22JAN20 3312.4 240.66 -0.2311 7.9142 11MAR20 2726.4 551.96 -0.61341 2.4515

23JAN20 3318.3 238.6 -0.24172 7.8828 12MAR20 2560.6 597.21 -0.62815 2.2326

24JAN20 3286.2 248.09 -0.28538 6.6169 13MAR20 2846.4 526.61 -0.56195 2.7572

24FEB20 3220 306.67 -0.36205 4.7829 16MAR20 2404 665.46 -0.71684 1.9718

25FEB20 3126.9 319.05 -0.39213 3.9829 17MAR20 2490.7 643.65 -0.69968 2.0616

26FEB20 3104.2 314.62 -0.39994 3.8206 18MAR20 2483.1 644.46 -0.69406 2.1874

27FEB20 2951.9 375.91 -0.50577 3.0665 19MAR20 2394.9 601.31 -0.63552 2.1926

28FEB20 2960.1 392.99 -0.49095 3.4129 20MAR20 2296.4 530.33 -0.59064 2.4265

Table 1: Descriptive statistics [mean (E), standard deviation (D), skewness (S) and kurtosis (K)] of the

daily RND functions for the weeks of 20th January 2020, 24th February 2020, 9th March 2020 and 16th

March 2020. Note that 20th January 2020 corresponds to a national holiday.

first cases, news on the coronavirus were starting to flood media outlets. However,

looking at the RND functions for the week of 20th January it seems the markets

did not realize the great threat the virus would pose to the economy just yet. The

RND functions kept its form with the left skewness and kurtosis alike the ones

aforementioned, between -0.28538 and -0.2311 and 6.6169 and 7.9142 respectively.

Things started to change when February came to an end. When analysing

the RND functions, this period revealed significant differences in its RND func-
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tional forms. A small context may be drawn.

In Italy, 21th February 2020, Giulio Gallera, Lombardy’s Welfare Coun-

cilor, invited more than 50 thousand people to stay home for a week.8 Recom-

mendation that was followed by law-decree on the 23rd.9 On the 25th February,

22 days after the White House administration declared the coronavirus outbreak

a public health emergency, the director of CDC’s National Center for Immuniza-

tion and Respiratory Diseases said that the Covid-19 met, at the time, two of the

three required factors to be categorized as a pandemic.10 Worldwide spread was

the criteria not yet met.

Nonetheless, it was not just the vocal concerns of health authorities

but also regulatory and economic actors of international recognition that started

weighing on market’s sentiment. ECB’s Vice-president, Luis de Guindos, aknowl-

edged on the 20th February that “the outbreak of the coronavirus and its potential

effect on global growth add a new layer of uncertainty”11. On the 25th February,

Richard H. Clarida, Fed’s Vice Chair, said that the coronavirus “is likely to have

a noticible impact on Chinese growth [...] that could spill over to the rest of the

8Coronavirus in Italia: tutte le notizie di febbraio, la Repubblica, 1 March 2020,

https://www.repubblica.it/cronaca/2020/02/22/news/coronavirus in italia aggiornamento ora per ora-

249241616/, (accessed 28 December 2020)
9Decreto-legge 23 febbraio 2020, n.6, followed by further implementation procedures in Decreto

del Presidente del Consiglio dei Ministri 25 febbraio 2020
10Nancy Messonnier, MD, CDC (Centers for Disease Control and Prevention) media telebrief-

ing update on COVID-19 , [media briefing], National Center for Immunization and Respiratory

Diseases, 25 February 2020
11Luis de Guindos, Vice President of ECB, The Euro Area Economic Outlook and the Current

Monetary Policy Stance, [speech], Frankfurt am Main, 20 February 2020
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global economy”12. Also, on the 28th of the same month, Jerome H. Powell, Fed’s

Chair, released a statment declaring that “the coronavirus poses evolving risks to

[US’] economic activity”13. These statements, although slightly hazy, could be a

possible reason for a change in the perspective of future outcomes.

Up until this moment the RND functional forms exhibited a modest left

hump. Whereafter, as seen on Appendix B, Figures 21 to 25, the RND functions

for the period in question display a much more pronounced left hump, increasing

skewness to values below -0.36, and standard deviation to values above 300. Also,

kurtosis decreases significantly this week, presenting a lower peak around the mean.

A significant lower kurtosis from 8.5984 and 6.7948 on the two preceding Fridays

to values between 3.0665 and 4.7829 on the week at hand. It would seem safe

to say that when February came to an end the first signs of the pandemic were

perceived by investors.

Getting to the week of 9th March, the media briefing of the World Health

Organization,14 categorizing the outbreak as a pandemic, was a pivotal moment

to how the world would deal with this crisis as a whole.

Since late February the VIX had registered a steady increase and this

week, on the 12th of March, reached a level of 76.83. It is evident when looking

to the results on Appendix C that the uncertainty sparked volatility to levels not

12Richard H. Clarida, Vice Chair of Fed, U.S. Economic Outlook and Monetary Policy, [speech],

6th Annual NABE Economic Policy Conference, Washington, D.C., 25 February 2020
13Jerome H. Powell, Chair of Fed, Statement from Federal Reserve Chair Jerome H. Pow-

ell, [press release], 28 February 2020, https://www.federalreserve.gov/newsevents/pressreleases/

other20200228a.htm, (accessed 17 December 2020)
14Tedros Adhanom,MD, Director-General of WHO, [media briefing], 11 March 2020
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yielded before. From 9 th March onwards the values for standard deviation never

fell below 500. Yet another evident change is the functional form of the RND

that presents a much more evident bimodal shape. The first table on Appendix

A reveals that, before March, the final distribution is much more influenced by

only one of the mixture distributions. However, on this month the weights of the

distributions that comprise the final RND are almost identical. That affects the

moments, as seen in Figure 26, Appendix B, and Table 1, kurtosis is now 2.4689.

Value that did not change much during this week but that is certainly lower than

that of previous periods. As for skewness, it is now more left pronounced, running

up to -0.72815 on Thursday.

Concurrently with the changes on results, several were the significant

monetary policies made public this week to address market uncertainties. The

U.S. Federal Reserve had already announced on the beginning of the month a cut

of 50 basis point to interest rates.15 On Thursday, 12th of March, the N.Y. Fed-

eral Reserve Bank announced an update on the monthly schedule of repurchase

agreement operations to address temporary market disruptions. The repo oper-

ations meant an offer of ∼ $1.5 Trillion in short-term loans to banks.16 While,

internationally, the Bank of England announced a cut on interest rates and other

monetary measures17 and the European Central Bank revealed a D120 billion

15Federal reserve issues FOMC statement, [press release, 3 March 2020,

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200303.htm, (accessed 29

December 2020)]
16Statement Regarding Treasury Reserve Management Purchases and Repurchase Operations,

12 March, 2020, https://www.newyorkfed.org/markets/opolicy/operating policy 200312a, (ac-

cessed 28 December 2020)
17Bank of England measures to respond to the economic shock from Covid-19, 11

March, https://www.bankofengland.co.uk/news/2020/march/boe-measures-to-respond-to-the-
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expansion to its assets purchase program and surprisingly kept rates unchanged.18

Comparing Thursday’s with Friday’s results it may well be argued that

the definite action of regulatory authorities were influential. The VIX dropped,

closing at 57.83 on the end of the week. As for the results of the simulation,

Figure 1: RND functions for three month maturity options for 12th March 2020 (- -),

13th March 2020 (—) and 16th March 2020 (· ·).

standard deviation and skewness decreased, from 597.21 to 526.61 and from -

0.62815 to -0.56195, respectively. While kurtosis increased from 2.2326 to 2.7572.

Were the actions taken a prelude for a less doubtful market the following week?

The answer is a resonant no. The Fed, confirming market’s distress, an-

nounced just on Sunday several measures that remembered those taken in a several

month period on the previous financial crisis. Interest rates were cut to essentially

zero, a quantitative easing program was launched with a target of $700 billion,

economic-shock-from-covid-19, (acessed 28 December 2020)
18ECB Directorate General Communications,[Press Release], Frankfurt am Main, 12 March

2020
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thousands of banks were contemplated with a cut on reserve requirements to zero

and agreements were made with other central banks to increase dollar liquidity.19

Despite these aggressive moves, the market’s response was negative. On Monday,

16th March the markets’ forecast was that the S&P 500 would fluctuate 82.69%

over the next 30 days. This was the VIX’s close second all time peak. The S&P

500 plunged about 8% after the opening bell and ended up dropping 12%. Very

similar trends were seen on the Dow Jones Industrial Average and Nasdaq Com-

posite. The results on the RND functions’ descriptive statistics go in hand with

this scenario. For a clear view of the differences between 12th and 16th March 2020,

Figure 1 comprises the RND functions of those three days. There was definitely

a sudden change on the RND for Friday, 13th March 2020, but after the weekend

it regained the previous shape. The values for kurtosis on this month are proba-

bly the most striking when looking at the first table of Appendix C. During this

period the kurtosis kept its values always bellow 2.5, reaching 1.9718 on Monday,

16th March. Also, skewness is far from the results of preceding months. Overall,

this week presented a more left skewed distribution than the previous ones with a

figure of -0.71684 on Monday and decreasing to -0.59064 on Friday.

19Federal Reserve issues FOMC statment, [press release], 15 March 2020,

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200315a.htm, (accessed

29 December 2020)

Federal Reserve Actions to Support the FLow of Credit to Households and Businesses,

[press release], 15 March 2020, https://www.federalreserve.gov/newsevents/pressreleases/

monetary20200315b.htm, (accessed 29 December 2020)

Coordinated Central Bank Action to Enhance the Provision of U.S. Dollar Liquidity,

[press release], 15 March 2020, https://www.federalreserve.gov/newsevents/pressreleases/

monetary20200315c.htm, (accessed 29 December 2020)
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5 Conclusion

The objective of this work is to take conclusions on the information

value of RND from investors expected future outcomes using the prices of S&P

500 options, particularly to understand whether it is possible to anticipate future

outcomes on the index. By using a mixture of two log normals to estimate the

markets RND it was possible to infer on how the option markets behaved getting

to and during the initial phase of the COVID-19 pandemic.

It should be taken into consideration that by estimating risk-neutral

probabilities there are assumptions that are not consistent with real world prob-

abilities. The economy is not risk-neutral and investors show different non-linear

utility functions, requiring a premium to overcome future price uncertainty. So,

one should be cautious when interpreting the forecast ability of these densities.

For a more reliable estimate Liu, Shackleton, Taylor and Xu (2003) accounted for

premia earned for bearing risk by making a risk adjustment motivated by a repre-

sentative utility function and statistical calibration. They came to the conclusion

that the transformed real world densities are slightly more robust and informative.

Nonetheless, risk-neutral probabilities still are a good reflection of the real world

economy for the purpose of this paper.

Since confirmation of the first cases of COVID-19 on December 2019, in

China, and January 2020, in the US, several weeks gone through until the RND

started to show an inconsistent functional form. Because of the nature of this crisis

and how it unfolded it would not be sensible to pinpoint an exact day as a pivot

for outcomes. Investors were steadily made aware of the effects COVID-19 would
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have on the economy. Hence, the several references made previously.

Alike macroeconomic news were adjunct to this paper, Brown and Jack-

werth (2000) studied specifically the impact of eight different macroeconomic an-

nouncements on the RND. They found that it was not affected by those announce-

ments. However, they studied month-on-month indicators. Since this paper deals

with an exceptional period it was chosen the most relevant extraordinary actions

taken by central banks and respective policy makers’ statements during the period

studied. Concurrent with the latter section it seems the changes on the RND were

always in unison with the reactions of news outlets and economic policy agents.

Despite the inability to anticipate those changes relative to the forth-

coming shock, descriptive statistics of the densities seem to be consistent. It shows

that in the distressed period the risk is higher, investors attach greater weight to

the possibility of future negative returns and they show weaker confidence in the

current price level. The RND is always left skewed. This result is consistent

with most literature on the subject [see, for example, Bates (1991), Gemmill and

Saflekos (2000) and Äijö (2006)]. The large change in skewness from February to

March indicates a surprise or uncertainty among investors. Also, as it was evident

on the month of March, it is possible to conclude that negatively perceived events

are associated with an increase in left skewness. The left tail of the distribution

responds considerably more than the right one. Which is even more evident when

analysing the plots of the RND, where an almost bimodal shape arises. In the pre-

vious months the higher weight on one of the mixture distributions could indicate

that investors had similar expectations. In this cases the other, lower weight, mix-

ture distribution is merely useful to ensure the added flexibility this method allows.
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Now, the March’s similar distribution weights on the minimization problem, or the

bimodal shape, can be interpreted as investors being fearful of extreme moves of

the underlying but not sure of its direction. Figlewski (2008) and Gemmill and

Saflekos (2000) reached the same conclusion. Kurtosis also diminishes for the most

critical period. However, this measure is sensitive to observations far away from

the mean, where there are fewer transactions. It should be interpreted with care.

Apart from August 2019 that presents a 4.819 kurtosis, possibly for the reasons

afore mentioned, it gets lower values in March 2020, 2.1926. Gleaning the conclu-

sions of literature in general and of Äijö (2006) particularly, comparing the results

of volatility with those of kurtosis it may be deemed that a rise in the former and

a fall in the latter means greater risk on price changes and weaker confidence in

the current price levels. In summary, for a distressed period volatility rises, the

RND takes on an almost bimodal shape while skewness increases, becoming more

left pronounced, and kurtosis diminishes.

RND functions would not be wisely used to gauge market’s sentiment in

order to make policy measures at a monetary level. The information on the shape

and moments of the RND functions is not indicative of market’s future turbulence

in a prompt way. If regulators reacted to changes in RND functions they would be

signalling the prevention of a further shock. However, it still produces information

on future expectations of market participants. If an investor were to follow a

strategy that resulted from his/her forecast, by looking at the densities he/she

could assess the differences and decide to take another course. Also, central banks

can use RND functions to figure whether new measures were expected by market

participants and by doing so, assessing its effectiveness and credibility.
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Appendix

A - Method’s Minimized Parameters

The tables below present the parameters retrieved from the minimiza-

tion with the two lognormal method. The first table for every month of the period

between January 2019 and March 2020 an the second for every trading day of the

weeks 20th January, 24th February, 9th March and 16th March.
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Method’s Minimized Parameters

Date µ1 µ2 σ1 σ2 w

JAN19 7.9116 7.7215 0.052671 0.15155 0.85049

FEB19 7.7736 7.9463 0.14533 0.045118 0.13021

MAR19 7.7627 7.9601 0.17606 0.046324 0.1034

APR19 7.9836 7.7818 0.047555 0.18481 0.90909

MAY19 7.7881 7.9809 0.16306 0.051927 0.11951

JUN19 7.7528 8.0037 0.18564 0.057492 0.078788

JUL19 7.8079 8.0147 0.14868 0.047346 0.1129

AUG19 7.9984 7.8172 0.053238 0.13562 0.79303

SEP19 7.8507 8.0264 0.14272 0.042958 0.1821

OCT19 8.0255 7.864 0.040721 0.13179 0.81581

NOV19 8.0659 7.9106 0.037815 0.13121 0.8345

DEC19 8.0938 7.902 0.040352 0.15586 0.88098

JAN20 8.1207 7.9706 0.035813 0.11641 0.82504

FEB20 7.9612 8.1395 0.13846 0.040072 0.12909

MAR20 7.9402 7.4862 0.086761 0.27653 0.56985
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Method’s Minimized Parameters

Date µ1 µ2 σ1 σ2 w

21JAN20 7.9658 8.1238 0.12578 0.037247 0.13679

22JAN20 7.9657 8.1239 0.12554 0.03754 0.13465

23JAN20 8.1262 7.9719 0.035963 0.12305 0.85924

24JAN20 8.1207 7.9706 0.035813 0.11641 0.82504

24FEB20 8.1138 7.9439 0.04249 0.12719 0.75499

25FEB20 7.923 8.0909 0.1259 0.04764 0.29051

26FEB20 7.925 8.0845 0.12336 0.04763 0.31097

27FEB20 7.8637 8.0584 0.14204 0.05265 0.39559

28FEB20 7.8445 8.0601 0.15827 0.04899 0.35679

09MAR20 7.7213 8.0352 0.21716 0.072894 0.46064

10MAR20 7.7522 8.059 0.21065 0.06357 0.40503

11MAR20 8.0361 7.7089 0.069364 0.21945 0.54695

12MAR20 7.988 7.5772 0.082951 0.24501 0.4771

13MAR20 8.0261 7.6671 0.049657 0.24525 0.56104

16MAR20 7.9784 7.4853 0.091364 0.29389 0.52065

17MAR20 7.9957 7.5441 0.079065 0.27454 0.52713

18MAR20 7.9829 7.6002 0.07847 0.27212 0.54911

19MAR20 7.9402 7.4862 0.086761 0.27653 0.56985

20MAR20 7.8751 7.4796 0.089138 0.26701 0.58011
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B - Risk Neutral Density Functions

Here are represented the three month maturity RND functions for the

periods studied. The doted line assumes the first set of parameters, the dashed line

the second set of parameters and the bold line corresponds to the RND function

as a weighted sum of both sets.

Three month RND functions for every month of the period between

January 2019 and March 2020:

Figure 2: January 2019 Figure 3: February 2019

Figure 4: March 2019 Figure 5: April 2019
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Figure 6: May 2019 Figure 7: June 2019

Figure 8: July 2019 Figure 9: August 2019

Figure 10: September 2019 Figure 11: October 2019
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Figure 12: November 2019 Figure 13: December 2019

Figure 14: January 2020 Figure 15: February 2020

Figure 16: March 2020
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Three month RND functions for every trading day of the weeks 20th

January, 24th February, 9th March and 16th March:

Figure 17: 21 January 2020 Figure 18: 22 January 2020

Figure 19: 23 January 2020 Figure 20: 24 January 2020
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Figure 21: 24 February 2020 Figure 22: 25 February 2020

Figure 23: 26 February 2020 Figure 24: 27 February 2020

Figure 25: 28 February 2020
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Figure 26: 9 March 2020 Figure 27: 10 March 2020

Figure 28: 11 March 2020 Figure 29: 12 March 2020

Figure 30: 13 March 2020
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Figure 31: 16 March 2020 Figure 32: 17 March 2020

Figure 33: 18 March 2020 Figure 34: 19 March 2020

Figure 35: 20 March 2020
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C - Descriptive Statistics

The descriptive statistics [mean (E), standard deviation (D), skewness

(S) and kurtosis (K)] of the three month maturity RND functions are presented

in the table below for each month between January 2019 and March 2020.

Descriptive Statistics

Date E D S K

JAN19 2663.4 247.12 -0.22502 6.2261

FEB19 2770.7 224.34 -0.21068 7.5266

MAR19 2817.6 235.66 -0.17142 9.477

APR19 2888.3 237.12 -0.15466 10.054

MAY19 2869.2 252.77 -0.181 7.417

JUN19 2947.1 267.23 -0.12689 8.7385

JUL19 2966.8 251.11 -0.19983 7.8517

AUG19 2881.9 284.5 -0.29874 4.819

SEP19 2977.8 268.65 -0.2798 6.3293

OCT19 2980 251.81 -0.28198 6.2956

NOV19 3112.8 244.64 -0.26659 7.1146

DEC19 3211.1 259.99 -0.21889 9.112

JAN20 3286.2 248.09 -0.28538 6.6169

FEB20 3360.4 263.42 -0.23003 8.1259

MAR20 2394.9 601.31 -0.63552 2.1926
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