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GLOSSARY 

 

PCA – Principal Component Analysis 

AVM – Automated valuation model 

ANN – Artificial Neural Network 

MAE – Mean Absolute Error



 

ii 
 

RESUMO 

A quantificação da incerteza associada à avaliação imobiliária tem sido 

notavelmente negligenciada na literatura. O objetivo deste trabalho é colmatar a lacuna 

existente, mediante uma análise da incerteza na avaliação de propriedades, através da 

aplicação de técnicas de aprendizado de máquina e previsão conformal. A previsão 

conformal quantifica a incerteza associada a previsões individuais e proporciona uma 

série de resultados possíveis em torno de estimativas pontuais com base em um nível de 

significância pré-definido. Ao aplicar a regressão de quantis conformal, somos capazes 

de mitigar as limitações das abordagens iniciais de regressão conformal e construir 

intervalos que exigem apenas que os dados sejam passíveis de intercâmbio para assegurar 

a cobertura. Através de um estudo empírico dos preços de imóveis na área da Baía de São 

Francisco, descobrimos que a regressão de quantis conformal fornece intervalos de 

previsão adaptativos com cobertura garantida que capturam variações inerentes à 

incerteza observada entre distintos níveis de preços de propriedades.  

 

PALAVRAS-CHAVE: Avaliação de imóveis; Predição conforme; Aprendizado de 

máquina; Regressão quantílica conforme 
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ABSTRACT 

Uncertainty quantification associated with real estate appraisal has largely been 

ignored in the literature. The aim of this dissertation is to fill this gap by analysing 

uncertainty in property valuation using machine learning complemented by conformal 

prediction. Conformal prediction quantifies uncertainty associated with individual 

predictions and provides a range of possible outcomes around point estimates based on a 

pre-defined significance level. By applying conformal quantile regression, we can 

mitigate limitations of early conformal regression approaches and we are able to build 

intervals that only require the data to be exchangeable for the coverage to be guaranteed. 

Through an empirical study of property prices in the San Francisco Bay Area, we find 

that the conformal quantile regression provides adaptive prediction intervals with 

guaranteed coverage that captures uncertainty variations across different property prices. 

 

KEYWORDS: Property valuation; Conformal prediction; Machine learning; 

Conformal quantile regression 
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1. INTRODUCTION 

 
Real estate transactions are a key contributor to the overall economy, creating employment, 

generating tax revenues, and stimulating economic growth. A strong real estate market, where 

both demand and property values are high and constant, is a great indication of a robust 

economy and positive consumer confidence. This, in turn, affects consumer spending, 

investment levels and overall economic certainty. The housing market also plays an important 

role in the livelihood of economic agents, namely as a primary source of wealth creation. Real 

estate investment represents the most substantial investment most individuals undertake in their 

lifetime. Consequently, housing market conditions, as well as housing affordability and 

availability, greatly impacts the quality of life and standards of living for most. Moreover, the 

real estate market is also used for many as a hedge against inflation, either by direct purchase 

or by including this asset class into a well-diversified investment portfolio. To offer effective 

guidance and advice to prospective home buyers, investors, and property sellers alike, real 

estate brokers and investment advisers rely on predictive tools such as automated valuation 

models (AVMs). This valuation method allows them to estimate property values, understand 

the effect of specific property attributes on pricing, and provide well-informed 

recommendations to their clients (Bellotti, 2017). 

The conventional method for estimating house prices is hedonic in nature, i.e., based on 

the dwellings’ attributes and follows the widely used linear regression technique (Goodman, 

1978). For the model to provide valid coefficient estimates, i.e., unbiased, consistent, and 

efficient, underlying assumptions must be satisfied such as linearity, exogeneity of the 

variables, and independence of the errors. More precisely, the violation linearity and 

exogeneity can produce both bias and inconsistent coefficient estimators. Although problems 

like autocorrelation of errors and heteroskedasticity—identified when the variance of the error 

term is not constant—do not result in biased estimators, they do yield inefficient parameter 

estimates and compromise the dependability of hypothesis tests. Considering the nature of 

housing data, those assumptions may be easily violated which reduces the precision of linear 

models and can lead to invalid inference (Limsombunchai, et al., 2004).  

In recent years, with the increasing access to large databases, the use of machine learning 

models—decision trees, random forest, neural networks, and gradient boosting—are becoming 

commonly used to perform this task. In contrast to linear models, machine learning algorithms 

are less dependent on satisfying the previously stated assumptions. Artificial neural networks 



 

8 

 

(White, 1989), support vector machines (Kecman, 2005) and tree-based models such as random 

forest (Breiman, 2001) and gradient boosting (Freund & Schapire , 1996; Friedman, 2001) are 

common predictive methods, gradually replacing the linear hedonic models. These methods 

are increasingly employed as they can handle complex, unstructured, and high-dimensional 

data. Moreover, they have a strong ability to recognize and model nonlinear patterns making 

them more suitable to perform property valuations (Babu & Chandran, 2019). 

The primary objective of this dissertation is to contribute to the growing area of research 

focused on real estate market valuation using machine learning algorithms and address the 

current gap in the literature regarding uncertainty quantification. To achieve this, the 

dissertation employs conformal quantile regression in conjunction with a machine learning 

model to generate prediction intervals. These intervals serve as a tool to quantify the 

uncertainty associated with property price predictions. Specifically, we investigate the 

performance of a conformal quantile model in comparison to a traditional approach of standard 

quantile regression. The study focuses on data from the dynamic and highly competitive real 

estate market of the San Francisco Bay Area, where property valuations are often characterized 

by complex and non-standard patterns. The dataset used for the empirical analysis contains 

8,351 observations on sold properties, including their price, as well as their physical, location 

and geographical attributes. The houses comprised in the dataset were sold over the period 

2020 to 2023. Considering that large datasets on sold properties are privately owned by real 

estate companies, the data used was acquired through an Application Programming Interface 

(API) service, and further enhanced using the United States Census Bureau website for 

geographical and demographic data. The machine learning algorithm used to perform the 

analysis is the gradient boosting tree for quantiles. The research illustrates the advantages of 

using conformal prediction as it outperforms conventional quantile regression, particularly in 

cases where the data displays strong variability in the prices.  Notably, we find that conformal 

quantile regression provides adaptive prediction intervals with guaranteed marginal coverage 

centered at the desired nominal level of 0.90. The relative median widths reported also 

illustrates the sensitivity of the model to price variations.  

The remainder of this dissertation is structured as follows: Section 2 covers the 

literature review, while Section 3 defines the conformal prediction model in the context of 

property price estimation. Section 4 presents the data used in the empirical study and provides 

an evaluation of the results. Concluding the dissertation, Section 5 provides a summary of the 

results from this analysis. 
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2. LITERATURE REVIEW 

 

2.1 Hedonic price model 

 

Most empirical research within the field of real estate economics tackle the analysis of housing 

price determinants. The primary objective is to identify the most effective model specifications 

that provide precise property valuation and predictive insights into trends in the real estate 

market. The foundational framework for the majority of empirical research, typically relies on 

the hedonic price model first introduced by Court (1939) and later popularized by Griliches 

(1971) and Rosen (1974). The hedonic model, applied to tangible assets, suggests that the price 

of a good is determined by the utility derived from its attributes and compares the price of 

related products with their individual characteristics. Thus, the price differentiation provides 

insights regarding the utility that consumers derive from the attributes and in turn justifies the 

price assigned to the good (Rosen, 1974). 

Rosen (1974) introduces the pricing function:  

where x is the vector of characteristics which determines the price of the product. This 

simplistic hedonic model is widely used for real estate appraisal and market trend research. By 

applying this model to real estate valuation, we can estimate the value of a property by breaking 

down its various attributes such as the number of bedrooms, number of bathrooms, total square 

footage, location factors, etc., and the estimated price is thus determined considering the utility 

consumers derive from those (Chau & Chin, 2003). 

Following the hedonic framework, model specification for real estate valuation 

includes key housing characteristics, including the number of bedrooms and bathrooms, total 

square footage of the house and lot, availability of parking space, the presence of a fireplace, 

and more. As evidenced by Can (1992), these attributes exhibit a positive correlation with 

housing prices. Hence, hedonic theory suggests their inclusion for property valuation as they 

constitute the set of implicit prices affecting the overall value of a home (Limsombunchai, et 

al., 2004). Can's study not only underscores the relevance of structural attributes but also 

emphasizes the crucial role of socio-economic factors in assessing the impact of neighbourhood 

attributes on property valuation. By incorporating variables such as the percentage of nonwhite 

residents, poverty rate, unemployment rate, median household income, and the percentage of 

vacant units, Can constructs a neighbourhood quality index using Principal Component 

 𝑝(𝒙) = 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛), 
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Analysis (PCA). As anticipated, the study reveals a positive correlation between housing prices 

and the neighbourhood quality index, indicating that an improvement in the quality of the area 

evaluated is associated with an expected increase in property values. 

Considering these findings, our analysis integrates socio-economic variables to enhance 

the dataset's quality, ultimately improving the predictive accuracy of our model. This holistic 

approach considers both structural housing attributes and socio-economic factors, providing a 

comprehensive foundation for real estate valuation in our study.  

 

2.2 Machine learning models 

 
In terms of model selection, most of the recent literature analyzing the prediction of house 

prices establishes that machine learning algorithms outperform the traditional linear hedonic 

regression model used for real estate evaluation (Hjort, et al., 2022; Wang & Wu, 2018; Peter, 

et al., 2020). A study by Grudnitski and Do (1992) demonstrates that predictions made using 

artificial neural networks (ANN) yield more predictive accuracy than those generated by linear 

regression models. This finding highlights the suitability of ANN for real estate valuation 

considering their high ability to handle complex and noisy data. A recent study by Ho et al. 

(2021) which compares three machine learning algorithms, namely support vector machines, 

random forest, and gradient boosting machines, suggests that both tree-based models – random 

forest and gradient boosting machine – outperformed by a significant margin the support vector 

machine algorithm.  

Although the literature suggests that neural networks and tree-based models provide more 

prediction accuracy over the linear model (McCluskey, et al., 2012; Hjort, et al., 2022), it 

neglects an important shortcoming of machine learning prediction. Uncertainty quantification 

is precisely what is missing from the literature in the context of real estate appraisal using 

machine learning techniques. The use of uncertainty quantification has far-reaching 

implications for real estate professionals, investors, and stakeholders alike, considering it 

facilitates risk-prediction for lending decisions and enables investors to make well-informed 

decisions given certain market conditions. The relative difficulty or ease of pricing for certain 

properties may be better understood using prediction intervals, with their widths being a 

barometer of pricing confidence. Narrower intervals suggest more precise property valuations 

and larger ones indicate pricing difficulty making the prediction less reliable and should incite 

the client to request a revaluation. Moreover, mortgage credit risk can be moderated by using 
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the lower bound of the prediction interval as a conservative estimate for predicted property 

prices (Bellotti, 2017). 

 

2.3 Approaches to uncertainty quantification  

 

To build the prediction interval 𝐶(𝑿𝑛+1) ⊆ ℝ for new properties on the market without 

a valuation price 𝑌𝑛+1 , we must consider a vector of n property attributes 𝑿𝑛+1, such as 

number of bedrooms, number of bathrooms, year built, and lot size, and {𝑌𝑖}𝑖=1
𝑛  known property 

prices for each 𝑖 ∈ {1, . . . , 𝑛}. The aim is thus to obtain a prediction interval that has a high 

probability of containing the unknown valuation price 𝑌𝑛+1 conditional on 𝑿𝑛+1. 

where α is the pre-defined error rate, and 1 − 𝛼 represents the nominal coverage rate. 

One way of constructing prediction intervals involves using an estimate of the standard 

deviation �̂�(𝓍) as the uncertainty measure. Assuming  𝑌 | 𝑿 =  𝓍 follows a Gaussian 

distribution, we can generate the mean and variance of a trained model which follows the same 

parametric distribution as 𝓍. By maximizing the likelihood function with respect to both the 

mean and variance of the data generating process, we obtain the point estimate and its 

associated standard deviation, which is used as the measure of dispersion and thereby 

uncertainty. That is, �̂�(𝓍) will be small if the model properly captures the price variations and 

large otherwise. Although this approach is widely used in statistics and machine learning to 

quantify uncertainty, it is not reliable considering the distributional assumptions are not always 

satisfied (Angelopoulos & Bates, 2023). 

In machine learning, the ensemble method technique to measure uncertainty is also 

widely used. The goal is to generate an ensemble of models, each varying slightly, and the 

spread of the property price predictions is then used to quantify uncertainty. Techniques such 

as Bagging, Boosting, and Random Forest are common ensemble methods used to train the 

models, and each represent a different approach to predicting property prices (Ho, et al., 2021). 

However, ensemble methods require re-training and maintaining multiple models which 

increases the memory requirements and computational complexity of using this technique, 

especially with large ensembles. 

Hu et al. (2022) proposed to mitigate the increased complexity issue by using dropout 

neural networks which involves randomly dropping out a portion of the nodes during the 

 ℙ{(𝑌𝑛+1 ∈ 𝐶(𝑿𝑛+1)|𝑿𝑛+1} ≥ 1 − 𝛼. (1) 
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training as well as the prediction phases. By doing so, we can capture the model’s uncertainty 

by analyzing the dispersion between the ensemble made of different network configurations. 

As the authors point out, this method also has drawbacks considering it depends heavily on the 

choice of the dropout rate for each forward and backward step. In cases where the dropout rate 

is too low or the network is large, the estimation tends to underestimate the associated 

uncertainty measure. As well, the dropout rate is not inherently calibrated with the confidence 

level, indicating that the resulting prediction intervals are not necessarily valid (Hu, et al., 

2022).  

A solution to unreliable prediction intervals is the use of quantile regression (Koenker & 

Bassett, 1978), which allows us to estimate conditional prediction intervals of property prices 

𝑌𝑛+1 that are robust to heteroskedasticity (Feldman, et al., 2021). The conditional quantile 

function is defined by Romano et al. (2019) as 

where 𝐹(𝑌|𝑿) denotes the conditional distribution function of property prices Y given the 

vector of attributes X. Let 𝑞𝛼𝐿
(𝑿) and 𝑞𝛼𝐻

(𝑿) denote the lower and upper conditional 

quantiles, respectively, where 𝛼𝐿 = 𝛼 2⁄  and 𝛼𝐻 = 1 − 𝛼 2⁄ . The conditional quantile 

prediction interval for 𝑌𝑛+1 is thus given by: 

and theoretically satisfies Equation (1).  

By minimizing the pinball loss function denoted as: 

we can estimate 𝑞𝛼(𝑿) that best captures the conditional distribution of property prices based 

on the housing characteristics.  

An issue that arises while employing quantile regression to obtain valid coverage comes 

from the fact that this method does not provide finite-sample guarantee (Romano, et al., 2019). 

Hence, given the strong distributional assumptions that must be satisfied for the conditional 

coverage to hold, in practice, the quantile interval in Equation (3) rarely guarantees the desired 

coverage in Equation (1), and frequently leads to an under-coverage bias (Bai, et al., 2021). A 

way to mitigate this issue involves the use of conformal prediction, which allows us to relax 

 𝑞𝛼(𝑿) =  𝑖𝑛𝑓{𝑌 ∈ ℝ ∶ 𝐹(𝑌|𝑿) ≥ 𝛼} (2) 

 𝐶(𝑿) =  [𝑞𝛼𝐿
(𝑿𝑛+1), 𝑞𝛼𝐻

(𝑿𝑛+1) ] (3) 

 𝜌𝐿(𝑌, �̂�) = {
𝛼(𝑌 − �̂�) 𝑖𝑓 𝑌 − �̂� > 0,

(1 − 𝛼)(𝑌 − �̂�) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (4) 
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distributional assumptions and build prediction intervals with finite-sample marginal coverage 

guarantee given by: 

This is achieved assuming only exchangeability of the data, i.e., drawn i.i.d. from a joint 

distribution 𝑃𝑿,𝑌 (Romano, et al., 2019; Angelopoulos & Bates, 2023). This model-agnostic 

method is useful in the context of real estate valuation considering it provides reliable 

prediction intervals, enhancing transparency in the appraisal process.   

3. CONFORMAL PREDICTION OF PROPERTY PRICES 

 
In the context of real estate appraisal, we consider the price of property as the dependent 

variable Y, and X as the vector of property attributes. To build our prediction interval 

𝐶(𝑿𝑛+1) ⊆ ℝ on new test data for properties with known attributes 𝑿𝑛+1
1, but unknown 

valuation price 𝑌𝑛+1  we train our machine learning model using a sample of n {(𝑿𝑖 , 𝑌𝑖)}𝑖=1
𝑛 . 

The only assumption necessary to guarantee coverage is for all the samples {(𝑿𝑖 , 𝑌𝑖)}𝑖=1
𝑛+1 to be 

exchangeable and drawn from a joint distribution 𝑃𝑿,𝑌. Following this framework and given 

any nominal coverage rate 1 − 𝛼 , the constructed prediction interval 𝐶(𝑿𝑛+1) is said to satisfy 

Equation (5).  

 Following the split method by Papadopoulos et al. (2002) we build prediction intervals 

by splitting the training set into two subsets: the training set 𝑆𝑡 = {(𝑿𝑖 , 𝑌𝑖) ∶  𝑖 ∈  𝐼1} and the 

calibration set 𝑆𝑐 = {(𝑿𝑖 , 𝑌𝑖) ∶  𝑖 ∈  𝐼2}. We first fit a regression model 𝑌 = 𝑓(𝑿) on the 

training set 𝑆𝑡: 

where A may be any regression algorithm since split conformal prediction does not require any 

distributional assumptions, even exchangeability of the data.  

 Then, to obtain the conformity scores we calculate the absolute residuals of the trained 

model on the calibration set: 

 
1 𝑌𝑛+1 refers to the test response and 𝑿𝑛+1 refers to the test data.  

 ℙ{(𝑌𝑛+1 ∈ 𝐶(𝑿𝑛+1)} ≥ 1 − 𝛼. (5) 

 �̂�(𝑿𝒊) ←  𝐴 {(𝑿𝑖, 𝑌𝑖) ∶  𝑖 ∈  𝐼1}, (6) 

 𝜀�̂� =  |𝑌𝑖  − �̂�(𝑿𝒊)|, 𝑖 ∈ 𝐼2. (7) 
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Based on a pre-defined significance level 𝛼 and 𝑛2 observation in the calibration set, we can 

compute the quantile 𝑞1−𝛼 (𝜀�̂� , 𝐼2) of the empirical distribution of the absolute residuals, 

Finally, the prediction interval for the property price 𝑌𝑛+1 with attributes 𝑿𝑛+1 is given by: 

Although this prediction interval is guaranteed to satisfy Equation (5), a major limitation is 

found from the fact that the width of the interval is fixed and independent of 𝑿𝑛+1 (Romano, 

et al., 2019). Hence, the prediction interval is not adaptive, in that the property prices variations 

observed are not captured using the split method.  

Early versions of conformal prediction faced some limitations in terms of adaptivity to 

variation of the dependent variable. That is, early methods provided prediction intervals that 

have fixed interval width, which is restrictive in the context of property prices considering the 

significant discrepancies observed in the market. By applying conformal quantile regression, 

we can mitigate limitations of early conformal regression approaches and we can build intervals 

that are well-calibrated and adaptive to variation across different property prices and defined 

attributes. 

 

3.1 Conformalized quantile prediction 

 
The framework of conformal quantile prediction, detailed by Romano et al. (2019), is similar 

to the splitting method in that we must also divide the dataset into two subsets: the estimation 

set 𝑆𝑡, and the calibration set 𝑆𝑐  used to calculate the conformity scores, which contains 80% 

and 20% of the observation, respectively. After setting the error rate 𝛼 at 0.10, such that 90% 

of the actual property prices fall within the constructed conformal interval, we use any quantile 

regression algorithm 𝐴, to train on 𝑆𝑡 the lower and upper conditional quantiles, 

Next, we calculate the conformity scores 𝜀�̂�, which are trained on the calibration set, to evaluate 

the magnitude of the error relative to the lower and upper bounds of the interval. The scores 

are thus given by: 

 𝑞1−𝛼 (𝜀,̂ 𝐼2) =  
(𝑛2+1)(1−𝛼)

𝑛2
  empirical quantile of 𝜀�̂� : , 𝑖 ∈ 𝐼2. (8) 

 𝐶(𝑿𝑛+1) =  [�̂�(𝑿𝑛+1) − 𝑞1−𝛼 (𝜀,̂ 𝐼2), �̂�(𝑿𝑛+1) + 𝑞1−𝛼 (𝜀̂, 𝐼2) ] . (9) 

 { �̂�𝛼𝐿
(𝑿), �̂�𝛼𝐻

(𝑿)} ←  𝐴 {(𝑿𝑖 , 𝑌𝑖) ∶  𝑖 ∈  𝐼1}, (10) 

 𝜀�̂� =  𝑚𝑎𝑥 {�̂�𝛼𝐿
(𝑿𝑖) − 𝑌𝑖 , 𝑌𝑖 − �̂�𝛼𝐻

(𝑿𝑖)}, ∀ 𝑖 ∈ 𝐼2. (11) 
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Finally, after using Equation (8) to obtain 𝑞1−𝛼 (𝜀�̂� , 𝐼2) from the empirical quantile distribution 

of 𝜀�̂� : , 𝑖 ∈ 𝐼2, we can compute the conformalized quantile prediction interval of property prices 

given by: 

The last step involves assessing the performance of the model by examining the empirical 

coverage properties of the conformalized quantile prediction interval obtained in Equation (12). 

The model is deemed to be adaptive if the prediction interval adjusts itself based on the 

characteristics of the observed data. Furthermore, it is considered well-calibrated if the 

empirical coverage aligns closely with the nominal coverage level (Angelopoulos & Bates, 

2023).  

The following theorem from Romano et al., (2019) provides validity for the conformal 

quantile procedure explained in this section.  

Theorem Romano et al., (2019). If {(𝑿𝑖 , 𝑌𝑖)}𝑖=1
𝑛+1 are exchangeable, the prediction interval 

𝐶(𝑿𝑛+1) given in Equation (12) satisfies: 

This is because exchangeability implies that the order in which the data points are observed 

does not affect their joint distribution. As such, under exchangeability, the joint distribution is 

consistent across permutations of the data, ensuring the validity of the coverage guarantee.  

Also, the prediction interval is nearly perfectly calibrated if the conformity scores 𝜀�̂� 

are almost surely distinct2: 

 

3.2 Gradient boosted tree for quantile 

 
For the purpose of this dissertation, a gradient boosting (Freund & Schapire , 1996; Friedman, 

2001) regression model is used to obtain the conformal prediction intervals of property prices. 

Gradient boosting machine is an ensemble learning method which combines multiple weak 

learners to build a strong predictive model (Hjort, et al., 2022). The model we employ differs 

slightly from a regular gradient boosting machine, as we are applying it to quantiles. In this 

 
2 The term "almost surely distinct" indicates that the conformity scores are distinct with probability one. 

 𝐶(𝑿𝑛+1) =  [�̂�𝛼𝐿
(𝑿𝑛+1) − 𝑞1−𝛼 (𝜀̂, 𝐼2), �̂�𝛼𝐻

(𝑿𝑛+1) + 𝑞1−𝛼 (𝜀,̂ 𝐼2) ] . (12) 

 ℙ{(𝑌𝑛+1 ∈ 𝐶(𝑿𝑛+1)} ≥ 1 − 𝛼.  

 ℙ{(𝑌𝑛+1 ∈ 𝐶(𝑿𝑛+1)} ≥ 1 − 𝛼 +
1

1 + 𝑛2
.  



 

16 

 

case, we use a pinball loss function, similar to the one defined in Equation (4), rather than the 

squared-error loss function typically used when boosting. By training K decision trees 

{ ℎ𝑘(𝑿)}𝑘=1
𝐾  in a sequential manner, and summing the resulting predictions, we obtain an 

estimate for �̂� given by: 

The first decision tree,  ℎ1(𝑿) is trained on the original data, and the subsequent trees are added 

to the ensemble. The gradient boosting machine iteratively trains the decision trees and, on 

each iteration, tries to correct the errors made by the previous ones. The algorithm will assign 

weights to the data points with larger residuals so that it can focus on quantiles that are harder 

to predict. During each iteration, the gradient boosting machine will calculate the gradient of 

the loss function with respect to the predicted quantiles. The pinball loss function, which the 

algorithm tries to minimize, is given by: 

The function will correct the underestimation and the overestimation of the quantiles through 

penalty terms from the regularized loss function: 

The parameters 𝛾 and 𝜂 penalize the number of terminal nodes and the magnitude of the 

weights, respectively. For optimization, this dissertation applies a gradient descent, namely the 

Light Gradient Boosting Machine (LightGBM), on the loss function. This method is chosen as 

it has the fastest computational speed compared to the other baseline algorithms, such as the 

widely known eXtreme Gradient Boosting (XGBoost), and it preserves its high accuracy level. 

Also, considering that this algorithm is histogram-based, it requires less memory consumption 

(Ke, et al., 2017).  

 

 �̂� =  ∑ ℎ𝑘(𝑿)

𝐾

𝑘=1

. (13) 

𝜌𝐿(𝑌𝑖 , �̂�𝑖
(𝑘−1)

 + ℎ𝑘(𝑿𝒊)) = {
𝛼(𝑌𝑖 − �̂�𝑖

(𝑘−1)
− ℎ𝑘(𝑿𝒊)), 𝑖𝑓 𝑌𝑖 ≥ �̂�𝑖

(𝑘−1)
+ ℎ𝑘(𝑿𝒊),

(1 − 𝛼)(�̂�𝑖
(𝑘−1)

− ℎ𝑘(𝑿𝒊) − 𝑌𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

  (14) 

 ∑ 𝜌𝐿(𝑌𝑖 , �̂�𝑖
(𝑘−1)

 + ℎ𝑘(𝑿𝒊))

𝑛

𝑖=1

+  𝛾𝑇 +
1

2
𝜂||𝔀𝑘||2. (15) 
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4. EMPIRICAL APPLICATION 

 

4.1 Data 

 
The empirical analysis for this study is conducted using property prices of San Francisco’s Bay 

Area, California USA. The residential price data consists of 8,351 observations on sold 

properties over the period 2020 to 2023. The dataset was obtained using an API service as large 

residential datasets on sold properties are limited and often privately owned by real estate 

companies. The United States Census Bureau website provides geographical data with a vast 

range of demographic attributes which allowed us to enrich the dataset for the analysis. The 

additional variables created based on the zip codes provided in the original dataset include, 

neighbourhood delimitations, median income per neighbourhood per year, population, race, 

poverty rate, employment rate, homeownership rate and the number of housing units available 

in each neighbourhood. Spatial heterogeneity—the varied distribution of characteristics across 

different geographic locations—plays an essential role in influencing property prices. As 

previously discussed in Section 2.1 of this dissertation, the quality of neighborhoods and 

economic dynamics deeply influence property values. Factors like safety, poverty rate, 

employment rate, and median household income contribute to the overall appeal of an area. 

Well-maintained, secure, and economically robust neighborhoods often attract larger 

population, leading to higher property prices as they are deemed more attractive to potential 

buyers. Given that spatial heterogeneity highly influences property prices, defining the 

demographic characteristics for all neighbourhoods in our dataset allowed us to yield more 

accurate predictions and thus increase the overall performance of the model. 

As described in Table 6 found in Appendix A, the housing types included in the analysis 

vary from single-family homes, townhouse, condos, and apartments, with single-family homes 

representing most of the observations (approximately 92% of the data points). The average sold 

property in the dataset is a single-family 2004 square foot home, built mid-1930s, with 3-

bedrooms, 2-bathrooms, a parking space, and central heating. Moreover, the range of sold 

property prices in the dataset is very large, with a minimum value equal to $50,000 and 

maximum of $43,500,000 – price expressed in USD. The observed residential prices in the San 

Francisco Bay Area are highly skewed to the left and average around $2,148,723, including all 

property types. Figure 1 illustrates the distribution of house prices and a subset of regressors. 

We observe an asymmetric distribution for those variables further confirming the positive 

skewness, which is expected due to the nature of the data.   
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FIGURE 1: Histogram of a subset of the variables: house prices, lot size, house size, and number 

of bathrooms.  

Furthermore, we observe that there is considerable variability in the data, both within 

individual variables—as evidenced by large and varying standard deviations in Table 5 found 

in Appendix A—and in the relationship between the price and different housing attributes, as 

illustrated in Figure 2. This variability points to complex dynamics between property price and 

the covariates in the dataset, and could potentially indicate heteroskedasticity in the data. 

However, this is not worrisome considering that conformal quantile regression is adaptive to 

heterogeneous data (Romano et al., 2019).  

 

FIGURE 2: Scatter plots of property price against a subset of the variables: house size, lot size, 

and year built. 

The median income in San Francisco is $131,288 per year and exhibits high income 

variation, as indicated in Table 5. Additionally, the relationship between different income levels 

in specific neighbourhoods and the average property price within those areas is illustrated in 

Table 1. We note that neighbourhoods within the lower income category, i.e., with a median 

household income below the San Francisco average, generally have the lowest median property 

values. Properties in middle- and upper-class neighbourhoods average around $2.1 million and 

$2.7 million, respectively. Hence, we find a positive correlation between income level and 

property value as higher median income brackets are associated with increasing average 

property price.  
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 Minimum 

(Maximum)  

Neighbourhoods Average Property 

Price 

Lower Income 55,888 (93,995) 

Van Ness/Civic Center, South of 

Market, Lower Nob 

Hill/Chinatown/Downtown, 

Marina District, Bayview-Hunters 

Point, Portola 

1,203,041.79 

Average 

Income3 

104,476 (161,391) 

Polk/Russian Hill (Nob Hill), 

Embarcadero, Inner Mission, 

Mission Terrace, Parkside/ Sunset 

District, Zion District/Lower 

Pacific Heights 

2,147,108.2 

High Income 164,289 (244,662) 

Financial District South, Castro, 

Diamond Heights/Twin Peaks 

West, Marina, Mission Bay, 

Westwood Highlands/Twin Peaks 

West 

2,669,020.8 

TABLE 1: Neighborhoods of San Francisco categorized by various income levels and their 

corresponding average property price. 

From the lower income bracket, the neighbourhood of Van Ness/ Civic Center reports 

the lowest median household income at $55,888. Additionally, this neighborhood faces a 

poverty rate of 18.5%, positioning it as the second most impoverished area in San Francisco, 

following Lower Nob Hill/Chinatown/Downtown. On the other hand, the Financial District 

South represents the neighbourhood with the highest annual median income of $244,662. 

Accordingly, the area is amongst the neighbourhoods with the highest property prices, as well 

as the highest employment and home ownership rates with 76% and 41.8%, respectively. The 

discrepancies in socio-economic indicators between the different areas in San Francisco 

underscores the spatial heterogeneity in the city. This further emphasizes the link between 

income levels, associated socio-economic indicators, and the necessity to include those types 

of variables in the property valuation process.  

It's crucial to highlight that, despite identifying a positive correlation between income 

level and property value in specific neighbourhoods, significant price fluctuations are 

noticeable within each individual neighborhood. Zion District/Lower Pacific Heights, for 

instance, a neighbourhood where the median income aligns closely with the San Francisco 

 
3 The salaries included in the average income category are within approximately ±$30,000 from the median 

income in San Francisco of $131,288 per year. 
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average—roughly $7,000 higher—exhibits considerable variation in property prices, ranging 

from a minimum of $388,498 to a maximum of $43,500,000. It is important to acknowledge 

these variations and especially the extreme values, as they can impact the ease of prediction 

and, consequently, the widths of the predicted confidence intervals. 

 

4.2 Methodology 

 
The steps we employ to construct the conformal intervals of property prices are the following. 

1. Set the error rate 𝛼 at 0.10, such that 90% of the actual property prices fall within the 

constructed conformal intervals.  

2. Randomly split the dataset into a training set 𝑆𝑡 and a calibration set 𝑆𝑐 , which contain 

80% and 20% of the observations, respectively. 

3. Use the gradient boosting tree algorithm to fit the training set on two conditional 

quantiles {�̂�𝛼𝐿
, �̂�𝛼𝐻

}. 

4. Evaluate, on the test data, the adaptivity of the model based on the empirical coverage 

properties.4 

Quantiles are sensitive to hyperparameters – number of decision trees, depth of the tree, 

maximum number of terminal nodes in one tree, learning rate – and often yield intervals that 

are too wide (Romano, et al., 2019). To mitigate this issue, the following steps were employed. 

a. We specified a range of possible values for the number of trees since, up to a turning 

point, increasing the number of trees has a diminishing marginal effect on the out-of-

sample accuracy. We set the maximum number of trees in the ensemble to ∈

{500, 1000, 1500}. 

b. We restricted the number of terminal nodes in one tree. This aims to control the 

complexity of the gradient boosting model and helps mitigate the risk of overfitting. A 

tree with too many leaves tends to follow the training data too closely, resulting in poor 

out-of-sample accuracy. The maximum number of leaves are ∈  {32, 64, 128, 256}. 

c. We specified a maximum depth of the decision tree, which is expected to introduce bias 

in the model, but aims to reduce the variance. This bias-variance trade-off prevents 

 
4 The conditional coverage will also be evaluated although we understand that the guarantee of this coverage is 

only valid under strong distributional assumptions and thus is rarely satisfied.  
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overfitting and preserves out-of-sample accuracy. The maximum depth of the tree is set 

to ∈  {8, 16, 32, 64}. 

d. We specified a range of values for the learning rate. This controls the convergence 

speed and determines the step size at which the model moves toward minimizing the 

residuals. A small learning rate will act as a regularization term trying to prevent the 

model from overfitting the data. The learning rate was set to ∈  {0.01, 0.05, 0.1}. 

e. We used a tuning technique known as grid-search to determine all these optimal 

hyperparameters for the models.  

The combination of hyperparameters that yields the lowest mean absolute error (MAE) on the 

validation data was selected to train the conformal quantile regression model.  

 

4.3 Marginal coverage 

 
Marginal coverage in the context of conformal prediction refers to the share of actual 

observations that fall inside the constructed prediction interval given a pre-defined error rate 

(Angelopoulos & Bates, 2023). By calculating the empirical coverage, we can evaluate whether 

the finite-sample marginal coverage guarantee given by Equation (5) holds. If the calculated 

coverage is significantly lower or higher, it may indicate an issue with the size of the calibration 

set. That is, since the calibration set changes at each iteration of the algorithm, the coverage of 

the conformal prediction is random. Given the randomness of the coverage obtained each time 

we sample a new calibration set, the following Beta distribution is introduced by Vovk (2012) 

to model the distribution of the coverage. 

where m = (𝑛 + 1)𝛼. Hence, by setting the size of the calibration set sufficiently high, we can 

obtain more precise estimates of non-conformity scores thereby resulting in narrower 

prediction intervals and valid empirical coverage, centered around the desired 1 − 𝛼 

(Angelopoulos & Bates, 2023). Also, by running the conformal prediction model multiple 

times with different training, calibration, and test sets we can capture the variation in the limited 

sample size and mitigate the issue of finite-sample variability. Given this, 100 random splits 

into training, calibration, and test sets were performed to obtain both the standard and 

conformal quantile regressions coverages and widths displayed in Table 2.  

Relative median width of the prediction intervals is another measure we use to evaluate 

the adaptivity of the model. Given that our dataset contains multiple extreme values, which can 

 ℙ(𝑌𝑡𝑒𝑠𝑡 ∈ 𝐶(𝑌𝑡𝑒𝑠𝑡) | {(𝑋𝑖, 𝑌𝑖)}𝑖=1
𝑛 ) ~ 𝐵𝑒𝑡𝑎 (𝑛 + 1 − 𝑚, 𝑚), (16) 
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cause the absolute width of the prediction intervals to be disproportionately large, we are using 

the median relative width as it is less sensitive to skewness in the data.  

 Conformal quantile regression Standard quantile regression 

Marginal coverage 0.90  0.70 

Median width 0.68 0.40 

TABLE 2: Marginal coverage and relative median width of the prediction intervals for both the conformal 

quantile regression and the standard quantile regression. All figures are averages based on the 100 

random splits of the data into training, calibration, and test sets. 

 The results in Table 2 illustrate that the conformal quantile regression provides a 

marginal coverage on the test data that is centered at the nominal coverage level set at 90%. 

The standard quantile regression on the other hand reports a marginal coverage that 

significantly deviates from the desired nominal level. This is expected considering that 

conformal prediction guarantees that, on average, the marginal coverage will be equal or 

exceed the desired nominal level, whereas standard quantile prediction does not have this 

theoretical guarantee.  

Figure 3 illustrates the conformal prediction intervals of house prices against a subset 

of regressors from the dataset: house size (top left), lot size (top right), median income (bottom 

left), and housing units (bottom right). The black dots represent the true house prices in the test 

data, the black bars represent the cases where the predictions fall within the prediction intervals 

and the blue bars represent predictions that fall outside. The cases where the prediction interval 

fails to cover the true prices represent approximately the miscoverage rate set at 10%. We 

notice that as prices and house sizes get larger the conformal prediction intervals accordingly 

get larger. This suggests that the conformal model is adaptive to uncertainty and variation 

observed in the data.  
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FIGURE 3: Conformal prediction intervals of house prices against a subset of regressors from the 

dataset: house size (top left), lot size (top right), median income (bottom left), and housing units 

(bottom right). The dots represent the actual house prices from the test data. The black bars represent 

the prediction inside the prediction intervals and the blue bars represent one outside. The nominal 

coverage is 0.90.  

As for the relative median widths, the conformal values tend to be more conservative, 

in that they are generally larger than their non-conformal counterparts. This result comes from 

the fact that the width of conformal models is adaptive to variability in the data. Hence, 

intervals will widen according to the uncertainty associated with the predicted property prices 

to achieve adequate coverage. Although the non-conformal width is significantly lower than 

the conformal one, both regression methods yield relatively large widths, indicating uncertainty 

associated with the predicted intervals. However, the coverage rate of the conformal quantile 

regression maintains the desired nominal coverage level. 

As aforementioned, the presence of extreme values limits the dispersion of property 

prices in the tails of the distribution. This limitation makes it difficult to accurately estimate 

quantiles, introducing greater uncertainty into the prediction intervals. Consequently, the 

insufficient data in the tails contributes to broader intervals, making the model more 

conservative to account for potential variability. Given that our dataset set contains a small 

number of very large extreme values which translates into large relative median widths, we 

decreased the nominal coverage level set initially. The aim is to obtain narrower prediction 

intervals, providing increased precision but at the potential cost of a higher risk of 

undercoverage. Setting the pre-defined error rate 𝛼 to 0.2, we obtained a marginal coverage on 

the test data that is centered at the desired nominal level of 0.799 ≅ 80%, and as expected the 

median relative width decreased to 0.485. While the width did decrease, it would be more 

satisfactory if the reduction was more substantial. Section 5 below provides a more detailed 

exploration of the limitations of this analysis, shedding light on other factors that might 

contribute to consistently wide widths. 
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4.4 Conditional coverage 

 

Conditional coverages of conformal quantile predictions measure the reliability of prediction 

intervals conditional on a specific variable (Angelopoulos & Bates, 2023). As previously 

shown, Equation (1) must hold for any 𝑿𝑛+1 to satisfy the conditional coverage guarantee. 

Considering the strong assumptions regarding the joint distribution 𝑃𝑿,𝑌 required for the 

conditional guarantee to hold, in practice, it rarely does (Sesia & Candes, 2020). We will 

nonetheless evaluate the conditional coverages to assess how the model behaves when applied 

to a subset of variables in the dataset.  

Bin cuts 

Variable Lower Middle Upper 

House size <  1500 1500 ≤  𝐻𝑆 <  2000 ≥  2000 

Lot size <  3000 3000 ≤  𝐿𝑆 <  6500 ≥  6500 

Median income <  125000 125000 ≤  𝑀𝐼 <  175000 ≥  175000 

Housing units <  15000 15000 ≤  𝐻𝑈 <  20000 ≥  20000 

 

 Conditional coverage Median width 

Variable Lower Middle Upper Lower Middle Upper 

House size 0.95 0.92 0.84 0.76 0.63 0.63 

Lot size 0.91 0.88 0.90 0.68 0.66 0.94 

Median income 0.94 0.88 0.88 0.74 0.64 0.62 

Housing units 0.93 0.87 0.91 0.68 0.68 0.70 

TABLE 3: The cut off values for each variable are given in the top part of the table. The test data was 

used to evaluate the bin cuts. The bottom part of the table reports the conditional coverages and median 
relative widths of the conformal prediction intervals. All figures are averages based on the 100 random 

splits of the data into training, calibration, and test sets.  

To obtain the conditional coverages and median widths of different variables in the 

dataset we first evaluated the spread of test observations of each regressor. The bins were 

determined based on the clustering pattern observed in the test data, dividing the observations 

into lower, middle, and upper segments. After setting the appropriate bin cuts, the whole dataset 

set was used to train the model on a defined section of the regressor space. The top part of 

Table 3 shows the different cut levels per chosen regressor—house size, lot size, median 
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income, and housing units—and the bottom part displays the resulting conditional coverages 

and relative median widths. Based on these results, we observe that for each category, the 

proportion of property prices that fall within the predicted interval is centered around the 

desired nominal level of 0.90. As for the median widths, we observe relatively varying widths 

for all four regressors and for each bin level. However, we notice that the widths are relatively 

large, which indicates lower reliability of the interval predictions. Although the median width 

is used to mitigate the effect of extreme values, the limited number of observations in the tail 

of the distribution of prices combined a relatively small and highly variable dataset leads to 

large interval widths. Again, this is required to account for the substantial variability observed 

in the data and ensure that the intervals cover a wide range of predicted property values.  

As depicted in Table 4, we re-evaluated the model, using the same bin cuts, but reduced 

the nominal coverage level to 80%. This modification enabled us to observe the behavior of 

the median relative widths with respect to specific covariates. As expected, the widths for all 

examined regressors decrease significantly, suggesting improved precision. Notably, the 

resulting conditional coverage levels stand around the desired level 80%, and in certain 

instances, they exceed this threshold, reaching close to 90%. This suggests the model is 

exhibiting favorable behavior, providing narrower prediction intervals while maintaining 

robust coverage levels. 

 

 Conditional coverage Median width 

Variable Lower Middle Upper Lower Middle Upper 

House size 0.87 0.82 0.72 0.54 0.45 0.46 

Lot size 0.82 0.77 0.82 0.49 0.48 0.66 

Median income 0.86 0.77 0.77 0.53 0.46 0.45 

Housing units 0.84 0.78 0.81 0.49 0.49 0.51 

TABLE 4: The cut off values for each variable are given in the top part of Table 3. The table reports the 

conditional coverages and median relative widths of the conformal prediction intervals given a 

confidence level set to 0.80. All figures are averages based on the 100 random splits of the data into 

training, calibration, and test sets. 

5. LIMITATIONS 

 
The widths of prediction intervals in conformal quantile regression are influenced by several 

factors and in the context of this dissertation, the following issues were identified as possible 
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cause for large prediction interval widths. Firstly, the empirical analysis relies on a relatively 

small dataset. In cases of insufficient data, quantile estimates become imprecise, resulting in 

increased uncertainty and wider prediction intervals. Secondly, the presence of a small number 

of very large extreme values led the model to adopt a conservative approach to prevent 

undercoverage. This in turn resulted in larger intervals to ensure adequate coverage of the true 

response. The third factor concerns the limited inclusion of relevant explanatory variables. The 

accuracy of property price predictions depends on the quality and quantity of housing attributes 

considered. Insufficient relevant variables hinder on the model's ability to comprehensively 

explain data variability, contributing to increased uncertainty and wider prediction intervals. 

Future research in this area should consider a larger dataset and an expanded set of factors 

influencing price variation, such as location-specific amenities and services (e.g., proximity to 

schools, parks, public transportation, hospitals). These enhancements should help increase 

model precision and narrow prediction intervals. 

6. CONCLUSION 

 
In this dissertation, a real estate appraisal model based on a gradient boosted tree for quantiles 

was applied. The findings of this analysis show that by employing the model-agnostic 

technique of conformal prediction to quantile regression we may quantify uncertainty 

associated with the prediction of housing prices. This method allowed us to construct reliable 

prediction regions without distributional assumptions, thereby guaranteeing valid coverage in 

finite-samples. Through an empirical application on property prices of the San Francisco Bay 

Area, we observed that conformal quantile prediction, consistently delivers coverage 

guarantees centered around the desired nominal level. Also, we showed that the intervals are 

adaptive to the variations in the data, which is crucial considering the heterogeneous nature of 

real estate data. The ability to flexibly adjust the width of prediction intervals to accommodate 

varying levels of uncertainty and complexity within the dataset is a significant advantage. It 

enables real estate professionals to make informed decisions across a wide spectrum of property 

types, locations, and market conditions, thereby enhancing the practical utility of the method. 
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APPENDICES 

 

A. Summary statistics  

 

TABLE 5 Shows the summary statistics of the numerical variables in the dataset.  

Variable Unit Mean                   

(Std. Deviation) 

Minimum 

(Maximum) 

Type 

Property Price USD 2148723 

(1967659) 

50000 

(43500000) 

Numerical 

House Size  Square 

footage 

2003.989 

(1171.278) 

200 

(20000) 

Numerical 

Lot Size  Square 

footage 

4207.132 

(10652.23) 

100 

(299475) 

Numerical 

Bedrooms − 3.164172 

(1.155457) 

1 

(15) 

Numerical 

Bathrooms − 2.435996 

(1.292704) 

1 

(13) 

Numerical 

Year Built Years 1936.223 

(28.84216) 

1861 

(2023) 

Numerical 

Parking − 1.276494 

(8.8427625) 

0 

(5) 

Numerical 

Median Income per 

Neighbourhood 

USD 136935.1 

(35244.85) 

55888 

(244662) 

Numerical 

Population − 44222.6 

(17197.83) 

4306 

(79314) 

Numerical 

Employment Rate Percentage 66.59686 

(6.227736) 

54.9 

(79.6) 

Numerical 

Poverty Rate Percentage 8.643995 

(3.546486) 

4.4 

(19.7) 

Numerical 

Homeownership Rate Percentage 51.83847 

(16.89804) 

9.2 

(81.1) 

Numerical 

Housing Units − 18142.46 

(6415.972) 

2906 

(38664) 

Numerical 

Black/ African American − 1945.309 

(2175.857) 

124 

(10143) 

Numerical 

Asian − 16081.24 

(10676.85) 

1839 

(40116) 

Numerical 

Hispanic/ Latino − 7700.451 

(7077.502) 

293 

(22160) 

Numerical 

White − 16898.91 

(7464.099) 

1902 

(31306) 

Numerical 
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TABLE 6 Shows the summary statistics of the categorical variables in the dataset.  

Variable  Frequency 

(Percentage) 

Cumulative 

Frequency 

Type 

House Type Single family  7721  

(92.46) 

92.46 Categorical 

 Townhouse  91  

(1.09) 

93.55  

 Condo  518  

(6.20) 

99.75  

 Apartment  21  

(0.25) 

100.00  

Heating Electric 408  

(4.89) 

4.89 Categorical 

 Central 7051  

(84.43) 

89.32  

 Radiant 723  

(8.66) 

97.98  

 No heating 169  

(2.02) 

100.00  

Fireplace No fireplace 7796  

(93.35) 

93.35 Binary 

 Fireplace 555  

(6.65) 

100  

Neighbourhood Van Ness/Civic Center 48  

(0.57) 

0.57 Categorical 

 South of Market 30  

(0.36) 

0.93  

 Financial District South 39  

(0.47) 

1.40  

 Mission Bay 250  

(0.22) 

4.39  

 Lower Nob 

Hill/Chinatown/Downtown 

18  

(2.02) 

4.61  

 Polk/Russian Hill (Nob Hill) 121  

(1.45) 

6.06  

 Inner Mission 682  

(8.17) 

14.23  

 Embarcadero 9  

(0.11) 

14.33  

 Mission Terrace 816  

(9.77) 

24.10  

 Castro 529  

(6.33) 

30.44  
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 Zion District/Lower Pacific 

Heights 

234  

(2.80) 

33.24  

 Parkside/ Sunset District 798  

(9.56) 

42.80  

 Buena Vista Park 248  

(2.97) 

45.77  

 Inner Richmond/Richemond 

District 

346  

(4.14) 

49.91  

 Outer Richmond 471  

(5.64) 

55.55  

 Marina 256  

(3.07) 

58.62  

 Bayview-Hunters Point 451  

(5.40) 

64.02  

 Westwood Highlands/Twin Peaks 

West 

666  

(7.98) 

71.99  

 Diamond Heights/Twin Peaks 

West 

695  

(8.32) 

80.31  

 Stonestown 353  

(4.23) 

84.54  

 Marina District 21  

(0.25) 

84.79  

 Portola 543  

(6.50) 

91.29  

 Central Sunset/ Sunset District 727  

(8.71) 

100.00  
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