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Abstract

This dissertation proposes a new concept: the usage of Multivariate

Markov Chains (MMC) as covariates. Our innovative approach is based

on the observation that we can treat possible categorical regressors as a

MMC in order to improve the forecast error of a certain dependent variable,

provided it is caused, in the Granger sense, by the MMC. We conduct a

Monte Carlo simulation study to assess the performance of our model and

we archive excellent results in terms of forecast. An empirical illustration,

that widely supports the results obtained in the Monte Carlo study, is also

provided. Furthermore, the results of our empirical illustration suggest that

the sovereign bond markets in peripherical European countries, namely Por-

tugal, are ine�cient. The conclusions drawn include implications for policy.

We also discuss the ideas behind several methods to estimate MMC, tackling

issues with regard to the statistical inference topic. We provide a general

framework to allow us to obtain the MMC h-step-ahead forecast closed for-

mulas.

Keywords: Markov chains as covariates, Multivariate Markov chains, High

order Markov chains, Mixture transition distribution.
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Resumo

Esta dissertação propõe um novo conceito: a utilização de Cadeias de

Markov Multivariadas enquanto regressores. A nossa abordagem inovadora

baseia-se na observação de que é possível fazer uso de CMM enquanto va-

riáveis explicativas com o intuito de se reduzirem os erros de previsão de

uma determinada variável dependente, desde que essa variável dependente

seja causada, a la Granger, pela CMM. Com o objectivo de perceber a per-

formance do nosso modelo em termos de previsão operacionalizamos um

estudo de simulação de Monte Carlo no qual obtemos excelentes resultados.

Também recorremos a uma ilustração empírica que sustenta fortemente os

resultados obtidos no estudo de simulação de Monte Carlo. Para além disso,

os resultados da ilustração empírica apontam para a circunstância de que

os mercados das obrigações das dívidas soberanas dos países da periferia

europeia, nomeadamente Portugal, são ine�cientes. Podem retirar-se das

conclusões obtidas algumas implicações em termos de orientação de política

económica. Discutimos ainda algumas ideias subjacentes às diversas meto-

dologias de estimação de CMM, sublinhando as questões relativas ao tópico

da inferência estatística. Providenciamos uma utensilagem teórica do seio

da qual se obtêm as expressões da previsão a h-passos com CMM.

Palavras-chave: Cadeias de Markov enquanto regressores, Cadeias de

Markov multivariadas, Cadeia de Markov de ordem superior, Distribuição

de mistura de transições.
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1 Introduction

This essay adopts a new approach to the treatment of Multivariate Markov Chains

(MMC) as stochastic categorical covariates. It is a relevant innovation since the usage

of MMC as regressors is a completely new concept for reasons that have never been

raised in the published literature. Our research question is as follows: is it empirically

feasible to use MMC as regressors? Will it improve the forecast error of a certain

dependent variable?

Raftery (1985) has proposed a method to represent and to estimate high-order

dependencies among categorical data sequences: the mixture transitions distribution

model (MTD). Ching (2002), has used Raftery's MTD model to estimate dependencies

among an interrelated multivariate categorical stochastic process - a MMC. Until then,

the estimation of MMC had proven a problematic task.

The next section introduces some preliminary concepts that are the basic toolkit to

understand the fundamentals of the MMC model. Section 3 provides a brief literature

review of MMC models, stressing the latest breakthroughs in MMC estimation and the

basic problems that ensue from such estimations. Section 4 �rstly covers the theoretical

framework of estimation and statistical inference of the method chosen - the MTD

Probit, and secondly discusses the issue of forecasting. In this section we also present

the framework and the assumptions under which we can obtain the closed formulas

of MMC h-step-ahead forecast. Section 5 presents our innovative concept: the use of

MMC as covariates. In fact, we hypothesize that if a MMC plays the role of regressors

then we might improve the forecast error of a certain dependent variable, given that it

is, in the Granger sense, caused by the MMC. These improvements will be evaluated,

�rst of all, through a Monte Carlo simulation problem. Afterwards, we provide an

economic illustration with respect to the relationship between some southern European

sovereign credit ratings and Portuguese sovereign bond yields. Section 6 discusses some

possible extensions of this essay. Finally, Section 7 elaborates on the summary of the

main results and contains some concluding remarks.
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2 Some Preliminary Concepts

In the early twentieth century Andrey Markov proposed a probabilistic model to typify

a pattern of dependencies in a stochastic process. More precisely, a model able to

capture intra-probability transitions, with respect to past events, within categorical

data sequences. Mathematically, for the discrete time case, one may conclude the

Markovian property states that given the present, the future is independent of the

past, as follows:

P (Xt = a| Ft−1) = P (Xt = a|Xt−1) (2.1)

where Ft−1 is the σ − algebra generated by the available information until t − 1. When

the events (past, present and future) represent a speci�c state, we get a Markov chain

(MC) - a Markov process de�ned into a countable (�nite or in�nite) state space set

E = {1, · · · ,m} or E = {1, 2, · · · }. Given a m × m matrix - the one step probability

transitions matrix (PTM) and the initial conditions, we can fully characterize a MC.

Each PTM row represents a probability function - adding up to one and are non-

negative. Below we illustrate a PTM.


P (Xt = 1|Xt−1 = 1) · · · P (Xt = m|Xt−1 = 1)

...
. . .

...

P (Xt = 1|Xt−1 = m) · · · P (Xt = m|Xt−1 = m)

 (2.2)

In some applications, in order to facilitate the implementation of some theorems

and results it might be important to think in terms of long-term probability events.

Formally, it might be interesting to evaluate:

lim
h→∞

P (Xt+h = a| Ft−1) (2.3)

The following proposition guarantees the existence of the previous limit.

Proposition 2.1. Ergodicity

A MC is said to be ergodic if it is positive recurrent and aperiodic. Under those cir-

cumstances the row vector of stationary probabilities π ≡ [π1, · · · , πm] exists and satis�es

the following equation:

πP = π, with
m∑
i=1

πi = 1 and πi ≥ 0 (2.4)

where P is the PTM associated with the MC.

πi = lim
h→∞

P (Xt+h = i|Xt−1) (2.5)

Proposition (2.1) states that a su�cient condition for the existence, and for the

uniqueness, of the MC stationary representation is, on the one hand, that each state

2



communicates with each other, which implies that there are not absorbent states (if

the process yesterday was in state i then it will return to i, in a �nite time-horizon,

with probability one) and, on the other hand, the fact that no-one is preventing that

the state i is revisited in two consecutive moments. In practical terms, we may state

that a MC is ergodic if and only if it is possible to go to every state from every state, of

course, not necessarily in just one step. We will address this issue later in the context

of Multivariate Markov Chains (MMC). The question is: what is a MMC?

Suppose, for now, that we have s > 1 categorical time series (categories) interrelated.

When the state of the future events of a category depends not only on its previous state

(inter-transition) but also on another series' previous states (intra-transitions) we get a

MMC. MMC plays an important role and is a valuable toolkit for working on various

topics in several science subjects, such as credit and �nancial data modeling, economics,

biology, history, meteorology, chemistry, sociology, music and linguistics, among many

other topics (Berchtold and Raftetry, 2002).

Introducing some notation and some concepts, formally, we assume that we observe

a realization of a multivariate discrete stochastic Markov process {(S1t, · · · , Sst)} for

T observations (t = 1, · · · , T ) where each Sjt can take values in the countable set E =

{1, · · · ,m} and j = 1, · · · , s. Without any loss of generality, we also assume that we have

a �rst order MMC, in the sense that

P (Sjt = k| Ft−1) = P (Sjt = k|S1t−1 = i1, · · · , Sst−1 = is) (2.6)

Therefore, one assumes that in order to explain and forecast Sjt+1 the past values of the

process, Sjt−i, i > 0, are needless since we require only its present values. The assumption

that arises from equation (2.6) is not a constraint, not even a mild restriction. Indeed,

as we will see in the next sections:

1. High order MC (HOMC) can be viewed as a particular case of MMC.

2. We can estimate them even as one can estimate high-order MMC (HMMC).

3. We can use those estimates to forecast within the MMC and we can also use them

to help forecast a certain dependent variable.

3



3 Review of Multivariate Markov Chains Models

One might say that the HOMC was the genesis for the MMC, as we shall see in fur-

ther detail. Accordingly, Raftery (1985) introduced the mixture transition distribution

model (MTD) as an appropriate model to represent high-order dependencies within a

data sequence. A MMC, or, roughly, a HOMC, involves ms states (where m represents

the number of states and s denotes the number of categorical series). Therefore, this

represents the main problem regarding the conventional MMC, i.e. of facing a MMC

as an usual MC model. This might be a problematic issue for several reasons: 1) the

number of parameters is huge - ms+1, which can render the estimation a daunting task

2) the size of the transitions matrix is also very large 3) it is a very hard task, even using

computational brute force, to �nd the stationary probability vector, 4) the parameters

cannot be e�ciently estimated (as the standard errors present an explosive behavior),

5) in �nite samples, the parameters may not even be identi�ed. Table (3.1) displays

the number of parameters of the usual MMC model as a function of the number of

states and of the number of categorical series, respectively, m and s. An application

involving 5 categorical series with a space state of 10 elements consists of more than 48

million parameters. If we add one more categorical series then the overall number of

parameters of the model rises to 362 million parameters.

Due to this obstacle, Raftery (1985) argued that MTD was more suitable than

some competing high-order MC models at that time, such as Jacobs and Lewis (1978),

Pegram (1980) and Logan (1981), both in terms of adjustment criteria, like AIC, and in

terms of parsimony (since it involves less unknown parameters). The author illustrated

the method through three MMC empirical applications. We can represent the MTD

model as follows:

P (Xt = io|Xt−1 = i1, · · · , Xt−l = il) =

l∑
g=1

λgP (Xt = io|Xt−g = ig) , t = 1, ..., T ; g = 1, ..., l.

(3.1)

To ensure that the quantities

P (Xt = io|Xt−1 = i1, · · · , Xt−l = il) (3.2)

Table 3.1: Usual MMC model: Number of Parameters

s m n

4 5 4.096

5 6 78.125

5 10 48.828.125

6 10 362.797.056

4



are probabilities, i.e. that they are non-negative and less than or equal to 1, one may

assume that expression (3.2) is a linear convex combination of the components

P (Xt = io|Xt−g = ig) (3.3)

by imposing the following restrictions:
l∑

g=1

λg = 1 (3.4)

λg ≥ 0 (3.5)

As we will see later, restriction (3.5) has a practical implication: it assumes that the

categorical series are positively correlated. Nevertheless, it is a su�cient but not nec-

essary condition to ensure that the probability terms (3.2) are non-negative and less

than one. In fact, a less restrictive condition, together with restriction (3.4) is that

0 ≤
l∑

g=1

λgP (Xt = io|Xt−g = ig) ≤ 1 (3.6)

The bene�ts of assuming the positivity condition (condition 3.5) is that the estimation

becomes simpler and the λg parameters can be seen as probabilities (Raftery and Tavaré

1994). We might state that there are two special cases of the MTD model: with and

without assuming the positivity condition. We shall discuss this further later.

The MTD model has been used in several applications in manifold scienti�c �elds.

Berchtold and Raftery (2002) presents a comprehensive survey on MTD. It reviews the

MTD model and analyzes some major development issues from 1985 to 2002, such as

MTD parameters estimation, presenting many MTD applications and generalizations,

and it illustrates some other possible ways to estimate high-order MC, addressing some

inference issues regarding the MTD model.

As for recent years, since 2002, no systematic surveys have focused on the problem.

We can distinguish two main approaches: the Raftery HOMC followers and the Ching

(2002) MMC followers1. As Ching is, himself, a Raftery follower, one might say that

Raftery is the father of both theoretical frameworks: HOMC and MMC concepts. Let

us now focus on a few points regarding the subject.

With regard to Raftery's MTD followers, without going into many technicalities, we

highlight Berchtold (2001) who proposes a new iterative algorithm for MTD estima-

tion, concluding that this method performs at least as well as the competing methods.

Lèbre and Bourguignon (2008) propose an Expectation-Maximization algorithm, which

is easier to use than that of Berchtold. Lastly, Chen and Lio (2009) propose a novel

1Another class of HOMC models is the Polytomus (logistic) regression models, where algebraically

we have ln
P (Xt=1|Xt−1,··· ,Xt−l)
P (Xt=0|Xt−1,··· ,Xt−l) = βo +

∑
βlXt−l + ut. See Rajarshin (2013), Kvam and Sokol (2006),

Wasserman and Pattinson (1996) and Azzalini (1993). We will not address this issue here.
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approach of MLE, converting the nonlinear embedded constraints into box constraints.

With respect to Raftery's MTD generalizations, Berchtold and Raftery (2002) discuss

some relevant extensions to the MTD model. The �rst one is the Multimatrix MTD,

Berchtold (1995, 1996, 1998). The original MTD uses the same TPM to model the

dependencies between present and each lag term. Here is proposed to relax this as-

sumption by using a di�erent m×m transition matrix for each lag.

P (Xt = io|Xt−1 = i1, · · · , Xt−l = il) =

l∑
g=1

λgP (Xt = io|Xt−g = ig)
(g) (3.7)

Another possible generalization is the In�nite-Lag MTD model that assumes an

in�nite lag order - l = ∞ as in Mehran (1998), Le, Martin and Raftery (1996). The

third generalization allows the modeling of data sets with missing data: The missing

data MTD model, for instance, assumes the sequence:

{X1, X2, · · · , Xt−k−1, ?, Xt−k+1, · · · , Xt} (3.8)

where the k − th entry - Xk is unknown. Finally, another relevant generalization is

the MTD with General State Spaces: which allows to model more general processes

with an arbitrary space state as in Martin and Raftery (1987), Adke and Deshmukh

(1988), Wong and Li (2000). One assumes constraints (3.5) and (3.4) plus the following

parametric speci�cation:

F (Xt| Ft−1) =

l∑
g=1

λgGg (Xt|Xt−g) (3.9)

• F (Xt| Ft−1) is the conditional distribution of Xt

• Gg (Xt|Xt−g) is an arbitrary cumulative distribution function (cdf)

Once set Gg (Xt|Xt−g) as the standard Normal distribution, that is

Gg (Xt|Xt−g) = Φ

(
Xt − φgXt−g

σg

)
(3.10)

we obtain the Gaussian MTD model (GMTD)2, as presented in Le, Martin and Raftery

(1996). For more details and for more generalizations see Berchtold and Raftery (2002).

As stated, one can see a HOMC as a MMC. This assertion is due to the work of

Ching et al (2002) who, using the MTD model, conceptualized the HOMC model as a

particular case of the MMC, therefore generalizing the concept of the MTD model. In

fact, until 2002 there are few studies tackling the MMC estimation issue3.

2The expression (3.10) may be seen as a particular case of a regime-switching model with indepen-
dent states.

3See, for instance, Gottschau (1992). The main problem of these studies is that they become
unfeasible when we have a large number of states and/or categorical series.
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Unlike the univariate methods (even high-order methods) which only enable the

capturing of intra-probability transitions (within sequences), the greatest merit of the

MMC model is that it allows intra and inter-probability transitions within and between

categorical data sequences to be captured.

The method considered by Ching is, in fact, a pseudo-generalization of Raftery's

MTD, since the innovation is just conceptual (HOMC as a MMC): the model is the

same, a MTD with the positivity assumption (assumes 3.5). Ching applies the positivity

version of MTD but, unlike Raftery, to the MMC case. One can say that Ching's work

was of great importance for two reasons: 1) it led high-order univariate MC to be viewed

and conceptualized as a MMC for the �rst time, and 2) in the last 10 years the majority

of the published articles on MMC follow Ching's concept. To better understand it, let us

consider the categorical data sequence {(S1t,··· ,Sst)}, de�ned in previous section, having

m states. We rewrite the process {Sjt}, using the m− row standard basis vectors, as the

state vector sequences: {
x

(1)
t , · · · ,x(s)

t

}
(3.11)

Where,

x
(j)
t =



[
1 0 · · · 0 · · · 0

]′
if Sjt = 1

[
0 0 · · · 1︸︷︷︸

k−th entry

· · · 0

]′
if Sjt = k

[
0 0 · · · 0 · · · 1

]′
if Sjt = m

(3.12)

x
(j)
t+1 ≈

s∑
k=1

λjkP
(jk)x

(k)
t , for j = 1, · · · , s (3.13)

The m×m matrices P (jk) have as a generic vu element the scalar:

P (jk)
uv ≡ P (Sjt = u|Skt−1 = v) (3.14)

These elements may be estimated through the maximum likelihood method:

P̂ (Sjt = u|Skt−1 = v) =
nvu∑m
u=1 nvu

(3.15)

where nvu represents the number of transitions to Sjt = u from Skt−1 = v. Then, we

have, likewise the more restrictive version of Raftery's MTD model - with the positivity

assumption, a linear convex combination between the di�erent components, and we also

have

0 ≤ λjk ≤ 1 with 1 ≤ j, k ≤ s and
s∑

k=1

λjk = 1 (3.16)

7



Writing the model in matrix form, and assuming the equality in equation (3.13) we

have:

xt+1 ≡


x

(1)
t+1

...

x
(s)
t+1

 =


λ11P

(11) · · · λ1sP
(1s)

...
. . .

...

λs1P
(s1) · · · λssP

(ss)



x

(1)
t

...

x
(s)
t

 ≡ Qxt (3.17)

Where Q is an ms×ms block matrix (s× s blocks of m×m matrices) and xt is a stacked

ms column vector (s vectors, each one with m rows) . Expression (3.13) has a practical

implication: we can see that the state probability distribution of the j − th sequence

depends on
∑s
k=1 λjkP

(jk)x
(k)
t and, since we have (3.16), this corresponds to the weighted

average of the terms P (jk)x
(k)
t . Consequently, to obtain the quantity x(j)

t+1 we just need

to estimate the matrices P (jk) and the quantities λjk.

Regarding the latter, the λjk coe�cients, the estimation method proposed by Ching

involves the following optimization problem:

 minλmaxi

∣∣∣[∑m
k=1 λjkP̂

(jk)x̂(k) − x̂(j)
]∣∣∣

s.t.
∑s
k=1 λjk = 1 and λjk ≥ 0

(3.18)

As we will show next, 1) the matrices P (jk), or, should we say, their consistent

estimator P̂ (jk), are of the utmost importance because, as far as we know, all the esti-

mation methods share them, even though they di�er with regard to the estimation of

the remaining parameters and 2) the method considered by Ching is highly ine�cient.

Despite the obvious similarities between the functional forms of Ching's and Raftery's

models, it is important to emphasize the completely di�erent ways proposed to esti-

mate the unknown parameters, since Raftery employs the maximum likelihood method

(MLE) to estimate them. Another di�erence concerns the number of unknown param-

eters. This happens because Ching's model has more equations than Raftery's model

by reason of it is completely nonsense4 to evaluate, for instance, lead probabilities like:

P (Sjt−1 = io|Skt = i1) (3.19)

However, this is not a relevant issue because the estimation may be carried out equa-

tion by equation, and, within equations the two models share the same number of

parameters.

By writing Ching's MMC model using Raftery's HOMC model notation, we obtain

our MTD model for MMC:

4It may make sense in reversibility time series �elds, but that falls outside the scope of this paper.
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P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is)
MTD

=

λj1P (Sjt = io|S1t−1 = i1) + · · ·+ λjsP (Sjt = io|Sst−1 = is) =

s∑
k=1

λjkP (Sjt = io|Skt−1 = ik) (3.20)

Consequently, a HOMC is a MMC in the sense that we can specify each categorical

series as follows:

S1t = Xt

S2t = Xt−1

...

Sst = Xt−s+1 (3.21)

From the beginning of the 21st century, in particular since 2002 onwards, a lot of

scienti�c articles on the subject have been published. Although there is a lot of research

on the MMC theme, there is not much disparity in the models used in the published

papers, since most of the papers employ either the model considered by Ching et al

(2002) or a consequent generalization. For instance, Fung et al (2002) employs it

in the construction of a wind turbine in a certain wind farm by analyzing the wind

speed form several potential locations, Oz and Erpolat (2011) applies Ching's original

model to �uctuations in the euro and dollar exchange rates against the Turkish lira

and Liu (2010) analyzes and predicts price and sales volume of a certain product. On

the other hand, we can speculate that over the last few years the published studies

have undergone major improvements in terms of parsimony by reducing the number of

unknown parameters of the model, originally s2
(
m2 + 1

)
. In fact, Kijima et al (2002)

proposed a parsimonious MMC model to simulate correlated credit risks and Siu et al

(2005), on the same issue, proposed a less parsimonious model but one that was easier

to manipulate than that of Kijima et al (2002), with s2m2 parameters. Zhang et al

(2006) develops a simpli�ed model, albeit tending towards the model of Ching et al

(2002) where the number of parameters is reduced to s
(
m2 + 1

)
. It proposes a simple

assumption: P (jk) = Im when j 6= k. The Q matrix, de�ned in (3.17) becomes

Q =


λ11P

(11) λ12Im · · · λ1sIm

λ21Im λ22P
(22) λ2sIm

...
. . .

...

λs1Im λs2Im · · · λssP
(ss)

 (3.22)
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This simpli�cation has a practical implication: one the one hand, if Skt−1 = u then

Sjt = v, for k 6= j and for u 6= v with probability zero, on the other hand Skt−1 = u then

Sjt = v, for k 6= j and for u = v with probability one. We have, for k 6= j :

P (Sjt = v|Skt−1 = u) =

0 if u 6= v

1 if u = v

(3.23)

Ching et al (2007a) considered the assumption on the Q block matrix proposed in

Zhang et al (2006) to forecast sales demand data sequences, and proposed a simpli�ed

model to overcome the two main problems of dealing with very short data length struc-

tures. Namely, very large forecast errors on the transition probability matrices and

unreached steady-states. While Zhang et al (2008) uses the simpli�cation considered in

Zhang et al (2006) to approximate a Probabilistic Boolean Network in order to control

genetic regulatory networks.

Regarding more e�ciency improvements, Zhu and Ching (2010) propose a new

method of estimation based on the minimization of the unconditional forecast error

mean, involving some nonlinear programming problems. Nicolau (2012) translates the

original problem of Zhu and Ching (2010), which involves inequality restrictions, into

an unrestricted non-linear least squares estimation. In fact, Nicolau, as well as Zhu and

Ching, noticed that the method proposed by Ching et al (2002) is not optimal, in the

sense that it is based on the unconditional mean and, as is it known, the best predictor

(in mean squared error) is the conditional mean.

Lastly, another important topic is related to the fact that, in order to ensure that we

have probabilities, Ching and his followers assume a convex combination between the

terms and impose the restrictions (3.16). All these studies say usual MMC models share

a common denominator: they assume a positive correlation between the di�erent data

sequences due to the restrictions (3.16). This assertion implies that if, at the moment

t, one of the sequences, for instance, Sjt has an increase in its state probability, then it

can only have an increasing, and never a decreasing, impact in the state probability of

Skt+1 for k 6= j.

Consequently, it can easily be shown that if we have a negative correlation between

series, for instance, Corr(Sj., Sk.) < 0, the quantities λjk are forced to be zero. Fur-

thermore, as is well known, correlation and causality are very di�erent concepts - a

correlation relationship between two random variables, A and B, does not necessarily

imply that one causes another. For instance, given a third variable, C, that, by assump-

tion, causes both A and B the conditional correlation, on C, between A and B can be zero

despite the fact that the marginal correlation is positive. So, even if we have a positive

correlation between variables, say S1t and S2t−1, controlling for a third common e�ect
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between two random variables, S3t−1, we can have negative conditional correlations, in

other words, given S3t−1, S1t and S2t−1 may be negatively correlated sequences. This

is another feature that the standard positivity MMC models (common MMC models)

cannot capture: positive correlations but negative conditional correlations, or, perhaps

we should say, negative causality relationships.

Another problem shared by common MMC models (MMC models with positivity

assumption - a la Ching) is that, as they are grounded on the said convex combination,

another restriction is imposed:

Min {P (Sjt = io|Skt−1 = ik)} ≤

P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is)

≤Max {P (Sjt = io|Skt−1 = ik)} for k = 1, · · · , s (3.24)

The term P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is) is bounded between the minimum and the

maximum of P (Sjt = io|Skt−1 = ik).

Since the usual MMCmodels are based on the assumption (3.16), an obvious solution

to relax the previous assumptions is not to assume the constraints (3.16), without

assuming anything else. The problem is that the results produced by the model are no

longer probabilities. Several solutions able to deal with the aforementioned problems

have been provided. Raftery and Tavaré (1994) developed a strategy, dropping the

positivity condition, by imposing a new set of restrictions

Tq−i + (1− T ) q+
i ≥ 0 (3.25)

where

T =

m∑
g=1
λg≥0

λg (3.26)

q−i = min1≥j≥mqij (3.27)

q+
i = max1≥j≥mqij (3.28)

qij = P (Skt = j|Slt−1 = i) (3.29)

Raftery and Tavaré (1994) have shown that the restriction (3.25) is equivalent to the

expression (3.6).

Ching et al (2007b) inspired by Raftery and Tavaré (1994) and on the Zhang et

al (2006) Q matrix simpli�cation, propose the following idea to handle with negative

correlations between the state vector zt+1 and xt:

zt+1 =
1

m− 1
(1ms − xt) (3.30)

where 1ms is ms stacked vector of ones. Then, they split the Q matrix into the sum

of two other matrices, where one represents the positive correlations and another the
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negative correlations, as follows:
x

(1)
t+1

...

x
(s)
t+1

 = Λ+


x

(1)
t

...

x
(s)
t

+
1

m− 1
Λ−


1m − x(1)

n

...

1m − x(s)
n

 (3.31)

notice that

Λ+ ≡


λ11P

(11) λ12Im · · · λ1sIm

λ21Im λ22P
(22) λ2sIm

...
. . .

...

λs1Im λs2Im · · · λssP
(ss)

 (3.32)

and

Λ+ ≡


λ1−1P

(11) λ1−2Im · · · λ1−sIm

λ2−1Im λ2−2P
(22) λ2−sIm

...
. . .

...

λs−1Im λs−2Im · · · λs−sP
(ss)

 (3.33)

They have applied the model above on a sales demand forecast application. This

model, moreover, was successfully applied in Ching et al (2009) through two credit

risk applications and Wang and Huang (2013) tested the convergence conditions of the

model through numerical experiments. However, the restrictions (3.16) were maintained

in all those models.

Nicolau (2013) has proposed a completely di�erent way to deal with the problems

without assuming (3.16), consequently, without the restriction (3.24) and also without

splitting the Q matrix. The method estimates the unknown parameters through the

MLE so, like the concrete dichotomy between Nicolau (2012) and Ching (2002) at least

asymptotically it is a better method, mainly in terms of e�ciency, than Ching et al's

(2009) since it is based on the marginal mean. This is the main caveat of Ching's work

(and of its followers): it is highly ine�cient. Moreover, Nicolau (2013) has made a solid

bridge between Raftery's and Ching's work. Indeed, Nicolau proposes a generalization

of Raftery's MTD on the MMC model, like Ching, but estimating it like Raftery: using

the MLE method. As is well known, under some regularity conditions, the MLE is

asymptotically the best estimator with regard to e�ciency. We will elaborate on the

problem in the next section.

In a word: Ching (2002) was the �rst person to use the MTD model applied to

the MMC case. Until then, all MTD models had been conducted only on HOMC case.

While the original MTD model is estimated through the MLE method, Ching (and his

followers) estimated the unknown parameters using an ine�cient method. It is clear

that the best way to estimate MMC is through the MLE. Nicolau (2013) proposed a
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generalization of the MTD model to estimate the parameters, which is even better than

the original MTD model.

4 Multivariate Markov Chains: Theoretical Frame-

work

4.1 Multivariate Markov Chains: Estimation and Inference

Here we present the model proposed in Nicolau (2013), discussing some issues concern-

ing the estimation and the inference of MMC.

The prime idea is to model the quantity P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is) as follows:

P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is)
Φ ≡

G [ηj0 + ηj1P (Sjt = io|S1t−1 = i1) + · · ·+ ηjsP (Sjt = io|Sst−1 = is)]∑m
k=1G [ηj0 + ηj1P (Sjt = k|S1t−1 = i1) + · · ·+ ηjsP (Sjt = k|Sst−1 = is)]

(4.1)

Where G (·) may be an arbitrary cumulative probability distribution function (cdf).

Without any loss of generality we can use the cdf of the standard normal distribution

- Φ (·), as in Nicolau (2013). The model is called a MTD-Probit due to the fact that it

being founded on a cdf and the argument of G (·) is a linear combination of

P (Sjt = i0|Skt−1 = ik) , k = 1, · · · , s (4.2)

as in a MTD model.

Despite the obvious advantages of MTD-Probit against traditional MMC models: 1)

it is much more e�cient, 2) it can capture marginal and conditional negative correlations

(the constraints on the λkj are needless) and 3) the restrictions (3.24) are also useless,

since the MTD-Probit model results

P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is)
Φ (4.3)

are bounded between 0 and 1. They are greater than 0 due the numerator of (4.1)

and are smaller than 1 due the numerator, and compared to the MTD model: 1) the

absence of constraints makes it easier to carry out the standard numerical optimization

routines and the MTD-Probit model can generate a larger range of patterns than the

MTD model (Nicolau 2013) and 2) the model includes a constant term which may

substantially improve the �t of the model. The following theorem, however, is less

obvious.

Theorem 4.1. MTD-Probit model probabilities shall be no worse than MTD model

probabilities.
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Let, respectively, the quantities

Pj ( io| i1, · · · , is), Pj ( io| i1, · · · , is)Φ and Pj ( io| i1, · · · , is)MTD be the true unknown proba-

bility, the MTD-Probit model probability and the MTD model probability of the generic

event Sjt = io, S1t−1 = i1, · · · , Sst−1 = is.

Suppose that the rows of transition probability matrices between Sjt and Slt are all

dissimilar, so Sjt and Slt are correlated sequences, j, l = 1, · · · , s. Therefore, one always

has:

minηji
∑

i1···isio

∣∣∣Pj ( io| i1, · · · , is)− Pj ( io| i1, · · · , is)Φ
∣∣∣2 ≤

min∑λij=1

∑
i1···isio

∣∣∣Pj ( io| i1, · · · , is)− Pj ( io| i1, · · · , is)MTD
∣∣∣2 (4.4)

Proof. See Nicolau (2013).

A transition probability matrix is said to be positively regular if and only if any

power of the TPM only has positive elements. Adke and Desmukh (1988) concluded

that if the TPM is positively regular, the HOMC model admits a unique stationary

distribution, hence the HOMC is ergodic. The previous fact can be extended to the

MMC model case.

Theorem 4.2. Ergodicity of a MMC

If all matrices P (jk) de�ned in (3.14) are positively regular, then the associated MMC

is ergodic

Proof. See Adke and Desmukh (1988).

This outcome allows us to establish the MLE properties for the MTD-Probit model.

It can be easily shown that our MTD-Probit MMC model satis�es the Cramer regularity

conditions. Moreover, assuming a compact parameter set (i.e. that any plausible value

for is ηj �nite) and the remaining conditions of propositions 7.1 and 7.8 of Hayashi

(2000) we guarantee the consistency and the asymptotic normality of the MTD-Probit

MMC model MLE.

Given the blocks of the Q matrix - the matrices P (ij) - which can be estimated using

the MLE, we estimate the η̂jk coe�cients, as well, through the MLE method, i.e.

η̂j = argmax logL
(
η̃j
)

(4.5)

where

• ηj ≡
[
ηj0 ηj1 · · · ηjs

]′
is the s + 1 dimensional vector of the true unknown

parameters,
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• η̃j ≡
[
η̃j0 η̃j1 · · · η̃js

]′
is the s+ 1 dimensional vector of a hypothetical value of

ηj,

• η̂j ≡
[
η̂j0 η̂j1 · · · η̂js

]′
is the s+ 1 dimensional vector of the MTD-Probit esti-

mates of ηj

and

logL
(
η̃j
)

= ∑
io,i1,··· ,is

ni1i2,··· ,isi0 log
{
P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is)

Φ
}

=

∑
io,i1,··· ,is

ni1i2,··· ,isi0 log{
G [η̃j0 + η̃j1P (Sjt = io|S1t−1 = i1) + · · ·+ η̃jsP (Sjt = io|Sst−1 = is)]∑m
k=1G [η̃j0 + η̃j1P (Sjt = k|S1t−1 = i1) + · · ·+ η̃jsP (Sjt = k|Sst−1 = is)]

}
(4.6)

It follows that we have
√
n
(
η̂j − ηj

) d−→ N (0,Σj) (4.7)

where

• Σj = E
[
s
(
ηj
)
s
(
ηj
)′]−1

= −E
[
H
(
ηj
)]−1

, by information matrix equality.

• H
(
ηj
)

=
∂2 logL(ηj)

∂ηjη
′
j

is the Hessian matrix.

• s
(
ηj
)

=
∂ logL(ηj)

∂ηj
is the score vector.

Obviously the MTD-Probit estimator vector is consistent, i.e.

η̂j
p−→ ηj (4.8)

With regard to the inference problem, it is well known that there is a trinity of Chi-

square distributed tests that can be applied in the context of MLE, namely the Wald

test, the Lagrange multiplier test (LM) and the likelihood ratio test (LR), (Newey and

McFadden 1993). Those tests can be used within the MMC framework to 1) test the

joint signi�cance of the parameters of the MMC, 2) test the independence between the

categories and 3) determine the order of the MMC5. It may be interesting to evaluate,

5There is a lot of literature with regard to the determination of the order of the MC. For more
details see Tong (1975), Katz (1981), Billingsley (1961), Bartllet (1952) and, more recently, Papapetrou
and Kugiumtzis (2013), Csiszár et al (2000) and Zaho et al (2001). These results can also be easily
extended to the MMC case.
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for instance, the goodness of �t of the MMC. In particular one may test, among each

equation, the global signi�cance of the slope parameters vector ηj, i.e.

Hj
o : ηj1 = ηj2 = · · · = ηjs = 0 (4.9)

Under the null we have a test statistic following a χ2
(α) distribution with α = (n − s)

degrees of freedom.

4.2 Multivariate Markov Chains: Forecast

In this section we brie�y introduce the h-step-ahead MMC forecast problem. Since we

have a homogeneous MMC the one-step-ahead forecast expression is quite simple. As

soon,

P (Sjt+1 = k|S1t, · · · , Sst) = P (Sjt = k|S1t−1, · · · , Sst−1) (4.10)

Notwithstanding, the h-step-ahead MMC forecast, for h > 1, has a somewhat more

troublesome expression. Using, �rstly, the discrete case of Chapman-Kolmogorov equa-

tions and, secondly, the formula of total probability, for h = 2, it follows that:

P (Sjt+2 = k|S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+2 = k, S1t+1 = i1, · · · , Sst+1 = is|S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+2 = k|S1t+1 = i1, · · · , Sst+1 = is, S1t, · · · , Sst)

× P (S1t+1 = i1|S1t, · · · , Sst)P (S2t+1 = i2|S1t+1 = i1, S1t, · · · , Sst)

× · · · × P (Sst+1 = is|S1t+1 = i1, · · · , Ss−1t+1 = is−1, S1t, · · · , Sst) (4.11)

for h = 3 we have:

P (Sjt+3 = k|S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+3 = k, S1t+2 = i1, · · · , Sst+2 = is|S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+3 = k|S1t+2 = i1, · · · , Sst+2 = is, S1t, · · · , Sst)

× P (S1t+2 = i1|S1t, · · · , Sst)P (S2t+2 = i2|S1t+2 = i1, S1t, · · · , Sst)

× · · · × P (Sst+2 = is|S1t+2 = i1 · · · , Ss−1t+2 = is−1, S1t, · · · , Sst) (4.12)

The problem, however, lies in the circumstance that the probability terms regarding

Sjt+l, l > 1 are not Ft − measurable since the terms date explicitly to the present and

to the future. Even if we assume a �rst order homogeneous MMC the expressions are
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unfeasible. Consequently, we need to put some assumptions in place in order to be able

to manipulate the expressions (4.11) and (4.12). This is an issue that will be addressed

in the next section.

5 Multivariate Markov Chains as Regressors: a new

approach

Model speci�cation is an art as much as a science

Russel Davidson and James G. Mackinnon

Estimation and Inference in Econometrics

5.1 Theoretical Model and Assumptions

Our model is based on the observation that if a MMC model is able to produce worthy

forecasts of correlated data sequences then, if it is known that the MMC categories

Granger cause a particular random process, for instance yt, why not specify a functional

form such as yt = m (S1t−l, · · · , Sst−l) in order to produce a worthy forecast of yt+h?

Traditionally, and so far, the published literature only addresses the MMC as an

end in itself. Here we propose a di�erent and innovative concept: the usage of MMC

as regressors in a certain model. Thus, given that the MMC Granger causes a spe-

ci�c dependent variable, and taking advantage of the information about the past state

interactions between the MMC categories, we seek to forecast the current dependent

variable more accurately.

Firstly, one must convert the categories Sjt into a panoply of dummy variables.

Given a �rst order MMC with s categories and m states we a�ect, for each category, a

one state to one dummy variable, as follows:

zkjt = 1 {Sjt = k} (5.1)

Where 1 {·} is the indicator function, 1 {Sjt = k} = 1 if Sjt = k and 0 otherwise.

Let us now assume, without any loss of generality, a linear speci�cation like:

yt = x′tβ + z′tδ + ut (5.2)

where:

• x′t may be a vector of both deterministic and stochastic components, like AR(1)

or other Ft−1 measurable predetermined terms.

• z′t is a vector of dummy variables zkjt , concerning the MMC, de�ned in (5.1).
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• {ut} is white noise process mean independent of x′t and z
′
t. We do not assume any

distribution for ut.

Our goal is to forecast yt+h through its conditional mean, in other words we are interested

in:

E (yt+h| Ft) = E
(
x′t+h

∣∣Ft)β + E
(
z′t+h

∣∣Ft) δ (5.3)

given the exogeneity of the disturbance term, i.e. E (ut| Ft) = 0 ∀t

Unwinding the vector z′t and the vector δ it follows that:

yt+h = x′t+hβ + δ111 {S1t+h = 1}+ · · ·+ δ1m−11 {S1t+h = m− 1}+

δ211 {S2t+h = 1}+ · · ·+ δ2m−11 {S2t+h = m− 1}+ · · ·+

δs11 {Sst+h = 1}+ · · ·+ δsm−11 {Sst+h = m− 1}+ ut (5.4)

⇔

yt+h = x′t+hβ + δ11z11t + · · ·+ δ1m−1z1m−1t+

δ21z21t + · · ·+ δ2m−1z2m−1t + · · ·+ δs1zs1t + · · ·+ δsm−1zsm−1t + ut (5.5)

where Sjt represents the j − th categorical series of the MMC.

Nonetheless, with regard to the h-step-ahead forecast formulas, since, as we saw

in the previous section, on the right-hand side of conditional probabilities, there are

conditioning terms that are not Ft−measurable . Hence, to make the h-step-ahead terms

feasible, we need to assume the following hypotheses:

Assumption 5.1. First order MMC

Let us assume that, given the σ−algebra generated by the available information until

t− 1 - Ft−1, we have

P (Sjt = k| Ft−1) = P (Sjt = k|S1t−1 = i1, · · · , Sst−1 = is) (5.6)

That is, given the entire history of the multivariate stochastic process:

{(S1t, · · · , Sst) , t = 1, · · · , T} (5.7)

only the immediate past is relevant both to explain and to forecast Sjt+1.

Assumption 5.2. Homogeneous MMC

Suppose that, under the system stability, we have a homogeneous MMC in the sense

that

P (Sjt = k|S1t−1, · · · , Sst−1) = P (Sjt+h = k|S1t+h−1, · · · , Sst+h−1) (5.8)
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Assumption 5.3. Ergodic MMC

Let us assume an ergodic MMC, as stated in Theorem (4.2)

Assumption 5.4. Contemporaneously negligible terms

Consider that, given the past, the present values of the MMC are contemporaneous

independent. Mathematically:

P (Sjt = k|S1t = i1, · · · , S1s = is, S1t−1, · · · , Sst−1) = P (Sjt = k|S1t−1, · · · , Sst−1) (5.9)

So, in (4.11) and in (4.12) the conditioning terms Sjt+l, l > 0 vanish, given the terms

Sjt, for being contemporaneous.

Under Assumptions 5.1 to 5.4 we have:

P (Sjt+2 = k|S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P

Sjt+2 = k|S1t+1 = i1, · · · , Sst+1 = is, S1t, · · · , Sst︸ ︷︷ ︸
negligible (Ass 5.1)


× P (S1t+1 = i1|S1t, · · · , Sst)P

S2t+1 = i2| S1t+1 = i1︸ ︷︷ ︸
negligible (Ass 5.4)

, S1t, · · · , Sst


× · · · × P

Sst+1 = is|S1t+1 = i1 · · · , Ss−1t+1 = is−1︸ ︷︷ ︸
negligible (Ass 5.4)

, S1t, · · · , Sst


=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+2 = k|S1t+1 = i1, · · · , Sst+1 = is)

× P (S1t+1 = i1|S1t, · · · , Sst)P (S2t+1 = i2|S1t, · · · , Sst)

× · · · × P (Sst+1 = is|S1t, · · · , Sst) (5.10)

Similarly,
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P (Sjt+3 = k|S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P

Sjt+3 = k|S1t+2 = i1, · · · , Sst+2 = is, S1t, · · · , Sst︸ ︷︷ ︸
negligible (Ass 5.1)


× P (S1t+2 = i1|S1t, · · · , Sst)P

S2t+2 = i2| S1t+2 = i1︸ ︷︷ ︸
negligible (Ass 5.4)

, S1t, · · · , Sst


× · · · × P

Sst+2 = is|S1t+2 = i1 · · · , Ss−1t+2 = is−1︸ ︷︷ ︸
negligible (Ass 5.4)

, S1t, · · · , Sst


=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+3 = k|S1t+2 = i1, · · · , Sst+2 = is)

× P (S1t+2 = i1|S1t, · · · , Sst)︸ ︷︷ ︸
from (5.10)

P (S2t+2 = i1|S1t, · · · , Sst)︸ ︷︷ ︸
from (5.10)

× · · · × P (S2t+2 = i1|S1t, · · · , Sst)︸ ︷︷ ︸
from (5.10)

(5.11)

For a generic h > 3,

P (Sjt+h = k|S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+h = k|S1t+h−1 = i1, · · · , Sst+h−1 = is, S1t, · · · , Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P (Sjt+h = k|S1t+h−1 = i1, · · · , Sst+h−1 = is)

× P (S1t+h−1 = i1|S1t, · · · , Sst)︸ ︷︷ ︸
fromh−1

P (S2t+h−1 = i1|S1t, · · · , Sst)︸ ︷︷ ︸
fromh−1

× · · · × P (Sst+h−1 = i1|S1t, · · · , Sst)︸ ︷︷ ︸
fromh−1

(5.12)

Even expression (5.12) only involves Ft−1 measurable components. It should be

noted that while Assumption 5.3 guarantees that the last expression exists, Assumption

5.2 guarantees that its components are known. In essence, here we have developed a

simple strategy to get rid of the disturbing terms, i.e. terms that kept us from moving

forward to achieve our goals: the closed form of h-step ahead forecast expressions. As

the process is recursive, we just need to successively dovetail the expressions above to

obtain expression (5.12).
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5.2 Monte Carlo Simulation Study

5.2.1 Monte Carlo Simulation Study: Procedure and Design

In this section we evaluate the MMC predictive potential through a Monte Carlo sim-

ulation problem. The goal is to construct a model where the MMC, transformed into

s× (m− 1) dummy variables (one dummy for each state minus one, for each category),

play the role of covariates, seeking to gauge how they help forecast a certain dependent

variable. That is, what if we conceptualize regressors as a MMC? Will we achieve good

results in terms of forecasts?

We consider here a simple process with two categories (s = 2) with each one taking

values on 1, 2 or 3 (m = 3). We simulate the MMC, using the GAUSS program, in

accordance with the following algorithm:

1. Initialize the process {(S1t, S2t)} by assigning arbitrary values for S10 and for S20

2. Simulate a continuous random variable that is uniformly distributed - W ∼ U (0, 1)

3. De�ne the ms ×m TPM whose elements are the probabilities

P (S1t = io|S1t−1 = i1, S2t−1 = i2) (5.13)

(see the de�nition of the data-generating process below)

4. Given the initial values S10 and S20 (step 1), simulate the multivariate process

{(S1t, S2t)} , t = 1, .., T as follows:

(a) Let us de�ne pi ≡ P (S1t = i|S1t−1 = i1, S2t−1 = i2)

(b) S1t =


1 if 0 ≤W < p1

2 if p1 ≤W < p1 + p2

3 if p1 + p2 ≤W < 1

(c) Generate S2t ∼ DU (1, 3) (DU (a, b) represents the discrete uniform distribution

de�ned between a and b). Since our main focus in on the process{(S1t)}, we

can generate {(S2t)} from a simple probabilistic structure.

5. Repeat the steps 1-4 until t = T .

Thus, we construct our 4 dummy variables, as in (5.1), such that: zjk,t = 1 {Sjt = k} , k =

1, · · · ,m− 1.

We consider the following linear data-generating process (DGP)

yt = x′tµ+ z′tδ + ut (5.14)

where
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• z′t ≡
[
z11 z12 z21 z22

]
• δ =

[
1 1 1 1

]′
, for simplicity

• x′t =
[

1 xt

]
and xt| Ft−1 ∼ N (0, 1)

• µ =
[

1 1
]′

• ut| Ft−1 ∼ N (0, 1)

To fully de�ne the DGP, we arbitrarily construct the TMP:



P (S1t = 1|S1t−1 = 1, S2t−1 = 1) · · · P (S1t = 3|S1t−1 = 1, S2t−1 = 1)

P (S1t = 1|S1t−1 = 1, S2t−1 = 2) · · · P (S1t = 3|S1t−1 = 1, S2t−1 = 2)

...
. . .

...

P (S1t = 1|S1t−1 = 3, S2t−1 = 2) · · · P (S1t = 3|S1t−1 = 3, S2t−1 = 2)

P (S1t = 1|S1t−1 = 3, S2t−1 = 3) · · · P (S1t = 3|S1t−1 = 3, S2t−1 = 3)


(5.15)

as follows 

0.85 0.10 0.05

0.10 0.85 0.05

0.60 0.20 0.20

0.80 0.10 0.10

0.10 0.80 0.10

0.10 0.20 0.70

0.70 0.15 0.15

0.10 0.70 0.20

0.10 0.10 0.80



(5.16)

We aim to compare the dependent variable h-step-ahead forecast errors produced

by three di�erent models:

1. Assuming that the values of dummy variables at t+ h are known,

ẑ
(1)
jkt+h = zjkt+h (5.17)

2. Assuming that the values of dummy variables at t+h is its marginal mean (adjusted

to an integer number)

ẑ
(2)
jkt+h = 1

{
T−1

T∑
t=1

zjkt ≥Maxk {ϑjk}

}
(5.18)
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3. Assuming that the MMC is a homogeneous stochastic process and forecasting the

value of dummy variables at t+ h such that:

ẑ
(3)
jkt+h = 1

{
ˆ

P (Sjt+h = k|S1t = i1, S2t = i2)
Φ ≥Maxk {ςjk}

}
(5.19)

where

• Maxk {ϑjk} ≡Maxk

{
T−1

∑T
t=1 zjkt

}
• Maxk {ςjk} ≡Maxk

{
ˆ

P (Sjt+h = k|S1t = i1, S2t = i2)
Φ
}

• ˆ
P (·)Φ is the MTD-Probit estimator of P (·).

and, as discussed in section 4, the right-hand side of equation (5.19) was estimated as

follows:

P (Sjt+1 = io|S1t = i1, S2t = i2) =

Φ [ηj0 + ηj1P (Sjt+1 = io|S1t = i1) + ηj2P (Sjt+1 = io|S2t = i2)]∑3
k=1 Φ [ηj0 + ηj1P (Sjt+1 = k|S1t = i1) + ηj2P (S2t+1 = k|S2t = i2)]

(5.20)

As far as the MMC estimation is concerned, �rst of all we need to estimate the P (ik)

matrices, whose generic elements are the quantities:

P (Sjt+1 = io|Skt = i1) for j, k = 1, · · · , s and io, i1 = 1, · · · ,m. (5.21)

As stated before, those matrices are estimated consistently using the MLE method

(expression 3.15).

Thereafter, we can consistently estimate the parameters η̂jk, in the second step,

through the MTD-Probit model, using the MLE method.

Lastly, we compare the three forecast error measures produced by the di�erent

models. We consider two forecast error measures for each model:

1. The MAElh = N−1
∑
|ênlh| and

2. The RMSElh =
(
N−1

∑
ê2
nlh

) 1
2

where N is the number of replications considered in the experiment and enlh is the n− th

replication forecast error produced by model l (l = 1, 2, 3) at the h− th forecast step, i.e.

ênlh ≡ yt+hn − ŷ(l)
t+hn (5.22)

where

ŷ
(l)
t+hn ≡ x

′
t+hµ̂+ ẑ

(l)′

t+hδ̂ (5.23)

and

ẑ
(l)′

t+h ≡
[
z

(l)
11t+h z

(l)
12t+h z

(l)
21t+h z

(l)
22t+h

]
, for l = 1, 2, 3. (5.24)
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5.2.2 Monte Carlo Simulation Study: Discussion of Results

In this section we report the results of the Monte Carlo study presented in the previous

section, which investigates the potential forecast gains of a dependent variable, derived

by processing categorical interrelated regressors as a MMC, i.e. by exploiting intra

and inter-transition probabilities between categorical regressors. Theoretically, model

1, which assumes that the future values of dummy variables are known, leads to the

best results in terms of forecasts, therefore we take the following ratios of forecast error

measures:

θp ≡
MAEp
MAE1

and ηp ≡
RMSEp
RMSE1

(5.25)

Implementing these speci�cations the error measure functions have a relative interpre-

tation: a ratio of, for instance, η3 = 1.02 implies that the RMSE of the MMC is 2% worse

than if we assume that we know the future (true values). Obviously we have p = 2, 3

since model 1 is our benchmark model. Table (5.1) presents the results of the forecast

errors.

Table 5.1: Monte Carlo Experiment: Results of the Forecast Errors

T

Marginal MTD-Probit

mean h = 1 h = 2 h = 3 h = 4

η3 η2 η2 η2 η2

30 1.58973 1.11271 1.11271 1.11271 1.11271

500 1.42446 1.00000 1.00006 1.00993 1.00993

5000 1.40427 1.00042 1.00104 1.00067 1.00065

θ3 θ2 θ2 θ2 θ2

30 1.61977 1.10843 1.10843 1.10843 1.10843

500 1.48135 1.00000 1.00005 1.00947 1.00947

5000 1.44068 1.00087 1.00122 1.00098 1.00096

T indicates the the sample size.

h represents the h-step-ahead forecast considered.

We considered one-step-ahead forecasts for the marginal mean model.

We investigate both the �nite and large sample performance of the proposed model

in a Monte Carlo simulation problem. We considered sample sizes with T = 30, 500 and

5000 and, for each one, we performed 5000 Monte Carlo realizations, or replications.

For small samples (T = 30) with 5000 Monte Carlo realizations the MTD-Probit
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model results are roughly speaking 11% worse than the true values, while the marginal

mean model (model 2) results are almost 60% worse. This implies that the marginal

mean results are, at least, 45% worse than the MTD-Probit model results - taking the

ratios.

For large samples, the actual results achieved are noteworthy: the point forecasts

produced by MTD-Probit model are much closer to the true values. Generally, the

MTD-Probit model results are less than 1% worse than the true values. This implies

that the marginal mean model outcomes are generally 40% worse than the MTD-Probit

model results. It can be said that the MTD-Probit model performs quite well. This fact

suggests that if we take advantage of the deep past interaction between variables, i.e. if

we capture intra and inter-transition probabilities within and between data categories,

thus modeling these variables as a MMC, then we are able to achieve excellent results

in terms of forecasts.

5.3 From theory to the real world: an Economic Illustration

If European economic policy makers, like medical

doctors, had to swear �to do no harm�, they would

all be banned from �practicing� economics.

Mark Blyth,

Austerity: The history of a dangerous idea.

We are living in unprecedented troublesome times. In fact, the euro-zone, partic-

ularly its peripheral countries, are in the grip of a serious economic, social, political

and institutional crisis. This crisis scenario has been mainly generated by the incapac-

ity of both national and supranational (i.e. European Union) institutions to solve the

sovereign debt crisis and the consequent imbalance of the �nancial and economic arenas

caused by it. Portugal, Greece and Ireland have received formal bailout plans, while

Italy and Spain have received informal ones from the Troika (IMF, ECB and EU). These

bailout plans, yielded upon the condition of the implementation of austerity packages,

which imply huge cuts in social expenditure, enormous decreases in wages and pensions,

big tax rises and redundancies, have been throwing a signi�cant number of people into

unemployment and generalized poverty. The implementation of austerity measures has

been happening with a broad consensus - among most politicians, economists, media

and bankers. The problem is that the evidence shows that not only has the sovereign

debt not been lowered, but also the structural imbalances remain.

Credit rating agencies (CRAs) are believed to be independent institutions that eval-
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uate the �nancial credit risk of products like governments and corporate bonds, stocks

and collateralized securities through the assignment of an ordinal scale (Table A.1).

This scale represents the risk associated to a certain product and there is an inverse

relationship between the risk inherent to a product and the return required by investors

in this product: a lower rating suggests a higher risk, consequently, higher returns are

required. CRAs have played a crucial role in this context due to the fact that their neg-

ative outlooks and rating downgrades have had a strong negative impact on sovereign

bond yields.

According to the IMF 2010 Global Financial Stability Report (GFSR), CRA have

contributed to this �nancial instability. Rating downgrades can lead to knock-on and

spillover e�ects that destabilize �nancial markets (IMF 2010:86). The Report recom-

mends that policymakers should reduce government dependence on credit ratings as

much as possible, stating that policymakers should continue their e�orts to reduce their

own reliance on credit ratings (IMF 2010:112).

It is widely known that Capital World Investors (CWI) is the major shareholder of

Standard & Poor's (S&P), and is also one of the biggest shareholders of Moody's, and is

also one of the biggest institutional holders of southern countries' sovereign debt. This

fact constitutes a con�ict of interest6, as the CRA assesses the risk, while at the same

time they bene�t from the evolution of this risk. For instance, a CRA can sell bonds

on the secondary market and subsequently may decrease the ratings, which will quickly

guarantee abnormal returns and pro�ts. Due to these observations, we expect that:

1) we will �nd some structure with regard to the yields market, i.e. some predictable

pattern on yields, 2) ratings contain information regarding yields, in such way that the

former might help to forecast the latter, i.e. that there is a causality relationship from

Portuguese ratings to Portuguese sovereign bond yields, and 3) due to the high level of

European market integration, there are spillover e�ects from another southern European

countries' ratings to Portuguese bond yields, thus there is a causality relationship from

these ratings to Portuguese yields.

The next section describes the data. On the one hand, it is clear that the ratings

are positively autocorrelated: a downgrade in a rating is followed by a downgrade or by

maintenance (only in one situation did an upgrade follow a downgrade). In other words,

the ratings show a persistent pattern over time. On the other hand, the ratings show

6Another evident con�ict of interest is due to the corporate bond market. When a company issues
bonds, the inherent rating assessment is a compulsory procedure and a CRA is attributed responsibility
for carrying out this assessment. If the CRA returns an unfavorable rating, then the corporation will
choose another CRA for another assessment. The CRA evaluator has a tendency and a factual incentive
to overrate the corporate bond.
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an explicit pattern of co-movements, which suggest that they are correlated among one

another. Consequently, it is plausible to assume that southern European countries'

ratings follow a MMC process. For simplicity, and without any loss of generalization,

we assume a �rst order MMC, but the model can be easily adapted to accommodate a

high-order MMC (HOMMC).

In this section we illustrate the bene�ts of treating interrelated categorical regressors

as a MMC through an economic illustration. This illustration has two main objectives:

1) to analyze the predictability of Portuguese sovereign bond yields, in relation to the

S&P sovereign credit ratings, 2) to understand whether the results obtained through a

Monte Carlo simulation study, in the previous section, are con�rmed empirically.

Here we shall consider an empirical example involving the Portuguese sovereign

bond yields as a dependent variable and the PSI 20 stock market returns and sovereign

credit ratings of some peripheral European countries as regressors. More details about

the data will be explained in the next section.

5.3.1 The Data

Daily data on Portuguese sovereign bond yields, Portuguese stock index and S&P

sovereign credit ratings (namely on Portugal, Spain, Italy, Greece and Ireland) from

2000 to 2012 are used in the analysis. While the data for yields was provided by the

Bank of Portugal, data for the PSI20 stock index was taken from Reuters. Regarding

the credit ratings, up until 2010 we used the data from Afonso et al (2012) and after

2010 the data was obtained from S&P. Given that the ratings are expressed on a non-

numeric scale, we converted the ratings into a numeric ordinal scale through a linear

transformation, following Afonso (2012), as in table (A.1). We denote the numeric

ordinal rating for the j − th country, at the instant t, as Vjt, j = 1, 2, 3, 4 and t = 1, · · · , T .

Table (A.2) describes the data, table (A.3) presents some basic descriptive features

of the data. Figure (A.1) shows yields, both the original series and the �rst di�erentiated

series, while Figure (A.2) displays the remaining data time series plots. It should be

noted that the graphs suggest some co-moments between the data. In fact, during the

recent crisis period, while the ratings, in general, seem to exhibit a downward trend,

the yields have an opposite behavior since they present a pronounced upward trend

and their �rst di�erences display an increase in volatility. Regarding the PSI20 stock

index returns, as well as the yields' �rst di�erences, we observe an increase in volatility,

albeit, it seems to anticipate the volatility of the yields' �rst di�erences. Moreover, all

the series present a negative skewness, with the exception of the yields - for obvious

reasons, which indicates that negative extreme values are more likely to occur than
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positive extreme values. Lastly, in general, the processes present quite an excessive

kurtosis (regarding the standard normal distribution). This leptokurtic feature means

that extreme values are generated with relatively high probability.

There are, however, some caveats regarding the scale used for the ratings. In partic-

ular, there are many states that are not visited by the process, if we assume 17 states.

Indeed, we need to group the series into a scale with fewer states, for example, 4.

Sjt =



1 if Vjt ≤ qj1
2 if qj1 < Vjt ≤ qj2
3 if qj2 < Vjt ≤ qj3
4 if Vjt > q3

(5.26)

We choose the quantities qji that lead us to the best results in terms of forecast and that

assure a quite even distribution of the variables Sjt . Table (A.4) displays the chosen

qji for estimation purposes. Later, we create four dummy variables for each country,

where each dummy represents a state. Mathematically we have:

zjkt = 1 {Sjt = k} k = 1, · · · ,m; j = 1, · · · s; t = 1, · · · , T. (5.27)

We consider 5 categorical series (s = 5) and 4 states (m = 4). It should be noted that

we cannot estimate a a fully parametrized MMC in this context given the fact that it

involves 4096 independent parameters ms+1 and we just have 3140 observations.

A last observation concerns the erratic behavior of the yields. We �tted an AR(1) on

yields and we obtained an autoregressive coe�cient of approximately 1. Since all unit

root tests (Table A.5) pointed out the non-stationary nature of yields we considered

their �rst di�erences. It is known that we must look at DF tests with some caution. We

must be particularly careful in choosing which determinist regressors to include in the

ADF auxiliary regression. Regarding the choice of deterministic regressors, one should

include a trend term when the process seems to have some kind of trend and, typically,

it is the economic theory that dictates the inclusion, or not, of such deterministic

regressors. Usually, concerning rates of all kinds, one should not include a trend in

auxiliary regression. This is a problematic issue due to the tests possibly being unable

to reject the null hypothesis of non-stationarity , even more so when yields seem to

have a structural break (Banerjee et al, 1992; Stock, 1994). One should take into

account that the power distortions of the DF test are further compounded by the

presence of conditional heteroskedasticity, (Rodrigues and Rubia, 2005). Nevertheless,

we performed the tests above but restricted the sample to 2008 and the results were

consistent with the previous ones: the yields are an integrated process.

Nonetheless, given the exceptional economic conditions and the current uncertain

environment, factors that contribute to the fact that apparently the yields exhibit an
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upward trend, we perform the tests with and without a linear deterministic trend.

5.3.2 Procedure and Design: Model Speci�cation

Both yields and their �rst di�erences display ARCH type e�ects. So, we have �tted an

ARMA model to each case and Table (A.6) shows this statement.

Moreover, yields seems to exhibit a positive trend in the recent period of high

volatility. Consequently, the typical candidates to portray such behavior are the ARCH7

(Engle, 1982) and the GARCH (Bollerslev, 1986) models. The primary idea is to treat

the volatility as non-constant over time, thus we model here not only the random

variable in mean but simultaneously in variance. We assume the following speci�cation:

yt = x′tγ + z′tδ + ut

ut = σtvt

σ2
t = θ +

P∑
p=1

αpu
2
t−p +

R∑
r=1

βrσ
2
t−r (5.28)

where:

• x′t is a vector of both deterministic and stochastic components, like AR(1) or other

predetermined Ft−1 −measurable terms.

• z′t is a vector of dummy variables

• vt| Ft−1 ∼ t (v) with zero mean and unit variance

Due the some features of yields, where unconditional distribution seems to generate

extreme events with relatively high probability (high kurtosis), we assume a t− student

distribution for the disturbance term vt, which can accommodate this characteristic of

the data, in order to carry out the estimation more e�ciently.

Concerning our particular model speci�cation we have selected a GARCH (1,1) and,

of course, we do not need to include the whole dummy set as covariates. We have:

• x′t ≡
[
d (yields)t−1 rett−1

]
,

• z′t ≡
[
z14t−1 z24t−1 z32t−1 z34t−1 z43t−1 z53t−1

]
and

• α ≡ α1 and β ≡ β1

We should recall that, to understand the estimates better, we denote the countries as

in table (5.2).

7ARCH type models are quite widespread and there are numerous published surveys on the models
of the ARCH family, among which we recall, here, for instance, Bollerslev's (2010). A thorough
presentation of the ARCH models goes beyond the scope of this thesis.
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Table 5.2: Country Code

Country j

Portugal 1

Italy 2

Spain 3

Greece 4

Ireland 5

The �rst step consists of investigating whether the dummy variables help forecast

yields, i.e. whether the yields are actually caused, Granger speaking, by peripheral Eu-

ropean countries Standard and Poor's sovereign credit ratings, despite their coe�cients

remaining statistically signi�cant. Hence, �rstly, we compute Granger causality tests,

and secondly we estimate two GARCH models (one with and another without rating

dummy variables) and then we perform an out-of-sample forecast error analysis. The

�rst GARCH model (model one), without dummy variables, is:

yt = x′tγ + ut

ut = σtvt

σ2
t = θ + αu2

t−1 + βσ2
t−1 (5.29)

Equation (5.28) exhibits the second GARCH model (model 2).

Both tests con�rm that the dummy Granger variables cause yields. In the �rst test

(Table A.7) the hypothesis of non-causality is rejected for every signi�cance level, both

for yield levels and �rst di�erentiated yields. In the second test (Table A.8) there are

signi�cant forecast error gains, compared to the �rst di�erentiated yields, if we include

the dummy variables in the model. In a nutshell, Standard and Poor's ratings contain

valuable information concerning the forecasting process of the yields, so they should be

included in the model.

In the second step, we address the issue of forecasting, as in a Monte Carlo simulation

study. Accordingly, we need to �t a MMC in order to obtain the MMC one-step-ahead

forecasts with regard to the dummy variables.

Table (5.3) summarizes the MMC estimations. Likewise in the Monte Carlo study

section the estimations were carried out using the MDT-Probit method.

Finally, staying with the MMC estimation, regarding the goodness of the �t, it is

important to note the global signi�cance of the model. Indeed, through a Likelihood

Ratio test, presented in section 3, we have evidence that the parameters are jointly

signi�cant (Table 5.4). The null hypothesis of Hj
0 : ηj1 = · · · = ηj5 = 0, j = 1, · · · , 4, is

rejected, in all equations, for any signi�cance level.
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Table 5.3: MMC Estimation

Equation η̂j0 η̂j1 η̂j2 η̂j3 η̂j4 η̂j5 Mean LL

1 Rat-Pt −6.2524∗∗∗
(0.2505)

1.2144∗∗∗
(0.1384)

0.2858∗∗
(0.1295)

0.3785∗∗
(0.1672)

−0.1908
(0.4116)

0.1996
(0.2275)

−0.0057

2 Rat-It −6.2786∗∗∗
(0.9223)

0.7651∗
(0.4818)

1.4297∗∗∗
(0.2803)

−0.1244
(0.3312)

−1.1740∗
(0.6669)

1.0455∗∗∗
(0.2146)

−0.0054

3 Rat-Sp −5.5640∗∗∗
(1.0771)

0.1621
(0.6099)

2.2765
(1.8478)

2.1667∗∗
(1.1714)

1.9078
(1.3290)

0.3365
(0.5616)

−0.0051

4 Rat-Gr −4.8270
(6.1509)

−0.0056
(0.0606)

−0.5570
(0.7015)

0.0832
(0.8058)

1.7814
(3.7020)

1.0266
(1.8851)

−0.0075

5 Rat-Ir −5.9023∗∗∗
(0.3379)

0.8858∗
(0.5062)

0.0801
(0.4166)

−0.4817
(0.5383)

−0.0383
(0.1591)

1.4070∗∗∗
(0.1521)

−0.0073

Coe�cient estimates are presented, standard errors between parentheses.

Mean LL represents the mean of the log-likelihood function.

∗∗∗,∗∗ and ∗ indicates the statistical signi�cance level, respectively, for 1%, 5% and 10%

Table 5.4: MMC Estimation: Goodness of Fit

Equation LR− Statistic
1 Rat-Pt 6636.214

(0.000)

2 Rat-It 6637.704
(0.000)

3 Rat-Sp 6639.9102
(0.000)

4 Rat-Gr 6624.589
(0.000)

5 Rat-Ir 6626.261
(0.000)

LRj
obs associated to Hj

0 : ηj1 = · · · = ηj5 = 0 are reported.

p− values in parentheses.

The next section brie�y presents and discusses the remaining estimation and forecast

results.

5.3.3 Discussion of Results

Table (5.5) displays the estimation results for the mean equation and for the variance

equation. All coe�cients are statistically signi�cant apart from the dummy for Ireland.

Moreover, the yields �rst di�erences presented are positively autocorrelated, since the

autoregressive coe�cient is positive and the PSI20 returns seem to have a negative im-

pact on the yields' variation. This is an expected result: if the PSI20 returns decreased

yesterday then we expect a positive variation on yields. With regard to the ratings'

coe�cient signs, if the Portuguese rating is in state 4 then we expect a future negative

variation on the yields. With respect to Spain's coe�cients, both state 2 and 4 have a

positive impact on yields' future variations, but the magnitude of state 2 is considerably
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higher than that of the state 4, as expected. With regard to the variance equation, the

α and β estimates are also statistically signi�cant, con�rming the idea that yields' �rst

di�erences exhibit both ARCH and GARCH e�ects. As we have α̂ + β̂ ≈ 1 we can say

that, as the second order stationarity condition is not veri�ed, the model estimated

is not a second order stationary GARCH � it seems to be an IGARCH model. This

is an expected result, given that, as it is known, a structural break in variance can

lead to a spurious IGARCH model speci�cation. Furthermore, unlike the generality

of the ARMA family models, the GARCH models allow the possible coexistence of

strict stationarity and non stationarity, speaking in second-order terms. Thus, it is

straightforward to prove that the su�cient condition for strict stationarity

E
[
log
(
β + αv2

t

)
< 0
]

(5.30)

is veri�ed by our model.

Table 5.5: GARCH Estimation Results

Mean Equation
γ1 γ2 δ1 δ2 δ3 δ4 δ5 δ6

0.096∗∗∗
(0.018)

−0.235∗∗∗
(0.069)

−0.006∗∗∗
(0.002)

0.005∗
(0.002)

0.021∗∗∗
(0.007)

0.006∗∗∗
(0.002)

−0.004∗∗
(0.002)

−0.003
(0.002)

Variance Equation
θ α β v

2.70× 10−9∗∗∗
(6.52×10−10)

0.057∗∗∗
(0.010)

0.934∗∗∗
(0.011)

5.696∗∗∗
(0.575)

Coe�cient estimates are presented, standard errors in parentheses.

∗∗∗,∗∗ and ∗ indicates the statistical signi�cance level, respectively, for 1%, 5% and 10%

With regard to the forecast errors, our economic illustration con�rms the Monte

Carlo Simulation study results. Thus, the idea of conceptualizing categorical regressors

such as a MMC seems to work empirically. The MTD-Probit model forecasts are better

than in the Monte Carlo study since the errors vanish. In fact, despite the out-of-sample

size, the forecast errors of the MTD-Probit model are minimal - its �tted values equal

the true values, i.e. the �tted values of model 1 (assuming that the future values of the

dummy variables are known). A possible explanation for this result is due to the fact

that the southern peripheral countries' ratings have changed little over the recent past.

In any case, we have archieved excellent results. With regard to model 2 - marginal

means - on average the forecast results are at least 2% worse than the results of model

3. Table (5.6) shows those results. It should be pointed out, as well, that with these

speci�cations the heteroskedastic ARCH e�ects have been purged out of the model

(Table A.9). The results obtained lead us to the following remarks:
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Table 5.6: GARCH Estimation: Results of Forecast Errors

We constructed the forecasts in a sequential way. Firstly, n dimensional out-of-sample are

considered; Secondly, we produced successive h step ahead forecasts until t + n (the last

out-of-sample observation is t+ n− h).

n

Marginal Mean MTD-Probit

η3 θ3

h = 1 h = 2 h = 3

η2 θ2 η2 θ2 η2 θ2

30 1.0211 1.0138 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 1.0263 1.0293 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 1.0317 1.0338 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n indicates the out of sample dimension and h represents the h step ahead forecast considered.

1. We �nd a predictable pattern for Portuguese sovereign bond yields, therefore this

speci�c market does not seem to be an e�cient market as it appears to reveal

some structure. Moreover, there might be abnormal excess return gains regard-

ing this market. With regard to e�cient bond market hypothesis (EBMH), which

has become a well known and much discussed topic over recent decades, there

is no consensus on the validity of EBMH. On the one hand are its advocates,

of whom we highlight Fama (1975), Pesanto (1978), Kroon (1991) and Malkiel

(2003). On the other hand, some critics such as Mishkin (1978), Zunino et al

(2003), Shleifer (2003) and Bai et al (2013) have found some recent evidence of

ine�ciency in bond markets. The EMBH implies that the possession of past mar-

ket information does not a�ect the future yields, i.e. that prices incorporate and

instantaneously re�ect all information (past public information, new information

or even insider information, depending on the version)8, consequently abnormal

returns cannot occur. As noted by Mishkin, e�cient-market theory implies that

returns in long-term bond and stock markets should be a�ected only by new in-

formation in the marketplace and should be uncorrelated with any past available

information, Mishkin (1978:712). Pesanto, in the same spirit, argues that the bond

market is e�cient by testing its implication that forward rates pertaining to any

8Traditionally, there are three variants of E�cient Market Hypothesis. The weak form states that
the history path of a certain asset says nothing about its future path; the semi-strong form states
that prices adjust instantaneously to signi�cant news; the strong version asserts that even insider
information, i.e. privileged information, is irrelevant to explain the future path of a certain asset.
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�xed date in the future follow a martingale sequence, Pesanto (1978:1058). Figure

(A.4) displays the correlogram of the yields. It is clear that both are correlated

sequences. Moreover, we have found that past PSI20 returns contain information

concerning future variations in yields: the yields are autocorrelated and are also

negative correlated with past returns.

2. In addition, if one incorporates information regarding the S&P ratings on periph-

eral European countries, we are able to obtain forecasts that have a greater level

of agreement. This is quite obvious, given the con�ict of interests between CRAs

and the yields market, due the fact that the major Stakeholder of CRAs - CWI -

is, simultaneously, one of the biggest shareholders of peripheral European coun-

tries' sovereign debt, i.e. they produce, buy and sell recommendations on yields

while at the same time they control the ratings which have a signi�cant impact

on the yields. Due to this point and to the previous one, peripheral countries'

sovereign bond markets do not seem to be e�cient markets.

3. Our main idea to conceptualize a MMC as covariates appears to be empirically

feasible. Moreover, the results from the empirical illustration con�rm those ob-

tained by the Monte Carlo simulation study, showing a signi�cant improvement

on the results of the forecast errors.
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6 Extensions and Further Research

With regard to further research, we present some ideas that could be of interest to

investigate below.

• Extend the MMC methods, in general, to non-homogeneous MMC and, in partic-

ular, to elaborate on it in our framework - non-homgeneous MMC as covariates

• It could be interesting to investigate the situation in which the MMC arises as

a result of continuous covariates, i.e. when Vjkt∈ R, despite the fact that the

discretization of a given continuous variable implies loss of information. Namely,

it would be appropriate to provide answers to the following question: are the

bene�ts of the utilization of the MMC larger or lower than this loss of information?

• One may consider doing the opposite of what we performed in this thesis: instead

of viewing a MMC as regressors, i.e. MMC as a function of a dependent variable,

conceptualize a MMC that depends also on exogenous variables as follows:

P (Sjt = io| Ft−1) = P
(
Sjt = io|S1t−1, · · · , Sst−1,x

′
t−1

)
(6.1)

where x′t−1 is a vector of Ft−1 −measurable covariates.

7 Conclusions

This paper proposed a new concept: the usage of MMC as regressors. Obviously, our

model is based on the assumption that the MMC Granger causes the respective depen-

dent variable. Our main theoretical result is that the treatment of MMC as covariates

works in the sense that it leads us to extremely good results in terms of forecasts. A

Monte Carlo simulation study and empirical illustration support our theoretical result.

With respect to the Monte Carlo simulation study, we conclude that, in large samples,

on average, the MMC forecast errors are less than 1% worse than the true �tted values

(assuming that the values of dummy variables at t + h are known) and lead to fore-

cast errors at least 40% better than the benchmark model (the marginal mean model).

These outcomes are con�rmed by our economic illustration since the MMC forecast

errors of the dependent variable - Portuguese sovereign bond yields - equals its true

�tted values. Furthermore, due to the empirical illustration we conclude that:

1. The policy of the CRAs has failed. The CRAs that rated the Lehman Broth-

ers with triple A a few days before its bankruptcy, are the same CRAs that have
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been contributing to the dramatic increase of peripheral countries' sovereign bond

yields. These CRAs are supposed to be independent institutions. However, their

political independence becomes merely apparent, given that they have a rooted

con�ict of interest. Due to this fact one obvious solution is to reject the utter

power that these CRAs have nowadays. One useful way to question them and

their in�uence is through the creation of a new CRA, drawn up under the juris-

diction of the European Union institutions and designed to meet the objectives

of transparency and credibility necessary to guarantee that the �nancial systems

of the countries that belong to the euro zone are solid and e�ective.

2. There is a consensus with regard to the payment of the peripheral countries'

sovereign debt. The national governments, under pressure from the international

institutions and the consequent bailout plans, are one of the decision centers that

most contribute to this idea. Therefore, the large majority of the national gov-

ernments have followed political guidelines based on crosscutting to enable the

repayment of debts. This has led to governmental options concerning expendi-

ture and revenue being constrained by this objective. However, and despite the

fact that huge sacri�ces are been made by most of the population, it should be

noted, on the one hand, that the annual Portuguese debt service is larger than

the expenditure on education or on health care. On the other hand, all the cur-

rent economic policies regarding the debt payment have failed: the debt is still

increasing, regardless of the social imbalances and the increasing phenomena of

poverty and hunger. This should lead us to the following question: should the

payment of the debt be the main political priority? We believe that this question

cannot be answered without a prior discussion about the nature of the state and

about the fundamental functions that a state must deliver.
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Figure A.1: Yields

2

4

6

8

10

12

14

16

00 01 02 03 04 05 06 07 08 09 10 11

Yields: Levels

-2

-1

0

1

2

00 01 02 03 04 05 06 07 08 09 10 11

Yields: First Differences

Years

Years

Figure A.2: Ratings and PSI20 Returns
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Figure A.3: GARCH Residuals
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Figure A.4: Yields Correlogram
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A.2 Tables
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Table A.1: Standard and Poor's Ratings Scale

S&P Ratings Numeric Scale
AAA 17

AA+ 16

AA 15

AA− 14

A+ 13

A 12

A− 11

BBB+ 10

BBB 9

BBB− 8

BB+ 7

BB 6

BB− 5

B+ 4

B 3

B− 2

CCC+ 1

CCC 1

CCC− 1

CC 1

SD 1

D 1

Table A.2: Data Description

Variable Description Source
Yields 10-year sovereign Portuguese government bond yields Bank of Portugal
Ret PSI 20 stock index returns Reuters

Rat - Pt Sovereign credit rating: Portugal Standard & Poor's
Rat-It Sovereign credit rating: Italy Standard & Poor's
Rat-Sp Sovereign credit rating: Spain Standard & Poor's
Rat-Gr Sovereign credit rating: Greece Standard & Poor's
Rat-Ir Sovereign credit rating: Ireland Standard & Poor's
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Table A.3: Data Descriptive Statistics

Variable Mean Median Max Min Std Dev Skewness Kurtosis Observations
Yields 0.050 0.045 0.140 0.031 0.019 2.699 10.398 3140

Ret 0.000 0.000 0.102 −0.104 0.012 −0.157 11.394 3140

Rat-Pt 13.719 14 15 6 1.895 −1.946 6.043 3140

Rat-It 16.176 16 17 12 0.721 −0.039 1.574 3140

Rat-Sp 13.912 14 15 10 0.942 −0.665 3.539 3140

Rat-Gr 10.820 12 13 1 2.837 −2.406 8.077 3140

Rat-Ir 15.951 17 17 10 1.942 −2.186 6.718 3140

Table A.4: Rating Transformations

The qji quantities represent the i−th cut-o� value for the j−th country's rating (Vjt ) de�ned
in the model (5.26).

qji Portugal Italy Spain Greece Ireland
qj1 8 14 12 7 10

qj2 11 15 13 10 15

qj3 14 16 14 12 16

Table A.5: Unit Root Tests

Ho : Deterministic Regressors Test p− value

yields has a unit root

constant Dickey - Fuller 1.537
(0.959)

constant Phillips-Perron 1.570
(0.955)

linear trend Dickey - Fuller 0.586
(0.995)

linear trend Phillips-Perron 0.612
(0.979)

t− statistics are reported. p− values in parentheses.

The lag lenght criteria for the DF tests was the Schwartz info criteria

The spectral estimation method for PP tests was the Bartlett kernel and the bandwidth was the Newey-West one

Table A.6: ARCH Type E�ects Test

We �t two preliminary autoregressive processes for level yields and for �rst di�erenciated

yields and keep the respective residual series. In both cases we have evidence of conditional

heteroskedasticity. We have used six lags in the tests

yields− level yields− differenced
F − Stat ∼ F(6,3127) 5.6859

(0.000)
6.1996
(0.0000)

nR2
u
d−→ χ2

(6)
33.8226
(0.0000)

36.8427
(0.0000)

F − Statistic and χ2 − Statistic are reported. p− values in parentheses.

The degrees of freedom of the F − Stat for the second case are (6, 3126)
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Table A.7: Granger Causality Tests

Table A.7 reports the Granger causality tests. The null hypothesis in this case is: each

variable in the rows �does not Granger cause� each variable in the columns. Ho is clearly

rejected in all situations.

Ho : does not Granger Cause Yields - levels Yields - di�erences
Rat− Pt 23.4664

(0.000)
23.2109
(0.000)

Rat− It 2.13043
(0.019)

2.26119
(0.013)

Rat− Sp 10.5018
(0.000)

10.7917
(0.000)

Rat−Gr 24.6176
(0.000)

23.6902
(0.000)

Rat− Ir 5.03362
(0.000)

3.73089
(0.000)

LR− Statistic is reported. P − values in parentheses. We have used 6 lags.

Table A.8: Forecast Errors: Granger Causality

Table (A.8) suggests that the dummy variables vector z′t de�ned in (5.28) Granger cause

the Portuguese sovereign bond (di�erenciated) yields. Model 1 and Model 2 are designated

models (5.29) and (5.28) respectively. It should be noted that the inclusion of the dummies

in the model improves the forecast error of the dependent variable, given that the forecast

errors of Model 2 are smaller than those of Model 1.

h Model MAPE MAE RMSE

120
1 0.0724 0.0091 0.0119

2 0.0546 0.0064 0.0072

90
1 0.0736 0.0094 0.0122

2 0.0515 0.0066 0.0085

60
1 0.0807 0.0104 0.0128

2 0.0751 0.0097 0.0121

h represents the out-of-sample dimension

Table A.9: GARCH Estimation: Heteroskedasticity Test

Table (A.9) reports the heteroskedasticity test of the standardized residuals of the estimation

of the model (5.28). The results of the estimations are displayed in table (5.5). We cannot

reject the null hypothesis of conditional homoskedasticity.

Statistic Yields - di�erences
F − Stat ∼ F(6,3127) 0.9202

(0.4791)

nR2
u
d−→ χ2

(6)
5.5237
(0.4786)

F − Statistic and χ2 − Statistic are reported. p− values between parentheses.
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