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ABSTRACT

This study considers a reinsurance market with two participants, one taking the role of
first line insurer and the other taking the role of reinsurer. The two firms have conflicting
interests, in the sense that they both seek to absorb the highest proportion of the insur-
ance premium possible, while also taking on the least amount of risk they can. As such,
we consider a game where the first line insurer and the reinsurer aim to minimize their
respective ruin probabilities. We define the surplus processes for each involved party and
derive a set of integro-differential equations that describe the behaviour of their ruin prob-
abilities. Numerical illustrations for this model are provided. Then, we present the Pareto
equilibrium conditions for this market and suggest one possible approach to implement
the numerical solution of the problem.

KEYWORDS: Reinsurance; Ruin Probability; Pareto Equilibrium; Risk Management;
Risk Theory.

JEL: C61; C63; G22.
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RESUMO

Este estudo considera um mercado de resseguro com dois participantes, um com o papel
de segurador direto e outro com o papel de ressegurador. Existe um conflito de inter-
esses entre as duas seguradoras, no sentido em que ambas procuram absorver a maior
proporção do prémio de seguro ao seu alcance, tomando, contudo, a menor quantidade
de risco possível. Assim, consideramos um jogo em que o segurador direto e o ressegu-
rador têm por objetivo a minimização das suas respetivas probabilidades de ruína. São
definidos processos de riqueza para cada uma das partes envolvidas e é derivado um
conjunto de equações integro-diferenciais que descrevem o comportamento das proba-
bilidades de ruína. Ilustrações numéricas deste modelo são oferecidas. Posteriormente,
apresentamos as condições de equilíbrio de Pareto para este mercado e sugerimos uma
possível abordagem para a implementação numérica da solução para este problema.

PALAVRAS-CHAVE: Resseguro; Probabilidade de Ruína; Equilíbrio de Pareto; Gestão de
Risco; Teoria do Risco.

JEL: C61; C63; G22.
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ELISABETE FINO REINSURANCE OPTIMIZATION

1 INTRODUCTION

A reinsurance treaty is a contract established between two insurance firms, where the di-
rect insurer - also called cedent or first line insurer - transfers part of its risk, obtained
through underwriting policies for other companies and individuals, to a separate insurer,
called the reinsurer. To do so, the cedent pays a premium to the reinsurer.
There are several reasons that an insurer and a reinsurer would find it beneficial to engage
in a such a contract. By transferring part of the risk to an outside entity, the insurer is able
to substitute future uncertain losses by a certain fixed payment, thus reducing their risk
exposure and consequently stabilizing business results and reducing capital requirements.
This frees up capacity for the insurer (Albrecher, 2017; Cummins et al, 2021). It can also
be the case that solvency capital requirements or business goals lead the insurer to need
to transfer part of its risk to multiple reinsurers (Zeng & Luo, 2013). In fact, the decision
to enter into a reinsurance contract can be regarded as a capital structure decision by the
insurer, since these solvency capital requirements can be achieved either through raising
capital or reducing risk, which can be accomplished through risk transfer to a reinsurer
(Cummins et al, 2021). Garven & Tennant (2003) have also pointed out that reinsurance
may be used to reduce agency costs, by unlevering the insurance company. On the other
hand, there may be some fiscal advantages in reinsurance, if reserve taxation is strong
enough that it becomes attractive to use them to pay premiums (Albrecher, 2017).
Typically, the reinsurers are larger players in the market that are able to take on more com-
plex and severe risks with proportionally lower amounts of required capital, because their
dimension provides them with more diversification capacity and expertise in handling
these kinds of risks. As such, insurers can use reinsurance to protect themselves against
tail and model risk and also to benefit from some of the reinsurer know-how (Drexler
& Rosen, 2022). In addition, reinsurance is a means of protection against catastrophic
risk and of limitation of liability of the insurer against specific risks that they may not be
equipped to take on (Cummins et al, 2021). Furthermore, Cummins et al (2021) point
out that reinsurers are more capable of raising capital in a timely fashion, compared to
the relatively small insurers, thus granting primary insurers the opportunity to transition
out of hard markets more swiftly and dampening the insurance market cycles. Overall,
the privileged position that a reinsurer holds in the market allows it to profit from under-
writing risks that first line insurers may find too dangerous to hold themselves. This may
have a positive social impact by making insurance more accessible and affordable and by
allowing more risks to actually be insurable (Albrecher, 2017).
However, reinsurance also comes with associated costs. The insurer has to pay a premium
for the risk transfer, therefore reducing the net income from the policies it has underwrit-
ten. This premium depends not only on the distribution of the risk itself, from which the
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ELISABETE FINO REINSURANCE OPTIMIZATION

actuarial price can be derived, but also on the safety loading that the reinsurer charges, as
well as the market conditions (Bühlmann, 1980, 1984). This often results in reinsurance
premiums quite above the actuarial price of the risk, if there is a shortage of capital for
reinsurers or agency problems (Cummins et al 2021). On the other hand, these treaties
require sharing of information that may pose issues if the cedent and the reinsurer at some
point become competitors (Borch, 1960).
If the benefits of reinsurance outweigh its costs both for first line insurer and reinsurer,
they may choose to craft a policy for a risk transfer between them. This contract will
define all conditions under which the reinsurer would partially pay for claims that arise
from policies originally underwritten by the cedent. It will also specify the reinsurance
premium and the form of reinsurance provided, namely if it is a proportional or non-
proportional type of reinsurance, and the respective associated parameters and/or thresh-
olds. The simplest type of proportional reinsurance is the quota-share treaty, where for
each claim, the direct insurer pays a certain agreed upon proportion and the reinsurer pays
the remaining part. On the non-proportional types of reinsurance, the most simple case is
the excess of loss reinsurance, where the reinsurer will pay the amount of a claim above
a minimal threshold. This kind of agreement can be complemented with a ceiling, that
will consist of the maximum value that the reinsurer will pay for a claim. In a stop-loss
agreement, the individual claims are taken in aggregate terms and the reinsurer covers the
amount above a specified level for the aggregate quantity.
In order to specify the terms and conditions of a reinsurance treaty, the involved parties
will engage in bargaining, where both first line insurer and reinsurer will attempt to op-
timize their own results, so that they can seize the best possible deal. This point will be
further developed in Section 2, where a brief literature review is presented.
In this work, we consider a market with two participants - a direct insurer and a reinsurer -
that will enter into a quota-share reinsurance treaty and that will negotiate conditions such
that each participant minimizes its own probability or ruin. In order to do so, we define
the surplus processes for each competitor in the market and then study the probability of
these processes achieving negative values. In Section 3, the models for the surpluses of the
first line insurer and reinsurer, which are obviously dependent, are presented and a set of
three integro-differential equations that describe the behaviour of their ruin probabilities
are derived, one of them having an explicit boundary condition and the other two having
implicit boundary conditions. The last part of this section is dedicated to the numerical
implementation of the model and presents some numerical examples. Section 4 offers
some equilibrium conditions for an optimal Pareto strategy, where neither participant is
able to improve its ruin probability without increasing the ruin probability of the other
part. A possible algorithm for the solution of these conditions is put forward. The last
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section includes some conclusions, limitations of the model and discusses future work.

2 LITERATURE REVIEW

Early studies on optimal reinsurance tend to consider only the interests of the first line
insurer when designing policies. However, a reinsurance treaty is a contract between two
parties that must agree on its terms and conditions. As such, the (conflicting) interests of
both direct insurer and reinsurer should be considered when suggesting an optimal policy.
The idea to do so seems to come originally from Borch (1960), who argued that, under the
assumption that no party is forced to enter an agreement, any reinsurance treaty should
be such that both the cedent and the reinsurer benefit from it. The inclusion of the rein-
surer as a more active partner in the theoretic models, creates a necessity for considering
bargaining between direct insurer and reinsurer. Though both have common objectives
for the management of the shared risk, there will also be some degree of conflict as both
will aim to capture the highest amount of the premium possible while taking on the least
risk they can (Kaishev, 2004; Yang & Chen, 2022). Furthermore, Kaishev & Dimitrova
(2006) state that the increase in severity and frequency of losses due to catastrophic events
over the years means that the insolvency risk of the reinsurer cannot be ignored.
There are several ways to measure and represent the conflicting interests of cedent and
reinsurer, the most common being utility functions, probability of ruin, and risk variance
(Cai et al, 2013).
Utility theory is widely used as a way to represent preferences in financial and economic
problems through utility functions. Zeng & Luo (2013) study a problem where the op-
timal reinsurance treaty maximizes a weighted sum of the utilities of both the first line
insurer and the reinsurer, thus being able to take in consideration the interests of both
participants while also attributing relative relevance to each one through their respective
weights on the utility function. Chen & Shen (2018) create a Stackelberg game scenario
where first line insurer and reinsurer maximize their respective utilities, given the actions
that will be taken by their competitor. Suijs et al (1998) argue that insurance games, in
the non-life lines of business, can be modelled using a cooperative games’ framework,
that they apply also using utility theory. Borch (1960) tackles the optimal reinsurance
problem by maximizing the joint gain, measured by the product of the increase of utility
with reinsurance compared to the initial situation for both parties. While utility functions
encapsulate not only preferences but also the attitude towards risk of market participants,
allowing for power dynamics in the market to be reflected by the differences in this at-
titude between the cedent and the reinsurer, Borch (1960) recognizes that a limitation of
the model he presents is that it doesn’t consider the possibility of ruin of the reinsurer.
Ruin theory stems from considerations about the solvency of insurers and studies the
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level of surplus associated to a portfolio of insurance policies (Dickson, 2017). It is said
that the company is ruined if the surplus reaches a negative value. Some studies aim
to minimize some measure reflecting the joint ruin probability of insurers and reinsurers
or, equivalently, maximize their joint survival probability. Fang & Qu (2014) look for a
reinsurance treaty combining quota-share and stop-loss policies that maximizes the prob-
ability of both contract participants surviving. A second optimization measure is required
so that the two retention parameters are uniquely estimated. For this second criteria, the
authors suggest the minimization of a loss function of insurer and reinsurer, that is defined
using their respective VaR. Kaishev & Dimitrova (2006) provide explicit solutions for an
excess of loss reinsurance policy with a limiting level that maximizes the probability of
joint survival of the cedent and the reinsurer up until a finite time horizon. They take
two alternative approaches that also consider the split of the first line insurance premium,
besides the parameters of the risk transfer portion of the reinsurance treaty. Either the
split is fixed and the parameters are optimized or, conversely, the parameters are fixed and
the split is optimized. In the 2010 sequel to this paper, Dimitrova & Kaishev (2010) add
a performance measure, given by the expected profits at a finite time horizon given the
joint survival until then, with the goal of bringing together the conflicting goals of profit
maximization and risk management. On this line of thought, Cai et al. (2013) maximize
the joint survival probability and the joint profitable probability, defined as the probability
that the portion of the claim paid by each participant is less than their respective premium
income.
The individual probability of ruin of the first line insurer or of the reinsurer can also be op-
timized, rather than a joint probability. Chen et al (2019) create a setup where the cedent
seeks to minimize its ruin probability while the reinsurer maximizes the present value
of its profits until the time of ruin of the insurer. This type of approach stems from the
argument that first line insurers focus on risk management, whereas reinsurers focus on
profitability. This analysis suggests that the reinsurance premium is a feedback controller
that switches between two states, depending on the level of cash reserves of the reinsurer.
Other approaches include, for instance, the maximization of the expected value of a ter-
minal payoff combined with the minimization of its variance for both participants, which
is called the mean-variance criterium (Yang & Chen, 2022); and the minimization of a
weighted Conditional Tail Expectation (Bazaz & Najafabadi, 2015). Zeng (2010) stud-
ies a problem where direct insurer and reinsurer compete by one trying to minimize an
expected payoff that the other tries to maximize. Balbas et al (2013) take a risk sharing
approach in a market composed of n insurers that enter in reinsurance contracts among
themselves in order to reduce non-systemic risk, through vector optimization under a
general risk measure. One limitation of the proposed model is that the method can give
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solutions that result in a significant increase of the probability of ruin. To address this
concern, the authors suggest that their method is complemented with some control of the
ruin probability in order to assess if a more conservative risk measure should be used in
the optimization procedure.
As we have seen, even when the problem of optimal reinsurance is analysed through
lenses other than those of risk theory, several authors emphasize that the probability of
ruin should not be overlooked. Dimitrova & Kaishev (2010) go as far as suggesting that
reinsurance treaties should maximize the likelihood of survival for both cedent and rein-
surer. As such, this work examines a market composed of two participants that aim to
minimize their respective probability of ruin when entering a reinsurance contract. Fur-
thermore, since we are modelling a market where each participant behaves in a way that
attempts to optimize a measure of their interest, thus creating some level of conflict be-
tween them, we take a game theory approach to the problem. By doing this we hope to be
able to find some market equilibrium that brings together the conflicting interests present
in the market.
The use of game theory frameworks is common for the study of optimal reinsurance. Chen
et al (2019) and Zeng (2010) search for Nash equilibria, i.e., a state of the world where no
competitor has any interest in changing their strategy while the other participants maintain
their behaviour. Yang & Chen (2022), as well as Chen & Shen (2018), model this prob-
lem in the form of a Stackelberg game. This is a game where one player is considered the
leader - in this case the reinsurer - and the others are considered followers - the first line
insurer. The reinsurer determines its pricing strategy based on the reaction function of the
first line insurer, who will choose a retention level. Knowing this, the cedent will adjust
its reinsurance strategy according to the decisions made by the reinsurer. This type of
approach is justified by the observation that the reinsurance market is dominated by very
large companies, while the first line insurance market presents higher levels of compet-
itiveness. Morozov (1998) also uses a Stakelberg game framework, where the reinsurer
selects the price of reinsurance but the cedent’s strategy is based on a loss-ratio limit.
Suijs et al (1998) opt to analyse the problem using cooperative games’ theory. Cooper-
ative games focus on the gains that can be obtained through coalitions, thus being more
applicable in larger markets than the simplified version that we propose to study here.
Nonetheless, these authors argue that non-life reinsurance problems can be well modelled
by cooperative games with stochastic payoffs, when premiums are subadditive, and they
seek for Pareto optimal allocations of risk and respective premiums. Another proponent
of the game theory approach to reinsurance optimization is Aase (2002), who argues that
bid-ask spreads on premiums - which are considered to derive from transaction costs and
information asymmetry - can be derived from looking at the core of a reinsurance game.
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In this study we investigate Pareto optimal strategies, where the insurer chooses the per-
centage of each claim it wants to cede to the reinsurer, while the latter selects a pricing
strategy.

3 PROBLEM SETTING

This work considers a simplified insurance market with only two participants: a first line
insurer and a reinsurer. In this section, we define the problem of optimal reinsurance in
a setting where both participants wish to minimize their ruin probability or, equivalently,
maximize their survival probability. In this context, a participant is in a situation of ruin
when its respective surplus process goes below zero, regardless of the value of the surplus
deficit. As Albrecher (2017) points out, this is not necessarily a bankruptcy situation, but
is a useful and intuitive criterion of risk. The surplus processes of the reinsurer and of the
insurer are defined as follows, respectively:

Xr
t =

{
X0,r

t = xr + (γ − r)t− α
∑Nt

i=1 Yi, t ≤ τ i,

X1,r
t = X0,r

τ i
− r(t− τ i), t > τ i,

(1)

X i
t =

{
X0,i

t = xi + (c− γ)t− (1− α)
∑Nt

i=1 Yi, t ≤ τ r,

X1,i
t = X0,i

τ0,r +X0,r
τ0,r + c(t− τ 0,r)−

∑
τ0,r<Ti≤t Yi, t > τ r,

(2)

where xr, xi ≥ 0 are the values of the initial surplus of reinsurer and direct insurer, respec-
tively; γ is the premium received by the reinsurer and paid by the insurer; r is a minimum
income demanded by the reinsurer to remain in the business, including fixed costs and
remuneration of capital; c is the premium received by the insurer; α is the proportion of
each claim that the insurer cedes to the reinsurer (0 ≤ α ≤ 1), and τ r, τ i are the times of
ruin of the reinsurer and direct insurer, respectively. The premiums γ and c are assumed to
be continuously received, for simplicity. Nt is the counting process of claims, assumed to
be a Poisson process with intensity λ, and Yi is the severity of the i−th claim. We assume
that the random variables Yi are independent and identically distributed, and that E[Y ] is
finite. In this context St =

∑Nt

i=1 Yi is a compound Poisson process. The time of arrival of
the i− th claim to the system is a random variable Ti and the times between claim arrivals
are independent exponentially distributed random variables, T ∗

i , with parameter 1
λ

.
These processes interact with each other reflecting the dynamic of this 2-participant mar-
ket. At time 0 both insurer and reinsurer are present in the market and a reinsurance
agreement is in place such that there is a continuous income for both participants, given
by the net premium that each one receives. For each claim that arises, the insurer covers
a proportion 1 − α, while the reinsurer covers the remaining proportion α of the claim.
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The implications of an eventual claim that causes one of the participants to reach ruin are
different, depending on which participant has its surplus going below 0. If the cedent is
the first to reach ruin, then the reinsurer no longer receives its premium income and they
cease to provide any risk coverage. It uses its accumulated surplus to provide the manda-
tory minimal return until it also reaches a ruin situation, which, under these conditions,
happens with probability 1. Alternatively, this situation can be viewed as one where the
reinsurer loses its market and therefore closes its business, keeping what remains of its
capital to invest in some other project or asset. For the sake of simplicity, in this work,
"ruin of the reinsurer" designates the event where the reinsurer quits the market, be it by
ruin in the proper sense or by impossibility of meeting the minimum return requirement.
If the reinsurer is the first to attain a surplus level below 0, the direct insurer first covers
the part of the ceded risk that the reinsurer is not able to pay and then continues to provide
risk coverage by taking on the entirety of every new claim that happens from that moment
on.
Chen et al (2019) argue that, when entering a reinsurance contract, the insurer is moti-
vated by risk mitigation, which is consistent with a minimization of probability of ruin
approach, but the reinsurer is motivated by profitability motives. Although this work
focuses on risk mitigation for both participants, the profitability of the reinsurer is con-
sidered through the inclusion of the parameter r. Note as well that this is reflected on the
different consequences of ruin events for insurer and reinsurer. When the insurer becomes
ruined first, the reinsurer no longer provides any risk coverage, while when the reinsurer
is the first to hit negative surplus, the insurer still takes on the risk of further claims.
Some conditions are required, in order to guarantee that each participant is somewhat
solvent, in the sense that their ruin probability is not 1 regardless of their initial surplus.
In order to achieve this, the net premium of each participant must exceed the expected
payment of claims (Dickson, 2017), so the following must be satisfied:

γ − r > αλE[Y ], (3)

c− γ > (1− α)λE[Y ]. (4)

Conditions (3) and (4) are assumed to be verified from this point on. As a consequence,
c− r > λE[Y ], intuitively meaning that, under these conditions, it is guaranteed that the
market as whole has a non-zero probability of survival. Furthermore, the original insur-
ance contract should be profitable on its own, without risk sharing through reinsurance,
and, as such, c > λE[Y ].

7



ELISABETE FINO REINSURANCE OPTIMIZATION

3.1 Ruin Probability of Insurer and Reinsurer

We are interested in studying the probability that there is a moment when the surplus
processes go below the level 0. It is of interest to define those times for both surplus
processes and for each of their branches, to account for ruin in every possible situation.
The general times of ruin for reinsurer and insurer are, respectively:

τ r = inf{t > 0 : Xr
t < 0}, (5)

τ i = inf{t > 0 : X i
t < 0}. (6)

However, ruin for one participant can happen before or after the ruin of the other par-
ticipant. If the cedent achieves ruin before the reinsurer, the time of ruin of the cedent
is τ 0,i = inf{t > 0 : X0,i

t < 0} and the time of ruin of the reinsurer is τ 1,r =

τ 0,i +
X0,r

τ0,i

r
χτ0,i<∞. In this event, the reinsurer certainly hits negative surplus in finite

time, given that it no longer receives premium income and so it cannot go on fulfilling the
minimal return r indefinitely. If the reinsurer achieves ruin before the direct insurer, the
time of ruin for the reinsurer is τ 0,r = inf{t > 0 : X0,r

t < 0} and for the direct insurer is
τ 1,i = inf{t > τ 0,r : X1,i

t < 0}.
It is possible to study the probability of ruin in a finite horizon, i.e. before a specific time
t, or in an infinite horizon, i.e. at some time t < ∞. We choose to study the problem in an
infinite time horizon, as the optimization of probability of ruin in a finite time may result
in solutions that ensure safety until the finite horizon but that are unsustainable thereafter.
The event of ruin is complementary to the event of survival. Thus, the ruin probability can
be expressed in terms of the probability of survival events, which motivates the following
definitions.

Definition 3.1. (Relevant quantities for the calculation of the ruin probabilities): Let
V1 be a function such that V1 : R → [0, 1] and

V1(z) = P{τ 1,i = +∞|X1,i
τr = z}. (7)

Furthermore, let V2, V3 be functions such that Vi : R× R → [0, 1], i = 2, 3, and

V2(x
i, xr) = P{τ 0,i = +∞, τ 0,r = +∞|X0,i

0 = xi, X0,r
0 = xr}, (8)

V3(x
i, xr) = P{τ 0,r < τ 0,i, τ 1,i = +∞|X0,i

0 = xi, X0,r
0 = xr}. (9)

The probabilities of ruin for the reinsurer and for the insurer can be expressed in terms of
V2 and V3, as expressed in the next proposition.

8
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Proposition 3.1. (Probabilities of ruin): The probability of ruin of the reinsurer is a
function V̄r : R× R → [0, 1] such that

V̄r(x
i, xr) = 1− V2(x

i, xr). (10)

Moreover, the probability of ruin of the insurer is a function V̄i : R×R → [0, 1] such that

V̄i(x
i, xr) = 1− V2(x

i, xr)− V3(x
i, xr). (11)

Proof. There are five different possible ruin events, listed below:

• Case 1: Both participants reach ruin in finite time and the insurer does so first

• Case 2: Both participants reach ruin in finite time and they do so at the same time

• Case 3: Both participants reach ruin in finite time and the reinsurer does so first

• Case 4: Only the reinsurer reaches ruin

• Case 5: No participant reaches ruin

The probability of case 4 is given by V3 and the probability of case 5 is given by V2. The
reinsurer reaches ruin in all cases but case 5 and the insurer reaches ruin in all cases but 4
and 5.

Note that, in our simplified market model, the reinsurer always faces higher or equal
probability of ruin than the first line insurer. This results from the fact that the ruin of
the direct insurer determines the ruin of the reinsurer. From the above proposition it is
possible to see that the probability of ruin of the reinsurer is equal to the probability of
ruin of the direct insurer plus a term, V3(x

i, xr), that represents the probability of the
reinsurer attaining a negative surplus while the insurer’s surplus remains positive for all
t < ∞.
In order to study the behaviour of V̄r and V̄i, it is necessary to study the behaviour of
V2 and V3. Then it will become apparent why we introduced the function V1. We will
prove a set of propositions establishing a system of integro-differential equations satisfied
by the survival probabilities. The corresponding boundary conditions will be derived in
Section 3.2. and then the system will be well posed. First of all it is necessary to prove
that Vi, i = 1, 2, 3, are differentiable. To do so, we prove absolute continuity and the
differentiability follows.

9
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Proposition 3.2. (Absolute continuity for V1): V1 is absolutely continuous.

Proof. By definition,

V1(z) = P{τ 1,i = +∞|X1,i
τr = z} = 1− P{τ 1,i < +∞|X1,i

τr = z} =

= 1−
∑+∞

n=1,Tn>τr P{τ 1,i = Tn|X1,i
τr = z}.

If we consider τ r = Tm, this is equal to

1−
∑+∞

n=1 P{τ 1,i = Tm+n|X1,i
Tm

= z}.

This expression can be written as

1−
∑+∞

n=1 P{X1,i
Tm+1

≥ 0, ..., X1,i
Tm+n−1

≥ 0, X1,i
Tm+n

< 0|X1,i
Tm

= z} =

= 1−
∑+∞

n=1 P{X1,i
Tm+1

= z + c× T ∗
m+1 − YTm+1 ≥ 0, ...,

..., X1,i
Tm+n−1

= z + c
∑m+n−1

i=m+1 T ∗
i −

∑m+n−1
i=m+1 Yi ≥ 0,

X1,i
Tm+n

= z + c
∑m+n

i=m+1 T
∗
i −

∑m+n
i=m+1 Yi < 0|X1,i

Tm
= z}.

Writing the above expression in integral form, we get

1−
∑+∞

n=1

∫
[0,+∞[n

∫ z+c×t∗m+1

0
...
∫ z+c

∑m+n−1
i=m+1 t∗i−

∑m+n−2
i=m+1 Yi

0

∫ +∞
z+c

∑m+n
i=m+1 t

∗
i−

∑m+n−1
i=m+1 Yi

dF (Ym+n)...dF (Ym+1)λ
ne−λ

∑n
i=1 t

∗
m+idt∗m+n...dt

∗
m+1,

where F (·) is the distribution function of claim severities. Proceeding with the substitu-
tion s = z + c× t∗m+1, we obtain

1−
∑+∞

n=1

∫ +∞
z

∫
[0,+∞[n−1

∫ s

0
...
∫ s+c

∑m+n−1
i=m+2 t∗i−

∑m+n−2
i=m+1 Yi

0

∫ +∞
s+c

∑m+n
i=m+2 t

∗
i−

∑m+n−1
i=m+1 Yi

dF (Ym+n)...dF (Ym+1)λ
ne−λ( s−z

c
+
∑n

i=2 t
∗
m+i)dt∗m+n...ds

= 1−
∑+∞

n=1 e
λz
c

∫ +∞
z

∫
[0,+∞[n−1

∫ s

0
...
∫ s+c

∑m+n−1
i=m+2 t∗i−

∑m+n−2
i=m+1 Yi

0

(1− F (s+ c
∑m+n

i=m+2 t
∗
i −

∑m+n−1
i=m+1 Yi))dF (Ym+n)...dF (Ym+1)

λne−λ( s
c
+
∑n

i=2 t
∗
m+i)dt∗m+n...ds.

Since e
λz
c is an absolutely continuous function and the product and sum of absolutely

continuous functions are absolutely continuous, the result is proved.

Proposition 3.3. (Absolute continuity for V2): Let

f2(u) = V2(z
i + (c− γ)u, zr + (γ − r)u).

Then, f2(u) is absolutely continuous.

Proof. The proof for this proposition can be found in Appendix A.

10
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Proposition 3.4. (Absolute continuity for V3): Let

f3(u) = V3(z
i + (c− γ)u, zr + (γ − r)u).

Then, f3(u) is absolutely continuous.

Proof. By definition,

f3(u) = Pu{τ 0,r < τ 0,i, τ 1,i = +∞} =
∑+∞

n=1 Pu{τ 0,r = Tn < τ 0,i, τ 1,i = +∞},

where Pu{·} = P{·|X0,i
0 = zi+(c−γ)u,X0,r

0 = zr+(γ− r)u)}. The probability inside
the sum can be written as

Pu{τ 0,r = Tn < τ 0,i} −
∑+∞

m=0 Pu{τ 0,r = Tn < τ 0,i, τ 1,i = Tn+m}.

On the proof of proposition 3.3., we showed that Pu{τ 0,r = Tn < τ 0,i} is absolutely
continuous. To prove the result, it is only necessary to prove that

Pu{τ 0,r = Tn < τ 0,i, τ 1,i = Tn+m}

is also absolutely continuous.

Pu{τ 0,r = Tn < τ 0,i, τ 1,i = Tn+m} =

Pu{X0,i
T1

≥ 0, X0,r
T1

≥ 0, ..., X0,i
Tn−1

≥ 0, X0,r
Tn−1

≥ 0, X0,i
Tn

≥ 0, X0,r
Tn

< 0, X1,i
Tn+1

≥
0, ..., X1,i

Tn+m−1
≥ 0, X1,i

Tn+m
< 0}

Notice that X0,i
τ0,r +X0,r

τ0,r equals, in this case, zi + zr + (c− r)(u+
∑n

i=1 t
∗
i )−

∑n
i=1 Yi.

Defining k(p, q, v) = zi + zr + (c− r)p+ c× q − v, and using the variable substitution
s = u+ t∗1, the previous expression is equal to,∫ +∞

u

∫
[0,+∞[n−+m−1

∫ g(s,0)

0

∫ g(s+t∗2,Y1)

0
...
∫ g(s+

∑n−1
i=2 t∗i ,

∑n−2
i=1 Yi)

0∫ hi(s+
∑n

i=2 t
∗
i ,
∑n−1

i=1 Yi)

hr(s+
∑n

i=2 t
∗
i ,
∑n−1

i=1 Yi)

∫ k(s+
∑n

i=2 t
∗
i ,t

∗
n+1,

∑n
i=1 Yi)

0

∫ k(s+
∑n

i=2 t
∗
i ,
∑n+m−1

i=n+1 t∗i ,
∑n+m−2

i=1 Yi)

0∫ +∞
k(s+

∑n
i=2 t

∗
i ,
∑n+m

i=n+1 t
∗
i ,
∑n+m−1

i=1 Yi)
dF (Yn+m)...dF (Y1)λ

n+me−λ(s−u+
∑n+m

i=2 t∗i )dtn+m...ds =

= eλu
∫ +∞
u

∫
[0,+∞[n−+m−1

∫ g(s,0)

0

∫ g(s+t∗2,Y1)

0
...
∫ g(s+

∑n−1
i=2 t∗i ,

∑n−2
i=1 Yi)

0∫ hi(s+
∑n

i=2 t
∗
i ,
∑n−1

i=1 Yi)

hr(s+
∑n

i=2 t
∗
i ,
∑n−1

i=1 Yi)

∫ k(s+
∑n

i=2 t
∗
i ,t

∗
n+1,

∑n
i=1 Yi)

0

∫ k(s+
∑n

i=2 t
∗
i ,
∑n+m−1

i=n+1 t∗i ,
∑n+m−2

i=1 Yi)

0

(1− F (k(s+
∑n

i=2 t
∗
i ,
∑n+m

i=n+1 t
∗
i ,
∑n+m−1

i=1 Yi)))dF (Yn+m−1)...dF (Y1)

λn+me−λ(s+
∑n+m

i=2 t∗i )dtn+m...ds,

similarly to results obtained in the proof of proposition 3.3.. Given that the first integrand
does not depend on u, the function is absolutely continuous.
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Using the fact that these functions are absolutely continuous and therefore they are prim-
itives of derivative functions defined almost everywhere, it is possible to construct a set
of integro-differential equations that describe the behaviour of the relevant components
of the ruin probabilities of the insurer and reinsurer. These equations are presented in
propositions 3.5. to 3.7. and the respective boundary conditions will be derived in the
next section.

Proposition 3.5. (Integro-differential equation for V1): The function V1 solves the
following integro-differential equation:

V
′
1 (z) =

λ
c
(V1(z)−

∫ z

0
V1(z − y)dF (y)), a.e. z ≥ 0.

Proof. By definition, V1(z) = P{τ 1,i = +∞|X1,i
τr = z}. The event of survival in an

infinite time frame means that the firm survives each claim that arises in the system. Let
Ti be the time of arrival of the i− th claim. We have, for a general increment h,

V1(z) =P{τ 1,i = +∞, T1 > h|X1,i
τr = z}+ P{τ 1,i = +∞, T1 ≤ h < T2|X1,i

τr = z}+ o(h)

Using the memoryless property of the exponential distribution and noticing that if T1 > h

the first claim has not yet occurred, this is equal to

P{τ 1,i = +∞|X1,i
τr = z + ch}e−λh+

+E[P{τ 1,i = +∞|X1,i
τr = z + cT1 − Y1}χz+cT1−Y1≥0 · χT1≤h<T2 ] + o(h).

Using e−λh = 1− λh+ o(h), the above expression is given by

V1(z+ ch)(1− λh) +
∫ h

0

∫ +∞
h−t1

∫ z+ct1
0

V1(z+ ct1 − y)dF (y)λe−λt2dt2λe
−λt1dt1 + o(h) =

= V1(z + ch)− λV1(z)h+
∫ h

0

∫ z+ct1
0

V1(z + ct1 − y)dF (y)e−λ(h−t1)λe−λt1dt1 + o(h).

For small values of h, we can write

V1(z) = V1(z + ch)− λV1(z)h+ λh
∫ z

0
V1(z − y)dF (y) + o(h).

Taking the limit as h → 0+,

0 = limh→0+
V1(z+ch)−V1(z)

h
− λV1(z) + λ

∫ z

0
V1(z − y)dF (y) =

= cV
′
1 (z)− λV1(z) + λ

∫ z

0
V1(z − y)dF (y),

which is equivalent to the proposed condition,

V
′

1 (z) =
λ

c
(V1(z)−

∫ z

0

V1(z − y)dF (y)),

whenever z is a Lebesgue point of V1.

12
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Proposition 3.6. (Integro-differential equation for V2): The function V2(x
i, xr) solves

the following integro-differential equation

(
∂V2

∂xi
(c− γ) +

∂V2

∂xr
(γ − r))xi,xr =

λ(V2(x
i, xr)−

∫ min{xr

α
, xi

1−α
}

0

V2(x
i − (1− α)Y, xr − αY )dF (y)).

Proof. The reasoning for this proof is similar to the one used to prove Proposition 3.5.
For a general increment h, we have

V2(x
i, xr) = P{τ 0,i = +∞, τ 0,r = +∞|X0,i

0 = xi, X0,r
0 = xr} =

= P{τ 0,i = +∞, τ 0,r = +∞, T1 > h|X0,i
0 = xi, X0,r

0 = xr}+ P{τ 0,i = +∞, τ 0,r =

+∞, T1 ≤ h < T2|X0,i
0 = xi, X0,r

0 = xr}+ o(h) =

= V2(x
i + (c− γ)h, xr + (γ − r)h)e−λh + E[P{τ 0,i = +∞, τ 0,r = +∞|X0,i

0 =

xi + (c− γ)T1 − (1− α)Y1, X
0,r
0 =

xr + (γ − r)T1 − αY1}χxi+(c−γ)T1−(1−α)Y1≥0 · χxr+(γ−r)T1−αY1≥0 · χT1≤h<T2 ] + o(h) =

= V2(x
i + (c− γ)h, xr + (γ − r)h)(1− λh) +

∫ h

0

∫ +∞
h−t1

∫ min{xi+(c−γ)t1
1−α

,
xr+(γ−r)t1

α
}

0 V2(x
i +

(c− γ)t1 − (1− α)y, xr + (γ − r)t1 − αy)dF (y)λe−λt2dt2λe
−λt1dt1 + o(h).

For a small value of h, the latter right hand side expression approximates to

V2(x
i + (c− γ)h, xr + (γ − r)h)− λV2(x

i, xr)h+

+λh
∫ min{ xi

1−α
,x

r

α
}

0 V2(x
i − (1− α)y, xr − αy)dF (y).

Taking the limit, as h → 0+, we obtain

0 = limh→0+
V2(xi+(c−γ)h,xr+(γ−r)h)−V2(xi,xr)

h
− λV2(x

i, xr)+

+λ
∫ min{ xi

1−α
,x

r

α
}

0 V2(x
i − (1− α)y, xr − αy)dF (y) =

= (∂V2

∂xi (c− γ) + ∂V2

∂xr (γ − r))(xi, xr)− λV2(x
i, xr) + λ

∫ min{ xi

1−α
,x

r

α
}

0 V2(x
i − (1−

α)y, xr − αy)dF (y),

which is equivalent to the proposed condition,

(
∂V2

∂xi
(c− γ) +

∂V2

∂xr
(γ − r))xi,xr =

λ(V2(x
i, xr)−

∫ min{xr

α
, xi

1−α
}

0

V2(x
i − (1− α)y, xr − αy)dF (y)).
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Proposition 3.7. (Integro-differential equation for V3): The function V3(x
i, xr) solves

the following integro-differential equation:

(
∂V3

∂xi
(c− γ) +

∂V3

∂xr
(γ − r))xi,xr = λ(V3(x

i, xr)−

−
∫ min{xr

α
, xi

1−α
}

0 V3(x
i − (1− α)Y, xr − αY )dF (y)−

∫ xi+xr

xr

α
V1(x

i + xr − y)dF (y)).

Proof. This proof follows similar reasoning to the one employed in the proofs of the
propositions 3.5. and 3.6. and can be found in Appendix B.

It is worth noticing that the equations found to be solved by V2 and V3 represent the
dynamics of their respective directional derivatives on the plane of initial wealths, along
the vector (c− γ, γ − r).
Propositions 3.5. through 3.7. establish the following set of integro-differential equations,
that describe the behaviour of the survival probabilities, lacking boundary conditions:

V
′

1 (z) =
λ

c

(
V1(z)−

∫ z

0

V1(z − y)dF (y)

)
(12)

(
∂V2

∂xi
(c− γ) +

∂V2

∂xr
(γ − r)

)
xi,xr

= λ

(
V2(x

i, xr)−

−
∫ min{xr

α
, xi

1−α
}

0

V2(x
i − (1− α)y, xr − αy)dF (y)

) (13)

(
∂V3

∂xi
(c− γ) +

∂V3

∂xr
(γ − r)

)
xi,xr

= λ

(
V3(x

i, xr)−

−
∫ min{xr

α
, xi

1−α
}

0

V3(x
i − (1− α)y, xr − αy)dF (y)−

∫ xi+xr

xr

α

V1(x
i + xr − y)dF (y)

)
(14)

3.2 Boundary Conditions

For the system of integro-differential conditions proposed in the last section to be well
posed it is necessary to establish boundary conditions for each equation. We were able
to obtain an explicit condition for V1 and implicit conditions for V2 and V3. First of all,
we should understand how each one of these functions behaves when the initial reserves,
tend to infinity. That is the aim of propositions 3.8 to 3.10.
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Proposition 3.8. (Limit behaviour of V1):. limz→+∞ V1(z) = 1.

Proof. This result follows directly from the proof of Grandell (1991) - Section 1.1., page
5 - and the memoryless property of the compound Poisson process.

Proposition 3.9. (Limit behaviour of V2):. When xi → +∞ and xr → +∞, the survival
probability given by V2 tends to 1.

Proof. We want to prove that limxi→+∞,xi→+∞ V2(x
i, xr) = 1. By definition,

V2(x
i, xr) = P{τ 0,i = +∞, τ 0,r = +∞|X0,i

0 = xi, X0,r
0 = xr} =

= 1− P{τ 0,i < +∞∨ τ 0,r < +∞|X0,i
0 = xi, X0,r

0 = xr} =

= 1− P{τ 0,i < +∞|X0,i
0 = xi, X0,r

0 = xr} − P{τ 0,r < +∞|X0,i
0 = xi, X0,r

0 =

xr}+ P{τ 0,i < +∞, τ 0,r < +∞|X0,i
0 = xi, X0,r

0 = xr} ≥
≥ 1− P{τ 0,i < +∞|X0,i

0 = xi, X0,r
0 = xr} − P{τ 0,r < +∞|X0,i

0 = xi, X0,r
0 = xr}.

Since these quantities are all probabilities, if we prove that P{τ 0,i < +∞|X0,i
0 = xi, X0,r

0 =

xr} and P{τ 0,r < +∞|X0,i
0 = xi, X0,r

0 = xr} tend to 0 when xi and xr tend to infinity,
then it is proved that limxi→+∞,xi→+∞ V2(x

i, xr) = 1. The remainder of this proof is
based on a similar proof by Grandell (1991) - Section 1.1., page 5.
Let Ai = {ω ∈ Ω : limt→+∞

X0,i
t (ω)

t
= (c− γ)− (1− α)λE[Y ]}, where Ω is the sample

space. Since we assume (c− γ) > (1− α)λE[Y ], we have that

∃k > 0 : ∀t > k,
X0,i

t

t
> 0,

which is equivalent to saying

∃k > 0 : ∀t > k,X0,i
t > 0.

Let Bi
k = {ω ∈ Ω : t > k =⇒ X0,i

t > 0}. If any sample path belongs to Ai, then
there is a value k such that the sample path belongs to Bi

k. Therefore Ai is contained in
∪∞

k=1B
i
k. Since by the law of large numbers P (Ai) = 1, then P (∪∞

k=1B
i
k) = 1.

Defining T i as

T i =

{
sup{t > 0 : X0,i

t < 0} if ∃t > 0 : X0,i
t < 0

0 if ∀t > 0, X0,i
t ≥ 0,

the fact that P (∪∞
k=1B

i
k) = 1 means that P (T i < +∞) = 1. Let Z0,i

t = (c − γ)t − (1 −
α)
∑Nt

i=1 Yi. Then,

P{τ 0,i < +∞|X0,i
0 = xi, X0,r

0 = xr} =

= P{∃0 ≤ t < +∞ : Z0,i
t < −xi} =

15



ELISABETE FINO REINSURANCE OPTIMIZATION

= P{inft≥0Z
0,i
t < −xi} =

= P{inft∈[0,T i]Z
0,i
t < −xi}

=
∑+∞

n=1 P{inft∈[0,T i]Z
0,i
t < −xi, Nt = n} ≤

≤
∑+∞

n=1 P{T i < +∞, (c− γ)t− (1− α)
∑n

n=1 Yi ≤ −xi}.

Since
∑+∞

n=1 P{T i < +∞, (c−γ)t−(1−α)
∑n

n=1 Yi ≤ xi} → 0 as xi → +∞,∀xr ∈ R,
then P{τ 0,i < +∞|X0,i

0 = xi, X0,r
0 = xr} also tends to 0.

A similar proof can be done for the case of P{τ 0,r < +∞|X0,i
0 = xi, X0,r

0 = xr} tending
to 0 and can be found in Appendix C.

Proposition 3.10. (Limit behaviour of V3): When xi → +∞ and xr → +∞, V3 tends
to 0.

Proof. We want to show that limxi→+∞,xr→+∞ V3(x
i, xr) = 0. By definition,

V3(x
i, xr) = P{τ 0,r < τ 0,i, τ 1,i = +∞|X0,i

0 = xi, X0,r
0 = xr}.

Therefore,

V3(x
i, xr) ≤ P{τ 0,r < +∞|X0,i

0 = xi, X0,r
0 = xr}.

We have proved that P{τ 0,r < +∞|X0,i
0 = xi, X0,r

0 = xr} tends to zero as xi and xr tend
to infinity in the proof of Proposition 3.9., thus the result follows directly.

The intuition behind propositions 3.8. to 3.10. is that when the initial reserves are ex-
tremely large compared to the magnitude of claims and premiums, survival is virtually
guaranteed, which is the point of the following corollary.

Corollary 3.1. When the initial reserves, xi and xr, tend to infinity, the probability of ruin
of the reinsurer, V̄r(x

i, xr), and of the insurer, V̄i(x
i, xr), both tend to 0.

Proof. Propositions 3.9. and 3.10. establish that limxi→+∞,xr→+∞ V2(x
i, xr) = 1 and

limxi→+∞,xr→+∞ V3(x
i, xr) = 0, respectively. Since we also proved, on Proposition 3.1.

that V̄r(x
i, xr) = 1 − V2(x

i, xr) and V̄i(x
i, xr) = 1 − V2(x

i, xr) − V3(x
i, xr), the result

follows directly.

Propositions 3.8. to 3.10., besides providing some intuition into the limit behaviour of
the ruin probabilities of the insurer and the reinsurer, will also be useful to derive the
boundary conditions necessary so that the system presented in Section 3.1. is well posed.
The derivation of said boundary conditions is the object of the propositions 3.11 through
3.13.
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Proposition 3.11. (Boundary condition for V1): V1(z) is such that V1(0) =
c−λE[Y ]

c
.

Proof. V1 can be written in its integral form as

V1(z) = V1(0) +
∫ z

0
V

′
1 (u)du.

Using equation (12), this becomes

V1(z) = V1(0) +
λ
c

∫ z

0
V1(u)−

∫ u

0
V1(u− y)dF (y)du.

Using Fubini’s theorem to change the integration order, the above expression is equal to

V1(0) +
λ
c
(
∫ z

0
V1(u)du−

∫ z

0

∫ z

y
V1(u− y)dudF (y)).

Proceeding with the substitution s = u− y, we get

V1(0) +
λ
c
(
∫ z

0
V1(u)du−

∫ z

0

∫ z−y

0
V1(s)dsdF (y)).

Applying once again Fubini’s theorem, this becomes

V1(0) +
λ
c
(
∫ z

0
V1(u)du−

∫ z

0
V1(s)

∫ z−s

0
dF (y)ds) =

= V1(0) +
λ
c

∫ z

0
V1(u)− V1(u)F (z − u)du.

Proceeding with a new substitution y = z − u, we are able to write V1 in integral form as

V1(z) = V1(0) +
λ
c

∫ z

0
V1(z − y)(1− F (y))dy.

From proposition 3.8. we know that limz→+∞ V1(z) = 1. Thus, V1(z − y) tends to 1
pointwise when z approaches infinity. Applying the monotone convergence theorem, we
then obtain

1 = limz→+∞ V1(z) = limz→+∞[V1(0) +
λ
c

∫ z

0
V1(z − y)(1− F (y))dy] =

= V1(0) +
λ
c

∫ +∞
0

1× (1− F (y))dy = V1(0) +
λ
c
E[Y ]

⇔
V1(0) =

c−λE[Y ]
c

,

as we aimed to prove.

Given the result in proposition 3.11., we obtain the following equation that describes the
behaviour of V1

V1(z) =
c− λE[Y ]

c
+

λ

c

∫ z

0

V1(z − y)(1− F (y))dy. (15)
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For V1 it was possible to obtain an explicit boundary condition. However, for V2 and V3

only implicit boundary conditions were derived, as these functions are bivariate, which
poses additional analytical difficulties. For V2 and V3, equations (13) and (14), respec-
tively, describe the behaviour of their derivatives over a set of lines with slope γ−r

c−γ
on the

plane (xi, xr). This set of lines can be represented by the following parameterization

(xi, xr) = (zi, zr) + u(c− γ, γ − r), (16)

where zi, zr, u ∈ R+
0 , with zi = 0 or zr = 0.

Using this parameterization, V2 can be written in integral form as

V2(x
i, xr) = V2(z

i + u(c− γ), zr + u(γ − r)) =

= V2(z
i, zr) +

∫ u

0
d
dt
V2(z

i + t(c− γ), zr + t(γ − r))dt =

= V2(z
i, zr) +

∫ u

0
((c− γ)∂V2

∂xi + (γ − r)∂V2

∂xr )(z
i + t(c− γ), zr + t(γ − r))dt.

Using equation (13), we conclude that

V2(x
i, xr) = V2(z

i, zr) + λ

∫ u

0

V2(z
i + t(c− γ), zr + t(γ − r))−

−
∫ min{ zr+t(γ−r)

α
,
zi+t(c−γ)

1−α
}

0

V2(z
i + t(c− γ)− (1− α)y, zr + t(γ − r)− αy)dF (y)dt.

(17)
Through similar arguments, it is also possible to prove that

V3(x
i, xr) =V3(z

i, zr) + λ

∫ u

0

V3(z
i + t(c− γ), zr + t(γ − r))−

−
∫ min{ zr+t(γ−r)

α
,
zi+t(c−γ)

1−α
}

0

V3(z
i + t(c− γ)− (1− α)y, zr + t(γ − r)− αy)dF (y)−

−
∫ zi+zr+(c−r)t

zr+t(γ−r)
α

V1(z
i + zr + (c− r)t− y)dF (y)dt. (18)

From equations (17) and (18) it is possible to derive implicit boundary conditions for V2

and V3, based on the linearity of the integral operator.

Proposition 3.12 (Boundary condition for V2): V2 has a boundary condition of the type

V2(z
i, zr) = 1

limu→+∞ w1
zi,zr

(u)
,

where w1
zi,zr(u) is the solution of the linear equation (17), substituting V2(z

i, zr) by 1.

18
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Proof. Equation (17) can be written in the following form

v(u) = A+Ψzi,zrv(u), u ≥ 0,

where Ψzi,zr is a linear operator with domain L∞,loc[0,+∞[ continuous in each L∞[0, b].
As such, this equation has a unique solution for each pair (zi, zr) and each A ∈ R.
Furthermore, if we consider wA

zi,zr the solution for w(u) = A + Ψzi,zrw(u), the function
A 7→ wA

zi,zr is linear. In particular, wA
zi,zr = Aw1

zi,zr for any A ∈ R. Given that we proved
that V2 is absolutely continuous and that it tends to 1 when the initial reserves tend to
infinity, the result follows.

Proposition 3.13. (Boundary condition for V3): V3 has the following boundary condi-
tion:

V3(z
i, zr) = − c−λE[Y ]

c
limu→+∞

V3,(1,0)(z
i+(c−γ)u,zr+(γ−r)u)

V3,(0,1)(z
i+(c−γ)u,zr+(γ−r)u)

,

where V3,(v1,v3) refers to equation (18) together with the initial conditions V1(0) = v1 and
V3(z

i, zr) = v3.

Proof. From equations (15) and (18) and using parameterization (16), we obtain the fol-
lowing equations’ system:

V1(z) = V1(0) +
λ
c

∫ z

0
V1(z − y)(1− F (y))dy

V3(z
i + (c− γ)u, zr + (γ − r)u) = V3(z

i, zr) + λ
∫ u

0
V3(z

i + (c− γ)s, zr + (γ − r)s)−

−
∫ min{ zr+(γ−r)s

α
,
zi+(c−γ)s

1−α
}

0 V3(z
i + (c− γ)s− (1− α)y, zr + (γ − r)s− αy)dF (y)−

−
∫ zi+zr+(c−r)s

zr+(γ−r)s
α

V1(z
i + zr + (c− r)t− y)dF (y)ds

Let (V1,v1 , V3,(v1,v3)) be the solution to this system with the initial conditions V1(0) = v1

and V3(z
i, zr) = v3. The function (v1, v3) 7→ (V1,v1 , V3,(v1,v3)) is linear. Therefore,

(V1,v1 , V3,(v1,v3)) = v1(V1,1, V3,(1,0)) + v3(V1,0, V3,(0,1)) =

v1(V1,1, V3,(1,0)) + v3(0, V3,(0,1)).

From proposition 3.11., we know that v1 =
c−λE[Y ]

c
. In proposition 3.10. we have derived

that limu→+∞ V3(z
i + (c− γ)u, zr + (γ − r)u) = 0. As such, we conclude that

v3 = − c−λE[Y ]
c

limu→+∞
V3,(1,0)(z

i+(c−γ)u,zr+(γ−r)u)

V3,(0,1)(z
i+(c−γ)u,zr+(γ−r)u)

.
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3.3 Numerical Examples

Up until this point we have obtained a formula for the probability given by V1(z) with
an explicit boundary condition, in equation (15), and expressions for V2 and V3, given by
the equations (17) and (18) with implicit boundary conditions, established in propositions
3.12. and 3.13. This setup allows for the numerical calculations of the survival probabil-
ities of direct insurer and reinsurer, given the insurance premium c, the minimum return
of the reinsurer r, a reinsurance policy contractually defining the reinsurance premium γ

and the ceded portion of the claims α, the claim severity distribution, the intensity of the
Poisson counting process λ, as well as the initial surplus of each participant.
To simplify the notation, let us introduce some linear operators.

Definition 3.2. (Some useful operators): Let Ψ, Θ and Λ be linear operators such that

Ψv =λ

∫ u

0

v(zi + (c− γ)t, zr + (γ − r)t)−

−
∫ min{ zr+t(γ−r)

α
,
zi+t(c−γ)

1−α
}

0

v(zi + (c− γ)t− (1− α)y, zr + (γ − r)t− αy)dF (y)dt,

(19)

Θv = −λ

∫ u

0

∫ zi+zr+(c−r)t

zr+(γ−r)t
α

v(zi + zr + (c− r)t− y)dF (y)dt, (20)

and
Λv(z) =

λ

c

∫ z

0

v(z − y)(1− F (y))dy. (21)

Under the above definition, we can express (15), (17) and (18) as follows

V1 =
c− λE[Y ]

c
+ ΛV1, (22)

V2 = V2(z
i, zr) + ΨV2, (23)

V3 = V3(z
i, zr) + ΨV3 +ΘV1. (24)

Since some boundary conditions are not explicitly known, there is a need to define some
auxiliary functions for which we are able to do numerical computation.
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Definition 3.3. (Auxiliary functions): Let Ṽ2, Ṽ 1
3 , Ṽ 2

3 be functions with domain in R2

and Ṽ 1
1 and Ṽ 2

1 be functions with domain in R such that

Ṽ2 = 1 + ΨṼ2, (25)(
Ṽ 1
1

Ṽ 1
3

)
=

(
1

0

)
+

(
ΛṼ 1

1

ΘṼ 1
1 +ΨṼ 1

3

)
, (26)

(
Ṽ 2
1

Ṽ 2
3

)
=

(
0

1

)
+

(
ΛṼ 2

1

ΘṼ 2
1 +ΨṼ 2

3

)
. (27)

The numerical solution to equation (25) can be normalized, thus allowing us to obtain
values for the probabilities given by V2. A linear combination of the solutions for Ṽ 1

3

and Ṽ 2
3 will be used in order to derive values for V3. Then, we are able to estimate the

probability of ruin of the reinsurer and of the first line insurer, through the expressions
(10) and (11), respectively.
We start by obtaining Ṽ2 numerically, through equation (25). To solve this integral equa-
tion we opted to apply the trapezium rule, requiring the development of several integration
grids depending on the parameters of the problem and the relations among them, as well as
the initial surpluses. These grids represent a set of intersection points, with non-negative
coordinates, between two families of lines. The first family of lines is given by the pa-
rameterization (16), over which the integration variable t will be discretized. The second
family of lines will contain the points of discretization of the integration variable y and is
represented by the following parameterization:

(xi, xr) = (zi, zr) + u(1− α, α), u ≥ 0. (28)

where zi, zr, u ∈ R+
0 , and zi = 0 or zr = 0. In order to implement such grids, we created

for each necessary case a matrix A that contains all of the points of intersection, with both
positive coordinates, of the lines of the form (16) and (28), for a set of intercepts (zi, zr).
The points of intersection of the lines with the first quadrant axes are stored in separated
vectors, AC for lines represented by the points on the columns of A, and AL for those
points stored along the lines of A. A graphical representation of some examples of such
grids are presented in Figure 1.

Next, we present a possible approximated solution to equations of the form g(xi, xr) =

Φ(xi, xr) + Ψg(xi, xr). This result can be used to estimate Ṽ2(x
i, xr), if we consider

Φ(xi, xr) = 1 and g = Ṽ2.
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(a) Grid with all lines cross-
ing the vertical axis

(b) Grid with lines crossing
both axes

(c) Grid with all lines cross-
ing the horizontal axis

FIGURE 1: Geometrical representation of some possible integration grids.

Numerical Scheme 1 (Numerical solution of g = Φ+Ψg): Let g be a function such that
g : R2 → [0, K], K ∈ R, and g = Φ + Ψg. If min{ zr+t(γ−r)

α
, z

i+t(c−γ)
1−α

} = (γ−r)t
α

, such
function can be approximated over a set of discrete points by the following expression:

g(xi
k,l, x

r
k,l) ≈

[
Φ(xi

k,l, x
r
k,l) + λ

∫ xrk,l−1
γ−r

0

gk,l−1dt+ gk,l−1 ×
xr
k,l − xr

k,l−1

2(γ − r)

−

− λ

(∫ xr
k,n[k]
α

0

g(xi
k,n[k] − (1− α)y, xr

k,n[k] − αy)f(y)dy ×
xr
k,n[k]

2(γ − r)
+

+
l−2∑

j=n[k]

((∫ xrk,j
α

0

g(xi
k,j − (1− α)y, xr

k,j − αy)f(y)dy+

+

∫ xrk,j+1
α

0

g(xi
k,j+1 − (1− α)y, xr

k,j+1 − αy)f(y)dy

)
×

xr
k,j+1 − xr

k,j

2(γ − r)

)
+

+

(∫ xrk,l−1
α

0

g(xi
k,l−1 − (1− α)y, xr

k,l−1 − αy)f(y)dy + f

(
xr
n∗[l],l

α

)
gk+1,l ×

xr
n∗[l],l

2α
+

+

n∗[l]−k−2∑
s=0

((
f

(
xr
n∗[l]−s,l

α

)
gk+1+s,l + f

(
xr
n∗[l]−s−1,l

α

)
gk+2+s,l

)
×

xr
n∗[l]−s−1,l − xr

n∗[l]−s,l

2α

)
+

+

(
f

(
xr
k+1,l

α

)
gn∗[l],l + f

(
xr
k,l

α

)
g0,l

)
×

xr
k,l − xr

k+1,l

2α

)
xr
k,l − xr

k,l−1

2(γ − r)

)]/
(
1− λ

2

xr
k,l − xr

k,l.1

γ − r

(
1− f(0)

xr
n∗[l],l

2α

))
,

(29)

where gk,l = g(xi
k,l, x

r
k,l), g0,l is the value of the function g on the intersection of the

column l of the integration grid with the horizontal axis, gk,0 is the value of the function
g on the intersection of line k of the integration grid with the horizontal axis, n[k] is
the first column that intersects line k of the integration grid in a point with both positive
coordinates, n∗[l] is the first line that intersects column l in a point with both positive
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coordinates, and using the following approximations:∫ xrk,l
γ−r

0 gk,ldt ≈ (gk,0 + gk,n[k])×
xr
k,n[k]

2(γ−r)
+
∑l−1

j=n[k]

(
(gk,j + gk,j+1)×

xr
k,j+1−xr

k,j

2(γ−r)

)
∫ xrk,l

α

0
g(xi

k,l − (1− α)y, xr
k,l − αy)f(y)dy ≈

(
f(0)gk,l + f

(
xr
n∗[l],l
α

)
gk+1,l

)
×

xr
n∗[l],l
2α

+

+
∑n[l]−k−2

s=0

((
f

(
xr
n∗[l]−s,l

α

)
gk+1+s,l+f

(
xr
n∗[l]−s−1,l

α

)
gk+2+s,l

)
×

xr
n∗[l]−s−1,l

−xr
n∗[l]−s,l

2α

)
+

+

(
f

(
xr
k+1,l

α

)
gn∗[l],l + f

(
xr
k,l

α

)
g0,l

)
× xr

k,l−xr
k+1,l

2α
.

On the other hand, if min{ zr+t(γ−r)
α

, z
i+t(c−γ)
1−α

} = (c−γ)t
1−α

, such function can be approxi-
mated over a set of discrete points by the following expression:

g(xi
k,l, x

r
k,l) =

[
Φ(xi

k,l, x
r
k,l) + λ

∫ xik,l−1
c−γ

0

gk,l−1dt+ gk,l−1 ×
xi
k,l − xi

k,l−1

2(c− γ)

−

− λ

(∫ xi
k,n[k]
1−α

0

g(xi
k,n[k] − (1− α)y, xr

k,n[k] − αy)f(y)dy ×
xi
k,n[k]

2(c− γ)
+

+
l−2∑

j=n[k]

((∫ xik,j
1−α

0

g(xi
k,j − (1− α)y, xr

k,j − αy)f(y)dy+

+

∫ xik,j+1
1−α

0

g(xi
k,j+1 − (1− α)y, xr

k,j+1 − αy)f(y)dy

)
×

xi
k,j+1 − xi

k,j

2(c− γ)

)
+

+

(∫ xik,l−1
1−α

0

g(xi
k,l−1 − (1− α)y, xr

k,l−1 − αy)f(y)dy + f

(
xi
n∗[l],l

1− α

)
gk+1,l ×

xi
n∗[l],l

2(1− α)
+

+

n∗[l]−k−2∑
s=0

((
f

(
xi
n∗[l]−s,l

1− α

)
gk+1+s,l + f

(
xi
n∗[l]−s−1,l

1− α

)
gk+2+s,l

)
×

xi
n∗[l]−s−1,l − xi

n∗[l]−s,l

2(1− α)

)
+

+

(
f

(
xi
k+1,l

1− α

)
gn∗[l],l + f

(
xi
k,l

1− α

)
g0,l

)
×

xi
k,l − xi

k+1,l

2(1− α)

)
xi
k,l − xi

k,l−1

2(c− γ)

)]/
(
1− λ

2

xi
k,l − xi

k,l.1

c− γ

(
1− f(0)

xi
n∗[l],l

2(1− α)

))
,

(30)
using the same notation as in the previous case and using the following approximations:∫ xik,l

c−γ

0 gk,ldt ≈ (gk,0 + gk,n[k])×
xi
k,n[k]

2(c−γ)
+
∑l−1

j=n[k]

(
(gk,j + gk,j+1)×

xi
k,j+1−xi

k,j

2(c−γ)

)
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∫ xik,l
1−α

0 g(xi
k,l − (1− α)y, xi

k,l − αy)f(y)dy ≈

(
f(0)gk,l + f

(
xi
n∗[l],l
1−α

)
gk+1,l

)
×

xi
n∗[l],l

2(1−α)
+

+
∑n[l]−k−2

s=0

((
f

(
xi
n∗[l]−s,l

1−α

)
gk+1+s,l+f

(
xi
n∗[l]−s−1,l

1−α

)
gk+2+s,l

)
×

xi
n∗[l]−s−1,l

−xi
n∗[l]−s,l

2(1−α)

)
+

+

(
f

(
xi
k+1,l

1−α

)
gn∗[l],l + f

(
xi
k,l

1−α

)
g0,l

)
× xi

k,l−xi
k+1,l

2(1−α)
.

Proof. The proof of this proposition can be found in Appendix D.

Using Numerical Scheme 1, we are able to numerically calculate Ṽ2(x
i, xr) and to esti-

mate the normalization constant that will be used to obtain V2(x
i, xr), through the expres-

sion presented in Proposition 3.14.

Proposition 3.14. (Obtaining V2(x
i, xr) from Ṽ2(x

i, xr)): Ṽ2(x
i, xr) and V2(x

i, xr) are
related through the following expression:

V2(u) =
Ṽ2(u)

Ṽ2(∞)
, (31)

where u is the superior limit on the integral over t in the definition of Ψ.

Proof. This follows from the fact that Ṽ2(u) is a limited increasing function.

Example 3.1.: A reinsurance policy is in place such that the reinsurance premium, γ, is
7 and the ceded portion of each claim, α, is 30%. The insurance premium, c, is 15 and
the minimum income for the reinsurer, r, is 5. The initial surplus of the cedent and the
reinsurer are, respectively, 40 and 8. Supposing that the frequency parameter, λ, is 1 and
that the claims follow a Gamma distribution with shape parameter 5 and scale parameter
1, the application of Numerical Scheme 1 results in an approximated value for Ṽ2(40, 8)

of 3.69723.
In order to estimate Ṽ2(∞), some examples are estimated with the stated parameters and
initial surpluses along the line xr = γ−r

c−γ
xi, corresponding to parameterization (16) with

intercept on (0, 0). Considering a sequence un such that u0 = 0 and un → ∞, we have

Ṽ2(∞) = 1 +
∑∞

n=1(Ṽ2(un)− Ṽ2(un−1)) =

= Ṽ2(uk) +
∑∞

n=k+1(Ṽ2(un)− Ṽ2(un−1)).

Over the line xr =
γ−r
c−γ

xi, it is observed that (Ṽ2(un+1)−Ṽ2(un))

(Ṽ2(un)−Ṽ2(un−1))
seems to be converging to a

value of 0.9688. As such, we consider the following approximation of Ṽ2(∞).

Ṽ2(∞) ≈ Ṽ2(uk) +
0.9688k

1−0.9688
.

This results in a final approximated value for Ṽ2(∞) of 9.83647. It is worth noticing that
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the matrices for this process can rapidly become very large, thus making the necessary
calculations require a lot of computational power. As such, the apparent stabilization of
the quotient of successive increments could in reality be a very slow convergence process
to some other constant. More computational power could help provide a more accurate
estimation for the normalization constant Ṽ2(∞).
Nevertheless, using the estimated normalization constant, we obtain an approximated
value of 0.372903 for the probability V2. Using equation (10), this translates in a proba-
bility of ruin of the reinsurer of around 62.7%. This would be a concerning value from
a ruin theory standpoint and can be justified by the fact that the expected value of claims
ceded to the reinsurer is αλE[Y ] = 1.5, while the net income of the reinsurer is γ−r = 2,
meaning that the reinsurer is operating on a rather slim margin. Furthermore, the low ini-
tial reserves of the reinsurer compared to the expected value of claims also plays a role in
this rather high ruin probability.
For the set of parameters of this example, we are able to plot the probability of ruin of the
reinsurer for the initial wealths considered along the integration grid and this is presented
in Figure 2.

FIGURE 2: Probability of ruin of the reinsurer as a function of the initial surpluses, along
the integration grid.

We can observe that, as the initial surpluses of the cedent and of the reinsurer grow, the
probability of ruin of the reinsurer decreases. The positive effect of the direct insurer’s
wealth can be justified by the fact that the eventual ruin of the insurer, in the herein
described market, would in time mandatorily lead to the reinsurer’s ruin.

We now present an expression to approximate V1(z). Since this is a univariate function,
the discretization of the argument is made along a single vector.

Numerical Scheme 2 (Approximation of V1): V1(z), for z ∈ R+
0 , can be approximated

by the following expression, where yj are elements of a vector of k equidistant points,
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such that y1 = 0 and yk = z.

V1(z) ≈

[
c− λE[Y ]

c
+

λ

c

(
V1(z − y2)(1− F (y2))

y2
2

+
k−1∑
j=2

((V1(z − yj)(1− F (yj))+

+ V1(z − yj+1)(1 − F (yj+1))) × yj+1 − yj
2

)

)]/[
1 − λ

c
(1 − F (0))

y2
2

]
.

(32)

Proof. Follows from the application of the trapezium rule to equation (15).

Example 3.2.: Using the same parameters as in example 3.1. (c = 15, r = 5, γ =

7, α = 0.3, λ = 1, Y ∼ Gamma(5, 1)), we can plot V1(z) for several values of z. This is
presented in Figure 3.

FIGURE 3: Probability of survival of the direct insurer, given the previous ruin of the
reinsurer and the insurer’s level of surplus at that time.

We can see that these approximations yield an increasing function plateauing near to 1,
as expected, given that V1(z) represents the probability of survival of the insurer, given
the ruin of the reinsurer and the level of surplus of the direct insurer immediately after the
moment of said ruin. Therefore, we can observe that the higher that surplus, the higher
the survival probability given by V1. Notice as well, that V1(0) =

2
3
, consistent with the

boundary condition given in Proposition 3.11.

In order to estimate V3, it is necessary to solve the systems of equations (26) and (27).
The simplification of these systems is the object of proposition 3.15.
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Proposition 3.15. (Re-statement of systems (26) and (27)): The systems (26) and (27)
can be respectively written as(

Ṽ 1
1

Ṽ 1
3

)
=

(
c

c−λE[y]
V1

c
c−λE[y]

ΘV1 +ΨṼ 1
3

)
, (33)

Ṽ 2
3 = 1 + ΨṼ 2

3 . (34)

Proof. Follows directly from the definition of the systems

The equations on Ṽ j
3 , j = 1, 2 are similar to equation (25), for which we have a solution

in Numerical Scheme 1, plus a term in V1, in the case of the system (33). This term will be
calculated in the points of the integration grid of Ṽ 1

3 , that takes the same shape as the one
described for Ṽ2: crossing lines following parameterizations (16) and (28), exemplified in
Figure 1. The next Numerical Scheme is devised to handle this term.

Numerical Scheme 3 (Approximation of ΘV1): If min{ zr+t(γ−r)
α

, z
i+t(c−γ)
1−α

} = (γ−r)t
α

,
ΘV1 can be approximated over the set of discrete points of the integration grid for V3(x

i, xr)

by the following expression:

−λ

(∫ zik

0

V1(z
i
k − y)f(y)dy +

∫ zik+
c−r
γ−r

xr
k,n[k]

xr
k,n[k]
α

V1

(
zik +

c− r

γ − r
xr
k,n[k] − y

)
f(y)dy

)

×
xr
k,n[k]

2(γ − r)
+

l−1∑
j=n[k]

((∫ zik+
c−r
γ−r

xr
k,j

xr
k,j
α

V1

(
zik +

c− r

γ − r
xr
k,j − y

)
f(y)dy+

+

∫ zik+
c−r
γ−r

xr
k,j+1

xr
k,j+1
α

V1

(
zik +

c− r

γ − r
xr
k,j+1 − y

)
f(y)dy

)
xr
k,j+1 − xr

k,j

2(γ − r)

)
, (35)

using the following approximation:∫ Gi
k,l

xr
k,l
α

V1(G
i
k,l − y)f(y)dy ≈

∑Q−1
s=L

(
(V1(yk,l,Q+1−s)f(yk,l,s) + V1(yk,l,Q−s)f(yk,l,s+1))× yk,l,s+1−yk,l,s

2

)
,

where zik is the intercept on the horizontal axis of line k of the integration grid for Ṽ 1
3 ,

Gk,l = zik +
c−r
γ−r

xr
k,l, AY is the integration vector for V1 respective to the point k, l in the

integration grid for Ṽ 1
3 , L is the position on AY of the lower bound of the integral and Q

is the length of AY , such that yk,l,Q = Gi
k,l.

If min{ zr+t(γ−r)
α

, z
i+t(c−γ)
1−α

} = (c−γ)t
1−α

, ΘV1 can be approximated over the set of discrete
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points of the integration grid for V3(x
i, xr) by the following expression:

−λ

(∫ zrk

zr

α

V1(z
r
k − y)f(y)dy +

∫ zrk+
c−r
c−γ

xi
k,n[k]

xr
k,n[k]
α

V1

(
zrk +

c− r

c− γ
xi
k,n[k] − y

)
f(y)dy

)

×
xi
k,n[k]

2(c− γ)
+

l−1∑
j=n[k]

((∫ zrk+
c−r
c−γ

xi
k,j

xr
k,j
α

V1

(
zrk +

c− r

c− γ
xi
k,j − y

)
f(y)dy+

+

∫ zrk+
c−r
c−γ

xi
k,j+1

xr
k,j+1
α

V1

(
zrk +

c− r

c− γ
xi
k,j+1 − y

)
f(y)dy

)
xi
k,j+1 − xi

k,j

2(c− γ)

)
, (36)

using the following approximation:∫ Gr
k,l

xi
k,l

1−α

V1(G
r
k,l − y)f(y)dy ≈

∑Q−1
s=L

(
(V1(yk,l,Q+1−s)f(yk,l,s) + V1(yk,l,Q−s)f(yk,l,s+1))× yk,l,s+1−yk,l,s

2

)
,

where zrk is the intercept on the vertical axis of line k of the integration grid for V3,
Gr

k,l = zrk +
c−r
c−γ

xi
k,l, AY is the integration vector for V1 respective to the point k, l in the

integration grid for V3, L is the position on AY of the lower bound of the integral and Q

is the length of AY , such that yk,l,Q = Gr
k,l.

Proof. Both results derive directly from the application of the trapezium rule to ΘV1.

Given the Numerical Schemes 1 and 3, we are able to derive an expression to approximate
Ṽ 1
3 .

Numerical Scheme 4 (Approximation of Ṽ 1
3 ): If min{ zr+t(γ−r)

α
, z

i+t(c−γ)
1−α

} = (γ−r)t
α

, Ṽ 1
3

can be approximated over the set of discrete point by the following expression:

Ṽ 1
3 (x

i
k,l, x

r
k,l) ≈

[
1 + λ

∫ xrk,l−1
γ−r

0

Ṽ 1
3 k,l−1dt+ Ṽ 1

3 k,l−1 ×
xr
k,l − xr

k,l−1

2(γ − r)

−

− λ

(∫ xr
k,n[k]
α

0

Ṽ 1
3 (x

i
k,n[k] − (1− α)y, xr

k,n[k] − αy)f(y)dy ×
xr
k,n[k]

2(γ − r)
+

+
l−2∑

j=n[k]

((∫ xrk,j
α

0

Ṽ 1
3 (x

i
k,j − (1− α)y, xr

k,j − αy)f(y)dy+

+

∫ xrk,j+1
α

0

Ṽ 1
3 (x

i
k,j+1 − (1− α)y, xr

k,j+1 − αy)f(y)dy

)
×

xr
k,j+1 − xr

k,j

2(γ − r)

)
+

+

(∫ xrk,l−1
α

0

Ṽ 1
3 (x

i
k,l−1 − (1− α)y, xr

k,l−1 − αy)f(y)dy + f

(
xr
n∗[l],l

α

)
Ṽ 1
3 k+1,l ×

xr
n∗[l],l

2α
+
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n∗[l]−k−2∑
s=0

((
f

(
xr
n∗[l]−s,l

α

)
Ṽ 1
3 k+1+s,l + f

(
xr
n∗[l]−s−1,l

α

)
Ṽ 1
3 k+2+s,l

)
×

xr
n∗[l]−s−1,l − xr

n∗[l]−s,l

2α

)

+

(
f

(
xr
k+1,l

α

)
Ṽ 1
3 n∗[l],l + f

(
xr
k,l

α

)
Ṽ 1
3 0,l

)
×

xr
k,l − xr

k+1,l

2α

)
xr
k,l − xr

k,l−1

2(γ − r)

)

− λ

(∫ zrk

0

V1(z
r
k − y)f(y)dy +

∫ zrk+
c−r
c−γ

xr
k,n[k]

xr
k,n[k]
α

V1

(
zrk +

c− r

c− γ
xr
k,n[k] − y

)
f(y)dy

)

×
xr
k,n[k]

2(γ − r)
+

l−1∑
j=n[k]

((∫ zrk+
c−r
c−γ

xr
k,j

xr
k,j
α

V1

(
zrk +

c− r

c− γ
xr
k,j − y

)
f(y)dy+

+

∫ zrk+
c−r
c−γ

xr
k,j+1

xr
k,j+1
α

V1

(
zrk +

c− r

c− γ
xr
k,j+1 − y

)
f(y)dy

)
xr
k,j+1 − xr

k,j

2(c− γ)

)]/
(
1− λ

2

xr
k,l − xr

k,l.1

γ − r

(
1− f(0)

xr
n∗[l],l

2α

))
.

(37)
If min{ zr+t(γ−r)

α
, z

i+t(c−γ)
1−α

} = (c−γ)t
1−α

, Ṽ 1
3 can be approximated over the set of discrete

points by the following expression:

Ṽ 1
3 (x

i
k,l, x

r
k,l) ≈

[
1 + λ

∫ xik,l−1
c−γ

0

Ṽ 1
3 k,l−1dt+ Ṽ 1

3 k,l−1 ×
xi
k,l − xi

k,l−1

2(c− γ)

−

− λ

(∫ xi
k,n[k]
1−α

0

Ṽ 1
3 (x

i
k,n[k] − (1− α)y, xr

k,n[k] − αy)f(y)dy ×
xi
k,n[k]

2(c− γ)
+

+
l−2∑

j=n[k]

((∫ xik,j
1−α

0

Ṽ 1
3 (x

i
k,j − (1− α)y, xr

k,j − αy)f(y)dy+

+

∫ xik,j+1
1−α

0

Ṽ 1
3 (x

i
k,j+1 − (1− α)y, xr

k,j+1 − αy)f(y)dy

)
×

xi
k,j+1 − xi

k,j

2(c− γ)

)
+

+

(∫ xik,l−1
1−α

0

Ṽ 1
3 (x

i
k,l−1 − (1− α)y, xr

k,l−1 − αy)f(y)dy + f

(
xi
n∗[l],l

1− α

)
Ṽ 1
3 k+1,l ×

xi
n∗[l],l

2(1− α)
+

n∗[l]−k−2∑
s=0

((
f

(
xi
n∗[l]−s,l

1− α

)
Ṽ 1
3 k+1+s,l + f

(
xi
n∗[l]−s−1,l

1− α

)
Ṽ 1
3 k+2+s,l

)
×

xi
n∗[l]−s−1,l − xi

n∗[l]−s,l

2(1− α)

)

+

(
f

(
xi
k+1,l

1− α

)
Ṽ 1
3 n∗[l],l + f

(
xi
k,l

1− α

)
Ṽ 1
3 0,l

)
×

xi
k,l − xi

k+1,l

2(1− α)

)
xi
k,l − xi

k,l−1

2(c− γ)

)
−

− λ

(∫ zrk

zr
k
α

V1(z
r
k − y)f(y)dy +

∫ zrk+
c−r
c−γ

xi
k,n[k]

xr
k,n[k]
α

V1

(
zrk +

c− r

c− γ
xi
k,n[k] − y

)
f(y)dy

)
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×
xi
k,n[k]

2(c− γ)
+

l−1∑
j=n[k]

((∫ zrk+
c−r
c−γ

xi
k,j

xr
k,j
α

V1

(
zrk +

c− r

c− γ
xi
k,j − y

)
f(y)dy+

+

∫ zrk+
c−r
c−γ

xi
k,j+1

xr
k,j+1
α

V1

(
zrk +

c− r

c− γ
xi
k,j+1 − y

)
f(y)dy

)
xi
k,j+1 − xi

k,j

2(c− γ)

)]/
(
1− λ

2

xi
k,l − xi

k,l.1

c− γ

(
1− f(0)

xi
n∗[l],l

2(1− α)

))
.

(38)

Proof. Follows directly from the Numerical Schemes 1 and 3, and their respective proofs.

The Numerical Schemes 1 and 4 allow us to obtain numerical results for Ṽ 1
3 and Ṽ 2

3 . A
linear combination of these functions is employed to derive values of V3. However, this
requires the definition of a new function.

Definition 3.4. (V4(x
r)): Let V4 be a function such that V4 : R → [0, 1] and

V4(x
r) = P{τ 0,r = +∞|X0,r

0 = xr}. (39)

Through analogous procedures to the ones applied to V1 throughout Section 3, we are able
to conclude that V4 can be written in integral form as

V4(x
r) = 1− λαE[Y ]

γ − r
+

λα

γ − r

∫ xr

α

0

V4(x
r − αy)(1− F (y))dy, (40)

and that this function can be approximated on the points of the integration grid by the
following expression

V4(x
r
k,l,j) =

[
1− λαE[Y ]

γ − r
+

λα

γ − r

(
V4(x

r
k,l,j−1)(1− F (y2))×

y2
2
+

+

j−2∑
s=1

(
(V4(x

r
k,l,j−s)(1− F (ys+1)) + V4(x

r
k,l,j−s−1)(1− F (ys+2)))×

ys+2 − ys+1

2

))]
/[

1− λα

γ − r
(1− F (0))

y2
2

]
,

(41)
where yj are the elements of an integration vector with dimension Q such that y1 = 0 and
yQ =

xr
k,l

α
.

We are now able to present the formula that will allow for the calculation of the probabil-
ities given by V3.
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Proposition 3.16. (Approximation of V3(x
i, xr)): V3(x

i, xr) can be obtained through the
following linear combination

V3(x
i, xr) = AṼ 1

3 (x
i, xr) +B(xr)Ṽ 2

3 (x
i, xr), (42)

where A = c−λE[Y ]
c

and B =
1−V4(xr)− c−λE[Y ]

c
Ṽ 1
3 (+∞,xr)

Ṽ 2
3 (+∞,xr)

.

Proof. Condition (42) follows directly from the definition of the systems of equations
(26) and (27), if A and B(xr) are such that(

V1

V3

)
=

(
A

B(xr)

)
+

(
ΛV1

ΘV1 +ΨV3

)
.

From Proposition 3.11. we know that A = c−λE[Y ]
c

.
In order to derive an expression for B(xr), we note that

limxi→∞ V3(x
i, xr) = P{τ 0,r < +∞|X0,r

0 = xr} = 1− V4(x
r).

As such,

c−λE[Y ]
c

Ṽ 1
3 (+∞, xr) +B(xr)Ṽ 2

3 (+∞, xr) = 1− V4(x
r),

and the expression of B(xr) follows.

Example 3.3.: Under the same setting as the previous examples A = 2
3
, and we estimate

V4(8) = 0.924636, Ṽ 1
3 (40, 8) = −2.26259 and Ṽ 2

3 (40, 8) = 3.70911. As for Ṽ 1
3 (+∞, 8)

and Ṽ 2
3 (+∞, 8) we estimate values of −4 and 5.83, respectively. The reservations ex-

pressed regarding computational power in example 3.1. are also applicable regarding
these estimations. Nonetheless, these values result in a 0.470331 estimate of B and re-
sulting final value for V3(40, 8) of 0.236121. This, in conjunction with the results found
in Example 3.1., and applying equation (9), gives an estimation of around 43.6% for the
probability of ruin of the direct insurer in an infinite time horizon.

4 EQUILIBRIUM CONDITIONS

We present a game with two participants, insurer and reinsurer, that interact by entering
a reinsurance contract, and have conflicting interests, that are expressed by each party’s
goal of minimizing the respective ruin probabilities. Given the system of equations de-
scribing the behaviour of the ruin probability of insurer and reinsurer given in Section 3,
we now aim to find an optimal strategy, in a Pareto sense, for both parties. This means
that the optimal solution is such that there is no other feasible strategy that improves the
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ruin probability of one competitor without negatively affecting the probability of ruin of
the other, thus achieving a market equilibrium. The reinsurer selects the reinsurance pre-
mium, while the insurer chooses a ceded portion of claims. As such, a strategy is given
by the pair (α, γ). We now formally define the concept of equilibrium point within the
context of the problem and derive an optimality condition.

Definition 4.1. (Equilibrium point): A strategy (α̂, γ̂) is an equilibrium point of the
game if and only if the following conditions are met:

1. V̄r(α̂ + h1, γ̂ + h2, x
i, xr) < V̄r(α̂, γ̂, x

i, xr) ⇒ V̄i(α̂ + h1, γ̂ + h2, x
i, xr) >

Vi(α̂, γ̂, x
i, xr)

2. V̄i(α̂ + h1, γ̂ + h2, x
i, xr) < V̄i(α̂, γ̂, x

i, xr) ⇒ V̄r(α̂ + h1, γ̂ + h2, x
i, xr) >

Vr(α̂, γ̂, x
i, xr)

This formalizes the idea of the Pareto equilibrium, where it is impossible to find a solution
where all competitors are better off.

Proposition 4.1. (Equilibrium condition I): The equilibrium condition is an equation of
the type

b∇α,γV̄r = ∇α,γV̄i, (43)

where b < 0.

Proof. Follows directly from definition 4.1.

The previous proposition means that, in equilibrium, the gradients of the probabilities of
ruin of insurer and reinsurer are collinear but point to opposite directions, which directly
follows from the concept of Pareto optimality.

Proposition 4.2. (Equilibrium condition II): The equilibrium condition is

∇α,γV3 = d∇α,γV2, (44)

where d < −1.

Proof. From proposition 4.1. and using equations (10) and (11), we know that

b∇α,γ(1− V2) = ∇α,γ(1− V2 − V3),

with b < 0.
This means that

−b∇α,γV2 = −∇α,γV2 −∇α,γV3 ⇔ ∇α,γV3 = (b− 1)∇α,γV2.
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Since b < 0, b− 1 can be substituted by a constant d < −1.

4.1 Algorithm for Numerical Optimization

In order to be able to derive the optimal solution for this reinsurance problem, it is nec-
essary to create an algorithm that can obtain such solution based on the implementation
of the equilibrium condition presented in Proposition 4.2.. Since neither V2 or V3 have
explicit boundary conditions, we will be once again resorting to the auxiliary functions Ṽ2

and Ṽ3 in the algorithm. To obtain ∇α,γV2 for a fixed set of parameters we have Algorithm
1.

Algorithm 1 Calculating ∇α,γV2

DERIVATIVES OF Ṽ2 IN ORDER TO THE INITIAL SURPLUSES

Solve ∂Ṽ2

∂xi = ∂Ψ
∂xi Ṽ2 +Ψ∂Ṽ2

∂xi

Solve ∂Ṽ2

∂xr = ∂Ψ
∂xr Ṽ2 +Ψ∂Ṽ2

∂xr

DERIVATIVE OPERATORS OF Ψ IN ORDER TO THE TARGET PARAMETERS

Define ∂Ψ
∂α

Ṽ2 =
∂Ψ̄
∂α

(Ṽ2,
∂Ṽ2

∂xr ,
∂Ṽ2

∂xi )

Define ∂Ψ
∂γ
Ṽ2 =

∂Ψ̄
∂γ
(Ṽ2,

∂Ṽ2

∂xr ,
∂Ṽ2

∂xi )

DERIVATIVES OF Ṽ2 IN ORDER TO THE TARGET PARAMETERS

Solve ∂Ṽ2

∂α
= ∂Ψ

∂α
Ṽ2 +Ψ∂Ṽ2

∂α

Solve ∂Ṽ2

∂γ
= ∂Ψ

∂γ
Ṽ2 +Ψ∂Ṽ2

∂γ

DERIVATIVES OF V2 IN ORDER TO THE TARGET PARAMETERS

Do ∂V2

∂α
(u) =

[
∂Ṽ2

∂α
(u)Ṽ2(∞)− Ṽ2(u)

∂Ṽ2

∂α
(∞)

]/
Ṽ2(∞)2

Do ∂V2

∂γ
(u) =

[
∂Ṽ2

∂γ
(u)Ṽ2(∞)− Ṽ2(u)

∂Ṽ2

∂γ
(∞)

]/
Ṽ2(∞)2

OBTAIN ∇α,γV2

Do ∇α,γV2(x
i, xr) = (∂V2

∂α
(xi, xr), ∂V2

∂γ
(xi, xr))

Notice that all equations that must be solved in Algorithm 1 have the form

g = Φ+Ψg.

Thus, if the different functions Φ are estimated on the appropriate points, Numerical
Scheme 1 can be employed to solve the necessary equations.
Algorithm 2 presents a similar scheme to obtain ∇α,γV3.
Algorithm 1 and Algorithm 2 are able to obtain the value of the necessary derivatives
to calculate the gradient vector featured in the equilibrium condition II. The spirit of the
overall optimization algorithm would be to start with some initial guesses for the target
parameters, α and γ, that define the reinsurance treaty, and calculate ∇α,γV2 and ∇α,γV3.

33



ELISABETE FINO REINSURANCE OPTIMIZATION

Then, a stopping criteria would be used in order to decide if this solution is such that
the equilibrium condition is closely enough verified. If not, the algorithm would reiterate
after re-adjusting the parameters, until the optimization criteria is met.

Algorithm 2 Calculating ∇α,γV3

DERIVATIVES OF V1 IN ORDER TO THE TARGET PARAMETERS

Solve ∂V1

∂α
= λ

c

∫ z

0
∂V1

∂α
(z − y)(1− F (y))dy

Solve ∂V1

∂γ
= λ

c

∫ z

0
∂V1

∂γ
(z − y)(1− F (y))dy

DERIVATIVE OPERATORS OF Θ IN ORDER TO THE TARGET PARAMETERS

Calculate ∂Θ
∂α

V1

Calculate ∂Θ
∂γ
V1

DERIVATIVE OPERATORS OF Θ IN ORDER TO THE INITIAL SURPLUSES

Calculate ∂Θ
∂xiV1

Calculate ∂Θ
∂xrV1

DERIVATIVES OF Ṽ3 IN ORDER TO THE INITIAL SURPLUSES

Solve ∂Ṽ3

∂xi = ∂Ψ
∂xi Ṽ3 +

∂Θ
∂xiV1 +Ψ∂Ṽ3

∂xi

Solve ∂Ṽ3

∂xr = ∂Ψ
∂xr Ṽ3 +

∂Θ
∂xrV1 +Ψ∂Ṽ3

∂xr

DERIVATIVE OPERATORS OF Ψ IN ORDER TO THE TARGET PARAMETERS

Define ∂Ψ
∂α

Ṽ3 =
∂Ψ̄
∂α

(Ṽ3,
∂Ṽ3

∂xr ,
∂Ṽ3

∂xi )

Define ∂Ψ
∂γ
Ṽ3 =

∂Ψ̄
∂γ
(Ṽ3,

∂Ṽ3

∂xr ,
∂Ṽ3

∂xi )

DERIVATIVES OF Ṽ3 IN ORDER TO THE TARGET PARAMETERS

Solve ∂Ṽ3

∂α
= ∂Ψ

∂α
Ṽ3 +

∂Θ
∂α

V1 +Ψ∂Ṽ3

∂α
+Θ∂V1

∂α

Solve ∂Ṽ3

∂γ
= ∂Ψ

∂γ
Ṽ3 +

∂Θ
∂γ
V1 +Ψ∂Ṽ3

∂γ
+Θ∂V1

∂γ

DERIVATIVES OF V3 IN ORDER TO THE TARGET PARAMETERS

Do ∂V3

∂α
(u) =

[
∂Ṽ3

∂α
(u)Ṽ3(∞)− Ṽ3(u)

∂Ṽ3

∂α
(∞)

]/
Ṽ3(∞)2

Do ∂V3

∂γ
(u) =

[
∂Ṽ3

∂γ
(u)Ṽ3(∞)− Ṽ3(u)

∂Ṽ3

∂γ
(∞)

]/
Ṽ3(∞)2

OBTAIN ∇α,γV3

Do ∇α,γV3(x
i, xr) = (∂V3

∂α
(xi, xr), ∂V3

∂γ
(xi, xr))
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ELISABETE FINO REINSURANCE OPTIMIZATION

5 CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we created a market with two insurers, one taking the role of direct insurer
to some risk pool present in society, and the other taking the role of the reinsurer. Both
firms then engage in a proportional reinsurance contract. Following a strand of literature
that argues that such policy needs to benefit both parties involved, we seeked to optimize
the reinsurance parameters, i.e., the ceded proportion of each claim and the reinsurance
premium, in order to have direct insurer and reinsurer minimizing their ruin probability
and achieving a Pareto optimum in the market. To the best of our knowledge, this is an
original approach.
To do so, we defined surplus processes for the involved parties, inspired by the Lundberg
process typically used in risk theory. From there, we derived a set of integro-differential
equations and the respective boundary conditions, describing the behaviour of the ruin
probabilities of the cedent and of the reinsurer as a function of their initial surpluses. We
assumed that, if the first line insurer reaches ruin before the reinsurer, then the latter no
longer provides risk coverage. We were able to prove that, under this assumption, the ruin
probability of the reinsurer is always at least as large as the ruin probability of the direct
insurer. Furthermore, we found that as the initial surpluses of both firms tend to infinity,
their respective ruin probabilities tend to zero, which is a fairly intuitive result.
Approximated solutions for the derived set of integro-differential equations were pre-
sented and some numerical illustrations were put forward, implementing said solutions.
It is worth noticing that the integration grids required to obtain good solutions for this
problem grow rapidly as a function of the initial surpluses and are fairly sensitive to the
parameters, so this can require a lot of computational power.
We then derived Pareto equilibrium conditions for the problem at hand and proposed a
possible algorithm to numerically obtain optimal solutions.
The model presented is conceptually simple and has several limitations, such as not con-
sidering investment decisions of the cedent and the reinsurer. Also, the pricing decision
of the reinsurer does not include any consideration of market conditions. In addition,
Schlesinger & Doherty (1985) observe that when taking risk, an insurer should not only
take into account the statistical properties of the risk itself, but also any existing corre-
lations between that risk and the firm’s wealth. In this study we consider income to be
deterministic, so this effect cannot be contemplated. Further research could be developed
to address these limitations as well as expanding the theoretical market to include more
players. It would also be of interest to continue the development of the numerical solu-
tions and schemes proposed and to study the sensitivity of the ruin probabilities to the
parameters of the problem.
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APPENDICES

Appendix A. Proof of Proposition 3.3.

By definition,

f2(u) = P{τ 0,i = +∞, τ 0,r = +∞|X0,i
0 = zi + (c− γ)u,X0,r

0 = zr + (γ − r)u)}
= 1− P{τ 0,i < +∞∨ τ 0,r < +∞|X0,i

0 = zi + (c− γ)u,X0,r
0 = zr + (γ − r)u)}.

To simplify the notation, let P{·|X0,i
0 = zi + (c− γ)u,X0,r

0 = zr + (γ − r)u)} = Pu{·}.
We have

1− Pu{τ 0,i < +∞∨ τ 0,r < +∞} =

= 1−
∑+∞

n=1(Pu{τ 0,i = Tn, τ
0,r > Tn−1}+ Pu{τ 0,r = Tn < τ 0,i}).

Using Fubini’s theorem the sum can be separated into two series and the above expression
becomes

1−
∑+∞

n=1 Pu{τ 0,i = Tn, τ
0,r > Tn−1} −

∑+∞
n=1 Pu{τ 0,r = Tn < τ 0,i}.

The sum of absolutely continuous functions is absolutely continuous, so to prove the de-
sired result it is enough to prove that the summed probabilities are absolutely continuous
with respect to u.
Pu{τ 0,i = Tn, τ

0,r > Tn−1} can be written as

Pu{X0,i
T1

≥ 0, X0,r
T1

≥ 0, ..., X0,i
Tn−1

≥ 0, X0,r
Tn−1

≥ 0, X0,i
Tn

< 0}

= Pu{X0,i
T1

= zi + (c− γ)(u+ t∗1)− (1− α)Y1 ≥ 0,

X0,r
T1

= zr + (γ − r)(u+ t∗1)− αY1 ≥ 0, ...,

..., X0,i
Tn−1

= zi + (c− γ)(u+
∑n−1

i=1 t∗i )− (1− α)
∑n−1

i=1 Yi ≥ 0,

X0,r
Tn−1

= zr + (γ − r)(u+
∑n−1

i=1 t∗i )− α
∑n−1

i=1 Yi ≥ 0,

X0,i
Tn

= zi + (c− γ)(u+
∑n

i=1 t
∗
i )− (1− α)

∑n
i=1 Yi < 0} =

= Pu{Y1 ≤ min{ zi+(c−γ)(u+t∗1)

(1−α)
,
zr+(γ−r)(u+t∗1)

α
}, ...,

..., Yn−1 ≤ min{ zi+(c−γ)(u+
∑n−1

i=1 t∗i )

(1−α)
−
∑n−2

i=1 Yi,
zr+(γ−r)(u+

∑n−1
i=1 t∗i )

α
−
∑n−2

i=1 Yi},
Yn >

zi+(c−γ)(u+
∑n

i=1 t
∗
i )

(1−α)
−
∑n−1

i=1 Yi}.

Let hi(p, q) =
zi+(c−γ)p

(1−α)
−q, hr(p, q) =

zr+(γ−r)p
α

−q and g(p, q) = min{hi(p, q), hr(p, q)}.
This probability can be expressed in integral form as∫

[0,+∞[n

∫ g(u+t∗1,0)

0

∫ g(u+t∗1+t∗2,Y1)

0
...
∫ g(u+

∑n−1
i=1 t∗i ,

∑n−2
i=1 Yi)

0∫ +∞
hi(u+

∑n
i=1 t

∗
i ,
∑n−1

i=1 Yi)
dF (Yn)...dF (Y1)λ

ne−λ
∑n

i=1 t
∗
i dt∗n...dt

∗
1 =

=
∫
[0,+∞[n

∫ g(u+t∗1,0)

0

∫ g(u+t∗1+t∗2,Y1)

0
...
∫ g(u+

∑n−1
i=1 t∗i ,

∑n−2
i=1 Yi)

0
(1− F (hi(u+
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∑n
i=1 t

∗
i ,
∑n−1

i=1 Yi)))dF (Yn)...dF (Y1)λ
ne−λ

∑n
i=1 t

∗
i dt∗n...dt

∗
1.

If we proceed to the substitution s = u+ t∗1, the above expression becomes

eλu
∫ +∞
u

∫
[0,+∞[n−1

∫ g(s,0)

0

∫ g(s+t∗2,Y1)

0
...
∫ g(s+

∑n−1
i=2 t∗i ,

∑n−2
i=1 Yi)

0
(1− F (hi(s+∑n

i=2 t
∗
i ,
∑n−1

i=1 Yi)))dF (Yn−1)...dF (Y1)λ
ne−λ(s+

∑n
i=2 t

∗
i )dt∗n...ds.

As for Pu{τ 0,r = Tn < τ 0,i}, this probability can be written as

Pu{X0,r
T1

≥ 0, X0,i
T1

≥ 0, ..., X0,r
Tn−1

≥ 0, X0,i
Tn−1

≥ 0, X0,r
Tn

< 0, X0,i
Tn

≥ 0}.

Analogously to the proof for the first probability, this is equal to∫
[0,+∞[n

∫ g(u+t∗1,0)

0

∫ g(u+t∗1+t∗2,Y1)

0
...
∫ g(u+

∑n−1
i=1 t∗i ,

∑n−2
i=1 Yi)

0∫ hi(u+
∑n

i=1 t
∗
i ,
∑n−1

i=1 Yi)

hr(u+
∑n

i=1 t
∗
i ,
∑n−1

i=1 Yi)
dF (Yn)...dF (Y1)λ

ne−λ
∑n

i=1 t
∗
i dt∗n...dt

∗
1 =

∫
[0,+∞[n

∫ g(u+t∗1,0)

0

∫ g(u+t∗1+t∗2,Y1)

0
...
∫ g(u+

∑n−1
i=1 t∗i ,

∑n−2
i=1 Yi)

0
(F (hi(u+

∑n
i=1 t

∗
i ,
∑n−1

i=1 Yi))−
F (hr(u+

∑n
i=1 t

∗
i ,
∑n−1

i=1 Yi)))dF (Yn−1)...dF (Y1)λ
ne−λ

∑n
i=1 t

∗
i dt∗n...dt

∗
1.

Using the same substitution as before, s = u+ t∗1, a similar result is obtained:

Pu{τ 0,r = Tn < τ 0,i} =

eλu
∫ +∞
u

∫
[0,+∞[n−1

∫ g(s,0)

0

∫ g(s+t∗2,Y1)

0
...
∫ g(s+

∑n−1
i=2 t∗i ,

∑n−2
i=1 Yi)

0
(F (hi(s+∑n

i=2 t
∗
i ,
∑n−1

i=1 Yi))− F (hr(s+∑n
i=2 t

∗
i ,
∑n−1

i=1 Yi)))dF (Yn−1)...dF (Y1)λ
ne−λ(s+

∑n
i=2 t

∗
i )dt∗n...ds.

Since eλu is an absolutely continuous function and the product of absolutely continuous
functions is absolutely continuous, the result is proved.

Appendix B. Proof of Proposition 3.7.

For a general increment h, we have:

V3(x
i, xr) = P{τ 0,r < τ 0,i, τ 1,i = +∞|X0,i

0 = xi, X0,r
0 = xr} =

= P{τ 0,r < τ 0,i, τ 1,i = +∞, T1 > h|X0,i
0 = xi, X0,r

0 = xr}+ P{τ 0,r < τ 0,i, τ 1,i =

+∞, T1 ≤ h < T2|X0,i
0 = xi, X0,r

0 = xr}+ o(h) =

= V3(x
i + (c− γ)h, xr + (γ − r)h)e−λh + P{τ 0,r = T1 < τ 0,i, τ 1,i = +∞, T1 ≤ h <

T2|X0,i
0 = xi, X0,r

0 = xr}+ P{T1 < τ 0,r < τ 0,i, τ 1,i = +∞, T1 ≤ h < T2|X0,i
0 =

xi, X0,r
0 = xr}+ o(h) =

= V3(x
i + (c− γ)h, xr + (γ − r)h)(1− λh) + P{xr + (γ − r)T1 − αY1 <

0, xi + (c− γ)T1 − (1− α)Y1 + xr + (γ − r)T1 − αY1 ≥ 0, τ 1,i = +∞, T1 ≤ h <

T2|X0,i
0 = xi, X0,r

0 = xr}+P{xr + (γ − r)T1 −αY1 ≥ 0, xi + (c− γ)T1 − (1−α)Y1 ≥
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0, τ 0,r < τ 0,i, τ 1,i = +∞, T1 ≤ h < T2|X0,i
0 = xi, X0,r

0 = xr}+ o(h) =

= V3(x
i + (c− γ)h, xr + (γ − r)h)− λV3(x

i, xr)h+ P{xr + (γ − r)T1 − αY1 <

0, xi + xr + (c− r)T1 − Y1 ≥ 0, τ 1,i = +∞, T1 ≤ h < T2|X0,i
0 = xi, X0,r

0 =

xr}+ P{xr + (γ − r)T1 − αY1 ≥ 0, xi + (c− γ)T1 − (1− α)Y1 ≥ 0, τ 0,r < τ 0,i, τ 1,i =

+∞, T1 ≤ h < T2|X0,i
0 = xi, X0,r

0 = xr}+ o(h) =

= V3(x
i + (c− γ)h, xr + (γ − r)h)− λV3(x

i, xr)h+ E[P{τ 1,i = +∞|X1,i
τr =

xi+xr+(c−r)T1−Y1}·χxr+(γ−r)T1
α

<Y1≤xi+xr+(c−r)T1
·χT1≤h<T2 ]+E[V3(x

i+(c−γ)T1−
(1− α)Y1, x

r + (γ − r)T1 − αY1) · χY1≤xr+(γ−r)T1
α

· χ
Y1≤xi+(c−γ)T1

1−α

· χT1≤h<T2 ] + o(h) =

= V3(x
i + (c− γ)h, xr + (γ − r)h)− λV3(x

i, xr)h+
∫ h

0

∫ +∞
h−t1

∫ xi+xr+(c−r)t1
xr+(γ−r)t1

α

P{τ 1,i =

+∞|X1,i
τr = xi + xr + (c− r)t1 − y}dF (y)λe−λt2dt2λe

−λt1dt1 +∫ h

0

∫ +∞
h−t1

∫ min{xr+(γ−r)t1
α

,
xi+(c−γ)t1

1−α
}

0 V3(x
i + (c− γ)t1 − (1− α)y, xr + (γ − r)t1 −

αy)dF (y)λe−λt2dt2λe
−λt1dt1 + o(h).

For a small value of h, the above expression approximates

V3(x
i + (c− γ)h, xr + (γ − r)h)− λV3(x

i, xr)h+ λh
∫ xi+xr

xr

α
P{τ 1,i = +∞|X1,i

τr =

xi + xr − y}dF (y) + λh
∫ min{xr

α
, xi

1−α
}

0 V3(x
i − (1− α)y, xr − αy)dF (y) + o(h).

Noticing that P{τ 1,i = +∞|X1,i
τr = xi + xr − y} = V1(x

i + xr − y), this is equal to

V3(x
i + (c− γ)h, xr + (γ − r)h)− λV3(x

i, xr)h+ λh
∫ xi+xr

xr

α
V1(x

i + xr − y)dF (y) +

λh
∫ min{xr

α
, xi

1−α
}

0 V3(x
i − (1− α)y, xr − αy)dF (y) + o(h).

Taking the limit, as h → 0+,

0 = limh→0+
V3(xi+(c−γ)h,xr+(γ−r)h)−V3(xi,xr)

h
− λV3(x

i, xr) + λ
∫ xi+xr

xr

α
V1(x

i + xr −

y)dF (y) + λ
∫ min{xr

α
, xi

1−α
}

0 V3(x
i − (1− α)y, xr − αy)dF (y) =

= (∂V3

∂xi (c− γ) + ∂V3

∂xr (γ − r))(xi, xr)− λV3(x
i, xr) + λ

∫ xi+xr

xr

α
V1(x

i + xr − y)dF (y) +

λ
∫ min{xr

α
, xi

1−α
}

0 V3(x
i − (1− α)y, xr − αy)dF (y),

which is equivalent to the proposed condition

(∂V3

∂xi (c− γ) + ∂V3

∂xr (γ − r))xi,xr = λ(V3(x
i, xr)−

−
∫ min{xr

α
, xi

1−α
}

0 V3(x
i − (1− α)Y, xr − αY )dF (y)−

∫ xi+xr

xr

α
V1(x

i + xr − y)dF (y))
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Appendix C. Continuation of the proof of Proposition 3.9.

Let Ar = {ω ∈ Ω : limt→+∞
X0,r

t (ω)

t
= (γ− r)−αλE[Y ]}, where Ω is the sample space.

Since we assume (γ − r) > αλE[Y ], we have that

∃k > 0 : ∀t > k,
X0,r

t

t
> 0,

which equivalent to saying

∃k > 0 : ∀t > k,X0,r
t > 0.

Let Br
k = {ω ∈ Ω : t > k =⇒ X0,r

t > 0}. If any sample path belongs to Ar, then
there is a value k such that the sample path belongs to Br

k. Therefore Ar is contained in
∪∞

k=1B
r
k. Since by the law of large numbers P (Ar) = 1, then P (∪∞

k=1B
r
k) = 1.

Defining T r as

T r =

{
sup{t > 0 : X0,r

t < 0} if ∃t > 0 : X0,r
t < 0

0 if ∀t > 0, X0,r
t ≥ 0,

the fact that P (∪∞
k=1B

r
k) = 1 means that P (T r < +∞) = 1. Let Z0,r

t = (γ − r)t −
α
∑Nt

i=1 Yi. Then,

P{τ 0,r < +∞|X0,i
0 = xi, X0,r

0 = xr} =

= P{∃0 ≤ t < +∞ : Z0,r
t < −xr} =

= P{inft≥0Z
0,r
t < −xr} =

= P{inft∈[0,T r]Z
0,r
t < −xr}

=
∑+∞

n=1 P{inft∈[0,T r]Z
0,r
t < −xr, Nt = n} ≤

≤
∑+∞

n=1 P{T r < +∞, (γ − r)t− α
∑n

n=1 Yi ≤ −xr}.

Since
∑+∞

n=1 P{T r < +∞, (γ − r)t − α
∑n

n=1 Yi ≤ xr} → 0 as xr → +∞,∀xi ∈ R,
then P{τ 0,r < +∞|X0,i

0 = xi, X0,r
0 = xr} also tends to 0.

Appendix D. Proof for Numerical Scheme 1

If min{ zr+t(γ−r)
α

, z
i+t(c−γ)
1−α

} = (γ−r)t
α

, we have that, given an integration grid that inter-
sects lines from the parameterizations (16) and (28),

zr = 0,
zi = xi − c−γ

γ−r
xr,

u = xr

γ−r
.

Substituting this into the equation g = Φ(xi, xr) + Ψg, we obtain

Ṽ2(x
i, xr) = Φ(xi, xr) + λ

∫ xr

γ−r

0 Ṽ2(x
i − c−γ

γ−r
xr + (c− γ)t, (γ − r)t)dt−

−λ
∫ xr

γ−r

0

∫ (γ−r)t
α

0
Ṽ2(x

i − c−γ
γ−r

xr + (c− γ)t− (1− α)y, (γ − r)t− αy)dF (y)dt.
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Proceeding first with the discretization on t over the lines of the integration grid, this gives
rise to the following approximation:

gk,l ≈ Φk,l + λ

[
(gk,0 + gk,n[k])×

xr
k,n[k]

2(γ−r)
+
∑l−2

j=n[k]

(
(gk,j + gk,j+1)×

xr
k,j+1−xr

k,j

2(γ−r)

)
+

+(gk,l−1 + gk,l)×
xr
k,l−xr

k,l−1

2(γ−r)

]
− λ

[(∫ 0

0
g(0− (1− α)y, 0− αy)f(y)dy+

+
∫ xr

k,n[k]
α

0
g(xi

k,n[k] − (1− α)y, xr
k,n[k] − αy)f(y)dy

)
×

xr
k,n[k]

2(γ−r)
+

+
∑l−2

j=n[k]

((∫ xrk,j
α

0
g(xi

k,j − (1− α)y, xr
k,j − αy)f(y)dy +

∫ xrk,j+1
α

0
g(xi

k,j+1 − (1−

α)y, xr
k,j+1 − αy)f(y)dy

)
× xr

k,j+1−xr
k,j

2(γ−r)

)
+

+

(∫ xrk,l−1
α

0
g(xi

k,l−1 − (1− α)y, xr
k,l−1 − αy)f(y)dy +

∫ xrk,l
α

0
g(xi

k,l − (1− α)y, xr
k,l −

αy)f(y)dy

)
× xr

k,l−xr
k,l−1

2(γ−r)

]
.

Simplifying some expressions and seeking to isolate gk,l, we can write

gk,l ≈ Φk,l + λ

[ ∫ xrk,l−1
γ−r

0 gk,l−1dt+ (gk,l−1 + gk,l)×
xr
k,l−xr

k,l−1

2(γ−r)

]
−

−λ

[ ∫ xr
k,n[k]
α

0
g(xi

k,n[k] − (1− α)y, xr
k,n[k] − αy)f(y)dy ×

xr
k,n[k]

2(γ−r)
+

+
∑l−2

j=n[k]

((∫ xrk,j
α

0
g(xi

k,j − (1− α)y, xr
k,j − αy)f(y)dy +

∫ xrk,j+1
α

0
g(xi

k,j+1 − (1−

α)y, xr
k,j+1 − αy)f(y)dy

)
× xr

k,j+1−xr
k,j

2(γ−r)

)
+(∫ xrk,l−1

α

0
g(xi

k,l−1 − (1−α)y, xr
k,l−1 −αy)f(y)dy+

(
f(0)gk,l + f(

xr
n[l],l

α
)gk+1,l

)
xr
n[l],l

2α
+

∑n[l]−k−2
s=0

((
f(

xr
n[l]−s,l

α
)gk+1+s,l + f(

xr
n[l]−s−1,l

α
)gk+2+s,l

)
xr
n[l]−s−1,l

−xr
n[l]−s,l

2(α)

)
(
f(

xr
k+1,l

α
)gn[l],l + f(

xr
k,l

α
)g0,l

)
× xr

k,l−xr
k+1,l

2α

)
xr
k,l−xr

k,l−1

2(γ−r))

]
.

Moving the terms with gk,l to the left-hand side and dividing by the resulting coefficient,
we obtain equation (29). An analogous proof can be done for equation (30) and is here
omitted. The other integral approximations result directly from the application of the
trapezium rule.
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