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Abstract

Within the realm of decentralized finance, liquidity providers are esteemed for

their vital role in maintaining liquidity pools. Nevertheless, they are exposed to a

significant risk referred to as impermanent loss. This happens when the prices of

one or more tokens fluctuate in relation to others or others within the same liquidity

pool, ultimately reducing the initial quantity of one or more assets and leading to

a temporary loss for the liquidity provider.

Impermanent loss can be affected by several factors, including price volatility,

asset correlation, trading volume, fees earned, time, and pool size. To reduce the

impact of impermanent loss in different market conditions, it is important to have a

good understanding of these factors and to choose the appropriate liquidity provision

strategies. By doing so, one can minimize the negative effects of impermanent loss.

To make informed investment decisions, liquidity providers must consider im-

permanent loss and carefully choose the most advantageous DeFi protocol to pro-

vide liquidity. This enables effective investment management and helps determine

whether to enter or exit a specific pool. This research provides a risk assessment

that offers liquidity providers guidelines to evaluate which of the four DeFi protocols

is likely to be the most optimal choice in terms of impermanent loss.

We start by providing an overview of how the Bitcoin blockchain works and

then focus our discussion on the Balancer protocol, Uniswap, and Curve Finance.

Throughout the research, we also stressed the significance of these decentralized

exchange’s Value functions and price definitions for the corresponding impermanent

loss formula.

From the premisses outlined in the Balancer, Uniswap V2, V3, and Curve Fi-

nance whitepapers, we establish and prove the correspondent impermanent loss

formula to be used throughout our discussion leaving the Curve Finance section in

the Appendix due to the page number restriction suggested by the School. Consid-

ering that to calculate the impermanent loss, one needs to have pool token prices at

a maturity date, we used a pure jump Lévy stochastic process to model the token

log price dynamics, which allows us to estimate any token price at a maturity date.

Since any market model based on a Lévy process is complex by nature, we also

provide a careful study of each stochastic process involved in the construction of

our model.

At last, we apply the derived model to a specific case, and once instances of our
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model are calibrated to the time series of each token, we manipulate these parame-

ters to generate distinct market conditions, notably those that are most prevalent.

Subsequently, we conducted a comparative analysis of the corresponding imperma-

nent losses within these protocols. In this manner, it became feasible to estimate in

which of the four decentralized finance protocols the liquidity provider’s investment

would be better shielded against impermanent loss.

Keywords: Bitcoin Blockchain, Ethereum Blockchain, Decentralized Finance,

Decentralized Exchange, Value Function, Impermanent Loss.
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Resumo

Os provedores de liquidez, ao contribuir com ativos para pools de liquidez, desempenham

um papel importante na finanças descentralizada. No entanto, estão vulneráveis a um

risco significativo conhecido como perda não realizada (PNR). Isso acontece quando os

preços de um ou mais tokens flutuam em relação aos outros ou a outros dentro do mesmo

pool de liquidez, reduzindo, em última instância, a quantidade inicial de um ou mais

ativos e resultando em uma PNR para o provedor de liquidez.

A PNR pode ser afetada por diversos fatores, incluindo volatilidade de preços, correlação

de ativos, volume de negociação, taxas auferidas, tempo e tamanho da pool. Para mitigar

o impacto da perda não realizada em diferentes condições de mercado, é crucial possuir

uma compreensão aprofundada desses fatores e selecionar estratégias adequadas de pro-

visão de liquidez. Dessa forma, é posśıvel minimizar os efeitos negativos da perda não

realizada.

Para tomar decisões de investimento informadas, os provedores de liquidez devem consid-

erar a perda não realizada e escolher cuidadosamente o protocolo de Finaças Descentral-

izada (FiD) mais vantajoso para fornecer liquidez. Isso possibilita uma gestão eficaz dos

investimentos e auxilia na decisão de entrar ou sair de uma pool espećıfica. Este estudo

fornece uma análise de risco que oferece aos provedores de liquidez diretrizes para avaliar

qual dos quatro protocolos FiD é provavelmente a escolha mais otimizada em termos da

PNR.

Iniciamos nossa exploração fornecendo uma exposição sobre os mecanismos operacionais

da blockchain do Bitcoin, direcionando posteriormente nosso foco para a análise do pro-

tocolo Balancer, Uniswap e Curve Finance. Ao longo de nossa discussão, enfatizamos a

importância da formulações das Funções de Valor, assim como as definições das taxas

marginais de substituição inerentes a cada um dessas corretoras descentralizadas, na

dedução das fórmulas que nos facultam a PNR como função de tempo.

Com base nas premissas delineadas nos whitepapers do Balancer, Uniswap V2, V3 e

Curve Finance, estabelecemos e comprovamos a fórmula correspondente de perda não

realizada a ser utilizada ao longo da nossa discussão deixando a seção do protocolo Curve
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Finance no Apêndice devido à restrição do úmero de página sugeridas pela Escola. Tendo

em consideração que para calcular a perda não realizada é necessário ter os preços dos

‘tokens’ da pool na maturidade, utilizamos um modelo de mercado de Lévy baseado no

processo estocástico Variância Gama processo que corresponde a um processo de salto

puro com o intuito de modelar a dinâmica do logaritmo de um ‘token’ qualquer.

Repare que qualquer modelo de mercado baseado num processo de Lévy é complexo

por natureza. Com efeito, também apresentamos um estudo detalhado de cada processo

estocástico envolvido na construção do nosso modelo.

Por fim, aplicamos o modelo derivado a um caso espećıfico e, uma vez calibrado instâncias

do nosso modelo às séries temporais de cada um dos ‘token’, manipulamos estes parâmetros

para originar diferentes condições do mercado, nomeadamente as mais usuais. Seguida-

mente, fizemos uma análise comparativa das correspondentes perdas não realizadas nestes

protocolos. Desta forma foi posśıvel estimar em qual dos quatro protocolos da finança

descentralizada o investimento deste provedor de liquidez estaria melhor protegido relati-

vamente à PNR.

Palavras-chave: “Blockchain” de “Bitcoin”, “Blockchain” de Ethereum, Finanças De-

scentralizada, Corretoras Descentralizada, Função de Valor, Perda Não Realizada.
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1 Introduction

Contextualization

The Blockchain technology has captured significant attention recently due to its revolu-

tionary nature. Essentially, a blockchain consists of a sequence of blocks, each containing

transactions, organized in a predetermined order. The blocks serve as the essential com-

ponents, with the first block acting as the foundation, and to ensure the security of the

blockchain, each block receives a unique cryptographic hash. Moreover, each block in-

cludes a reference to the previous block, creating a sequence of hashes that can be traced

back to the original block, known as the genesis block. The ”previous block hash” section

in the block header is important to the blockchain’s integrity. Any modification to a par-

ent block affects its hash, which in turn affects the hash of the child block. This cascading

effect extends to following blocks, making it computationally difficult to change earlier

blocks without recalculating the whole chain. As a result, the blockchain’s extensive

history becomes immutable, providing a key security component in systems like Bitcoin.

A Decentralized Application (DApp) is an innovative type of application that operates

on a decentralized blockchain network. Unlike traditional applications, DApps are built

to function in a decentralized environment, meaning that they are not controlled by any

single entity or authority. DApps are created through blockchain technology, which offers

enhanced security, transparency, and immutability.

Popular decentralized blockchain networks like Ethereum give developers the necessary

tools and infrastructure to build DApps. These DApps are designed to be open-source

and trustless, meaning that users can access or interact with the application without

relying on intermediaries. Transactions are processed on the blockchain network, and all

participants can view these transactions in real-time, ensuring transparency. DApps can

be utilized for a wide range of purposes, including financial applications, social networks,

gaming, and much more ( see [3], and [15]).

An Automated Market Maker (AMM) falls under the category of decentralized exchanges

(DEX), specifically a type of DApp that uses a mathematical algorithm to determine

the price of assets. Unlike centralized exchanges that rely on order books and matching

engines, AMMs execute trades using smart contracts in a decentralized and automated
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fashion. To function, AMMs require liquidity pools that are established by users whose

tokens deposit into a smart contract. These tokens allow for trades between different

assets, with the AMM adjusting the token price based on asset supply and demand ( see

[11]).

Decentralized Finance (DeFi) is a new financial system that allows individuals to access

various financial services without the need for traditional financial intermediaries such as

banks, brokerages, or other financial institutions. DeFi utilizes blockchain technology to

create a peer-to-peer financial system that is transparent, open, and accessible to anyone

with an internet connection.

DeFi is an innovative approach to finance because it eliminates the need for intermediaries

and enables users to have complete control over their assets. This decentralized nature

also allows DeFi to operate 24/7, without any restrictions on location. DeFi protocols are

built on blockchain technology, which ensures reliability and security.

Two examples of DeFi protocols are Balancer and Curve Finance. As a decentralized

exchange, Balancer uses a unique AMM system that ensures liquidity and price efficiency

for all users. Balancer also allows users to create their own customized pools of tokens,

which can be used for trading, staking, or lending ( see [10]).

Curve Finance, on the other hand, is a decentralized exchange that is specifically designed

for stablecoins. It allows users to trade various stablecoins, such as USDT, DAI, and

USDC, with minimal slippage and low fees. Curve Finance also offers users the ability to

earn rewards by providing liquidity to the platform ( see [7]).

We will briefly discuss the Bitcoin blockchain on a conceptual level, explaining how it

works by analyzing the transaction (TX) life cycle, e.g., the process that takes place from

the creation of a TX up until the ledger in which it is included is confirmed into the chain

( see [4]). Afterwards, we will make a brief introduction to the Ethereum Blockchain and

highlight its innovative particulars, then discuss some specialized applications built upon

it. The assimilation of the fundamental concepts presented in Appendix A and processes

will be essential to fully understand the risk assessment, which we will elaborate on in

our discussion.
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Scope of the research

Liquidity Providers (LPs) that lend tokens to a Decentralized Exchange (DEx) face a

variety of risks, including Impermanent Loss (IL) attributed to a volatile market. LPs

benefit from data-driven insights provided by mathematical models, which allow them to

make informed decisions, improve strategies, and limit risks.

Cryptocurrency prices can be very volatile, exposing LPs to Impermanent losses as token

values fluctuate within the liquidity pool. This research aims to create a reliable mathe-

matical model that assists LPs in navigating the complexities of DeFi liquidity provision.

By analyzing IL risk, this model provides insights into optimized strategies.

To commence, we will develop the IL formula as a function of initial token prices and

their respective prices at the maturity time horizon and each token’s weight in the pool (

in the case of the Balancer protocol). Once derived, we will provide a brief introduction

to the particular type of Lévy stochastic process formally known as the Variance Gamma

process as a means to obtain any number of future trajectories of a given token price.

This section will be of utmost importance once it allows us to apply the Monte Carlo

method to estimate any token price up until a considered maturity horizon.

This project is a result of the internship developed at a blockchain engineering and research

consulting firm Exclusive Dialogue, usually referred to as ThreeSigma. In May of 2022,

three outstanding engineers, Afonso Oliveira, Eduardo Morgado, and Tiago Barbosa,

from one of Europe’s finest engineering schools, Instituto Superior Técnico, founded the

company. The company operates into three departments: Blockchain engineering, where

they provide end-to-end services such as blockchain implementation, tailored solution

setup, architectural design, and continuous maintenance. They have worked on projects

such as Starkware, Arc 77-Bit, and many more.

Yeti Finance and the Avantis protocol are only two of the numerous initiatives on which

the Economic Modeling department has worked extensively. Finally, the Code Audits

department offers an efficient smart contract security auditing service to ensure your

application is secure and ready for launch.
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2 Theoretical Foundations

The Bitcoin infrastructure is based on a Peer-to-peer (P2P) network, meaning that all the

computers (nodes) that participate in the network have equal status. There are no superior

nodes, and every computer shares the responsibility of providing network services. The

nodes in the network connect in a mesh topology, which means there are no hierarchical

structures. In a P2P network, there is no central server or hierarchy. Participants both

provide and consume services with reciprocity as the incentive. This makes P2P networks

decentralized, open, and resilient.

The Bitcoin network relies heavily on the ”mempool”, which stands for ”memory pool.” It

serves as a repository for unconfirmed or pending transactions. When a Bitcoin transac-

tion is conducted, it is first routed via the mempool before being included in a blockchain

block.

Unspent Transaction Output (UTXO) is a crucial concept in blockchain-based cryptocur-

rencies, particularly Bitcoin. It represents the unspent portions of Bitcoin transactions

and is a fundamental requirement for tracking account balances. UTXO play a significant

role in enhancing blockchain security, privacy, and consensus by allowing users to verify

transactions while keeping their total balance private ( see [4]).

2.1 Node Types and Functionalities

The only way in which an individual can interact with a decentralized blockchain network

is through the use of a node. A node in the Bitcoin network is a computer or any hardware

that runs the Bitcoin software. These nodes communicate with each other to transmit and

receive transactions, as well as to verify their authenticity based on the consensus rules

and mechanisms in place. Though all nodes in the Bitcoin P2P network are equal, their

roles may differ depending on the function they serve. A Bitcoin node is a combination of

various functions, including routing, the blockchain database, mining, and wallet services.

For example:
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i) Routing Function: each Bitcoin node has a routing functionality that enables it

to interact with other nodes and operate within the network. This function allows

the node to establish connections with its peers and maintain them, which in turn

facilitates the delivery of transactions and blocks across the network.

ii) Validation and Propagation: Bitcoin nodes play a crucial role in validating

transactions and blocks to ensure their integrity and compliance with the network’s

policies. Prior to transmitting transactions to other nodes in the network, they

verify their legality and ensure that they meet the necessary standards or consensus

rules. This process is vital in maintaining the security and reliability of the Bitcoin

network.

iii) Full Nodes: full nodes maintain an up-to-date copy of the Bitcoin blockchain.

Full nodes can independently and authoritatively validate each transaction without

relying on external sources. They receive network notifications of new blocks, which

they validate and attach to their local blockchain copy.

Market participants and entities use full nodes in the Bitcoin network for various

purposes. Identifying the key players who typically employ these nodes sheds light

on the network’s complex interactions. For instance:

iii.a) Miners: Bitcoin miners frequently utilize full nodes, and the operation of

a full node empowers miners to autonomously ascertain the authenticity of transac-

tions before their inclusion in the block they are endeavoring to mine. By employing

this approach, miners can ensure the integrity of the blockchain network and thereby

enhance the security of the entire system.

iii.b) Exchanges: Cryptocurrency exchanges that engage in Bitcoin transac-

tions may opt to operate full nodes as a means of independently verifying and

confirming incoming transactions.

iii.c) Wallet Providers: Bitcoin wallet providers and related services may

choose to operate full nodes in order to augment the security and dependability of

their wallets.
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iv) The Simple Payment Verification (SPV) Nodes: also known as lightweight nodes,

save only a portion of the blockchain rather than the entire copy. To confirm trans-

actions, they employ a method known as rapid payment verification.

SPV nodes are given a filtered list of transactions associated with the addresses stored

in their wallet. Here are some typical users of SPV Bitcoin nodes:

iv.a) Mobile Wallets: Mobile wallet applications frequently implement Simpli-

fied Payment Verification (SPV) nodes to offer users a more lightweight experience.

This verification technique enables wallets to authenticate transactions without re-

quiring the download of the complete blockchain, rendering them more appropriate

for mobile devices with restricted storage and processing capabilities.

iv.b) Point-of-Sale Systems: It has been observed that businesses operating

at physical locations, such as retail stores or restaurants, have started accepting

Bitcoin payments and are increasingly relying on SPV nodes for their point-of-

sale systems. The utilization of SPV nodes has enabled the swift verification of

transactions, thereby enabling merchants to accept payments without having to

wait for confirmations from the entire network.

v) Mining Nodes: mining nodes help create new blocks by solving the Proof-of-Work

algorithm. Complete nodes are mining nodes that seek to mine new blocks and

maintain an exact copy of the blockchain.

A Bitcoin node is a crucial component of the Bitcoin network, performing tasks such as

routing, transaction validation, block validation, and blockchain maintenance. Apart from

cryptocurrencies, blockchain technology has immense potential for applications in various

sectors. Its decentralized and transparent nature allows for revolutionary changes in

sectors such as banking, supply chain management, healthcare, and others. The following

figure illustrates the different node types, protocols, and the extended Bitcoin network.
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(a) Node types. (b) The Bitcoin Network sample.

2.2 Transaction Life Cycle in Bitcoin Network

The transaction, commonly referred to as TX, is the fundamental building block of the

Bitcoin network. All other components within the network work together to ensure that

transactions can be created, transmitted, verified, and ultimately added to the Bitcoin

blockchain. In this section, we will provide a concise and easy-to-understand explanation

of how this peer-to-peer network operates by tracing a transaction from its creation to

the point where it becomes a part of the blockchain.

Mrs Gaimari, a businesswoman and CEO of a renowned tech enterprise, decided to sur-

prise her CFO, Mrs Danica, with a bonus of 2,357 BTC after completing a significant

project in the company. Mrs Gaimari used her smartphone to access her digital wallet

application and then sent 2,357 BTC to Mrs Danica, ensuring that the transaction fee was

generous enough to guarantee that her transaction would be processed quickly. Approx-

imately ten minutes later, Mrs Danica received the 2,357 BTC in her wallet, and soon

after, she received a message from Mrs Gaimari congratulating her on a well-deserved

bonus.
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But how 2,357 BTC was transferred from Mrs Gaimari´s wallet to Mrs Denica’s wallet?

The answer is provided through the following procedure:

Step 1

When Mrs Gaimari sent 2,357 BTC to her CFO firstly, Mrs Gaimari´s wallet created the

TX by collecting enough UTXO of that particular key it controls adding the appropriate

scripts and building new outputs ( to the new owner and the change to be returned), sign

that TX and once Mrs Gaimari pressed ≪send≫, her digital wallet broadcast that TX to

all nodes connected to it through a process known as flooding.

Step 2

As they receive the TX, each node connected to Mrs Gaimari´s wallet checks if the TX

structure is according to consensus rules at that moment, e.g.;

i) The transaction’s syntax and data structure must be correct;

ii) The transaction size in bytes is less than MAX BLOCK SIZE;

iii) Each output value, as well as the total, must be within the allowed range of values

( less than 21 million coins, more than the dust threshold);

iv) For each input, the referenced output must exist and cannot already be spent;

v) Neither lists of inputs or outputs are empty

vi) For each input, if the referenced output exists in any other transaction in the pool,

the transaction must be rejected;

vii) A matching transaction in the pool, or in a block in the main branch, must exist...etc

After completing all the necessary verifications, this node adds the transaction to its

mempool and then spreads it to all other connected nodes in the Bitcoin network. This

process is repeated until every node in the network has Mrs Gaimari’s transaction in their

local mempool.
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Step 3

When a miner node creates a candidate block, it selects the transaction (TX) with the

highest fee from its local mempool and includes it in the block. This process is repeated

until the block reaches its maximum size. It’s important to note that the miner node also

stays alert for blocks mined by other nodes in the network while building the candidate

block. Once a valid block is detected, the competition to build the next block begins.

In order to receive compensation for winning the cryptographic battle to find the next

block to be included in the blockchain, every miner node includes the coinbase transaction

as the first transaction in their candidate block. Once a miner node successfully mines

the block by finding a solution to the Proof-of-Work algorithm, it shares its candidate

block with all other connected miner nodes.

Step 4

Nodes in a blockchain network verify each new solved block before sharing it with other

nodes. This process ensures that only valid blocks are propagated across the network.

It also guarantees that honest miners’ blocks are added to the blockchain and rewarded

accordingly. Dishonest miners, on the other hand, will have their blocks rejected and will

lose not only the reward but also the computational work and electricity costs. When a

node receives a new block, it validates it to ensure it complies with the consensus rule.,

e.g.:

i) The block data structure is syntactically valid;

ii) The block header hash is less than the target ( enforces the Proof-of-Work)

iii) The block timestamp is less than two hours in the future ( allowing for time errors);

iv) The block size is within acceptable limits

v) The first transaction ( and only the first) is a coinbase Tx;

vi) All transactions within the block are valid.

All these criteria must be met for the block to be legitimate; otherwise, the block is

rejected.
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Step 5

Whenever a new block is received, a node tries to add it to the existing blockchain or

parent chain. If the parent block belongs to the main chain, the new block extends the

main chain. However, there are times when the new block extends a secondary chain.

In such cases, the node compares the cumulative work of both chains. If the secondary

chain has more work associated with it, the node switches to it as the new main chain.

Eventually, all nodes achieve consensus by selecting the valid chain with the greatest

cumulative work associated. Mining nodes vote with their mining power to extend a

particular chain, resolving temporary discrepancies between competing chains.

Assuming that the recently added block to the Bitcoin blockchain contains Mrs Gaimari’s

transaction, the last step involves updating the UTXO set. Once this task is completed,

Mrs Danica’s wallet will detect that one of the keys it controls can now transact an

additional 2,357 BTC.

To summarize, we have presented a description of the life cycle of a Bitcoin transaction

that is sufficient for gaining a conceptual understanding of how the Bitcoin network oper-

ates. This process occurs rapidly, with a new block being added to the Bitcoin blockchain

every ten minutes on average, containing between one thousand to seven thousand transac-

tions. Transactions undergo a sequence of steps - initiation, confirmation, and permanent

recording on the blockchain - while consensus rules and mechanisms ensure transparency

and trust without any reliance on a central authority. Bitcoin’s innovative architecture

has opened up new financial possibilities while challenging established concepts of money

and value exchange.

3 Ethereum Peer-to-Peer Network

Ethereum’s peer-to-peer network was predominantly designed by Vitalik Buterin, a young

programmer and Bitcoin enthusiast who wanted to expand Bitcoin’s functionality and

explore new possibilities beyond monetary applications, and Dr. Gavin Wood, a bril-

liant C++ programmer who went on to become a co-founder, co-designer, and CTO of

Ethereum.

The main aim was to create a blockchain that could be used for a variety of purposes
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as a result of its programmability. By abstracting the nuances of peer-to-peer networks,

consensus processes, and other underlying frameworks, Ethereum sought to develop a

predictable and secure development environment for decentralised blockchain applications.

In December 2013, Vitalik published a document titled Yellow Paper ( see [15]) outlining

the Ethereum concept: a quasi-Turing-complete ( because of the gas constraint, the range

of affordable computations is limited), and general-purpose blockchain. On July 30, 2015,

the first Ethereum block was mined, officially launching the network.

Ethereum’s peer-to-peer network serves as an open-source, globally decentralized com-

puter architecture for executing smart contracts. This network employs blockchain tech-

nology to synchronize and preserve system state changes, and it leverages Ether, the

native token, to assess and limit execution resource costs ( see [3]).

While Ethereum and Bitcoin share features with prior open blockchains, such as a peer-

to-peer network and a Byzantine fault-tolerant consensus mechanism (proof-of-stake for

Ethereum), they also differ significantly. The fundamental purpose of Ethereum is not

to create a digital currency payment network like Bitcoin. Ethereum is a programmable

general-purpose blockchain that runs the Ethereum Virtual Machine (EVM) capable of

running smart contracts of arbitrary and indefinite complexity. This means that, unlike

Bitcoin’s limited scripting language, Ethereum can function as a global computer with

vast computing power.

3.1 Ethereum Components

1. P2P network

2. Consensus rules ( defined in the yellow paper)

3. Consensus mechanism: Ethereum uses a consensus mechanism known as Gasper

that combines Casper FFG proof-of-stake with the GHOST fork-choice rule.

4. Economic security

5. Transactions in Ethereum are composed by:

Nonce - A sequence number, issued by the originating EOA, used to prevent

message replay;
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Gas price - The price of gas (in wei) the sender is willing to pay;

Gas limit - The maximum amount of gas the sender is willing to buy for this

transaction;

Recipient - The destination Ethereum address;

Value - The amount of Ether amount to be send to the Recipient;

Data - The variable-length binary data payload;

v,r,s - The three components of an Elliptic Curve Digital Signature Algorithm

(ECDSA) digital signature of the originating Externally Owned Account (EOA);

6. State machine: Ethereum state transitions are handled by the Ethereum Virtual

computer (EVM), a stack-based virtual computer that executes bytecode (machine-

language instructions). EVM programs, known as ”smart contracts,” are authored

in high-level languages ( such as Solidity) and compiled to bytecode for execution

on the EVM;

7. Data structures: Ethereum’s state is kept locally on each node in the form of a

database ( typically Google’s LevelDB), which stores transactions and system state

in a serialized hashed data structure known as a Merkle Patricia Tree;

8. Clients: Ethereum clients, which are software implementations of the Ethereum

protocol, allow users to connect to the Ethereum blockchain. They greatly con-

tribute to the network’s decentralized character by providing several options for

hosting a node. Example: Go-Ethereum (Geth) and Parity are two examples.

It is important to emphasize that in Ethereum network there are three main types of TX

1. The usual TX: a transaction from one EOA to another;

2. Contract deployment TX: a transaction without a Recipient, where the data field

is used for the contract code;

3. Execution of a contract: a transaction that interacts with a deployed smart contract.

In this case, Recipient address is the smart contract address.
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Transaction life cycle in Ethereum

Earlier, we traced the life cycle of a Bitcoin network TX from its creation to the moment

when the block carrying it was verified and included in the public ledger. The life cycle

of an Ethereum network TX is similar, but there are some significant differences worth

mentioning.

1. Smart Contracts: Ethereum network facilitates TXs that incorporate the implemen-

tation of smart contracts. These contracts are characterized as self-executing pro-

grams that are equipped with predetermined rules. This unique feature of Ethereum

allows for more sophisticated and programmable transactions to take place, thereby

expanding the breadth of possibilities within the network’s ecosystem;

2. Ethereum Virtual Machine (EVM): Ethereum’s system processes TXs using the

EVM, which is responsible for executing smart contracts. This EVM boasts Turing-

complete technology, making it capable of performing a broader range of computa-

tions than Bitcoin’s scripting language;

3. Consensus Mechanism: the current consensus mechanism used by Ethereum is Proof

of Stake (PoS). It is more energy-efficient, and enables faster TX processing times

than the Bitcoin Proof of Work (PoW) consensus mechanism. Contrasting the

Miners in the Bitcoin network in Ethereum network there are Validators which are

chosen based on the amount of Ethereum they hold and are willing to ”stake” as

collateral. They create and validate new blocks and earn rewards in Ether ( see

[12]);

4. Gas Fees: tn the Ethereum network, a unit of measurement called ”gas” is used to

calculate the computational work and TX expenses. Users are required to pay gas

fees in order to process TXs and execute smart contracts;

5. Confirmation Time: the confirmation times for Ethereum TX are generally faster

when compared to Bitcoin. However, it is advisable for users to wait for multiple

confirmations, especially for higher-value TXs or when interacting with DApps;

6. Transaction Reversibility: in some cases, Ethereum network TX can be more eas-

ily undone, particularly when dealing with smart contracts. This stands in stark

contrast to the unalterable quality of Bitcoin transactions.
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In essence, while Bitcoin and Ethereum both function as blockchain networks with similar

TX life cycles, variations in their scripting capabilities, consensus mechanisms, and the

role of smart contracts lead to differences in their TX life cycles. Ethereum’s emphasis

on smart contracts and programmability distinguishes it as a more flexible platform for

DApps.

3.2 Decentralized Application

In our settings, a decentralized application (DApp) is a platform built on the Ethereum

blockchain that offers multiple functionalities and services without depending on a cen-

tral authority. This makes them more transparent, secure, and resistant to censorship.

A DApp comprises at least one smart contract on a blockchain and a web-based user

interface.

Examples of DApps on Ethereum:

i) Aave is a decentralized lending platform that allows users to borrow assets with-

out the need for collateral, provided the loan is returned in full within the same trans-

action.

ii) dYdX is a decentralized trading platform with perpetual swaps that allows users

to trade crypto derivatives with significant leverage.

iii) Synthetix is a DeFi protocol that allows users to create synthetic assets that mirror

real-world assets like stocks, commodities, and fiat currencies. These products can

be traded on the platform without the need to own the underlying assets.

The aforementioned instances highlight the scope and complexity of the Ethereum blockchain’s

DeFi domain. DeFi applications continue to transform the financial landscape by offering

consumers alternative financial tools, income opportunities, and better control over their

financial assets.
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3.3 Decentralized Exchange

Ethereum offers a unique type of exchange called a decentralised exchange (DEX). Unlike

traditional exchanges, DEXs are completely decentralised and trustless. They allow for

direct, peer-to-peer transactions of digital assets without any middlemen involved. The

Constant Function Market Maker (CFMM) method is a popular technology used in DEXs.

It has brought significant improvements over the previous order book technology and

represents a huge leap in the evolution of DEXs.

Let’s consider a scenario where a trader wants to exchange Token A for Token B on

a DEX. In a conventional order book exchange, the trader has to place a limit order

indicating the quantity of Token B they need for the amount of Token A they are willing

to trade. The transaction will only be executed when another user places an order that

matches the trader’s order.

However, the CFMM concept allows the DEX to operate based on a liquidity pool that

includes reserves of both tokens. The asset-to-asset ratio of the pool remains constant.

When a trader wants to swap tokens, the CFMM algorithm calculates the amount of

Token B the trader will receive based on the current pool ratios and the amount of Token

A they have supplied.

The progress of CFMM over the conventional order book is evident in a number of ways:

i) Non-Custodial Trading: DEXs provide users with total control over their assets

at all times. Unlike centralised exchanges that require users to deposit cash into

custodial accounts, traders retain control of their private keys and assets, minimising

the risk of hackers as well as providing a higher level of security;

ii) Global Accessibility: DEXs are accessible to anybody with an internet connec-

tion, allowing anyone from all over the world to trade digital assets without regard

for territorial restrictions or regulatory processes;

iii) Lower Counterparty Risk: DEXs reduce counterparty risk by eliminating mid-

dlemen. Traders interact with the smart contract directly, removing the need for

them to commit their funds to a centralised entity.

In the Ethereum ecosystem, decentralised exchanges offer customers a wide range of ca-

pabilities and benefits. They allow users to trade, utilise DeFi services and engage in the
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increasingly decentralised financial ecosystem in a trustless and safe manner.

The next section of this article will examine four DEXs on the Ethereum blockchain.

We will also explore one of the most severe risks that liquidity providers (LPs) face when

providing liquidity to a DEX. This risk assessment will provide us with a clear perspective

on the shape of the Value Function, the price range in which the LP liquidity is distributed,

the Token price definition by the Defi protocol, and the relationship between the Token

price and the pool reserve ( and the Token weight in the Balancer liquidity pool) in a

particular pool will completely determine how any LP will be affected by the Impermanent

Loss.

4 Impermanent Loss in Decentralized Exchanges: A

Comparative Analysis of the Uniswap and the Bal-

ancer Protocol

The main purpose of the demonstrations that follow is that of deriving a deterministic

model which when provided with the respective inputs, returns the estimated imperma-

nent loss a Liquidity provider will be subjected to under the circumstances predefined by

the LP for the Balancer protocol, Uniswap V2, V3 and Curve Finance.

4.1 Balancer Protocol

Decentralized exchanges, specifically automated market makers (AMMs), play a crucial

role in the DeFi ecosystem. Due to their significance, it is essential to examine the risks

associated with these products. To compare the expected impermanent loss among major

DEXes, we found there was not yet an explicit proof of the impermanent loss formula for

Balancer. As a result, this blog post aims to fill that gap by deriving the formula outlined

in Fernando Martinelli’s medium page, which offers a well-presented intuition.

As a quick overview, Balancer is a decentralized exchange that allows users to trade

Ethereum-based tokens in a trustless environment. It uses smart contracts to enable

users to trade ERC − 20 tokens, creating liquidity pools for any sequence of tokens. The

platform uses a unique algorithm to automatically adjust the token price based on the
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executed trades ( see [10]).

Impermanent Loss: Liquidity pools are often used by traders to exchange tokens in

a decentralized manner. However, when liquidity providers (LPs) deposit their tokens

into the pool, they may face an opportunity cost. This cost, known as ”impermanent

loss” (IL), is the measure of the difference in value between holding tokens directly versus

indirectly in the pool. The value of tokens within the pool fluctuates over time, resulting in

a reduction in the aggregate value of the LPs’ investments. Therefore, LPs may experience

a loss in value when withdrawing their tokens from the pool ( see [14]).

For simplicity’s sake, assume there are no deposits or withdrawals in order for us to have

a constant value function, K. Notice that, according to the Balancer Whitepaper ( see

[10]), the spot price (SP) or marginal rate of substitution (MRS) of an input token with

respect to the output token was proven to be:

SPin→out(t) =
xin(t)/ωin

xout(t)/ωout

.

Where xin(t) represents the reserve of the token that is being sold at time t, ωin is the

correspondent weight in the pool, xout(t) is the reserve of the token that is being bought

at time t, and ωout denotes the respective weight. It is important to emphasize that the

weight of each token in any Balancer pool is strictly between zero and one, and when

summed, the weights of all tokens add up to unity.

For the sake of simplicity, let us express the price of any token as its current value in

dollars per token, which gives us the flexibility to define the price of any i-th token whose

reserve is xi as a function of time such as:

pi : R+
0 → R+

t 7→ pi(t) [$/Tokeni] .

When a trader wants to buy token i, they can do so directly using an acceptable currency

through an exchange, or they can first buy token j and then use it to acquire token i using

the pool. To this end, inline with our definition of the spot price and as stated in the

Balancer Whitepaper, the price of token i may be expressed as:

pi = pj SPj→i .
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In the previous price relation, the following property holds true for any two tokens i and

j in any Balancer liquidity pool pi(t)xi/ωi = pj(t)xj/ωj.

Example 1. As an example, consider that an LP adds BTC,ETH, and BAL as liquidity

into a Balancer pool, with weights of 50%, 30%, and 20%, respectively. The initial prices

of BTC,ETH, and BAL are pBTC(t0) = 50.000 , pETH(t0) = 3.000 and pBAL(t0) = 20

respectively at time t = t0, in units of $/Token.

At time t > t0 admit there was a price change such that the current price of BTC,ETH,

and BAL in dollars terms are now given by pBTC(t) = 55.000, pETH(t) = 2.500, and

pBAL(t) = 25 . If we consider the following price ratios:

∆BTC = pBTC(t)/pBTC(t0) = 1, 1; ∆ETH = pETH(t)/pETH(t0) ≈ 0, 833

and ∆BAL = pBAL(t)/pBAL(t0) = 1, 25 .

By using these inputs into the formula provided by none other than the co-founder of the

Balancer protocol Fernando Martinelli himself on his medium page, we can say that the

IL this LP will be subjected to at time t > t0 if they choose to provide liquidity in this

hypothetical Balancer pool will be

IL =
∆0,5

BTC ·∆0,3
ETH ·∆0,2

BAL

0, 5∆BTC + 0, 3∆ETH + 0, 2∆BAL

− 1 ≈ −1, 1% .

So in particular, this liquidity provider would have suffered an impermanent loss or op-

portunity cost of about 1, 1% of his initial capital.

The impermanent loss formula: In this framework, we want to show that if we

consider a liquidity pool containing multiple tokens. Considering the token indexing set

I, the impermanent loss, IL, can be given by

IL =

∏
i∈I

∆ωi
i∑

i∈I

∆iωi

− 1 ,

where ωi and ∆i represent respectively the pool weight of token i and the associated future

and initial price ratio.

Proof for the two token case: We maintain our position by demonstrating that the

formula holds in the two-token scenario. We do this to identify all of the phases of the

general proof in a less complicated environment.
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In this setting, consider that there only two tokens, x and y. The LP invested in the pool

by providing assets of both tokens for the pool reserves, which are represented by x(t)

and y(t) at the instant t, for x and y, respectively. By defining 0 < ϕx, ϕy < 1 such that

ϕx + ϕy = 1, as the fractions of the pool reserves provided by the LP, the total amounts

of x and y in the pool can now given by xϕx and yϕy, correspondingly. Note that, in

practice, the LP does not need to provide tokens in the the exact ratio present in the

pool.

Let us operate in the case of no deposits or withdrawals, so we can assume that the

Balancer pool function, K̂, is constant, yielding

K̂ = [x(t)ϕx]
ωx [y(t)ϕy]

ωy ,

where ωx, and ωy represent the weight, i.e. the value-proportion of tokens x and y,

respectively, in this particular pool. Recall also, that because this is a Balancer weighted

pool as previously stated we know that 0 < ωx, ωy < 1 and ωx +ωy = 1. Furthermore, by

defining

K = ϕ−ωx
x ϕ−ωy

y K̂

as the pool-invariant associated to the LP, one has

K = x(t)ωx y(t)ωy . (1)

Because both x(t), y(t) denote token quantities in the pool, we naturally have x(t), y(t) > 0

for all t ≥ t0. As we previously mentioned, the condition x(t) px(t)/ωx = y(t) py(t)/ωy

holds, where px(t), py(t) represent respectively, the token x and y prices (in dollars per

token) at any time t ≥ t0. Hence we have that

px(t) =
y(t)

x(t)

ωx

ωy

py(t), and py(t) =
x(t)

y(t)

ωy

ωx

px(t) . (2)

If we substitute y(t) in the equation 2 using the relation 1, it follows that:

px(t) = K
1
ωy x(t)−(1+

ωy
ωx

)ωx

ωy

pyy(t) ⇐⇒ x(t) =

(
K

1
ωy

ωx

ωy

py(t)

px(t)

) 1
1+ωx

ωy ⇐⇒

⇐⇒ x(t) =

(
K

1
ωy

ωx

ωy

py(t)

px(t)

)ωy

, as ωx + ωy = 1 =⇒ ωx

ωy

=
1

ωy

− 1

⇐⇒ x(t) = K

(
ωx

ωy

py(t)

px(t)

)ωy

.
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And, analogously, we can conclude that:

y(t) = K

(
ωy

ωx

px(t)

py(t)

)ωx

.

Hence, the value ( in dollars) at time t the LP invested, i.e., Vinvest(t) for t ≥ t0, will be

given by

Vinvest(t) = x(t) px(t) + y(t) py(t)

= K

(
ωx

ωy

py(t)

px(t)

)ωy

px(t) +K

(
ωy

ωx

px(t)

py(t)

)ωx

py(t)

= K
[
ωωy
x ω−ωy

y px(t)
1−ωypy(t)

ωy + ω−ωx
x ω1−ωy

y px(t)
ωxpy(t)

1−ωx
]

= K ω−ωx
x ω−ωy

y px(t)
ωxpy(t)

ωy (ωx + ωy) = K ω−ωx
x ω−ωy

y px(t)
ωxpy(t)

ωy .

Had the LP held their tokens instead, the asset quantities would have remained constant,

and we can derive their value at time t > t0 which will be denoted by Vhold(t). Notice

that we may substitute the initial (and constant) quantities of the LP’s reserves by the

pool’s relation, because in the initial instant there is, by definition, no price variation -

this is will be useful later for direct comparison between the expressions. It follows:

Vhold(t) = x(t0) px(t) + y(t0) py(t) =

= K

(
ωx

ωy

py(t0)

px(t0)

)ωy

px(t) +K

(
ωy

ωx

px(t0)

py(t0)

)ωx

py(t) =

= K

(
ωωy
x ω−ωy

y

px(t)

px(t0)
px(t0)

1−ωypy(t0)
ωy + ω−ωx

x ωωx
y

py(t)

py(t0)
px(t0)

ωxpy(t0)
1−ωx

)
=

= K

(
ω1−ωx
x ω−ωy

y

px(t)

px(t0)
px(t0)

ωxpy(t0)
ωy + ω−ωx

y ω1−ωy
y

py(t)

py(t0)
px(t0)

ωxpy(t0)
ωy

)
=

= K ω−ωx
x ω−ωy

y px(t0)
ωxpy(t0)

ωy

(
ωx

px(t)

px(t0)
+ ωy

py(t)

py(t0)

)
.

If we consider the following notations for sake of simplicity:

∆x(t0, t) =
px(t)

px(t0)
, and ∆y(t0, t) =

py(t)

py(t0)
,

then the previous result becomes:

Vhold(t) = K ω−ωx
x ω−ωy

y px(t0)
ωxpy(t0)

ωy (ωx∆x + ωy∆y) ,

Conjugating the expressions for Vinvest(t) and Vhold(t), and taking into account the defini-

tion of impermanent loss (IL), we may conclude that the IL, that the LP will be subjected
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to, at the maturity time t > t0, is given by:

IL =
Vinvest(t)− Vhold(t)

Vhold(t)
=

K ω−ωx
x ω

−ωy
y px(t)

ωx py(t)
ωy

K ω−ωx
x ω

−ωy
y px(t0)ωx py(t0)ωy (ωx∆x + ωy∆y)

− 1 =

=
px(t)

ωx py(t)
ωy

px(t0)ωx py(t0)ωy (ωx∆x + ωy∆y)
− 1 =

∆x(t0, t)
ωx∆y(t0, t)

ωy

ωx∆x(t0, t) + ωy∆y(t0, t)
− 1 .

Now that we have built our intuition by proving the result for the simplest case, when

we have a liquidity pool composed of two ERC-tokens, let us prove that this result holds

when consider a pool made of an abstract finite number of tokens.

Proof for the multiple token case: The current reserve of token i in the multiple-

tokens Balancer weighted pool is denoted as xi(t), for any i ∈ I, where I is the indexing

set for the tokens in the pool.

For example, one could have: I = {BTC,ETH,BAL}. Notice that even for a liquidity

pool with multiple tokens, we can still assert the base premise we have been using thus

far still holds true, i.e. for each i, j ∈ I,

xi(t)

ωi

pi(t) =
xj(t)

ωj

pj(t) ⇐⇒ xj(t) = xi(t)
ωj

ωi

pi(t)

pj(t)
. (3)

similarly to the case of 2-tokens, we can isolate xi(t) from the invariant associated with

the LP amount of tokens, which yields

xi(t) = K
1
ωi

∏
j∈I\{i}

xj(t)
−ωj/ωi . (4)

It is important to emphasize that the weights sum up to one, which leads to∑
s∈I\{i}

ωs = 1− ωi for each i ∈ I.

By replacing the reserve of token j in equation (4) with its correspondent expression from
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(3), we obtain

xi(t) = K
1
ωi

∏
j∈I\{i}

(
xi(t)

ωj

ωi

pi(t)

pj(t)

)−ωj/ωi

⇐⇒

⇐⇒ xi(t) = K
1
ωi

(
xi(t) pi(t)

ωi

)−
∑

s∈I\{i}
ωs/ωi ∏

j∈I\{i}

pj(t)
ωj/ωi ω

−ωj/ωi

j ⇐⇒

⇐⇒ xi(t)
1+

∑
s∈I\{i}

ωs/ωi

= K
1
ωi

(
pi(t)

ωi

)1− 1
ωi ∏

j∈I\{i}

pj(t)
ωj/ωi ω

−ωj/ωi

j ⇐⇒

⇐⇒ xi(t)
1
ωi = K

1
ωi pi(t)

1− 1
ωi ω

−1+ 1
ωi

i

∏
j∈I\{i}

pj(t)
ωj/ωi ω

−ωj/ωi

j ⇐⇒

⇐⇒ xi(t) = K
ωi

pi(t)

∏
j∈I

pj(t)
ωj ω

−ωj

j , for t ≥ t0.

Therefore the fraction of the Pool value that belongs to the LP at time t > t0 in dollar

terms is

Vinvest(t) =
∑
i∈I

pi(t)xi(t) = K
∑
i∈I

(
pi(t)

ωi

pi(t)

∏
j∈I

pj(t)
ωj ω

−ωj

j

)

= K

(∑
i∈I

ωi

)∏
j∈I

pj(t)
ωj ω

−ωj

j = K
∏
j∈I

pj(t)
ωjω

−ωj

j .

Again, had the LP held his or her tokens instead of providing the liquidity with them to

this pool, the quantities of each would have remained the same from time t = t0, expressly

xi(t) = xi(t0), for t ≥ t0. Hence, the hold value in dollars is given by

Vhold(t) =
∑
i∈I

pi(t)xi(t0) = K
∑
i∈I

(
pi(t)

ωi

pi(t0)

∏
j∈I

pj(t0)
ωj ω

−ωj

j

)
=

= K
∑
i∈I

(
ωi

pi(t)

pi(t0)

)∏
j∈I

ω
−ωj

j pj(t0)
ωj .

Having the definition of impermanent loss in mind, we may conclude that the LP will

face impermanent loss at time t ≥ t0, which will be given by

IL(t) =
Vinvest(t)− Vhold(t)

Vhold(t)
=

K
∏
j∈I

pj(t)
ωjω

−ωj

j

K
∑
i∈I

(
ωi

pi(t)

pi(t0)

)∏
j∈I

ω
−ωj

j pj(t0)
ωj

− 1 =

=

∏
j∈I

(
pj(t)

pj(t0)

)ωj

∑
i∈I

ωi
pi(t)

pi(t0)

− 1 =

∏
j∈I

∆j(t0, t)
ωj

∑
i∈I

ωi∆i(t0, t)
− 1 ,

where we are considering ∆i(t0, t) = pi(t)/pi(t0) for each i ∈ I.
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5 Uniswap Protocol

Uniswap is a DeFi decentralized exchange (DEx) pioneer. It allows users to trade cryp-

tocurrencies without the use of traditional middlemen and provides liquidity via auto-

mated smart contracts. Its user-friendly interface and liquidity pool strategy have made

it a popular choice in the field of blockchain and cryptocurrencies for decentralized token

exchanges and liquidity provision.

5.1 Version Two (V2)

Uniswap V2 is a decentralized Ethereum exchange for trading ERC − 20 tokens. It im-

proves trading efficacy, flexibility, liquidity, and reliability over the original Uniswap pro-

tocol. Notable improvements include liquidity pools for any pair of ERC − 20 compliant

tokens, in which users contribute equal dollar amounts of two tokens and thereby become

liquidity providers (LPs). Fees are paid to LPs based on the liquidity they offer. For its

automated market maker (AMM) method, Uniswap V2 uses a constant product formula,

providing rapid transactions and changeable token values depending on supply and de-

mand. Overall, Uniswap V2 provides a liquid, versatile, and cost-effective decentralized

trading environment that is popular among DeFi users and serves as the foundation for

Ethereum decentralized exchanges ( see [1]).

Progressing in our discussion concerning the Impermanent Loss (IL) one of the major

protocols in DeFi, Uniswap V2, the formula for the spot price of an input token with

respect to the output token (the price for infinitesimally small trades) can be expressed

as follows:

SPin→out(t) =
xin(t)

xout(t)
(5)

where xin(t) denotes the reserve of the token being sold at time t ≥ t0, and xout(t)

represents the reserve of the token being bought (see reference [?]). It is important to

notice that in each Uniswap V2 pool, the liquidity is distributed uniformly along the curve

defined by the following equation:

K̂V2 = x(t) y(t) (6)

where x(t) and y(t) represents the current total amount of tokens x and y, respectively,

in that particular liquidity pool. This curve, usually named Value Function, will play
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a crucial role in each model we intend to derive the IL formula in our analysis case of

Uniswap V2.

Along our discussion unless otherwise stated, we will assume there are no deposits nor

withdrawals in order for us to have a constant value function, K̂ = K̂V2. Furthermore,

we will introduce the price of each token as its current value in dollars per token, which

is to say that if we consider xA(t), t ≥ t0 the current total reserve of token A in a given

pool, then:

t 7→ pA(t) [$/TokenA]

will represent the price of token A at time t ≥ t0 in the units of dollar per token. The

following equation gives birth to our essential premises:

px(t) · x(t) = py(t) · y(t) (7)

Notice that this property holds true for any two ERC−20 tokens x and y, in any Uniswap

V2 liquidity pool, by the same argument we make in the Balancer IL formula derivation

in the previous section.

Let us assume the LP invested in the pool by providing assets of both tokens for a given

pool made of two given ERC − 20 tokens, x and y, whose total tokens reserves at instant

t ≥ t0 are denoted by x(t) and y(t). Taking 0 < ϕx, ϕy < 1 such that ϕx + ϕy = 1 as the

fractions of the pool reserves provided by the LP, the LP’s total share amounts of both

tokens in the pool can now be given by x(t)ϕx and y(t)ϕy, respectively which leads us to

our adapted formulation for the value function

K = ϕx ϕyK̂ =
[
ϕx x(t)

] [
ϕy y(t)

]
Notice that, in the particular case when the token weights in a Balancer (two tokens)

liquidity pool are the same, it signifies that the pool strives to maintain a balanced distri-

bution of the two tokens similar to assuring a constant ratio between token reserves, which

corresponds to an equivalent constant product formula used by Uniswap V2 expressed in

equation 6.

Both Uniswap V2 and the equal-weighted Balancer ( two tokens) liquidity pool comply

to the token reserve’s equivalent constant product value function. This fact ensures that

in this particular scenario Uniswap V2 and Balancer are managed the same way by an
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equivalent value function, and in our setting while exchanges take place in the Balancer

decentralized Exchange, the product of the reserves of the two tokens in a given pool is

governed by
√
L = x(t)ωx y(t)ωy

where we are introducing L =

√
ϕ
−ωx
x ϕ

−ωy
y K as the pool-invariant associated to the

LP position in the pool, and ωx = ωy = 1/2 represents the weight of the respective

token in Balancer (two tokens) liquidity pool which we argue that its value function are

mathematically speaking the same, in this case only. As proven in the beginning of our

discussion, the IL formula for the Balancer protocol in these circumstances taking into

consideration its correspondent value function is given by

IL(t) =
∆ωx

x ∆
ωy
y

ωx∆x + ωy∆y

− 1 = 2

√
∆x∆y

∆x +∆y

− 1 .

Where we are considering our already acquainted notation

∆x = ∆x(t0, t) =
px(t)

px(t0)
and ∆y = ∆y(t0, t) =

py(t)

py(t0)
.

As we previously argued, due to the fact that in this particular case where the two tokens

in the ( two token) Balancer liquidity pool are equally weighted, Balancer and Uniswap

V2 pools are managed by two equivalent value functions. In this regard, because the

IL formula for the Balancer two tokens liquidity pools is as provided so must be the IL

formula for the Uniswap V2. This concludes our proof of the IL formula for Uniswap V2

liquidity pool.

5.2 Version Three (V3)

In straightforward terms, Uniswap V3 allows liquidity providers to provide liquidity se-

lectively within defined price ranges for better capital efficiency and risk management.

The provision of several price levels helps providers align their rates with their risk pro-

files. These distinguishing features empower liquidity providers, solidifying Uniswap V3’s

position as one of the best decentralized exchanges.

Notice that in earlier versions of Uniswap, the liquidity of each pool is distributed uni-

formly along the Constant Product curve which also means that all the revenue from the

trading fee has to be distributed to all the Liquidity Providers in the respective pool in

proportion to their share token in the pool. With the introduction of the Concentrated
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Liquidity feature the LPs has are given the flexibility of defining the price range as they

prefer which we will denote abstractly as [pi, ps] as of pinfimum−range, psupremum−range. Due

to the existence of a smaller number of market participants providing liquidity in each

price range, revenue from the trading fee is distributed to less LPs and the liquidity tends

to be more concentrated in the vicinity of the current price. Although the real reserve in

each pool of the protocol is fragmented between price ranges, within the pool the token

price is still calculated as in equation 5 considering the total reserve in the pool usually

called Virtual Reserves ( see [2]).

Impermanent Loss Formula for Uniswap V3

Before we start our demonstration, consider the definition of the following function which

will play a significant rule in our proof

f(t) =

√(
px(t)√

ps
− py(t)

√
pi

)2

+ 4px(t)py(t) − px(t)√
ps

− py(t)
√
pi (8)

We are going to provide a proof of the IL formula for any Uniswap V3 liquidity pool which

is given by

IL(t) =
2

∆x +∆y

f(t)

f(t0)
− 1 .

Where we are considering a pool of token x and y whose virtual reserves are represented

by x(t) and y(t) at the instant t ≥ t0, respectively, and the function f(t) defined above.

Proof Assuming the settings absolutely analogous as in the proof we provided in the

Balancer two token pool case, let us also consider that there are no deposits or withdrawals,

so we can assume that the pool Value Function, K̂ = K̂V 3, is constant, i.e.

K̂ =

(
x(t)

ϕx

) (
y(t)

ϕy

)
,

where 0 < ϕx, ϕy < 1 denotes as the fractions of the pool reserves provided by the LP, and

ϕx + ϕy = 1. And we can further define KV3 = ϕx ϕy K̂ as the pool-invariant associated

to the LP, which simplifies the previous equation, yielding KV3 = x(t) y(t) as the value

function for the virtual reserve.

Now consider K = KV3, given that the liquidity in the pool is fragmented due to the

concentrated liquidity nature, the Value Function that governs the fraction of the real
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reserve in the arbitrary price range chosen by the LP which we will denote as [pi, ps] is

given according to the expression 2.) in the Uniswap V3 whitepape ( see [2]) as

K =

(
x(t) +

√
K

ps

)(
y(t) +

√
Kpi

)

The origin of real reserve invariant formula: The Uniswap V3 real reserve value

function formula corresponds to a translation of the constant product invariant express

in the Figure 1 of the whitepaper, yielding

(x− x0)(y − y0) = K(x, y) > 0

with x0, y0 < 0 representing the position of the vertical and horizontal asymptotes, re-

spectively. The translation is of −x0 units to the left and −y0 units downwards, in a

x, y cartesian plot. For this invariant K, the marginal rate of substitution from y to x

(spot-price) becomes

SPy→x =

(
∂K

∂x

)
(
∂K

∂y

) =
y − y0
x− x0

=
K

(x− x0)2
=

(y − y0)
2

K
> 0 .

At x = 0, the marginal rate of substitution from y to x takes its maximum value, ps, as

follows

ps = SPy→x

∣∣∣
x=0

=
K

(x− x0)2

∣∣∣∣∣
x=0

=
K

x2
0

=⇒ x0 = −

√
K

ps
.

Which the scenario where all the liquidity is being provided only to the asset which has

y(t) as the current pool virtual reserve. At y = 0, the marginal rate of substitution from

y to x takes its minimum value, pi, thus

pi = SPy→x

∣∣∣
y=0

=
(y − y0)

2

K

∣∣∣∣∣
y=0

=
y20
K

=⇒ y0 = −
√
Kpi .

Hence, substituting in the values of x0 and y0, the Uniswap V3 invariant may be written

in terms of the concentrated liquidity price range as follows(
x+

√
K

ps

)(
y +

√
Kpi

)
= K . (9)
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Using the propriety described in equation 7 in conjunction with the one in the equation

9 yields

K =

(
x(t) +

√
K

ps

)(
x(t)

px(t)

py(t)
+
√

Kpi

)
and

K =

(
y(t)

py(t)

px(t)
+

√
K

ps

)(
y(t) +

√
Kpi

)
.

Solving the previous two quadratic equations with respect to x(t) and y(t) respectively,

and taking the positive solutions, leads to:

x(t) =

√
K

2

f(t)

px(t)
and y(t) =

√
K

2

f(t)

py(t)
, (10)

where f(t) is defined in 8. In these circumstances, we may conclude that the LP investment

amount in dollars terms at time t ≥ t0, is given by

Vinvest(t) = x(t) px(t) + y(t) py(t) =
√
Kf(t)

Let’s now consider the scenario where the LP did not provide liquidity to the pool. The

asset quantities would have remained constant if the LP had maintained their tokens, and

we can compute their value at time t > t0. We may substitute the initial amounts of the

LP’s reserves by his correspondent pool’s fractional reserve as there is no price movement

in the initial instant, using equation 10 at time t = t0. Hence, we get

Vhold(t) = x(t0) px(t) + y(t0) py(t)

= x(t0) px(t0)∆x + y(t0) py(t0)∆y =

√
K

2
(∆x +∆y) f(t0) .

Hence we may conclude that the IL the LP will be subjected to at time t ≥ t0 is given by

IL(t) =
Vinvest(t)− Vhold(t)

Vhold(t)
=

2

∆x +∆y

f(t)

f(t0)
− 1 ,

which concludes our discussion on Uniswap V3 Decentralized Exchange. Notice that

this formula is in accordance with the proof provided in the case of Uniswap V2 which

corresponds to the case where the liquidity in the pool is uniformly distributed along

the curve described by the virtual value function in the entire R+
0 space. Because if we

consider pi = 0 and ps → +∞, we obtain the same IL formula as for Uniswap V2.
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Proof: Fix the parameter pi = 0. It follows that the limit of the f , as ps tends to

infinity, yields

lim
ps→+∞

f(t) =

= lim
ps→+∞

√(
px(t)√

ps
− py(t)

√
pi

)2

+ 4px(t)py(t) − px(t)√
ps

− py(t)
√
pi =

= lim
ps→+∞

√(
px(t)√

ps

)2

+ 4px(t)py(t) − px(t)√
ps

=
√

4 px(t) py(t) > 0 .

therefore, regarding the impermanent loss, notice when we fixed pi = 0 and take the limit

with respect to ps we have

lim
ps→+∞

ILV3(t) = lim
ps→+∞

2

∆x +∆y

f(t)

f(t0)
− 1 =

2

∆x +∆y

√
4 px(t) py(t)√
4 px(t0) py(t0)

− 1 =

= 2

√
∆x∆y

∆x +∆y

− 1 = ILV2(t).

6 Stochastic Modeling of Token Prices

Stochastic Calculus is a branch of Mathematics used to study systems whose evolution

over time Xt, t ≥ 0 can be explained with help of a differential equation which conjugate

both a deterministic function and a random source of noise. Usually the dynamics of the

system is described as:

dXt = µ (t,Xt) dt+ σ (t,Xt) dBt

where Bt denotes the source of randomness. As stated in the previous section, to have

a projection of token price evolution from the present up until a future instance in time

we will use a much more elegant type of Lévy stochastic process known as the Variance

Gamma ( see [5] and [6]).

6.1 Lévy Process

In our following discussion, unless otherwise stated, we will be working in a probability

space (Ω,F , P ).

Question 1. But what is a stochastic process? We provide the answer to this question

as well as a definition of some classes of stochastic processes in the Appendix B.

36



The application of Stochastic processes in the real world is vast. To name a few, Stochastic

processes are used in:

i) Physics: to model the behavior of subatomic particles, to describe the interaction

between atoms and photons or to model the decay of unstable atomic nuclei;

ii) The aviation: stochastic processes play a crucial role in designing and maintaining

aircraft engines. Given the wide range of random events that engines are subject

to, such as fluctuations in air pressure and temperature, stochastic processes are

employed to model and predict the behaviour of these events. The insights gained

from these processes are then utilized to enhance the design of aircraft engines and

schedule maintenance and repairs accordingly.

iii) Mathematical Finance: to model volatility, to price complex financial instruments

and to model the dynamics of stock price

The Black-Scholes model is a mathematical formula that provides a process for pricing

options contracts based on a variety of criteria such as the underlying asset price, time

till expiry, volatility, interest rates, and strike price.

The Black-Scholes model is a widely used financial tool that assumes the price of an under-

lying asset follows a log-normal distribution and that there are no arbitrage opportunities

in the market. It was introduced in 1973 by Fischer Black and Myron Scholes for option

pricing and risk management. Over time, the model has been improved to account for

dividend-paying assets, time-dependent volatility and drift, and consumption at a specific

rate. However, the Black-Scholes model has some significant limitations. One of these is

that the price dynamics of the risky asset are given as a continuous function of a diffusion

process called Geometric Brownian Motion, which fails to capture the fact that securities

volatility is stochastic and asset prices have frequent jumps occurring at random times.

Alternatively, a model driven by Lévy processes is by nature a significantly more reliable

and robust approach to modeling securities price dynamics in financial markets. The Lévy

stochastic process is defined as follow:
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Definition 1. An adapted stochastic process Lt, t ∈ [0, T ] is a Lévy process if L0 = 0 a.s.

and

(1) L has independent and stationary increments;

(2) L is stochastically continuous, i.e.,

lim
s→t

P {|Lt − Ls| > δ} = 0 ∀t ∈ [0, T ] ,∀δ > 0,

A Lévy Stochastic process is composed of a deterministic function, a diffusion random

variable as well as a pure jump random variable and it is completely described by the

Lévy triplet (γ, σ, ν) . Usually, the parameter γ represents the drift of the process, σ

denotes the diffusion component, and ν represents the Lévy measure associated with the

jumps term ( see [5] and [6]).

The following characterization provides us a way to write any Lévy stochastic process.

Theorem 1. (Lévy-Itô decomposition): For each Lévy process X, there is a constant

b ∈ R, a Brownian motion B, and an independent Poisson random measure N such that:

Xt = bt+Bt +

∫
|x|<ϵ

xÑ(t, dx) +

∫
|x|≥ϵ

xN(t, dx)

for any arbitrarily small ϵ > 0.

Corollary 1. (Lévy-Khintchine formula) Consider a Lévy triplet (γ, σ, ν) of the Lévy

process X. Then,

ΦX(u) = etη(u), ∀u ∈ R

where the Lévy exponent η, is defined as:

η(u) = ibu− 1

2
σ2u2 +

∫
R−0

(
eiux − 1− iux1|x|<1(x)

)
ν(dx)

To calculate the average rate of return for a token that will be used to define the price

process, we can utilize a stochastic process introduced in 1985 by John C. Cox, and

Jonathan E. Ingersoll and Stephen A. Ross. This process is an extension of the Vasicek

model and is defined as follows:
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Definition 2. Consider a mean-reverting positive stochastic process {yt, t ≥ 0} and the

standard Brownian motion {Bt, t ≥ 0}. The CIR process have the following dynamic:

dyt = κ (µ− yt) dt+ α
√
ytdBt (11)

where the constants κ denotes respectively the speed of adjustment to the long-term mean

µ and α represents the volatility ( see [13]). We will CIR process to estimate the average

interest rate for the period during which an LP will be providing liquidity to any one of

the protocols discussed in previous sections.

6.2 The Variance Gamma Process

The Variance Gamma is a stochastic process that can be defined considering a standard

Brownian motion Bt, t ≥ 0, and an independent Gamma stochastic process Γ(t; 1, λ) =

Gλ(t) as follow:

XV G
t (σ, λ, θ) = θGλ(t) + σBGλ(t)

Which is to say this process is essentially a Brownian motion with a drift where the time

parameter is replaced by a gamma subordinator.We define a Variance Gamma process in

Appendix A.

Consequently, the characteristic function of the Variance Gamma process is given by

ϕXV G(u, t) =

(
1− iuλθ + u2σ2λ

2

)− t
λ

At its core, the VG process can be defined using only three parameters, namely the

Brownian motion volatility, σ, the gamma subordinator variance rate, λ, and the Brownian

motion drift, θ. Alternatively, in light of the paper by Carr et al. ( see [9]), we can

define the Variance Gamma process as the difference between two independent Gamma

processes, e.g.,

XV G
t (σ, λ, θ) = Γp(t;µp, τp)− Γq(t;µq, τq) (12)

where Γp(t;µp, τp) and Γq(t;µq, τq) represents two independent Gamma processes, and the

parameters satisfying in the Appendix C at the equation (18). The Lévy density for the

Variance Gamma process can easily be derived from the Lévy-Khintchine’s Theorem as

νV G(x) =
CeGx

|x|
1R−(x) +

Ce−Mx

x
1R+(x) (13)

the relationship between the C,G,M and µp, τp, µq, τq are presented in the Appendix C

at the equation (19).
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6.3 Lévy Market based on Variance Gamma process

The Lévy market is a financial model that uses Lévy processes to depict unpredictable

jumps and extreme events that occur in real-world financial markets which correspond

to Variance Gamma in our discussion. It can handle non-normal distributions, mak-

ing it useful in volatile markets for asset pricing and risk assessment purposes ( see [13]).

Lévy market modelling broadens our understanding of complex financial phenomena, al-

lowing for more accurate risk management and derivative pricing. To ensure that the

token price process is a martingale, it comes naturally that under the martingale measure

obtained by using Girsanov’s Theorem, the process that describes the price of tokens,

St, t ≥ 0, can be defined as follows:

St = S0e
mnewt+Xt(σ,λ,θ), ∀t ≥ 0 (14)

where the term mnew = r + 1
λ
log(1− θλ− λσ2

2
) ensures that the discounted price process

is a martingale under the martingale measure.

7 Methodology

The procedure begins with the collection of daily historical price data for each token

considered from a given initial date, datein, up to a provided present date, dateout, using

a Python script, as well as the United States of America’s 10-year bond historical yields

from January 1st, 1972, up until the most recent recorded value. The gold standard was

abolished in the United States on August 15, 1971, which motivated our decision to set a

beginning date for the historical value of the yield.

We utilize the Maximum Likelihood Estimation Method (MLEM) to accurately estimate

the parameters of the log of price that reflect the Variance Gamma process. Once each

model instance is calibrated to the token prices, we generate 10, 000 corresponding Vari-

ance Gamma process samples using a method that takes the calibrated parameters of the

model and the token time series. From these samples, we select the n ∈ {1, 2, . . . , 10000}

samples with the lowest Root Mean Square Error (RMSE) on the historical token time se-

ries period. Using the Monte Carlo method, we derive the mean process which represents

the most likely realization of the token corresponding to the Variance Gamma process.

Using the equations we developed, we calculate an estimation of the impermanent loss
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from the dateout up to the maturity date by considering all the inputs for the impermanent

loss calculation that have already taken place.

7.1 Data Collection

A rigorous technique is used when studying a token’s historical price data without omitting

outliers. This approach recognizes that outliers, however extreme, frequently contain

useful market information. Using the Coingecko API, we collect token daily historical

prices.

7.1.1 Primary and Secondary Data

We have already discussed primary data. Secondary data is also important as it helps

us evaluate the performance and resilience of our model in capturing the main patterns

present in the token’s historical price. Therefore, we consider the period from dateout

until one day before the LP provides liquidity to one of the mentioned DeFi protocols to

be the secondary data period.

8 Model Simulation

Each stochastic process involved in the building of the Variance Gamma Lévy market

model is thoroughly documented in the appendices, along with a method for simulating

them.

9 Comparative analysis of Uniswap, Balancer, and

Curve Finance

To assess the risk of impermanent loss, we developed a model and considered a set of

crypto assets, WETH/WBTC. However, it’s important to note that not all four DeFi

protocols we discuss have these assets. This set is meant to be an illustrative example. Its

purpose is to generate multiple possibilities for the token price trajectories. The discussion

focuses on the impact of impermanent loss in those market conditions and highlights the

Uniswap, Balancer, and Curve Finance protocols. As such this approach is not limited to

any specific pairs of tokens.
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Let’s start our discussion by looking at a time mesh where each point represents a day

between the start date, 10/13/2023, and the maturity date, 10/12/2028, which is exactly

five years. We have chosen this long maturity date because we want to analyze how long

maturities impact impermanent loss.

To create realistic future price trends for each token, we start by setting up two variance

gamma Lévy markets, one for each token. Next, we calibrate the parameters of each

model to the corresponding token’s historical log price data from January 1st, 2017 to

October 12, 2023. To analyze various market conditions, we manipulate each parameter

of the price process. This forces the price process to reflect typical market conditions,

which we then analyze. We generated the price process trajectories for five years in this

scenario, resulting in the following outcomes:

(a) WETH price process sample path (b) WBTC price process sample path

(c) Correspondent relative price (d) Impermanent Loss Over Time

Figure 2: A realizations of our standard market condition.
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The calibrated parameters for WETH and WBTC are (σ;λ; θ) = (1, 32833; 0, 97886; 0),

(σ;λ; θ) = (1, 01657; 1, 08597; 0) respectively.

In the Figures 2a, 2b we have realized of price process for WETH and WBTC as the

forecast of our model considering the patterns captured from the historical data of each

token respectively.

Let us clarify that the reason why the IL trajectories over time for the Curve Finance

protocol look similar to that of Uniswap V2 is because we have assumed that both Dt and

Kt, defined in the respective equations, are constant. We had to make this assumption

since we couldn’t access the necessary coefficients on-chain to calculate Dt and Kt as a

function of time. It is essential to emphasize that this is the reason why the curves behave

in the way they do.

When evaluating the WETH token, it is crucial to notice that the short-term volatility

(represented by σ) is roughly 1.5 times larger than the jump intensity parameter (ex-

pressed by λ), although not excessively so.

As seen in Figure 2a, this results in more price oscillations with fewer jumps in the short

to medium term. However, as the number of days to maturity increases, we will see more

volatile fluctuations in prices and frequent jumps. In the case of WBTC Figure 2b, the

estimated values for both short-term volatility and jump intensity are almost identical,

resulting in a token price with frequent changes in both directions since the combined

impacts of these two elements influence the model volatility.

In the short to medium term, Figure 2c demonstrates that there is a significant movement

in both directions, but as time progresses, the relative price action becomes less aggressive

after the third year. As a result, all projects in the short to medium term are severely

affected, except for the Balancer protocols, which provide consistent and optimized IL

protection in the liquidity pool settings we are considering. Figure 2d shows that as

we approach the maturity time horizon, the IL trajectories of all protocols converge to

smaller and smaller values of IL. In this market condition, Uniswap V3 pools are the

most affected of them all, with the IL reaching as high as 27% in the first year. This is

somewhat reasonable to expect in the short to medium term given the current market

condition, with relatively regular and moderate economic shocks.
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By increasing the short-term volatility value tenfold in the Figure 3a, and Figure 3b, we

get a bigger σ in the model, indicating that asset values are expected to be more volatile

in the near future. Short-term volatility can be attributed to factors such as market

uncertainty, news events, or speculative trading activity. This indicates that short-term

price movements will become more significant and erratic. As sigma increases, liquidity

providers will demand greater compensation to cover potential losses or unexpected price

swings.

(a) WETH price process sample path (b) WBTC price process sample path

(c) Correspondent relative price (d) Impermanent Loss Over Time

Figure 3: The market with higher short-term volatility, 10xσ.

When we examine the IL over time in Figure 3d, we can see the reverse of IL known as the

Impermanent gain evidenced by the Uniswap V3 in the short-term. Through this market,

an LP would be better suited to supplying liquidity through the Balancer protocol, which

still provides more solid IL protection to the LPs, with the Uniswap V3 pools being the

most affected. According to 3d as the time to maturity diminishes we can observe the
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propagated effect of short-term volatility penalizing LPs that preferred either Uniswap

V2, V3, or the Curve Finance pools over that of the Balancer.

(a) WETH price process sample path (b) WBTC price process sample path

(c) Correspondent relative price (d) Impermanent Loss Over Time

Figure 4: The market condition with lower short-term volatility, 0, 001xσ.

Conversely, if we deflate the short-term volatility a thousandfold because the combined

effect of σ and λ controls the model volatility instead of having a consistent low volatile

price process, the jump component becomes dominant, as such the sudden price shift is

more frequent up to the maturity.

Similarly to the prior market scenario shown in Figure 3, the same conclusion concerning

IL can be drawn, except that between two and three and a half years, the Uniswap V3

protocol provides superior IL protection, followed by the Balancer in Figure 4d which

assumes the lead thereafter.

Let’s multiply the value of the jump component by 10 to originate the market condition

45



(a) WETH price process sample path (b) WBTC price process sample path

(c) Correspondent relative price (d) Impermanent Loss Over Time

Figure 5: The market condition with higher jump intensity, 10xλ.

express in the Figure 5. This will result in market conditions marked by huge price spikes,

as is typical in the crypto market. Other significant characteristics of this state include

speculative trading, poor liquidity in some assets, and a 24-hour trading environment.

Market sentiment, news, and trading volumes all contribute to the high value of the jump

component. It is important to note that statements or rumours regarding regulatory or

market changes might cause uncertainty, which can lead to significant price volatility.

When excessive volatility is produced by a cascade of automated selling orders, flash

crashes can occur. These events can result in a series of sharp price drops followed by

recoveries, adding to the severity of the jump component in the Lévy market model.

Figure 5d shows that these market conditions are highly susceptible to high IL values in

the longer timeframe, with the Balancer pool being the least affected.
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(a) WETH price process sample path (b) WBTC price process sample path

(c) Correspondent relative price (d) Impermanent Loss Over Time

Figure 6: The market condition with lower jump intensity, 0, 001xλ.

When the jump intensity parameter is exceedingly low ( as seen in Figure 6), the market

experiences few and moderate price fluctuations but large jumps are rare which is visible

in Figures 6a, and 6b despite the impact of short-term volatility being more prominent.

In the current market conditions, Uniswap V3 liquidity pools offer better protection

against impermanent loss (IL) compared to Balancer pools in the short term, up to

approximately four years. However, Balancer pools are a more stable and suitable option

for longer time horizons. On the other hand, LPs can expect to face more IL when using

Curve Finance and Uniswap V2 pools since these pools are more susceptible to market

volatility, as shown in Figure 6d.

47



Looking at the figure 7d, we can deduce that in our Lévy market model, when the volatility

is high, Balancer pools tend to perform better. However, this is only true between the

end of the first year and roughly the beginning of the third year, when we consider the

combined effect of short-term volatility and the jump component. On the other hand, in

the short term and in the longer time horizon, Uniswap V3 outperforms other protocols

by providing a better IL edging mechanism to the LPs.

(a) WETH price process sample path (b) WBTC price process sample path

(c) Correspondent relative price (d) Impermanent Loss Over Time

Figure 7: High volatility market condition, 10xλ, 10xσ.

Conversely, in periods of low volatility in the market, the results presented in Figure 8d

suggest that in the short-to-mid time horizon, the Uniswap V3 liquidity pools provide

better IL protection, although the Balancer pools are the optimized choice for longer

maturity.
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(a) WETH price process sample path (b) WBTC price process sample path

(c) Correspondent relative price (d) Impermanent Loss Over Time

Figure 8: Low volatility market condition, 0, 001xλ; 0, 001xσ.

Final Considerations

Based on statistical results provided by our Lévy market model with the centred Variance

Gamma stochastic process, and after analyzing the impermanent loss risk in the Uniswap

V2, Uniswap V3, Balancer, and Curve Finance liquidity pools, it can be concluded that

Balancer’s 5/95 weighted pools are more likely to be less affected by impermanent loss in

general and across the most typical crypto market conditions.

In low-volatility financial markets, the Uniswap V3 protocol stands out as an exception,

offering superior protection against IL in the short to medium term. Furthermore, em-

pirical research suggests that even in highly volatile market conditions, the Uniswap V3

protocol provides its LPs with relatively better protection against IL over extended time

horizons.
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In our research, we analyzed the risk of impermanent loss in liquidity pools provided by

various DeFi protocols, taking into account the ”typical” market conditions of the crypto

industry. The results of our statistical analysis revealed that Balancer’s 5/95 pools are

comparatively less susceptible to impermanent loss.

The Balancer protocol’s dynamic asset allocation and the specific 5/95 pool configuration

offer liquidity providers a competitive advantage. Balancer’s design allows for greater

control over the composition of the liquidity pool, enabling users to customize their expo-

sure to different assets within the pool. This feature aligns well with the central tenets of

the Lévy market model, which emphasize adaptability and risk management. Balancer’s

approach to liquidity provision, especially in the context of 5/95 pools, appears to provide

better protection against impermanent loss. However, liquidity providers should contin-

ually monitor and adapt their strategies based on the evolving landscape of the DeFi

market.
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A Appendix A: Fundamental concepts about Bitcoin

network

In this Appendix section, we define the fundamental notion and terminology required to

understand how the Bitcoin Blockchain operates.

Transaction TX

The transactions are a crucial aspect of the Bitcoin system. Every other feature of Bit-

coin is designed to make sure that transactions can be created, propagated throughout

the network, verified, and eventually added to the global ledger of transactions. Trans-

actions are data structures that contain information about the transfer of value between

participants in the Bitcoin system.

Transaction Inputs and Outputs

The fundamental building block of a Bitcoin transaction is a transaction output. Trans-

action outputs are indivisible chunks of Bitcoin currency, recorded on the blockchain,

and recognized as valid by the entire network. Bitcoin full nodes track all available and

spendable outputs, known as unspent transaction outputs, or UTXO. The collection of

all UTXO is known as the UTXO set and currently numbers in the millions of UTXO.

The UTXO set grows as new UTXO is created and shrinks when UTXO is consumed.

Transaction outputs

Transaction outputs consist of two parts:

1) An amount of Bitcoin, denominated in satoshis, the smallest Bitcoin unit;

2) A cryptographic puzzle that determines the conditions required to spend the output.

Transaction Inputs

When creating a transaction, a wallet needs to identify which Unspent Transaction Out-

puts (UTXOs) it will consume and provide proof of ownership through an unlocking

script. To do this, the wallet selects UTXOs it controls that have enough value to cover

the requested payment. Depending on the payment amount, the wallet may need to use
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one or more UTXOs. For each UTXO that will be consumed, the wallet creates an input

that points to the UTXO and unlocks it with an unlocking script.

The input contains four elements essentially:

1) A TX ID, referencing the transaction that contains the UTXO being spent;

2) An output index identifying which UTXO from that transaction is referenced;

3) A scriptSig, which satisfies the conditions placed on the UTXO, unlocking it for

spending;

4) A sequence number-nonce (deprecated).

Transaction Fees

Bitcoin transaction fees are payments made to transactions to reward miners and maintain

the network’s operation following consensus rules and methodologies. Higher-fee trans-

actions are preferred by miners since they maximise their revenue while also adher-

ing to the network’s consensus process. The fee market is affected by supply and de-

mand for block space. Users can set their prices, although low prices may result in de-

layed confirmations or low priority. Fee estimation algorithms assist in calculating ap-

propriate fees depending on transaction size and market conditions. Consensus rules en-

sure that transactions in higher-fee blocks are more likely to be authorised by the network.

Transaction Scripts and Script Language

The Bitcoin transaction script language, Script, is a simple and safe Turing-complete ex-

ecution language. Using a stack-based execution paradigm and reverse-polish nota-

tion, scripts may establish a comprehensive range of criteria and calculations during trans-

action validation. It is purposely designed to be computationally light to work with a va-

riety of hardware configurations.

The script delivers programmable money, which enables more intricate spending scenar-

ios than ordinary payment transfers. The Turing completeness of Script allows for the cre-

ation of advanced smart contracts as well as the execution of complicated calculations

within the Bitcoin network.
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Digital Signatures

In Bitcoin, a digital signature is a mathematical approach used to demonstrate ownership

and authority without revealing the private key. It provides irrefutable proof of permission

and assures that the transaction cannot be altered once signed.

Bitcoin uses the ECDSA algorithm for digital signatures. Every transaction input is

signed individually using ECDSA. To verify a signature, you need the supporting public

key, the serialised transaction, and the signature itself. In Bitcoin, SIGHASH flags are

used to specify which parts of the transaction are included in the signature. These flags

offer transactional flexibility in several situations.

Public and Private keys

Asymmetric cryptography requires both public and private keys. The public key is widely

circulated and used for encryption and verification, ensuring communication privacy and

authenticity. It encrypts data and checks digital signatures.

A private key is simply a number picked at random, and it is essential to create signatures

that are required to spend Bitcoins by proving ownership of funds used in a transaction.

The public key is calculated from the private key using elliptic curve multiplication, which

is irreversible.

Bitcoin Addresses

The Bitcoin address is an alphanumeric identifier used to receive and send Bitcoin cryp-

tocurrency derived from the public key through the use of the one-way cryptographic

hashing function.

Merkle Trees

The Merkle tree on the Bitcoin blockchain summarizes all of the transactions in the block.

A Merkle tree, also known as a binary hash tree, is a data structure used to quickly

summarize and verify large amounts of data. The term ”tree” refers to a branching data

structure in computer science nevertheless, these trees are often portrayed upside down,

with the ”root” at the top and the ”leaves” at the bottom of an illustration.
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Gas

Gas is a virtual fuel in Ethereum that is used to execute smart contracts. The EVM uses

an accounting system to measure gas use and limit computer resource usage.

Transparency

Transparency refers to the Bitcoin network’s open and public character, in which infor-

mation about transactions, addresses, and blocks is available to anybody. It is a crucial

feature of the Bitcoin protocol that ensures the network’s credibility and security.

Through the use of Bitcoin Explorer, an individual can assess all the information ever

written on the Bitcoin ledger.

Notice that a blockchain explorer is a web application that operates as a Bitcoin search

engine in that it allows anyone to search for addresses, transactions, and blocks and see

the relationships and flows between them.

Popular blockchain explorers include- Bitcoin Block Explorer, BlockCypher Explorer,

blockchain.info etc.

B Appendix B: Stochastic Processes

Definition 3. A stochastic process is a collection of random variables {X(t, ω), t ∈ Λ, ω ∈

Ω} defined in the product space ΛxΩ such that:

i) ∀t ∈ Λ, X(t, ·) is a random variable;

ii) ∀ω ∈ Ω, X(·, ω) is a F -measurable function.

Where Λ represents a Borel-measurable set. Usually, when Λ is countable set, i.e; Λ ⊆ N0,

we say that X(·, ·) is a discrete-time stochastic process. Similarly when Λ ⊆ R+
0 , we

designate the process as a continuous-time stochastic process.

As an example, consider the following types of stochastic processes:
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Definition 4. A Stochastic process B(·, ·) is known as Brownian motion or Wiener pro-

cess if it satisfies the following proprieties:

1) for each ω ∈ Ω (fixed), we have:

1.1) P ({B(0, ω) ̸= 0}}) = 0;

1.2) considering 0 ≤ s ≤ t, the random variable B(t, ω)−B(s, ω) = B(t− s, ω)

is a Gaussian with mean 0 and variance t− s;

1.3) for each partition 0 = t0 ≤ t1 ≤ . . . ≤ tn, n ∈ N, the increments

B(t1, ω), B(t2 − t1, ω), . . . , B(tn − tn−1, ω) are independents;

1.4) P ({B(·, ω) is continuous}) = 1

This process is extensively utilized in mathematical finance, particularly in the Black-

Scholes model of the financial market, and is also a vital element in constructing a pure

Lévy stochastic process.

B.1 Brownian Motion

When we defined Brownian motion, we noticed that this stochastic process has indepen-

dent and stationary increments that are Normally distributed. Furthermore, we know

that the Gaussian distribution is fully characterized by its parameters, which were also

provided in the definition of Brownian motion. Based on this insight, we can simulate a

one-dimensional Wiener process, Bt, by considering a time grid that is defined as:

∆ti = ti − ti−1, for each i = 1, 2 . . . , n ∈ N

Moreover, we will take B0 = 0 and provide an approximation of a Wiener process at each

point in this time grid as follows:

Bti := Bti−1
+
√

∆tiZi, Zi ∼ N (0, 1)

The figure below provides an example of a sample path generated through the simulation

technique described earlier:
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(a) Example 1 (b) Example 2

Figure 9: Brownian Motion sample paths

Another example is given as follows:

Definition 5. Consider ω ∈ Ω (fixed), n ∈ N and t1, . . . , tn ∈ Λ ⊆ R0 such that t1 ≤

. . . ≤ tn ≤ t. A stochastic process Xt = X(t, ω) is said to be a Marcov process if it satisfy

to condition:

P (Xt ∈ A|Xt1 = x1, Xt2 = x2, . . . , Xtn = xn) = P (Xt ∈ A|Xtn = xn)

for any Borel-measurable set A, t1, . . . , tn ∈ Λ and x1, . . . , xn ∈ R.

Markov processes form the backbone for the Markov chain Monte Carlo method, a type

of stochastic simulation approach used to sample from intricate probability distributions.

These methods have widespread applications in various fields such as Bayesian statistics,

physics, economics, chemistry, and signal processing.

Definition 6. A Stochastic process N(·, ·) defined in the probability space (Ω,F , P ), and

with state space Λ ∈ N0 is said to be Poisson process with intensity λ > 0 if the following

condition holds:

1) for each ω ∈ Ω (fixed), we have:

1.1) P ({N(0, ω) = 0}}) = 1;

1.2) ∀0 ≤ s < t, the random variable N(t, ω)−N(s, ω) has Poisson distribution

with intensity λ(t− s), more specifically:

P (N(t)−N(s) = n) =
(λ(t− s))n e−λ(t−s)

n!
, ∀n ∈ N0
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1.3) for each time partition 0 = t0 ≤ t1 ≤ . . . ≤ tn, n ∈ N, the increments

N(t1), N(t2)−N(t1), . . . , N(tn)−N(tn−1) are independents;

1.4) P ({N(·, ω) is continuous on the right}) = 1

The Poisson process has been widely applied to simulate the occurrence of separate and

seemingly unrelated events. It is crucial to Queueing theory, a branch of probability

theory that deals with building suitable stochastic models to capture the arbitrary arrival

and departure of certain occurrences.

Definition 7. Consider a stochastic process {S(t), t ≥ 0} defined in the probability space

(Ω,F , P ), as follow:

S(t) =
Nt∑
i=1

Xi

where

(1) {Nt, t ≥ 0} is a Poisson process with intensity λ > 0;

(2) {Xi, i ∈ N} is a sequence of independents and identically distributed (iid) random

variables;

(3) the processes {Nt, t ≥ 0} and {Xi, i ∈ N} are independents;

Then S(t) is said to be a Compound Poisson process.

It is important to notice that the process we described as Nt is a Poisson process with

parameter λt, i.e.,

P (Nt = n) =
(λt)n e−λt

n!
, ∀n ∈ N0

To simulate a one-dimensional Poisson process Nt, we first simulate an independent se-

quence of Exponential random numbers {en, n = 1, 2, . . .} with intensity λ as:

en = − log(un)

λ
, ∀n ∈ N, un ∼ Unif(0, 1)

With these inputs, we can now define the sequence of calls arrival times as:

s0 = 0, and sn = sn−1 + en, ∀n ∈ N

The number of phone calls received in a call center in the time interval [0, t], will be given

as:

N0 = 0, Nti = sup
k∈N

{sk ≤ ti} , for each t0 < t1 < · · · < tn
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(a) Example 1 (b) Example 2

Figure 10: Sample path of Poisson random variable built using the described approach.

Gamma process

Gamma process, Γ(t, ω; r, λ) can be defined as the stochastic process with the following

proprieties: if it satisfies the following proprieties:

1) for each ω ∈ Ω (fixed) we can use the notation Γ(t, ω; r, λ) = Γ(t; r, λ), and we have:

1.1) P ({Γ(0; r, λ) ̸= 0}}) = 0;

1.2) considering t, h > 0, the random variable Γ(t+h; r, λ)−Γ(t; r, λ) is a random

variable whose law is absolutely continuous with respect to the Lebesgue measure

with density:

f(x) =
( r
λ

) r2h
λ x

r2h
λ

−1e−
r
λx

Γ( r
2h
λ
)

, x ∈ R+;

1.3) for each partition 0 = t0 ≤ t1 ≤ . . . ≤ tn, n ∈ N, the increments

Γ(t1; r, λ),Γ(t2 − t1; r, λ), . . . ,Γ(tn − tn−1; r, λ) are independents.

It follows that the characteristic function of Γ(t; r, λ) is given by:

Φ(u; t) =

(
1− iu

λ

r

)− r2t
λ
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(a) Example 1 (b) Example 2

Figure 11: Two realizations of a Variance Gamma process

Let us proceed to characterize this class of stochastic processes using characteristic func-

tions.

Definition 8. We define the characteristic function of a random variable X with values

in the set R, and distribution µ as function ΦX : R 7→ C such that:

ΦX(u) := E
[
eiuX

]
=

∫
R
eiuxµ(dx), ∀u ∈ R

It’s a well-known fact that there is a one-to-one correspondence between a distribution

function and the characteristic function that’s linked to the relevant random variable.

This means that we can say with confidence that the characteristic function provides a

complete characterization of the distribution of the associated random variable.

Definition 9. We define an Infinitely Divisible distribution as a distribution µ such that

for each n ∈ N, there is a distribution µn whose characteristic function, Φµn, satisfies:

Φµ(u) = (Φµn(u))
n , ∀u ∈ R

It is important to emphasize that we can derive an implicit solution to the dynamic of

the the CIR process defined in equation (11) as it is equivalent to the following:
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dyt + κytdt = κµdt + α
√
ytdBt ⇔ (15)

eκtdyt + eκtκytdt = eκtκµdt + αeκt
√
ytdBt ⇔

d
(
eκtyy

)
= eκtκµdt + αeκt

√
ytdBt ⇔

yt = y0e
−κt + µ

(
1− e−κt

)
+ α

∫ t

0

e(s−t)κ√ysdBs, ∀t ≥ 0.

which is a Gaussian random variable for each t ≥ 0, with mean and variance, according

to Itö’s isometry, given by:

y0e
−κt + µ

(
1− e−κt

)
, α2

∫ t

0

e2(s−t)κysds

We can go further and express both the variance and the third non-centered moment of

the CIR process as it follows that:

V ar[yt] =
α2

κ

(
y0e

−κt(1− e−κt) +
µ

2
(1− e−κt)2

)
;

E[y3t ] = R3
t +

3α2

4κ2
Rt

(
1− e−2κt

)2
.

Where for each t ≥ 0, the function Rt is defined as Rt = y0e
−κt + µ (1− e−κt).

CIR process simulation

The simulation of the CIR stochastic process, we can use the Euler scheme at an equally

spaced time points {n∆t, n = 1, 2, . . .} as follow:

yn∆t = y(n−1)∆t + κ
(
µ− y(n−1)∆t

)
∆t + α

√
∆ty(n−1)∆tZn, Zn ∼ N (0, 1)

CIR Parameters

Let us consider the following parameters acquired by the Least Squares Estimation method

on 10-year T-bond interest rate historical values since January 1 of the year 1972 up

until July 1st of the year 2023 as a reference, therefore in this setting, the CIR process

trajectories are presented in the next figure
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C Appendix C: Key Terms and Definitions

Consider the following definition:

Definition 10. We can define The main Kummer confluent hypergeometric function as

1F1(a, b; z) =
∑
n∈N0

(a)n
(b)n

zn

n!
=

Γ(b)

Γ(a)

∑
n∈N0

Γ(a+ n)

Γ(b+ n)

zn

n!
(16)

where (a)n =
∏n−1

i=0 (a + i) =
Γ(a+ i)

Γ(a)
is usually known as Pochhammer symbol and by

convention, (a)0 = 1. It fallows that for each h ∈ N

1F1(a+ h, r; z) = ez
h∑

i=0

(
h

i

)
zi

Γ(r)

Γ(r + i)

Definition 11. We say a random variable, X, follows a non-centered Gamma distribution

if its law is a measure which is absolutely continuous with respect to the Lebesgue measure

with density given by:

fX(x) =
λr

Γ(r)
e−λxxr−1e−δλ

1F1(r, λ; δλ
2x) (17)

where δ denotes the non-centrality parameter. In these circumstances the usual Gamma

random variable comes as a particular case when δ = 0, and we denote this case as

X ∼ Gamma(r, λ) with r, λ ∈ R+

We are considering the definition of the gamma function as follows:

Γ(r) =

∫
R+

e−xxr−1dx, r ∈ R+
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Notice that the representation provided in equation 12 is only well defined if, and only if

all the following conditions are satisfied:

µ2
p

τp
=

µ2
q

τq
=

1

λ
;
τpτq
µpµq

=
σ2λ

2
;
τp
µp

− τq
µq

= θλ. (18)

and it is important to emphasize that

C =
1

λ
,G =

(√
θ2λ2

4
+

σ2λ

2
− θλ

2

)−1

,M =

(√
θ2λ2

4
+

σ2λ

2
+

θλ

2

)−1

(19)

( see [8])

D Appendix D: Parameters Analysis

D.1 Parameters effects on the Variance Gamma process

In this section, we are going to examine the fundamental influence each of the three pa-

rameters, σ, λ, θ, has in the correspondent Variance Gamma stochastic processes to further

confirm the process theoretical expected behaviour and properties. We will proceed by

amplifying and decreasing each parameter by a factor of 5 (or 10 in case of σ and 15 in

case of θ) and present the correspondent 17 sample path of the correspondent Variance

Gamma process.

For sake of clarity, in the following figure, we generate 17 trajectories from the Variance

Gamma process on a mesh made of 121 points, XV G
t (0, 18; 0, 7367; 0, 04056), 0 ≤ t ≤ 1,

as our starting point with parameters from Schoutens pg 82 ( see [13]).

D.1.1 Volatility Parameter

Effect in VG Process: As the VG process does not implicitly have a diffusion component

such as geometric Brownian motion (GBM). Through process jumps, the VG process

accounts for volatility.

In VG modelling, the volatility impact is handled indirectly via the jump component in

the Lévy measure and the variance parameter σ. As these two parameters increase they

lead to higher jumps, increasing the token’s price volatility.
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(a) Variance Gamma trajectories

(a) The effect of increasing σ (b) The effect of decreasing σ

D.1.2 Jump Parameter

Effect in VG Process: The jump parameter λ reflects the VG process’s jump component.

It regulates the intensity of the jumps. A large value of λ suggests more frequent and

greater leaps. As the value of λ increases, the price process becomes more volatile and

results in larger and more frequent price spikes. This is why VG models are well-suited for

capturing significant price movements in financial markets. For instance, VG models are

particularly useful for predicting stock price spikes, which is one of the most well-known

characteristics of the crypto market.
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(a) The effect of increasing λ (b) The effect of decreasing λ

D.1.3 Drift Parameter

Effect in VG Process: the drift parameter θ indicates the VG process’s average rate

of return or linear growth component. A positive drift indicates an upward tendency,

whereas a negative drift leads to a downward trend. The following figure emphasizes the

control this parameter has on the correspondent VG process:

(a) The effect of increasing θ (b) The effect of decreasing θ

In the context of financial modelling, positive drift indicates that the asset’s price is

expected to grow over time on average, making it a great choice for modelling assets with

historically positive returns. A negative drift, on the other hand, shows a decrease in the

price of the asset over time.
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D.2 Parameters effects on the CIR process

Let us consider the following parameters acquired by the Least Squares Estimation method

on 10-year T-bond interest rate historical values since January 1 of the year 1972 up

until July 1st of the year 2023 as a reference, therefore in this setting, the CIR process

trajectories are presented in the next figure

The mean-reversion speed parameter κ governs how quickly the process returns to its

long-term mean. As such as it increases so does the rate at which the process reverts

around it. The converse is also true as the following figure shows us:

(a) The effect of increasing κ in the CIR process (b) The effect of decreasing κ in the CIR process

As we mentioned before, the long-term mean level parameter µ denotes the value to-

wards which the process reverts. It acts as a catalyst for the process, and changing

its value modifies the process’s central tendency as we can see in the figure below:

The magnitude of random fluctuations or diffusion in the process is determined by the

volatility parameter α. A higher level of volatility translates into higher deviations from

the long-term mean, and vice versa.
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(a) The effect of increasing µ in the CIR process (b) The effect of decreasing µ in the CIR process

(a) The effect of increasing α (b) The effect of decreasing α

E Curve Finance

Curve Finance provides a one-of-a-kind trading mechanism by combining the ”constant

sum automated market maker” (AMM) algorithm with the constant product formula.

This unique technology allows for exact and predictable trading of stablecoins and equiv-

alent assets while preserving market liquidity. The implementation of this combination

technique by Curve provides good price discovery and stablecoin swaps with little slip-

page. In the paper- Mixing Constant Sum and Constant Product Market Makers by A.

Port and N. Tiruviluamala we invite the reader to a careful reading of an indepth per-

spective of all the intricacies of a general AMM construction using this approach ( see

[11]). The Curve Finance improves traders’ and liquidity providers’ trading capabilities

inside the decentralized finance ecosystem by combining the advantages of AMM with the

constant product formula, as presented in the whitepaper ( see [7]).
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The value function for Curve Finance two token pools is given as follows

KtDt(x(t) + y(t)) + x(t) y(t) = KtD
2
t +

(
Dt

2

)2

. (20)

Where, at time t ≥ t0, x(t), y(t) represent the LP fraction of the pool total reserve

respectively and Dt = x(t) + y(t) denotes the LP total holdings. Considering A the

amplification coefficient and the gamma factor γ(t) we have that

K0 =
4 x(t) y(t)

D2
t

and Kt = AK0
γ2(t)

(γ(t) + 1−K0)2
.

Evidently the entire liquidity pool’s Invariant is achieved when we consider the current

set of all the LP providing liquidity to that particular pool at time t ≥ t0.

E.1 Understanding the Logic Underlying Curve’s Expression

of Crypto-Pools Value Function

Curve Finance is optimized for stable swaps, which occur when a trader exchanges an

amount of one stablecoin for another stablecoin, like DAI to USDC. Due to the nature of

any stablecoin, in this type of trade one would expect to trade, for example, 1.000DAI to

1.000USDC, precisely.

Step 1

A value function that represents this relationship is known as Invariant Sum and it is

given by

Dt = x(t) + y(t) .

On May 9th, 2022 Terra Luna stablecoin, UST, lost its peg to US Dollar, June 15th of

the year 2023 the biggest stablecoin by market capitalization suffer a depeg to US Dollar

and on February 17 of the year 2020 the Binance stablecoin, BUSD, traded below 0,96

US Dollar. This is to emphasize that depegging of stablecoins has been an usual event in

the digital asset industry.
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Step 2

To prevent the situation where one of the tokens is completely drained from a particular

pool, the following Constant Product Invariant was added

x(t)y(t) =

(
Dt

2

)2

This invariant prevents the draining of a token in a given pool by increasing its price as

the token’s total reserve decreases in the pool. So we would have an Invariant that looks

like

x(t) + y(t) + x(t)y(t) = Dt +
D2

t

4
.

Step 3

Our main goal is to define an invariant that behaves like the constant sum when the token

prices are stable, but like the constant product when they are not. As you may observe,

we can achieve this by amplifying the constant sum term in the previous equation by a

multiplicative constant, χ, resulting in the following invariant

χ
[
x(t) + y(t)

]
+ x(t) y(t) = χDt +

D2
t

4
.

So when χ = 0 we have a Constant Product invariant governing the equation, and when

χ → ∞ the Constant Product contribution in the overall invariant equation becomes

infinitesimally small, consequently the Value Function behaves like an Invariant Sum

which also occurs when the sum of x(t) + y(t) is large enough. In order to arrive at an

Invariant that behaves like Constant Product when χ = 0 and behaves much like Invariant

Sum when n χ → ∞ regardless of the how large or small x(t) + y(t) is, we multiply the

Invariant Sum equation by χD2−1
t arriving at

χ
[
x(t) + y(t)

]
Dt + x(t) y(t) = χD2

t +
D2

t

4
,

which is precisely the StableSwap Invariant illustrated in the Curve Finance whitepaper

(see [7]) for the two token pools.
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Step 4

This value function can be further adapted as follows:

KtDt

[
x(t) + y(t)

]
+ x(t) y(t) = KtD

2
t +

(
Dt

2

)2

(21)

where we consider

K0 =
4 x(t) y(t)

D2
t

and Kt = AK0
γ2(t)

(γ(t) + 1−K0)2
.

Following the link we have the illustration of this invariant when we vary the Amplifi-

cation Coefficient 1 ≤ A ≤ 1.000, the Invariant Sum constant, 15 ≤ Dt ≤ 70, and the

Gamma constant, 10−5 ≤ γ ≤ 10−3, considering K0 = 4x(t)y(t)/D2
t .

E.2 IL Formula

So far, we have derived the IL formula for the Balancer protocol, Uniswap V2 and V3 in

the previous sections. As we were able to verify, the variation of token reserves was the sole

factor that determines the pool’s Value Function. In the case of Curve Finance however,

beside these factors we have the Amplification coefficient, fee structures and the gamma

constant that still influence the behavior of the pool. Naturally, in our discussion we will

not be taking into consideration the fee structure of the Curve finance. Therefore, in order

for us to work with a constant K = Kt and a constant D = Dt for each t ≥ t0, beside

assuming no deposits nor withdrawals during the period the LP is providing liquidity in

this protocol, we must also suppose that there is no change in the Gamma parameter

present in the second page of the CurveCrypto whitepaper.

Notice that the gamma parameter would otherwise be updated through the Curve Finance

governance process to rebalance incentives for that particular pool.

Let us consider the LP’s token prices at instant t ≥ t0 as px(t), py(t) and from this point

on unless otherwise stated, we are going to denote the fraction of that particular pool

reserve owned by the LP as x(t) and y(t) respectively in the same setting as we did in

our discussion in previous sections about the Uniswap IL formula derivation.
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Notice that the following property previously mentioned

px(t) · x(t) = py(t) · y(t) . (22)

still holds true in the case of the Curve two tokens pool by exactly the same reasoning.

As such we may re-write the value function described in (21) as:

KD

(
x(t) + x(t)

px(t)

py(t)

)
+ x2(t)

px(t)

py(t)
= KD2 +

(
D

2

)2

,

as the reader may have noticed, we derived the previous equation by replacing y(t) with

its expression written in terms of x(t) using the characterization described in equation 22.

Notice that, this results in a simple second degree polynomial equation that has the

following solution:

x(t) =
DK h(t)

2 px(t)
.

where, in order to make our present discussion less cumbersome, we define the strictly

positive valued function h(·) as:

h(t) :=

√(
px(t) + py(t)

)2
+ px(t) py(t) (4/K + 1/K2)− px(t)− py(t) .

Analogously, we derive the solution in terms of the quantity y(t) which yields:

y(t) =
DK h(t)

2 py(t)

Hence, the amount invested by the LP at time t , i.e. Vinvest(t) in dollar terms for t ≥ t0,

will be given by

Vinvest(t) = x(t) px(t) + y(t) py(t) = DK h(t) .

Notice that, because we are working in the same setting as in the section of the Uniswap

discussion, the quantities x, y, K and D only refer to the LP’s holdings at time t ≥ t0,

not to the total reserves of the entire pool. With that in mind, had the LP held their

tokens instead, their holdings in dollars, at time t > t0, which we will denote as Vhold(t),

would be:
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Vhold(t) = px(t)x(t0) + py y(t0) = ∆x px(t0)x(t0) + ∆y py(t0) y(t0)

= (∆x +∆y)h(t0)
DK

2
.

Where we are using our usual notation to represent the quantities, i.e.;

∆x =
px(t)

px(t0)
, ∆y =

py(t)

py(t0)
.

Therefore, we may conclude that the IL the LP will face at time t ≥ t0 will be given by:

IL(t) =
Vinvest(t)− Vhold(t)

Vhold(t)
=

2

∆x +∆y

h(t)

h(t0)
− 1 where

h(t) =

√(
px(t) + py(t)

)2
+ px(t) py(t) (4/K + 1/K2)− px(t)− py(t) .
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