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Definitions

. Non-Life insurance - Policy agreement between two parties, in wich one of
them (the insurer) engages to compensate the other (the policyholder) for a
certain unpredictable loss in a fixed time period in exchange of a fee
(insurance pemium).

. Claim - Event for wich the policyholder demands finantial compensation
from the insurer.

. Claim size - Money paid by the insurer to the policyholder as the result of a
claim.

. Total claim size of a policy - Sum of the all the claim sizes made during the
fixed time period the policy was valid.

. Duration of a policy - Amount of time a policy is valid.

. Annualised exposure - Fraction of the year the policy was valid, i.e, the
duration of the policy measured in years.

. Claim frequency - Number of claims divided by the annualised exposure.

. Claim severity - Total claim size divided by the number of claims, i.e, the
average claim size per claim.

. Pure premium - Total claim size divided by the annualised exposure.



Abstract

When using generalized linear models to predict future claim payments, should
actuaries use separate frequency/severity models or a single loss cost model? This
is the question this paper addresses, covering some theoretical background, testing
both alternatives on real data from the Industrial Multiple Risks (IMR) sub-branch
and analysing its results. Data was provided by 7 companies operating in Portugal
in the years 2010 and 2011, who own a 70% share of the Portuguese IMR market

and was collected by Associacdo Portuguesa de Seguradores (APS).

Keywords: Generalized Linear Models, Tweedie families of distributions, Fire and
other damage in property, Multiple Risks, Lift Chart, Best Estimate, Solvency I,

over-dispersion in GLMs, Quasi-Poisson distribution, Gamma distribution, offsets



1. Introduction

This work aims to present and compare the results of two different approaches
used to calculate estimates for future claim values. Both approaches take advantage
of the generalized linear models (GLMs), a set of regression models that has been
proved usefull in forecasting, credibility, loss reserving and other actuarial
problems, since their first presentation by Nelder & Wedderburn (1972) and their

first actuarial illustrations by McCullagh & Nelder (1989).

The usual approach to a tariff/forecasting problem consists in treating claim
frequency and claim severity separately, assuming no correlation between these
variables. Usually, for a policy or groups of policies, a GLM with a Poisson or Quasi-
Poisson distribution is used to fit the claim numbers and a Gamma distribution
models the claim severity adequately. This approach is widely used and thoroughly

studied by Klugman S., Panjer H. and Willmot G. (2008).

Another approach consists on modeling the total loss of a policy or groups of
policies. In this latter case, the Tweedie families of distributions - in view of
Tweedie (1984) - are a valid alternative to actuaries. These families of
distributions will be presented in chapter 5, but for the scope of this introduction
it's enough to know that this approach assumes, in counterpoint with the usual
approach, that predictors simultaneously increase or decrease both claim
frequency and severity. The value of a predictor is therefore the result of both these

effects, making it impossible to have an explaining variable in the model



influencing claim frequency and claim severity in different ways, as it might happen

when we model these effects separately.

Both alternatives will be tested using real data from the Portuguese Industrial
Multiple Risks (IMR) sub-branch, collected by Associagdo Portuguesa de
Seguradores (APS) from seven insurance companies operating in Portugal in the
years 2010 and 2011, and whose market-share in the IMR sub-branch reaches up
to 70%. The IMR is a sub-branch with little policy exposure (about 40 thousand
policies exposed in 2013), where most of the losses are small, but where a single
loss can reach several millions of Euros. Our objective is to use the 2010 data to
build the models and then compare the predictions both alternatives yield with the

real 2011 losses.

In chapter 2 we present a brief study of the Portuguese Non-Life business, focusing
on its three major LoB’s: The Motor Insurance (MI) LoB, the Fire and Other Damage
in Property (FODP) LoB and the Accidents and Health (AH) LoB. In chapter 3 we
describe the database used and the reasons for the choice of some explanatory
variables. In chapter 4 we give an overview on GLMs and some variations of the
model that will be used later, such as the offsets and over-dispersion. In chapter 5
we present the Tweedie families of distributions. In chapter 6 we analyse the fitted
models, focusing on variable behaviour and goodness of fit. In chapter 7 we discuss
the results both approaches produced in predicting claim amounts and in chapter 8

we draw our conclusions.



2. The Fire and other damage in property LoB and the Multiple Risks

branch - a framework in the Portuguese Non-Life Business

Fire and Other Damage in Property (FODP) is currently the third largest LoB in the
Portuguese Non-Life insurance industry in terms of written premium production,
following the Motor Insurance (MI) and the Accidents and Health (AH) LoBs. The
chart below shows the behaviour of the annual written premium of these LoBs over

the past 7 years in Portugal:

2,500,000

2,000,000

1,500,000

1,000,000

U: Thousands of Euros

500,000

2007 2008 2009 2010 2011 2012 2013

“B-Accidents&Health 1,372,230 1,396,233 1,353,441 1,356,545 1,321,837 1,262,348 1,232,461
~®=Motor Insurance 1,943,902 1,809,740 1,665,589 1,671,882 1,658,962 1,569,375 1,478,230
Fire and other damage in property 705,873 732,176 744,287 765,283 768,766 767,038 760,470

Figure 1: Annual Written Premiums in Portugal for MI, AH and FODP. Data collected from the
report “Producao Anual de Seguro Direto 2013” compiled by Associa¢cao Portuguesa de
Seguradores (APS).

Even if lower in value, only the FODP premiums increased in these last 7 years

(+7.7%), while the MI and AH premiums decreased (-24%) and (-10.2%)

respectively.

We will now dig deeper in these LoB’s branches to find different patterns in the

premium production. The FODP LoB is composed by several branches that reflect

1 https://segurdata.apseguradores.pt
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potential losses in property, wether in a business or in a household. The following

table shows the premium distribution of the LoB among these different branches:

2007 2008 2009 2010 2011 2012 2013

Fire and Other Damage in Property 705 873 732176 744 287 765 283 768 766 767 038 760 470
Fire and Elements of Nature 40 590 34463 29 100 25913 23 680 26 093 23120
Other damage in property 665 283 697 713 715 188 739 370 745 086 740 945 737 350
Agricultural 21478 24244 24 240 24143 22874 19 485 17 982
Agricultural - Fire 447 402 562 617 313 261 293
Agricultural - Crops 21031 23842 23678 23526 22561 19224 17 689
Cattle 139 101 70 46 63 49 61
Theft 6051 6509 6334 5776 5611 5510 4837
Cristals 514 462 415 400 373 299 251
Deterioration of Refrigerated Goods 131 124 154 80 38 47 36
Machine Malfunction 17774 20 669 19508 18311 19 648 18435 17 495
Multiple Risks 577 466 594 445 615 643 637 928 652 923 663 935 670 172
Multiple Risks - Habitational 356 757 372529 388 165 404 934 418 066 431 664 438 163
Multiple Risks - Commerce 137 744 130516 133 316 131503 144 556 137 865 133 532
Multiple Risks - Industrial 74731 81348 83054 89482 77 629 81645 86 663
Multiple Risks - Others 8234 10053 11107 12008 12672 12761 11814
Others 41729 51159 48 823 52 686 43 556 33186 26516

U: Thousands of Euros
Table 1: Annual Written Premium distribution in Portugal for FODP LoB. Data collected from
the report “Producao Anual de Seguro Direto 2013” compiled by Associa¢do Portuguesa de
Seguradores (APS)

This table shows that the Multiple Risks (MR) branch is the main force behind the
FODP LoB, with the 2013 premium collection arising to 670,172 thousands of
euros, about 88.1% (670,172 /760,470) of the LoBs written premiums.

For comparison sake, if we also split the AH LoB into its branches and analyse their

respective annual premiums and weights on the LoB, we get the results shown in

the table below:
2007 2008 2009 2010 2011 2012 2013
Accidents&Health 1372 230 1396 233 1353441 1356 545 1321 837 1262348 1232461
Accidents 931 739 913 384 853 703 824 304 780 894 709 580 661 907
Workers compensation 762 532 741 075 673 679 645 924 621878 555 892 511158
Personal Accidents 156 747 161 895 171530 174912 156 219 151588 149 098
Transportated people 12459 10414 8495 3468 2797 2100 1650
Health N 440 492 482 849 499 737 532 241 540 943 552 769 570 554

Table 2: Annual Written Premium distribution in Portugal for AH LoB. Data collected from
the report “Producao Anual de Seguro Direto 2013” compiled by Associacao Portuguesa de
Seguradores (APS)
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In 2013, the Workers compensation (WC) sub-branch was responsible for 41.5% of
the total LoB premiums and the Health branch for 46.3%. Together, these two
branches are responsible for 87.8% of the AH LoB premiums, similar to the weight
of the MR branch in the FODP LoB (88.1%). Now we can analyse these three
branches premium behaviour in the last 7 years and get a different picture from the

one in Figure 1:
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U: Thousands of Euros
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200,000
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2007 2008 2009 2010 2011 2012 2013
~#-Health 440,492 482,849 499,737 532,241 540,943 552,769 570,554
~#-Worker's Compensation 762,532 741,075 673,679 645,924 621,878 555,892 511,158
Multiple Risks 577,466 594,445 615,643 637,928 652,923 663,935 670,172

Figure 2: Premium collection in Portugal for Worker’s compensation, Health and Multiple
Risks. Data collected from the report “Producio Anual de Seguro Direto 2013” compiled by
Associacao Portuguesa de Seguradores (APS)

The period under analysis emcompasses the arise of the Portuguese economic
crisis which lead to some losses in the Non-Life business. The decline in premium
collection is clear for a number of LoBs, especially those that are more sensitive to
the macroeconomic conjuncture. While the increase in the Portuguese
unemployment rate helps to explain the WC premium decline, for MI two axis must
be analysed: in the mandatory third party liability cover, the decline is partially
justified by a fierce market competition, especially from the direct companies that

manage to lower their insurance premiums by using direct communication means

12



with their costumers, mainly the internet, saving in paperwork and labor force. In
the optional covers, the economic conjuncture again plays a role, with families
trying to save money wherever they can.

However, these social and economical factors don’t seem to have such an impact in
the MR and Health branches. The following figure showing the behaviour of the

loss ratio for these branches, helps to prove our point:

120%

100%
80% o — —

60%

40%

20%

0%

2010 2011 2012 2013
~#-Health 76.65% 80.64% 79.97% 79.29%
~#-Worker's Compensation 77.05% 85.95% 91.68% 103.93%
Multiple Risks 60.14% 54.30% 51.62% 65.81%

Figure 3: Loss ratio for the Health and WC branches and the MR sub-branch. Data collected
from the reports “Producio Anual de Seguro Direto 2013” and “Variaveis Trimestrais
2013.12” compiled by Associa¢do Portuguesa de Seguradores (APS)

The rise of the loss ratio for the MR branch in 2013 cannot be dissassociated from
the extreme weather conditions in winter and summer of that year, a tendency that
will probabily aggravate in the future. The WC premium decrease, as a
consequence of a decrease in the employed labor force, lead to losses over 100% of
the writtens premiums. The Health businnes is stable, certainly the most crisis-
resistant among these three, showing that the Portuguese people have increased
their confidence in private health insurances, wether resulting of a free choice or of

the attaint of the public health system.
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In the second half of the 1980’s, the MR branch started to make its way into the

Portuguese insurance market. It started as a more complete alternative to the

traditional fire insurance, since insurance companies added to the fire cover a set

of optional covers that also reflected potential risks in losses of property. The

insurance was sold as a package of covers, wich made it cheaper and easier for the

consumer, who didn’t have to underwrite several distinct insurance policies. Each

cover in this package has its guarantees and exclusions, wich differ from company

to company. The following table shows the most common covers in a MR contract

and a very brief description of its guarantees and exclusions:

Cover

Guarantees

Exclusions

Vandalism

vandalism, including those resulting from fire and explosion.

Damage to insured property directly caused by acts of

robbery and theft of the insured goods.

Land Subsidence

Landslides, mudslides and land subsidence.

Damage resulting from the partial or total colapse of a structure not related with
geological risks.

Water Damage

Rupture, malfunction, clogging or overflow of internal
network of water supply and sewerage.

Taps left open.

Deterioration of products

The cost of the deterioration of certain products in the
commercial activity of the insured.

Coverage is limited to the products expressed in the contracted insurance.

Theft or Robbery

Disappearance, destruction or damage to insured property
as a result of theft or robbery.

Burglary and theft in non-permanent housing.

Strikes, Riots, Public Disorder

Damage to insured property directly caused by acts of
strikes, riots or public disorder.

robbery and theft of the insured goods.

Fire, Lightning or Explosion

Damage of insured goods as a result of the fire and of the
means employed to fight the fire.

The simple action of heat (no flames).

Floods

Torrential rain (> 10 mm /10 min), bursting of dikes and
dams.

Direct sea action, infiltrations trough walls.

Others

Other damage to property.

Loss of profits or income

The fixed costs that the insured will have to continue to
endure despite the complete or partial interruption of
activity, as a result of an accident (salaries, insurance
premiums, taxes, depreciation and other fixed costs
attributable to the exercise).

Coverage is limited to the risks or activities expressed in the contracted insurance.

Broken glass

Break or fracture of glass plates and fixed mirrors, marble
stones and other fixed decorative stones, as well as fixed
bathroom fixtures .

Damages resulting from defect or manufacturing defect, placement, assembly or
disassembly and resulting from inadequate support.

Third party liability

Compensation for pecuniary and non-pecuniary damage the
insured is legally required by a third party.

Coverage is limited to the risks or activities expressed in the contracted insurance.

Electrical Risks

Damage to electrical machines, transformers, apparatus and
electrical systems and accessories, as a result of direct
effects of electric current.

Damage to fuses, heaters, lamps and cathode ray tubes of electronic components.

Seismic Risks

Direct action of earthquakes, volcanic eruptions, tsunamis
and fire resulting from these phenomena.

Buildings that have not been scaled according to the regulations in force at the date of
construction and the structure.

Storms

Typhoons, cyclones, overflows caused by rainfall, snow or

hail.

Direct sea action, infiltrations trough walls.

Table 3: Multiple risks covers and its guarantees and exclusions

Soon, the market behaviour of the product lead to the creation of a “basic kit” of

covers wich usually includes Fire, Theft or Robbery, Floods, Storms and Water

damage.

14



The premium/sum insured calculations of a policy with several covers that
reflected such distinct social and natural hazards can be done in several ways:
Wether the premium/sum insured of a policy is the sum of the several
premium/sum insured of the different covers, or a total premium/sum insured is
calculated for the whole of the basic kit and the remaining covers have separate
calculations for premium/sum insured. Usually the seismic risks cover is reinsured

and treated apart from the other covers.

As shown in Table 1, the MR branch is divided into four sub-branches: Habitational
Multiple Risks (HMR), Commerce Multiple Risks (CMR), Industrial Multiple Risks
(IMR) and Other Multiple Risks (OMR). All of these branches share the same
diversity of exposed risks, materialized in the set of covers each policy possesses.
Naturally, the most affected covers, in terms of claim severity or claim frequency,
vary in each sub-branch. There is a mandatory fire insurance or a MR insurance
with the fire cover for every household in horizontal property in Portugal, but in
commerce and industry that obligation is not present and the entrepreneur
chooses freely wich covers he desires to protect his business. This sometimes leads
to the celebration of “tailor-made” contracts where the company directly
negociates the insurance contract with the client. This helps to explain the more

dispersed loss ratio on IMR and CMR as opposed to the more stable one of HMR.

15
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2010 2011 2012 2013
~#-HMR 54.29% 47.29% 44.96% 57.77%
~#-CMR 85.23% 72.39% 74.01% 93.93%
IMR 57.70% 67.24% 57.12% 72.09%

Figure 4: Loss ratio for the HMR, CMR and IMR sub-branches in Portugal. Data collected from
the reports “Producio Anual de Seguro Direto 2013” and “Variaveis Trimestrais 2013.12”
compiled by Associacao Portuguesa de Seguradores (APS)

We now arrive to the object of our practical experiment in this work, wich is the
IMR sub-branch. Policies in this sub-branch cover a wide variety of economical
activities and therefore are, to some extent, the reflex of the Portuguese Industrial
tissue. The typical Portuguese industry is a small family-based business, still, a few
large industrial groups dominate the market. This economical assimetry is
reflected in the behaviour of the policies covering these risks, with the great
majority of the policies generating small claim sizes and only a handful of policies

generating the greatest part of the sub-branches total loss.

The Portuguese industries with greater production value include the food, drinks
and tobacco industry; the water/gas production/distribution industry and the
textile industry?. This sector lost economical relevance, specially since the country
joined the European Union and applied more efforts on the growth of the tertiary

sector, leaving the primary and secondary sectors behind. This lead to a serious

2 http://www.centromarca.pt/folder/conteudo/620_Industria%20Portuguesa_CIP_Relatério%20Final_AMA.pdf
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lack of competitivity in the global market, but still, in 2011, the Industrial sector
contributed with 249%:3 of the Gross Domestic Product and in 2010, also with 24%
of the country’s employed labour force. The recovery of this economical sector is
vital for the economical recovery in itself and it must certainly take into account a

more environmental friendly approach and a greater technological knowledge.

3. Description of the data

The data used in the next chapters was collected by APS from 7 different insurance
companies operating in Portugal in 2010 and 2011 that exploit the IMR sub-branch,
with reference date 31.05.2012. These 7 companies possessed all together a
market-share of 70.7% of the IMR market. Policies in force at least one day in 2010
were used to build the models described in chapters 4 and 5. These models were
then used to predict claim values for the policies in force at least one day in 2011,
and these prediction were compared with the observed claim amounts in 2011.

The following table summarizes some descriptive statistics of the samples.

Num.b(.er of Annualised Number of
Year policies . Total Loss
exposure claims
exposed
2008 14,810 14,648 2,501 23,093,043€
2009 15,732 15,033 3,130 31,139,744€
2010 18,505 15,756 3,167 31,358,004€
2011 18,941 15,674 3,036 36,894,403€

Table 4: Descriptive statistics of the experiment samples

For each policy in the study, the following possible explanatory variables were

recorded:

3 Taken from “Principais desafios da industria em Portugal - 2013. Uma abordagem coerente para a dinamizagdo do sector”.

http://www.pwc.pt/pt/publicacoes/imagens /2013 /pwc_principais_desafios_industria.pdf.




Type of Codification in
Variable Type of factor
variable model
Covers composing the policy Binary/Dummy G,i=1,..,15 Covers factor
Deductibles composing the policy Binary/Dummy Fi, i=1, .., 15 Deductible factor
Economical Activity Code (CAE 3.0) Categorical CLASS_CAE (4 classes) LoB factor
SUM_INSURED_CLASS (7 Sum Insured
Sum insured Class Categorical
classes) factor
NUTSIII* Categorical NUTS3 (31 classes) Regional factor
Exposure years Continuous EXPOSURE_YEARS Exposure factor
Past covers and
Covers composing the policy in the previous year Binary/Dummy Gy, i=1, .., 15; j=1
deductibles factor
Past covers and
Covers composing the policy two years ago Binary/Dummy Gy, i=1, .., 15;j=2
deductibles factor
Deductibles composing the policy in the previous Past covers and
Binary/Dummy Fy,i=1, .., 15;j=1
year deductibles factor
Past covers and
Deductibles composing the policy two years ago Binary/Dummy Fy, i=1, ..., 15; j=2
deductibles factor
TOTAL_CLAIMS_1_CAT (5 Past claim
Number of claims in the previous year Categorical
classes) behaviour factor
Past claim
Claim amounts in the previous year Continuous TOTAL_LOSS_1
behaviour factor
Past claim
Claim Severity in the previous year Continuous SEVERITY_1
behaviour factor
TOTAL_CLAIMS_2_CAT (5 Past claim
Number of claims two years ago Categorical
classes) behaviour factor
Past claim
Claim amounts two years ago Continuous TOTAL_LOSS _2
behaviour factor
Past claim
Claim Severity two years ago Continuous SEVERITY _2

behaviour factor

Table 5: Explanatory variables for the models

4 http://pt.wikipedia.org/wiki/Unidades_Territoriais_Estat%C3%ADsticas_de_Portugal
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The study of the covers and the existence of the respective deductibles is of
primary importance. The objective in studying the impact of these variables in
claim frequency and severity is to assess the effect of the “tailor-made” contracts
referred in the penultimate paragraph of chapter 2. Will the direct negotiation of
the covers in the contract withdraw or emphasize the importance of the
deductibles? If so, in which covers will that impact be significant? All the covers
shown in Table 5 were used as dummy variables, with value 1 if the cover was
present in the policy and zero otherwise, except the seismic risks cover. This cover
deserves a special treatment, given it’s low frequency and high cost, and it’s usually
reinsured. The order of the covers/deductibles in table 3 is the order of the
covers/deductibles in the respective outputs, i.e., C1 and F1 refer to the Vandalism
cover and deductible; Cis and Fis to the Storms cover and deductible. There is no

C14 and F1ssince that refers to the seismic risks cover.

Also, an understanding of the claim amount and frequency behaviour trough
different CAEs is of interest, but here we payed the price of collecting data from 7
different insurance companies. Different companies use different codes in an
immense panoply of economical activities, and when they all come together it’s not
easy to find an algorithm that standartizes them all, since the variable is qualitative.
An effort was made to allocate each activity to it’s correspondent CAE 3.05, but we
only achieved satisfactory results with a larger aggregation, shown in the next

table:

5 http://www.ine.pt/ine_novidades/semin/cae/CAE_REV_3.pdf
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CLASS CAE 3.0
Administrative activities; Artistic and sporting activities; Communication activities; Health activities;
1
Accommodation and eatery activities; Electricity and gas industries.
Transport and storage activities; Extractive industries; Educational activities; Construction activities; Agriculture
2
and animal production activities
3 Unknown
4 Textile industries; Manufacturing industries; Water and waste management; Auto Repair

Table 6: Categorization of the CAE 3.0 variable

Other studied factors include the exposure factor, measured by the proportion of

the year the policy was in force; a regional factor, measured by the geographical

localization of the risk and categorised in NUTSIIL. The Sum Insured factor,

measured by the sum insured variable, will help us understand if the size of the

industry matters: we expect to see a higher claim frequency and severity in a policy

with higher sum insured. This variable was categorized in the following way:

Class Left limit (open) Right limit (closed)

1 0 50.000€

2 50.000€ 100.000€

3 100.000€ 300.000€

4 300.000€ 1.500.000€

5 1.500.000€ 3.000.000€

6 3.000.000€ 20.000.000€

7 20.000.000€ +00

Table 7: Categorization of the sum insured variable

The past behaviour factor of the policy will also help us understand it's present

behaviour in terms of frequency and severity. This variable was categorized in the

following way:
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Class Rule

The policy was present in
lag 1/2 for a period of more
than 180 days with no
claims.

The policy had 1 claim in
lag1/2
The policy had 2 claims in
lag1/2
The policy had 3 or more
claimsinlag1/2
In the lag 1/2, the policy
was not present, or, it was
absent present for a period less
than 180 days with no
claims.

Table 8: Categorization of the past claim frequency variable

3+

The same policy can be in force in different places, so the pair (policy,postal code)
was considered as the risk to be studied. For each distinct combination of
(policy,postal code), a record was created in the data base. That record would then
be completed with the values of the other explanatory variables in table 5. An

example of the database disposal is given in table 9.

Policy_ | Postal Exposure CAE Sum Number of Claim Claim
C1 C15 | F1 F15
id Code years (3.0) Insured claims Size Severity
9999 2855 0.75 1 0 1 0 X 50000 0 0 0
9999 2800 0.75 1 1 0 0 X 50000 2 1000 500

Table 9: Database disposal

Using this type of database disposal, for each line we will try to model the response
variable “Number of claims” using a GLM with a quasi-poisson density and using
the exposure factor as an offset (view section 4.2). We will also model the “Claim
severity” using a GLM with a Gamma density, with weights defined by the “Total

number of claims”. This is the usual approach or the frequency/severity approach.
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The total loss approach consists in modelling the variable “Claim Size” using a GLM

with a density from the Tweedie family of distributions.

4. An overview on GLMs

Over the last years GLMs became a common statistical tool to model actuarial data,
mainly because the regression is extended to distributions from the exponential
family and secondly because a GLM models the additive effects of the explanatory
variables on a transformation of the mean , instead of the mean itself. We will
present a GLM formulation by McCullagh & Nelder (1989), where a GLM is
described by the following assumptions:
* There is a response y observed independently at fixed values of explanatory
variables x4, ..., Xp-
In the scope of this work, depending on the context, the response variable
represents the number of claims generated by a policy, the claim severity of a
policy or the claim size of a policy. The explanatory variables represent the
variables described in table 5. This first assumption aims to isolate the ocurrence of
a claim (or it's severity/size) as independent from the ocurrence (or severity/size)
of other claims, thus excluding chain reactions. However, in the reality of the IMR
sub-branch and in most of the other LoBs, this might not occur. A storm might
boost broken glass or water damage. A seism might trigger other natural or social
hazards such as fire or vandalism. The way companies themselves deal with a claim
might also subvert reality, if for instance, two dependent claims of storm and
broken glass are reported as one unique claim or vice-versa. An effort to allocate

each claim to its affected cover(s) might seem pointless work at the time of the
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expertise, but it will make a great difference for the actuary who will work with the

data later on.

* The distribution of y has density of the form:

f i3 65 9) = exp [LE2CD 1 (3, ¢)] (1)

for a positive parameter ¢p and suitable functions a;(.), b(.) and c(.,.). Usually
a; ((Z))— where w; is a set of know weights (see section 4.2) and the domain of
each 6 is an open interval satisfying b(8)<co. Some well know results using this
framework are: E(y;) = y; = b’(0;) and Var(y;) = $V(u;) where V() = b"'(6;) is the

variance function for each observation.

* The explanatory variables may only influence the distribution of y through a
single linear function called the linear predictor n = B;x; + --- + Bpxp,
where the  parameters are derived by maximizing the log-likelihood

defined as:
1B, ¢) = Ziey Inf (iu B, ) = Tk r{ln ey, 9) + 2200 @

The maximum lilkelihood estimation of the 8; parameters won’t be presented here

but can be consulted in, e.g, De Jong, P. And Heller, G.Z. (2008).

* The mean p is a smooth invertible function of the linear predictor:

u=gm <=>n=g""wW =hw (3)

where the function h(p) is called the link function.
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The link function will depend on the choice of the family for the response variable y
and its choice is suggested by the functional form of the relationship between y and
the explanatory variables. In the table below we present the most common link

functions for some important families of distributions:

Family
Link [Binomial [ Gamma | Gaussian | inverse gaussian | Poisson
logit D
probit *
cloglog *
identity * D *
inverse D
log * D
1/mu”2 D
sqrt *

Table 10: Families and Link function. The canonical (or default) link is denoted by D, while *
denotes other possible links for the family

We now take the example of the Poisson family, which is theoretical foundation for
the claim frequency model, even if some corrections will have to be made, as we
will see in sections 4.1 and 4.2.

For a Poisson distribution with mean , applying the default link function log to the
Poisson density f(.), equation (1) becomes:

log(f () = ylog() — u—log (¥} (4)

so B=1log(), ¢ = 1, and b(8) = u = eY. This makes sense with the well known
result E(y;) = Var(y;) for the Poisson model since, as we've seen above,
Var(y;)= ¢xV(u;)= 1xV(y;). However, in many empirical analysis, data appears
more dispersed than expected (¢ > 1). This phenomenom is called over-dispersion

and we adress it in the next section.
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4.1 Over-Dispersion in Poisson GLMs

Over-dispersion (under-dispersion) results when the data appear more (less)
dispersed than expected under the Poisson model. Under-dispersion is a rare and
not so interesting case for our work and won’t be treated here. Venables W.N and
Ripley B.D (2002) are among the many who have allready adressed this problem,

wich can be tackled it in different ways:

One consists in introducing some variability in the Poisson mean A by assuming it
follows a certain distribution. This mixture of distributions can be done in different
ways with different solutions, the most usefull being the case when 4 is gamma-
distributed. This mixture provides us with the negative-binomial regression model,
a parametric way of modelling over-dispersion. Apart from section 7.4 of Venables
W.N and Ripley B.D (2002) we highlight a paper by Ismail and Jemain (2007)
“Handling over-dispersion with Negative Binomial and Generalized Poisson

Regression Models”.

Another way to approach the over-dispersion problem is to consider @ as a
parameter to be estimated and to use quasi-likelihood - see among others
McCullagh and Nelder (1989) and De Jong, P. And Heller, G.Z. (2008) - instead of
likelihood, since we are not using a distribution to estimate the model (¢ is no
longer a constant equal to 1); we are estimating the model based on the definition

of the first two moments of Yi.
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We can detect over-dispersion if the magnitude of the residual deviance is much
greater than the residual degrees of freedom in the fitted model. Another way of
doing it is to fit a GLM using the quasipoisson family and compare the estimate of

the dispersion parameter @ with theoretical value 1.

4.2 Offsets

As presented by De Jong, P. And Heller, G.Z. (2008), offsets are used to correct for
group size or, as it is the case in this work, to correct different time periods of
observation. Some policies in our database were exposed trough the whole year of
2010, some only six months, others only one day, and naturally this point has to be
taken into account. The exposure w (“Exposure years” in table 4) was measured as
a proportion of the year, thus with maximum value 1. We will assume time
homogeneity, i.e, we will model the ocurrence rate p/w, where p is the mean of the
count y. From the second assumption in chapter 4, £(u/w)=p;x; + --- + Bpxp, and
when ¢ is the log function, we get In(u/w)= Bix;+-+pBx, =
In(W=In(w)+ B1x; + -+ B,x, where In(w) is called an “offset”. An offset is
effectively another x variable in the regression, with a given 3 coefficient equal to
one. Using the offset, y has expected value directly proportional to exposure: p =

weX B,

However, our assumption didn’t show adherence to the data. Setting the
annualised exposure as an offset provided a statistically significant negative

parameter for the regressor EXPOSURE_YEARS, forcing us to put aside the time
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homogeneity hypothesis. As an alternative, we used the variable EXPOSURE_YEARS

as aregressor in the model, but no offset.

5. The Tweedie subclass of distributions

The actuarial modelling universe gained a new powerfull tool when Maurice
Twedie published “An index that distinguishes between some important
exponential families” in 1984. This paper presented a new subclass of exponential
dispersion families, suitable to use in GLMs. This approach has gained great
popularity among actuaries, with other interesting papers by Smith and Jgrgensen
(2002) or Kaas (2005), where this distributions achieved very satisfactory results

modelling insurance premiums in a GLM framework.

The biggest problem in modelling total claim amounts with data from individual
policies, is that most of the losses generated are zero, and for the policies with a
positive loss the data is highly skewed. The typical way to overcome this problem
consists in working with separate models for frequency and severity, but since the
Tweedie distribution can be parametrized as a Compound Poisson distribution
(Smith and Jgrgensen (2002)), with a probability mass at zero, the whole data can
be modeled at once, using the total loss of a policy as the response variable in the
GLM. Of course both approaches make use of very debatable assumptions in terms

of frequency/severity correlation.

An exponential dispersion family (defined in equation (1)) is a Tweedie Family if

the domain of its variance function V is [0,00[ with
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V(p) = pp, for some p€e R. (5)
The Tweedie families encompass some well known distributions that are
characterized by the value of the parameter p. The following table presents some
well know distributions that can be seen as the Tweedie family for different values

of p.

Value of p Distribution
p=0 Normal
p=1 Poisson
pE[1,2] Compound Poisson-Gamma
p=2 Gamma
p=3 Inverse Gaussian

Table 11: Distributions as a function of the Tweedie p parameter

For the remaining values of p, the Tweedie families characterize distributions that
are supported on R. For p>2 it characterizes distributions that have support in
[0,00[, and for p€]0,1[ there is no probability measure. For the purpose of this
work we will focus on the case p€[1,2] wich characterizes a Poisson-Gamma
distribution, using a log link function in order to work with a mulitplicative model.
This link is also usefull in the sense that the parameter signals will be equivalent to

the effect signal, with a positive parameter showing greater risk.

The Tweedie distribution therefore accommodates the parameter A from the claim
count distribution and the parameters 6 and a from the claim size distribution into
its own parameters u, ¢ and p. Smith and Jgrgensen (2002) translate the
parameters of the Compound Poisson Distribution into the usual Tweedie

parameters in the following way:

U= Axaxe6
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From equation (6) we can see that the expected value of a Tweedie distribution
takes into account the effects of the Poisson and Gamma distributions. In equation
(8) we can see that p - the parameter that will define the variance function - will be
between 1 and 2 and depends only on the shape parameter of the claim severity
distribution. The dispersion parameter calculated in equation (7) will take into

account the effects of the Poisson and Gamma distributions and parameter p.

6 Results

All the models were fitted using R. When possible, variables in the models were
selected using the backward selection procedure and their names are coherent

with table 5. For each policy in the study, the explanatory variables represent:

* A past claim behaviour factor (8 parameters)
* A Sum Insured factor (6 parameters)

* A covers factor (14 parameters)

* Adeductibles factor (14 parameters)

* Aregional factor (30 parameters)

* An exposure factor (1 parameter)
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* A LoB factor (4 parameters)

Statistitians know that a model is only as good as the data it is fitting. We must not
forget that when we're modelling the behaviour of a certain variable, we're
modelling that behaviour in respect to the collected data and not to reality. To do
that, we would have to collect all the availabe data where that variable is in play
without errors. Since all the parameter estimates our model gives us are calculated
from the collected data, they’re not the effective parameters observed in nature. In
fact, we will never truly know those unachievable, almost “esoteric” parameters,
unless we accurately measure everything everywhere. All we have is an

approximation, so, caution analysing model estimates is always in order.

Sections 6.1, 6.2 and 6.4 refer to the modelling of the whole sample. In section 6.3
we used a treshold in the sum insured variable to split the sample into more
homogeneous groups in terms of claim frequency and severity. We then
experimented the same diferent approaches used to model the whole sample in
both groups. In the sections below we will analyse the individual behaviour of the
significant variables in each of the models as well as the goodness of fit of each
model. In chapter 7 we will compare the predictions all these aproaches produced

with the observed 2011 claim values.

6.1 The frequency model

The output of the selected model is shown in annex 1, where TOTAL_CLAIMS -

defined as the total number of claims reported in 2010 for each risk - is the
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response variable. The model captured in an expected way the effects of the Sum
Insured factor and the past claim behaviour factor. The regional factor effect was
also captured in an expected way, discriminating the regions with a known
industrial force or exposed to more severe weather conditions. The LoB factor
didn’t play an important part in the modelling for the reasons allready adressed in
chapter 3. The exposure factor behaviour was somehow surprising, since we were
expecting time homogeneity and that wasn’t the case. Below, we individually

analyse the behaviour of these factors:

* Past claim behaviour factor
It is common knowledge to believe that between a policy that has never produced a
claim and a policy that produces recurrent claims over the years, the latter is more
likely to produce claims in the future. The total claim number per policy was
recorded for the previous year (lag 1) and for two years ago (lag 2), and was

categorized as shown in table 8.

Prior to the model fitting, the “common knowledge” belief stated in the beggining of
this section was supported by the results in following table, taken from the studied

database:

Number of claims in 2010
0 1 2 3+
absent 90% 7% 2% 1%
Number of 0 92% 6% 2% 1%
claims in 1 77% 17% 5% 2%
2009 2 68% 16% 9% 8%
3+ 52% 13% 14% 21%

Table 12: Double entry table for the study of past claim frequency (lag 1)
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Itis clear that in a 1-year lag, past claim frequency has an influence in present claim
frequency. If we make the same exercise for lag 2 we can see the past policy

behaviour effect is still present, even if slightly mitigated:

Number of claims in 2010
0 1 2 3+
absent 89% 7% 2% 1%
Number of 0 92% 6% 2% 1%
claims in 1 76% 15% 7% 2%
2008 2 68% 15% 8% 8%
3+ 48% 12% 20% 20%

Table 13: Double entry table for the study of past claim frequency (lag 2)

The results of a 95% confidence interval for lag 1 are shown in the following tables

(these, and the remaining parameter values/model information can be found in the

respective annexes):

Class Left limit Parameter Value Right Limit
absent -0.259807856 -0.12199 0.01583404
1 0.320172390 0.48466 0.64913786
2 0.772898457 0.97291 1.17292272
3+ 1.467012439 1.66566 1.86431642

Table 14: Parameter values for the past claim frequency explanatory variable in lag 1

This is an usefull view, in the sense one can immediately assess if the parameter
value is different from zero and if the classes are sufficiently far apart. With class 0
as the reference class, we conclude that a policy in this class has the same risk
profile as an absent policy since zero is included in the respective confidence
interval. Troughout the classes, the increase in the parameter estimates makes
sense with the values in table 12, showing that an increase in past claim frequency

has a positive effect in present claim frequency.
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Let’s make the same exercise for lag 2:

Class Left limit Parameter Value Right Limit
absent 0.130063480 0.25276 0.37544970
1 0.324137406 0.51873 0.71332255
2 0.550084345 0.83310 1.11611561
3+ 0.425747502 0.74155 1.05735813

Table 15: Parameter values for the past claim frequency explanatory variable in lag 2

As expected, the importance of past claim frequency attenuates with higher lag
values. With class 0 again as the reference class we now observe some overlapping
in the confidence intervals. The 3+ class is entirely included in class 2, wich
overlaps with class 1. Given these results, a better way to assess the effect of the 2-
year lag claims in present claim frequency would be by relaxing the categorization
of the variable, using a binomial categorization with value 0 if there were no claims

and value 1 if there were claims.

e  Sum Insured factor

The categorization of the sum insured is defined in table 7. We’re expecting lower
claim frequency in smaller industries and higher claim frequency in larger
industries, hence, if the sum insured in each policy is adequately defined, we're
expecting higher claim frequency in higher sum insured values. The following table

shows the estimates and p-values for the observations in these classes for model 1.

Class Left limit Parameter Right limit
2 -0.038417628 0.29239 0.62319222
3 0.246971216 0.52405 0.80112050
4 0.805494042 1.06629 1.32708815
5 0.815743440 1.08898 1.36221172
6 1.385471297 1.64695 1.90843234
7 1.920151475 2.21847 2.51679793

Table 16: Parameter values for the sum insured explanatory variable.

Even if some overlapping is observed in the confidence intervals, the claim

frequency increases with the sum insured as expected.
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* Covers factor
The next table shows us the covers that proved to be statistically significant in the

claim frequency model:

Cover Left limit Parameter Right limit
Theft or robbery (Cs) 0.788835669 1.15922 1.52959632
Floods (Cs) 0.551425612 0.90353 1.25563666

Others (Co) -0.984871302 -0.61404 -0.24321789

Loss of profit or income

0.167899325 0.31676 0.46562108

(C10)

Third Party Liability
-0.545444410 -0.33003 -0.11461460

(C12)
Electrical risks (C13) 0.529752493 0.65102 0.77228688

Table 17: Parameter values for the significant covers.

At a 95% confidence level, signing the covers 5, 8, 10 and/or 13 will increase the

risk of a policy. Signing covers 9 and 12 will probabily result on the opposite effect.

¢ Deductibles factor

The next table shows us the deductibles that proved statistically significant:

Deductible Left limit Parameter Right limit
Deterioration of products (F4) -0.838085286 -0.51006 -0.18202561
Theft or robbery (Fs) -1.089454102 -0.82172 -0.55398206

Floods (Fs) -0.829839379 -0.61881 -0.40778411

Others (Fo) 0.275408821 0.45520 0.63498633

Loss of profit or income (F10) 0.518603751 0.77362 1.02864231
Third Party Liability (Fi2) 0.270621994 0.48715 0.70366821

Table 18: Parameter values for the significant deductibles in model 1.
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The existence of deductibles for covers 4, 5 and 8 originates an expected negative
signal, since we expect deductibles to lower claim frequency. However, the
existence of deductibles for covers 9, 10 and 12 increases claim frequency. In an
actuarial/economical point of view this doesn’t make much sense but it might be
explained by a series of factors: perhaps the “tailor-made” contracts referred in
chapter 2, where the policyholder can directly negotiate the signed covers and
respective deductible values with the insurance company withdraws importance
from the deductibles. Or, maybe for these covers, a higher value of the deductible is

negotiated in comparison with other covers.

* Regional factor

NUTS3 Left limit Parameter Right limit

Alto Tras-Os-Montes 0.007318649 0.67591 1.34450529
Baixo Vouga 0.087309393 0.66727 1.24722914

Cavado 0.015282944 0.59772 1.18014867

Dao-Lafoes 0.115851513 0.72057 1.32528454

Regido Auténoma da

0.232878189 0.92375 1.61461770
Madeira

Serra da estrela 0.522845607 1.31494 2.10704034

Table 19: Parameter values for the significant regions in model 1.

In the northern areas of Baixo Vouga, Cavado, Ddo-Lafdes and Alto Tras-Os-Montes
there is a greater concentration of food/drinks industries and manufacturing
industries (pottery, paving, sanitaryware, kitchenware and furniture), so it’s no

surprise to see these 4 neighboring areas representing the same higher risk profile
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(view footnote 1 in chapter 2 for more information on this subject). The higher risk
profile for the Regido Autdbnoma da Madeira zone came as a surprise. This is a zone
with little industrial production, even tough it's more specialized in
agricultural/food and extractive indutries. The 2010 Madeira storms in february
probabily had an influence in the size of this parameter. Finally, Serra da Estrela
shows the higher risk profile in claim frequency. In the highest point of continental
Portugal the textile/leather and food/animal industries are the most represented,
and it also comes as no surprise for this region - so over-exposed to extreme

weather conditions - to show the greatest claim frequency among all others.

* Exposure factor

Left limit Parameter Right limit

0.556749585 0.74814 0.93953223

Table 20: Parameter values for the significant regions in model 1.

The parameter in table 20 shows us that the claim frequency isn’t proportional to

time t, but to t%7481* (view section 4.2).

* LoB factor
This factor did not prove significant. The reasons for this were allready adressed in

chapter 3, after table 5.

* Overall goodness of fit
Since we are using a quasipoisson family, there is no likelihood and so the
likelihood ratio test is impossible to perform. However, we can perform the chi-

square test in terms of the deviances. Using this test, a model is innefective for use
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if the test statistic (Null Deviance - Residual Deviance) is smaller than the value of
the chi-square distribution with degrees of freedom equal to the difference in
degrees of freedom between the Null model and the chosen model. In this model
we observed:

(16,426-12,349=4,077) > )(2(19068_19008=60);95% ~ 43.19

And so the model contributes to explain claim frequency better than an overall

mean.

In recent years, some data mining techniques have gained popularity in assessing a
model’s overall goodness of fit. The lift chart is one of them and provides a more
visual and intuitive alternative. It is computed in the following way:
a) For each observation take the fitted values, the value of the response
variable and the exposure.
b) Order the observations increasingly with respect to the fitted values
c) Divide the ordered data in groups that have equal number of observations
d) Plot the mean of the response variable, the mean of fitted values an the total
exposure for each group

The lift charts for the claim frequency model is shown below:
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Figure 5: Lift chart for the claim frequency model

This kind of graph gives information about two aspects of the model. On the one
hand, by seeing the trend of the curve for the observed means it is possible to see if
the model more or less identifies the groups that have greater claim frequency. In
the other hand, the vertical distance between the predicted mean and the observed
mean gives the idea of how far the predictions are from the observations.
Observing the graph, we can expect a bit of over-estimation in the highest risk
groups.

6.2 The severity model

In the framework of the frequency/severity models, when it comes to the severity
part of the problem, we use the claim severity per policy as an observation from the
response variable. The fitted model is weighted with the total number of claims per
policy and later is compounded with the fitted model for the total number of claims
per policy. The output for this model in shown in annex 2 where CLAIM SEVERITY

is the response variable, defined as the average cost of the claims reported in 2010
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for each risk. Below, we give an outlook in the statistically significant variables in

this model:

¢ Past claim behaviour factor

Class Left limit Parameter Value Right Limit
absent -0.15088905 0.2004174 0.551723761
1 -0.17381534 0.2982403 0.770295898
2 -0.05733268 0.5252304 1.107793390
3+ -1.15651517 -0.6042307 -0.051946227

Table 21: Parameter values for the past claim frequency explanatory variable in lag 1

The most interesting fact shown in this table is the negative parameter in the 3+
class. This shows that policies with 3 or more claims in the previous year have
lower claim amounts the next year. Classes 1, 2 and absent proved to be not
significant in determining future claim amounts, probabily because these policies
will generate claims with a small size, since as we can see in annex 1, these policies

will generate a greater number of claims in the following year.

e  Sum Insured factor

Class Left limit Parameter Right limit
2 -0.10404119 0.9222684 1.948578012
3 0.51066556 1.3899002 2.269134810
4 0.59716754 1.4357131 2.274258612
5 0.42647161 1.2917332 2.156994742
6 0.93338293 1.7691820 2.604981060
7 2.20625421 3.1641212 4.121988276

Table 22: Parameter values for the sum insured class explanatory variable

Despite a minor irregularity in class 5 (wich can be grouped with class 4), the
parameters show a smooth upward trend trough the sum insured classes, until the
variable reaches class7 where a big jump is observed. Again, as it happened with

the claim frequency model, this class reflects the highest risk profile and a good
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alternative would probabily be to treat it separately from the other classes in order

to work with more homogeneous groups and avoid high dispersion in the sample

(see section 6.3).

* Regional factor

Madeira

NUTS3 Left limit Parameter Right limit
Beira Interior Norte* -0.24376548 2.2071641 4.658093682
Leziria do Tejo 1.45045386 3.4402621 5.430070302

Regido Auténoma da
0.19552357 2.131346 4067168460

Table 23: Parameter values for the significant regions in model 1

* - Significant at 90% level

Regido Autonoma da Madeira again shows a high risk profile in claim severity. As

stated in chapter 7.1, it isn’t a very industrialized area, but it's exposed to some

extreme weather conditions - mainly to storms wich is the most affected cover in

terms of claim severity in this zone - that might explain the high parameter value.

Beira Interior Norte is probabily the most unindustrialized region in Portugal,

however 15 high claim were enough to assign a 90% confidence high risk profile to

this region. Leziria do Tejo is the portuguese region where claim severity was

higher in 2010. This is mainly due to one claim with a cost near 2,000,000€ wich

affected the fire cover and is responsible for 63.3% of the total 2010 loss in this

region.
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e Covers factor

Cover Left limit Parameter Right limit
Deterioration of
-0.01198700 0.7126287 1.437244321
products® (C4)
Broken glass* (C11) -0.97659387 -0.4584705 0.059652945

Table 24: Parameter values for the significant covers
* - Significant at 90% level

At a 90% level of confidence, signing the Broken Glass cover into a policy isn’t

expected to generate a higher severity. On the other hand, signing the Deterioration

of products cover will probabily do so.

¢ Deductibles factor

Deductible Left limit Parameter Right limit
Theft or robbery (Fs) -0.70108873 -0.3553347 -0.009580739
Electrical risks (F13) -1.03463907 -0.7003232 -0.366007235

Table 25: Parameter values for the significant deductibles.

Everything as expected in this case, where the only significant deductibles show a

negative parameter.

e LoB factor

LoB Left limit Parameter Right limit
2 -0.62988723 0.3616341 1.353155493
3 -0.30632958 0.7314827 1.769294996
4 0.14078033 1.0178882 1.894996163

Table 26: Parameter values for the significant deductibles.
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Class 4 is the only significant class, showing the higher risk profile. This class

includes the Textile Industries, Manufacturing Industries, waste/water

management and Auto repair.

Overall goodness of fit

Performing the same test as for the frequency model we got the following results

that also indicate that the model is a better predicter than the overall mean:

(10,233.8-6,919.7=3,314.1) > X% 1151725 47ys050 ~ 3476

We also present the lift chart for the severity model where groups 9 and 10 show a

bit of under-estimation.
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Figure 6: Lift chart for the claim severity model

6.3 Spliting the sample into more homogeneous groups
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In the two previous sections we've observed how risk profiles change in respect of

the results of a given factor. Stowing all the sample information in only one model
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implies treating high and low risk profiles under the same rules and such approach
may be time-saving but will fail to accurately characterize the different behaviour
of those profiles. In this database, the sum insured and the past claim behaviour
variables are the most explicit examples of different risk profiles being treated
under the same rules. In fact, when we analyse the claim frequency and the average
claim cost per sum insured class, we get an obvious picture of how different these

diferent risks are:

10%

1 2 3 4 5 6 7
Figure 7: Claim frequency per exposed cover per sum insured class

36,124

1 2 3 4 5 6 7
Figure 8: Mean claim severity in € per exposed cover per sum insured class
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As shown in table 7, class 7 contains policies with a sum insured greater than
20,000,000€. These are the big Portuguese industries, holding the most expensive
materials, machinery and the larger industrial areas. Taking this into account, we
splitted the sample in two groups. The first group contained the policies with sum
insured in classes 1 to 6 and the second group contained the policies with sum
insured in class 7. For the first group we performed the same modelling strategy as
we did in the full sample: A frequency/severity approach and a total loss approach.
The outputs of the models for the first group are shown in annexes 3, 4 and 5 and
will not be discussed here since most of the tendencies are very similar to the ones

described in sections 6.1, 6.2 and 6.4.

For the second group it was empirically observed that the fire cover and the floods
cover were responsible for 92.4% (51.8% for the fire cover and 40.6% for the
floods cover) of the total claim sizes in this sum insured class. Given the small
number of risks in this group we turned to a database with the covers as
explanatory factors and the Sum insured as a continous explanatory variable. This
database disposal could jeopardize the assumption of independence between risks,
since now we cannot be so sure if, e.g.,, a claim generated by a policy in the fire
cover is or isn’t correlated with a claim generated by the same policy in the broken
glass cover. But since only 13% of the policies were affected by 2 or more claims,
that correlation would be small and was ignored. We applied the total loss
approach, estimating the p parameter with the algorithm provided in the Tweedie

R package (view section 6.4).
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Figure 9: Estimation of the Tweedie p parameter for the sum insured class 7.

The algorithm estimated that a model with p=1.7 will minimize the log-likelihood.
However, when we performed the goodness of fit tests applied in sections 6.1 and
6.2, we concluded that the model with p=1.5 was the one which presented the
biggest difference between the null deviance and the residual deviance and so this
made us quite suspicious of the algorithm results. Estimating the p parameter is a
topic out of the scope of this work. It is still subjected to several studies and there
are other methods for this estimation from which we highlight the saddlepoint
approximation papers by Reid(1988) and Goutis&Casella (1995). This problem

will also be addressed in section 6.4.

Still in the second group, we also applied a 2-steps approach to the sample, using
again the covers as explanatory factors as the sum insured as a continous
explanatory variable. There was no problem in modelling the claim frequency but

we struggled with the claim severity model, where we had to make some
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adjustments, modelling the total claim size (instead of the claim severity) weighted

by the number of claims. These models are shown in annexes 7,8 and 9.

6.4 The total loss model

The output for the selected model is shown in annex 6, where the response variable
TOTAL_CUSTOS is defined as the total cost of the 2010 claims for each risk. The R
package by Peter K Dunn® was used in the fitting of the models. The package
provides an algorithm that feeds on the model equation, an interval for possible p
parameters and a step unit k to move in that interval. It estimates k models and
chooses the one with the least log-likelihood. Howhever, there is always the
possibility of fitting a model with a given p. For the purpose of this work we are
only concerned about the case p€(1,2) wich characterizes a Poisson-Gamma

distribution.

The algorithm didn’t converge when assessing our sample, so we divided the
interval (1,2) into ten equal intervals and fitted 11 models with the same
explanatory variables, one for each p=1, p=1.1, p=1.2, ..., p=2, registering the
residual deviance in each fitting. The model with the lesser residual deviance
would then be used for the forecasting. This is basically what the algorithm does,
but with an obvious shorter array of possible p values and substituting the log-
likelihood for the residual deviance, hence finding the minimum and not the

maximum. The following table summarizes the results we obtained:

6 http://cran.r-project.org/web/packages/tweedie/
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P Residual Deviance
1 199,019,830
1.1 78,412,998
1.2 32,473,604
1.3 14,196,951
1.4 6,581,006
1.5 3,152,983
1.6 Algorithm did no converge
1.7 Algorithm did no converge
1.8 - Algorithm did no converge
1.9 - Algorithm did no converge
2 - Algorithm did no converge

Table 27: Residual deviance for the tweedie models in respect of the parameter p

For p>1.6 the algorithm can’t fit a model to the data, so we looked at p=1.5 for an
experience in forecasting the total IMR loss for 2011. The selected model is shown
in Annex 6. The model grasped the behaviour of the Sum Insured factor in an
expected way. For the past claim behaviour factor, the model captured the effect
that the severity model had also captured, with policies with 3 or more claims in
2010 being less prone to yield claims than policies with 2 claims. Regido Autonoma
da Madeira, Leziria do Tejo and Baixo Vouga are again discriminated with the
highest risk profiles in the regional factor. In the covers/deductibles factor, the
Tweedie model discriminated the variables in a way that was closer to the claim

frequency model cover/deductible discrimination.
Performing a similar overall goodness of fit test as the one performed for the other

models we get:

(5,237,887-3,152,983=2,084,904) > 2 1, 165 15.993—47y195% = 75
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Which shows again the model is more efficient than the overall mean. The lift chart

for this model is also shown in the figure below:
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Figure 10: Lift chart for the tweedie model with p=1.5

7 Calculating Best Estimates and dispersion parameters
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The objective of all these models is to produce a trusty prediction of future claim

payments as well an estimation of their volatility. In this chapter we will start by

presenting the aggregate claims expected value and variance, inspired in Centeno,

M.L. (2003), fixating the time period in the year 2010 and formulating the problem

in the following way;:

Ni: Number of claims in policy i; i=1,..,n

Xij: Claim size i of claim j; for j=1,..., Ni.
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* Y;: Total claim size of policy i.

* Z:XinY
Using this formulation and assuming independence in the distributions of N;, X; and
Yi , i=1,...n, and between N and X we can calculate the well know result of the

expected value of the aggregate claims:

E(Z)=E X1z Y)=2it, ECD)=Xi EWN)E (X)=Xi, Aty

The variance of the aggregate claims distribution can be calculated in the following
way, where the second step of the calculus is possible due to the independence

between risks in the r.v. Y:

N;
= Var(X;l, X)) =

Var(Z)= VarQi=, Y;) = =1 Var(Yy)

= [EXDPXVar(N;) +

L Var[E(E;L X IND] + E[Var (X)L, X INDT}

E(N;)xVar(X;)}

Since E(N;)) =21; , Var(N) = ¢V({) =P, , EX)) =p; and Var(X;) = d? =
Yu?, we get:

Var(Z) = Var(Zi., Y) = X (Wi ¢ + Lpud) = (¢ + ) Xity A

If we now take the estimated standard deviation of the compound process 4, i.e.,

the square root of equation (10), we can calculate a (1-a) risk margin Z, ,,6, where
Zq /7 represents the Gaussian (0,1) quantile a.

These equations lead us to the following BE’s and standard deviations:
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Best Real 2011 Risk Margin
Method .
Estimate loss o (95%)
Frequency/severity
approach (full 41,749,718€ | 36,894,403€ | 6,878,335€ | 13,481,537€
sample)
Total loss approach
38,807,021€ | 36,894,403€ | 3,487,758€ | 6,836,006€
(full sample)
A-
Frequency/severity
approach (split
30,696,366€ 26,165,641€ 5,032,853€ 9,864,392€
sample - sum
insured in classes 1
to 6)
B - Total loss
approach (split
sample - sum 27,948,145€ 26,165,641€ 2,168,741€ 4,250,732€
insured in classes 1
to 6)
C-
Frequency/severity
approach (split 9,853,391€ 10,728,762€ 7,355,506€ 14,416,792€
sample - sum
insured in class 7)
D - Total loss
approach (split
13,588,861€ 10,728,762€ 3,833,150€ 7,512,974€
sample - sum
insured in class 7)
A+C 40,549,757€ | 36,894,403€ - -
A+D 44,285,227€ | 36,894,403€ - -
B+C 37,801,536€ | 36,894,403€ - -
B+D 38,689,626€ | 36,894,403€ - -

Table 28: Summary of the results obtained by the different methods

50



The estimation of ¢ didn’'t took into account the error in the estimation of
parameters @ and Y, so the real 6 would be slightly higher. However, parameter
estimation errors are mitigated when we work with large samples and ours was
indeed large as table 4 attests. For more on estimating the standard error of the

estimated parameter consult England&Verral (1999).

Regarding table 28, if the characteristics of the 2011 sample, i.e, the value of the
new explanatory variables were similar to the 2010 sample, we would roughly
expect similar claim numbers and amounts, since the annualised exposure was
very similar (view table 4). From the lift charts in figures 5 and 6 we would expect
a bit of over-estimation, especially from claim frequency side, in the higher risk
groups. The slight under-estimation from the claim severity side, again in the
higher risk groups, was not enough to balance that over-estimation and the final BE
was 13% higher than the real 2011 loss. For the total loss model, the lift chart also
showed we could expect over-estimation, as it did happened, even if much lower
than in the 2-steps-approach (a 5.2% error). We must also take into account the

rough estimate of the Tweedie p parameter with only one decimal place.

The high volatility of the predictions was expected. The economical assimetry of
the portuguese industrial tissue seems to be well reflected in these predictions. As
figures 7 and 8 show, a small number big portuguese industries are responsible for
the sub-branche’s greatest part of the losses and even in for the majority of the
small/medium sized industries the losses are very volatile. We can attest a higher
volatility in the samples with the sum insured in class 7, a lower volatility in the

samples with the sum insured in classes 1 to 6, and, as expected, the volatility of the
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total samples is somewhere in between those two values. The lower volatility of the
Tweedie model predictions can be a defining factor if we want to choose one

approach, since the BEs are quite similar in both approaches.

When we splitted the sample into more homogeneous groups, the resulting BE’s
were slightly better. We notice that regardless of the used method, when the BE’s of
the split models are added, the result is very similar to the BE produced by the full
sample model. The worst BE (with a 20% error) comes when we add the BE from
the frequency/severity approach for sample with sum insured in classes 1 to 6 with
the Tweedie GLM BE for the sum insured in class 7, since both these models over-

estimate the 2011 loss.

We must also take into account that the reference period for the measurement of
claim numbers and payments was 31.05.2012, wich may leave room for some

unsettled claims that would increase the 2011 loss.

8 Conclusions

The MR branch is very important in the portuguese Non-Life segment as well as in
all sectors of the portuguese economy. In the last years its premium production
surpassed the WC LoB and - given the different social and economical nature of
these LoBs - this trend will probably continue in the near future. The strenght of a
country’s economical and productive tissue is reflected, though not fully of course,
in the strenght of the CMR and IMR sub-branches. More industries and more

commerce will mean more business for the insurance companies that explore this
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segment and even in times of economical crisis, as these last 3 years, the premium
production of this sub-branch kept growing and the loss ratio was kept stable

unlike most of the other Non-Life LoBs.

Internal models are indispensable tools for companies to continuously asses the
quality of their business. The Solvency II project has brought more attention to
these models and in this work we tried to give a practical example of how to use
them in a GLM framework in order to get a better understanding of the IMR sub-
branch (or any other LoB), to assess claim payment volatility, to predict claim
amounts and therefore to have the ability to calculate technical provisions, SCR’s,
MCR’s and other quantities that are crucial for the management of an insurance

company.

Regarding the two approaches we presented, we conclude that the Tweedie GLMs
yielded the best predictions in the full sample and in the sample with the sum
insured lower than 20,000,000€. Also, it provided a lower standard deviation for
the process in all samples. In this approach we only use one model so theoretically
this approach will consume half of our time when compared with the
frequency/severity approach, but that time will probabily be be spent in accurately
estimating the p parameter and several experiments should be made in order to

actually get the feel of the Tweedie distribution.

On the other hand, the frequency/severity approach can also be very usefull if we
wish to have a grater insight on the variables that influence claim frequency and

severity. The modelling strategy to adopt in a problem such as ours will depend on
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the LoB we are studying, but usually insurance claims show the same behaviour in
different LoBs: Many claims with a small size and few claims with a bigger size,
with this last group of claims being responsible for the greatest part of the LoB
losses. Thus, the segmentation of the sample in homogeneous risk groups will
always bring better results. This segmentation can be done by defining a treshold

in the claim value or using a variable level to split the sample.
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Annex 1 - Claim frequency output (full sample)

Call:
glm(formula =

cbind (TOTAL_CLAIMS) ~ factor(PAST CLAIM BEHAVIOUR 1) +

factor (PAST_CLAIM BEHAVIOUR_ 2) + factor(NUTS3) + factor(CLASS_CAE) +
factor (SUM_INSURED_CLASS) + C5 + C8 + C9 + C10 + C12 + C13 +

F4 + F5 + F8 + F9 + F10 + F12 + EXPOSURE_YEARS,

Deviance Residuals:

family = quasipoisson)

Min 10 Median 30 Max
-3.3366 -0.5701 -0.3796 -0.2521 14.3656
Coefficients:

(Intercept)

factor (PAST CLAIM BEHAVIOUR_1)1
factor (PAST CLAIM BEHAVIOUR_1)2
factor (PAST_CLAIM BEHAVIOUR_1)3+
factor (PAST CLAIM BEHAVIOUR_1)ausente
factor (PAST CLAIM BEHAVIOUR_2)1
factor (PAST CLAIM BEHAVIOUR_2)2
factor (PAST_CLAIM BEHAVIOUR_2)3+
factor (PAST CLAIM BEHAVIOUR_2)ausente
factor (NUTS3)ALENTEJO LITORAL

factor (NUTS3)ALGARVE

factor (NUTS3)ALTO ALENTEJO

factor (NUTS3)ALTO TRAS-OS-MONTES
factor (NUTS3)AVE
factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BEIRA
factor (NUTS3)BEIRA
factor (NUTS3)CAVADO
factor (NUTS3)COVA DA BEIRA

factor (NUTS3)DAO-LAFOES

factor (NUTS3)DOURO

factor (NUTS3)ENTRE DOURO E VOUGA
factor (NUTS3)GRANDE LISBOA

factor (NUTS3)GRANDE PORTO

factor (NUTS3)LEZIRIA DO TEJO
factor (NUTS3)MEDIO TEJO

factor (NUTS3)MINHO-LIMA

factor (NUTS3)NORTE

factor (NUTS3)OESTE

factor (NUTS3)PENINSULA DE SETUBAL
factor (NUTS3)PINHAL INTERIOR NORTE
factor (NUTS3)PINHAL INTERIOR SUL
factor (NUTS3)PINHAL LITORAL

factor (NUTS3)REGIAO
factor (NUTS3)REGIAO
factor (NUTS3)SERRA DA ESTRELA
factor (NUTS3) TAMEGA

factor (CLASS_CAE)2

factor (CLASS_CAE)3

factor (CLASS_CAE)4

factor (SUM_INSURED_CLASS)?2
factor (SUM_INSURED_CLASS)3
factor (SUM_INSURED_CLASS)4
factor (SUM_INSURED_CLASS)5
factor (SUM_INSURED_CLASS)6
factor (SUM_INSURED_CLASS)7

C5

Cc8

c9

C10

C12

C13

F4

F5

F8

F9

F10

Fl2

EXPOSURE_YEARS

Signif.

ALENTEJO
MONDEGO

VOUGA

INTERIOR NORTE
INTERIOR SUL

codes: 0 '***' 0.001 '*x'

AUTONOMA DA MADEIRA O.
AUTONOMA DOS ACORES

0.01

Estimate Std. Error t value Pr(>|t])

-4.83853 0.42208 -11.463 < 2e-16
0.48466 0.08392 5.775 7.81e-09
0.97291 0.10205 9.534 < 2e-16
1.66566 0.10135 16.434 < 2e-16

-0.12199 0.07032 -1.735 0.08279
0.51873 0.09928 5.225 1.76e-07
0.83310 0.14440 5.769 8.08e-09
0.74155 0.16113 4.602 4.21e-06
0.25276 0.06260 4.038 5.42e-05

0.75276 0.43923 1.714 0.08657

0.02479 0.34228 0.072 0.94226

-0.67777 0.52841 -1.283 0.19963

0.67591 0.34113 1.981 0.04756

0.46842 0.29936 1.565 0.11766

-2.06211 1.36114 -1.515 0.12979

0.29503 0.33221 0.888 0.37450

0.66727 0.29590 2.255 0.02414

-0.28876 0.44887 -0.643 0.52004

0.12723 0.45323 0.281 0.77892

0.59772 0.29717 2.011 0.04430

0.63503 0.35574 1.785 0.07426

0.72057 0.30853 2.335 0.01953

0.49392 0.35637 1.386 0.16577

0.44131 0.29808 1.481 0.13875

0.30800 0.29416 1.047 0.29509

0.43920 0.29081 1.510 0.13099

0.32375 0.33713 0.960 0.33690

-0.11902 0.35704 -0.333 0.73888

0.52758 0.32557 1.620 0.10514

0.87636 0.98905 0.886 0.37559

0.33933 0.31457 1.079 0.28072

-0.06481 0.33567 -0.193 0.84689

0.59535 0.36794 1.618 0.10566

-0.38431 0.66148 -0.581 0.56126

0.38149 0.31085 1.227 0.21975

92375 0.35249 2.621 0.00878

-0.29393 0.43249 -0.680 0.49675

1.31494 0.40414 3.254 0.00114

0.50528 0.29637 1.705 0.08823

-0.09834 0.15392 -0.639 0.52288

-0.48334 0.17045 -2.836 0.00458

-0.14499 0.13635 -1.063 0.28761

0.29239 0.16878 1.732 0.0832
0.52405 0.14137 3.707 0.0002
1.06629 0.13306 8.013 1.18e-1
1.08898 0.13941 7.811 5.95e-1
1.64695 0.13341 12.345 < 2e-1
2.21847 0.15221 14.575 < 2e-1

1.15922 0.18897 6.134 8.72e-10

0.90353 0.17965 5.029 4.96e-07

-0.61404 0.18920 -3.245 0.00117

0.31676 0.07595 4.171 3.05e-05

-0.33003 0.10991 -3.003 0.00268

0.65102 0.06187 10.522 < 2e-16

-0.51006 0.16737 -3.048 0.00231

-0.82172 0.13660 -6.015 1.83e-09

-0.61881 0.10767 -5.747 9.20e-09

0.45520 0.09173 4.962 7.03e-07

0.77362 0.13011 5.946 2.80e-09

0.48715 0.11047 4.410 1.04e-05

0.74814 0.09765 7.661 1.93e-14

'*' 0.05 '."' 0.1 " "1

* %%
* %%
* %%
* %%
* %%
* %%

* %%
* %%

* %

* %

* %

3 .
1 Kk
5 *k%
5 *k%
6 **x*
6 **x*
* %Kk

* %Kk

* %

* %Kk

* %

* %Kk

* %

* %Kk

* %Kk

* %Kk

* %Kk

* %Kk

* %Kk



(Dispersion parameter for quasipoisson family taken to be 1.779403)

on 19068 degrees of freedom

Null deviance: 16426
degrees of freedom

Residual deviance: 12349 on 19008
AIC: NA

Number of Fisher Scoring iterations: 6
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Annex 2 - Claim severity output (full sample)

Call:

glm(formula = cbind(CLAIM SEVERITY) ~ factor(SUM_INSURED CLASS) + factor (NUTS3) +
factor (CLASS_CAE) + factor (PAST_CLAIM_BEHAVIOUR_1) + C4 +
ights = TOTAL CLAIMS)

Cll + F5 + F13,
Deviance Residuals:
Min 10
-8.1974 -1.9507 -

Coefficients:

(Intercept)

family = Gamma(link

Median 30

"log"), we

Max

1.2610 -0.2584 11.3420

factor (SUM_INSURED_CLASS)?2
factor (SUM_INSURED_CLASS)3
factor (SUM_INSURED_CLASS)4
factor (SUM_INSURED_CLASS)5
factor (SUM_INSURED_CLASS)6
factor (SUM_INSURED_CLASS)7

factor (NUTS3)ALENTE

JO LITORAL

factor (NUTS3)ALGARVE
factor (NUTS3)ALTO ALENTEJO

factor (NUTS3)ALTO T
factor (NUTS3)AVE

factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BEIRA
factor (NUTS3)BEIRA
factor (NUTS3)CAVADO
factor (NUTS3)COVA D.

RAS-0S-MONTES

ALENTEJO
MONDEGO

VOUGA

INTERIOR NORTE
INTERIOR SUL

A BEIRA

factor (NUTS3)DAO-LAFOES

factor (NUTS3)DOURO
factor (NUTS3)ENTRE
factor (NUTS3)GRANDE
factor (NUTS3)GRANDE
factor (NUTS3)LEZIRI
factor (NUTS3)MEDIO
factor (NUTS3)MINHO-
factor (NUTS3)NORTE
factor (NUTS3)OESTE
factor (NUTS3)PENINS
factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)REGIAO
factor (NUTS3)REGIAO
factor (NUTS3)SERRA
factor (NUTS3) TAMEGA
factor (CLASS_CAE)2
factor (CLASS_CAE)3
factor (CLASS_CAE)4

DOURO E VOUGA
LISBOA
PORTO
A DO TEJO
TEJO
LIMA

ULA DE SETUBAL
INTERIOR NORTE
INTERIOR SUL
LITORAL
AUTONOMA DA MADEIRA
AUTONOMA DOS ACORES

DA ESTRELA

factor (PAST CLAIM BEHAVIOUR_ 1)1
factor (PAST CLAIM BEHAVIOUR_1)2
factor (PAST CLAIM BEHAVIOUR_1)3+

factor (PAST_CLAIM B
c4
Cl1
F5
F13

Signif. codes: 0 '

EHAVIOUR_1)ausente

**%%' 0,001 '**' 0.01

HOOOOONOOOHONOOWOOOOOOOONOKRHOOR OR

Estimate Std. Error t value Pr(>|t])

6.5834576
0.9222684
.3899002
.4357131
.2917332
.7691820
3.1641212
.4057193
.9524633
.4418896
.2132291
.9458294
.2560231
.5534304
.4345849
.2071641
.7439224
.7878922
.2769778
.0002461
.5655644
.5837699
.9540040
.4318252
.4402621
.4463964
.6340641
.6885646
.5039442
.0531665
.6174042
.0005349
.2409354
.1313460
.1271645
.9166593
.9968069
.3616341
.7314827
.0178882

1
1
1
1

1.0115073
.5236370
.4485973
.4278372
.4414681
.4264359
0.4887167
.2286237
.9728385
.7216319
.9661720
.8421055
.8153473
.9527597
.8273425
.2504973
.3179475
.8321778
.0634488
.8664153
.0239910
.8334062
.8318110
.8131564
.0152269
.0572956
.9284734
.7635446
.8778080
.9395707
.0354791
.8483520
.8734181
.9876827
.3384597
.1284427
.8278102
.5058875
.5295058
.4475123

[=NeNeNeNo}

OO0 OKHRHFHROOKHKHFHFOONOHKHFHFOOOHOHFHOHFHKMFEFOOWOOROHR

6.509 9

1.761
3.098
3.356
2.926
4.149
6.474
.144
.979
.838
.221
.123
.329
.630
.525
.765
.564
.947
.260
.000
.552
.700
.147
.531
.389
.422
.683
.973
.574
.121
.596
.000
.276
.158
.095
.812
.204
.715
.381
.275

o

NHFHFOFRFOONOOOHOOOOWOHrHROOOOOOHrHrOHOFrROOOR
O OO0 00O OO0 O0ODO0ODO0ODO0ODO0ODO0OO0ODO0ODO0ODO0ODO0ODO0ODO0OODO0DODOOOOOCOO

.9le-11 **x*
0.078369 .
0.001978 =*=*
0.000809 **=*
0.003478 *x*
3.51le-05 ***
1.24e-10 ***
.252723
.327689
.402420
.825356
.261520
.742042
.103188
.599457
.077735
.572518
.343881
.794546
.999773
.580805
.483733
.251582
.595454
.000718 **x*
.672927
.494755
.330755
.565979
.262485
.551086
.999769
.782694
.031071 =*
.924319
.416719
.228697
.474798
.167321
.023055 *

0.2982403
0.5252304
-0.6042307

0.2408491
0.2972315
0.2817830

1.238 0.215778
1.767 0.077392
-2.144 0.032147 *

0.2004174
0.7126287
0.4584705
0.3553347
0.7003232

*' 0.05 '.'

0.1792413
0.3697087
0.2643535
0.1764083
0.1705725

0.1 " "1

(Dispersion parameter for Gamma family taken to be 13.83213)

Null deviance:
Residual deviance:
AIC: 55314

Number of Fisher Sc

10233.8 on 1775 degrees of freedom
6919.7 on 1728 degrees of freedom

oring iterations: 25

1.118 0.263661

1.928 0
-1.734 0
-2.014 0
-4.106 4

.054076
.083042
.044135 *
.22e-05 **%*
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Annex 3 - Claim frequency output (Sum insured class in 1 to 6)

Call:
glm(formula =

cbind (TOTAL_SINISTROS) ~ factor (PAST CLAIM BEHAVIOUR 1) +

factor (PAST_CLAIM BEHAVIOUR_ 2) + factor(NUTS3) + factor(CLASS_CAE) +
factor (SUM_INSURED_CLASS) + C2 + C5 + C8 + C10 + Cl1l + C13 +
F2 + F4 + F5 + F7 + F8 + F9 + F10 + F11 + F12 + EXPOSURE_YEARS,

family =
Deviance Residuals:
Min 10
-3.1959 -0.5605

Coefficients:

(Intercept)

quasipoisson)

Median 30
-0.3761

-0.2496

factor (PAST CLAIM BEHAVIOUR_1)1
factor (PAST CLAIM BEHAVIOUR_1)2
factor (PAST CLAIM_ BEHAVIOUR_1)3+
factor (PAST CLAIM BEHAVIOUR_1l)ausente
factor (PAST CLAIM BEHAVIOUR_2)1
factor (PAST CLAIM BEHAVIOUR_2)2
factor (PAST CLAIM_ BEHAVIOUR_2)3+
factor (PAST CLAIM BEHAVIOUR_2)ausente
factor (NUTS3)ALENTEJO LITORAL

factor (NUTS3)ALGARVE

factor (NUTS3)ALTO ALENTEJO
factor (NUTS3)ALTO TRAS-OS-MONTES

factor (NUTS3)AVE

factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BEIRA
factor (NUTS3)BEIRA
factor (NUTS3)CAVADO

ALENTEJO
MONDEGO

VOUGA

INTERIOR NORTE
INTERIOR SUL

factor (NUTS3)COVA DA BEIRA
factor (NUTS3)DAO-LAFOES

factor (NUTS3)DOURO

factor (NUTS3)ENTRE DOURO E VOUGA

factor (NUTS3)GRANDE
factor (NUTS3)GRANDE

LISBOA
PORTO

factor (NUTS3)LEZIRIA DO TEJO
factor (NUTS3)MEDIO TEJO
factor (NUTS3)MINHO-LIMA

factor (NUTS3)NORTE
factor (NUTS3)OESTE

factor (NUTS3)PENINSULA DE SETUBAL

factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)REGIAO
factor (NUTS3)REGIAO

INTERIOR NORTE
INTERIOR SUL
LITORAL

AUTONOMA DA MADEIRA

AUTONOMA DOS ACORES

factor (NUTS3)SERRA DA ESTRELA

factor (NUTS3) TAMEGA
factor (CLASS_CAE)2
factor (CLASS_CAE)3
factor (CLASS_CAE)4

factor (SUM_INSURED_CLASS)?2
factor (SUM_INSURED_CLASS)3
factor (SUM_INSURED_CLASS)4
factor (SUM_INSURED_CLASS)5
factor (SUM_INSURED_CLASS)6

Cc2
C5
Cc8
C10
Cl1
C13
F2
F4
F5
F7
F8
F9
F10
Fl1
F12

Max

14.0784

Estimate Std. Error t value Pr(>|t])

-5.43273 0.41554 -13.074 < 2e-16
0.49850 0.08553 5.829 5.68e-09
0.88149 0.11236 7.845 4.55e-15
1.64073 0.11321 14.493 < 2e-16

-0.15922 0.07340 -2.169 0.030086
0.43130 0.10355 4.165 3.13e-05
0.92898 0.16069 5.781 7.53e-09
0.85114 0.18320 4.646 3.41e-06
0.22811 0.06476 3.523 0.000428

0.72627 0.43397 1.674 0.094239

-0.09401 0.34602 -0.272 0.785859

-0.60588 0.52192 -1.161 0.245707

0.61556 0.33813 1.820 0.068700

0.40437 0.29680 1.362 0.173070

-2.05132 1.34391 -1.526 0.126931

0.20416 0.33376 0.612 0.540747

0.67183 0.29305 2.293 0.021887

-0.18881 0.44332 -0.426 0.670184

-0.18934 0.57272 -0.331 0.740948

0.55006 0.29401 1.871 0.061373

0.72373 0.37667 1.921 0.054699

0.67408 0.30794 2.189 0.028611

0.43351 0.36124 1.200 0.230137

0.40506 0.29536 1.371 0.170260

0.24293 0.29273 0.830 0.406623

0.35397 0.28802 1.229 0.219103

0.05201 0.35178 0.148 0.882455

-0.12828 0.35954 -0.357 0.721263

0.44011 0.32458 1.356 0.175141

0.80482 0.97688 0.824 0.410029

0.28563 0.31154 0.917 0.359233

-0.18634 0.34216 -0.545 0.586036

0.55909 0.36345 1.538 0.123998

-0.24830 0.65319 -0.380 0.703849

0.35570 0.30713 1.158 0.246819

0.94821 0.35282 2.688 0.007205

-0.29051 0.44291 -0.656 0.511884

1.25654 0.39959 3.145 0.001666

0.46661 0.29279 1.594 0.111021

-0.15474 0.16169 -0.957 0.338585

-0.37937 0.18850 -2.013 0.044176

-0.14710 0.14064 -1.046 0.295590

0.32599 0.16710 1.951 0.05108
0.56899 0.14032 4.055 5.03e-0
1.09815 0.13240 8.294 < 2e-1
1.09326 0.13886 7.873 3.65e-1
1.64191 0.13424 12.231 < 2e-1

0.23531 0.13687 1.719 0.085589
0.70364 0.18923 3.718 0.000201
0.95469 0.21082 4.528 5.98e-06
0.29541 0.08381 3.525 0.000425
0.20165 0.10363 1.946 0.051685
0.70863 0.06542 10.832 < 2e-16
-0.26084 0.15337 -1.701 0.089017
-0.41102 0.18325 -2.243 0.024913
-0.42742 0.12873 -3.320 0.000901
0.24715 0.10983 2.250 0.024445
-0.70228 0.14897 -4.714 2.44e-06
0.31598 0.09891 3.195 0.001403
0.54691 0.15476 3.534 0.000410
-0.16087 0.08240 -1.952 0.050908

0.27427 0.09188 2.985 0.002837

* %%
* %%
* %%
* %%
*

* %%
* %%
* %%
* %%

* %

* %

7 .
5 * %%
6 * %%
5 * %%
6 * %%
* %%
* %%
* %%

* %%

* %%

* %%
* %
* %%
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EXPOSURE_YEARS 0.66050 0.09820 6.726 1.80e-11 ***

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1
(Dispersion parameter for quasipoisson family taken to be 1.734842)
Null deviance: 14946 on 18791 degrees of freedom
Residual deviance: 11761 on 18729 degrees of freedom
(3 observations deleted due to missingness)

AIC: NA

Number of Fisher Scoring iterations: 6
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Annex 4 - Claim severity output (Sum insured class in 1 to 6)

Call:

glm(formula = cbind(PMTOTAL) ~ factor(SUM_INSURED_CLASS) + factor(NUTS3) +
factor (CLASS_CAE) + Cl1 + C13 + F7,

weights = TOTAL
Deviance Residuals:

Min 10
-7.8443 -1.9556 -

Coefficients:

(Intercept)

_SINISTROS)

Median 30

factor (SUM_INSURED_CLASS)?2
factor (SUM_INSURED_CLASS)3
factor (SUM_INSURED_CLASS)4
factor (SUM_INSURED_CLASS)5
factor (SUM_INSURED_CLASS)6

factor (NUTS3)ALENTE

JO LITORAL

factor (NUTS3)ALGARVE
factor (NUTS3)ALTO ALENTEJO

factor (NUTS3)ALTO T
factor (NUTS3)AVE

factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BEIRA
factor (NUTS3)BEIRA
factor (NUTS3)CAVADO
factor (NUTS3)COVA D

RAS-0S-MONTES

ALENTEJO
MONDEGO

VOUGA

INTERIOR NORTE
INTERIOR SUL

A BEIRA

factor (NUTS3)DAO-LAFOES

factor (NUTS3)DOURO

factor (NUTS3)ENTRE

factor (NUTS3)GRANDE
factor (NUTS3)GRANDE
factor (NUTS3)LEZIRI
factor (NUTS3)MEDIO

factor (NUTS3)MINHO-
factor (NUTS3)NORTE

factor (NUTS3)OESTE

factor (NUTS3)PENINS
factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)REGIAO
factor (NUTS3)REGIAO
factor (NUTS3)SERRA

factor (NUTS3) TAMEGA
factor (CLASS_CAE)2

factor (CLASS_CAE)3

factor (CLASS_CAE)4

Cl1

C13

F7

Signif. codes: 0 '

DOURO E VOUGA
LISBOA
PORTO
A DO TEJO
TEJO
LIMA

ULA DE SETUBAL
INTERIOR NORTE
INTERIOR SUL
LITORAL
AUTONOMA DA MADEIRA
AUTONOMA DOS ACORES

DA ESTRELA

*%%' 0,001 '**' 0.01

family = Gamma(link =

Max
1.2809 -0.3863 12.2807

Estimate Std.

6.

[
OO0OO0OO0OO0OONOHFHOKFROKOR

HOOOONOOOKRROHHOONOO

|
(==

[

89702

1.32537
1.03751
1.12132
1.20280
1.56822

.51403
.67652
.27781
.18903
.20093
.88635
.77439
.75621
.08847
.60727
.80297
.09550
.25005
.90130
.56060
.46323
.40575
.86946
.24036
.75049
.82278
.35164
.18799
.45783
.04407
.38368
.10230
.13116
.72414
.80233
.74475
.01026
.15829
.51359
.65200
.47460

0.05 '.

1.

OO0 O0OO0OO0OO0OORRKFHRFKFONFFOWRFRRFRPRFRPFOOOFROHOKRFRRFRORERMPORRFRRERE

"log"),

Error t value Pr(>|t])

10881

0.57318
0.49057
0.46968
0.48024
0.46998

.34314
.08672
.87814
.05856
.92302
.17352
.04320
.90527
.36724
.87836
.90892
.16077
.95474
.15379
.91229
.91597
.88915
.13158
.17285
.02589
.01122
.96003
.05992
.13122
.02020
.95322
.09579
.46271
.22935
.90434
.55972
.54444
.48858
.28667
.20026
.18665

0.1 " '

(Dispersion parameter for Gamma family taken to be 16.54649)

Null deviance:
Residual deviance:

AIC: 50951

Number of Fisher Sc

8290.8 on 1696 degrees of freedom
6707.1 on 1655 degrees of freedom
(3 observations deleted due to missingness)

oring iterations: 25

6.220 6.

OO rRrOFrROFrROOOHK

-0.
-0.
-0.

HFHRPOOOHOOOKFrROOOOOOO

N

-1
-3
-2

1

2.312
2.115
2.387
2.505
3.337

.127
.623
.680
.179
.301
.212
.701
.835
.528
.323
.883
082
262
781
.614
.506
.456
.954
.205
.732
.605
.366
.121
.405
.022
.403
.919
.090
.589
.887
.331
.856
.371
.792
.256
.543

0.
.533674
.496374
.858298
.193409
.831840
.089148
.403642
.126825
.746510
.377130
.934439
.793425
.434821
.538972
.613121
.648212
.08e-12 **x
.837648
.464547
.545043
.714203
.262522
.685736
.982598
.687359
.055217
.928560
.555914
.375098
.183513
.063690 .
.017867 *
.073391 .
.001154 **
.011090 =*

[eNeNeoNoNoNoNoNoNoNoNoNoNoNo oo NoNo U Ho o NoNoNo o No No o No o NoNo No e Ne)

27e-10 **x*
0.020883 *
0.034588 *
0.017080 *
0.012355 *
0.000866 **=*
259808
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Annex 5 - Tweedie GLM output (Sum insured class in 1 to 6)

Call:

glm(formula = cbind(TOTAL_CUSTOS) ~ factor (TOTAL SINISTROS_1 CAT) +
++factor (TOTAL_SINISTROS_2_ CAT) + factor(NUTS3) + factor(CLASS_CAPSEGURO) +
Cl +C2+C3+C4+C5+C6+ C7+C8+ C9 + C10 + C11 +

Cl2 + C13 + C15 + +F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 +

F9 + F10 + F11 + F12 + F13 + F15 + EXPOSURE_YEARS,

link.power = 0))

Deviance Residuals:
Min 10 Median 30

-27.215 -8.563 -6.848 -5.069 145.

Coefficients: (1 not defined because of

(Intercept)

factor (TOTAL_SINISTROS_1 CAT)1
factor (TOTAL_SINISTROS_1_ CAT)2
factor (TOTAL SINISTROS 1 CAT)3+
factor (TOTAL_SINISTROS_1_CAT)ausente
factor (TOTAL_SINISTROS_2_ CAT)1
factor (TOTAL_SINISTROS_2_ CAT)2
factor (TOTAL SINISTROS 2 CAT)3+
factor (TOTAL_SINISTROS_2_CAT)ausente
factor (NUTS3)ALENTEJO LITORAL
factor (NUTS3)ALGARVE

factor (NUTS3)ALTO ALENTEJO

factor (NUTS3)ALTO TRAS-OS-MONTES
factor (NUTS3)AVE

factor (NUTS3)BAIXO ALENTEJO
factor (NUTS3)BAIXO MONDEGO

factor (NUTS3)BAIXO VOUGA

factor (NUTS3)BEIRA INTERIOR NORTE
factor (NUTS3)BEIRA INTERIOR SUL
factor (NUTS3)CAVADO

factor (NUTS3)COVA DA BEIRA

factor (NUTS3)DAO-LAFOES

factor (NUTS3)DOURO

factor (NUTS3)ENTRE DOURO E VOUGA
factor (NUTS3)GRANDE LISBOA

factor (NUTS3)GRANDE PORTO

factor (NUTS3)LEZIRIA DO TEJO
factor (NUTS3)MEDIO TEJO

factor (NUTS3)MINHO-LIMA

factor (NUTS3)NORTE

factor (NUTS3)OESTE

factor (NUTS3)PENINSULA DE SETUBAL
factor (NUTS3)PINHAL INTERIOR NORTE
factor (NUTS3)PINHAL INTERIOR SUL
factor (NUTS3)PINHAL LITORAL
factor (NUTS3)REGIAO AUTONOMA DA MADEIRA
factor (NUTS3)REGIAO AUTONOMA DOS ACORES
factor (NUTS3)SERRA DA ESTRELA
factor (NUTS3) TAMEGA

factor (CLASS_CAPSEGURO)2

factor (CLASS_CAPSEGURO) 3

factor (CLASS_CAPSEGURO)4

factor (CLASS_CAPSEGURO)5

factor (CLASS_CAPSEGURO)6

Cl

c2

C3

c4

C5

Cé6

Cc7

Cc8

Cc9

C10

Cl1

C12

C13

C15

F1l

F2

F3

Max
934

singularities)
Estimate Std.

-29.22281 812.
.27829
.40207
.58562
.21141
.34528
.56978
.00614
.18691
.30978
.95357
.69432
.09394
.86494
.13171
.94247
.86888
.16760
.64144
.86731
.19194
.94763
.22635
.86925
.85810
.84485
.88163
.98550
.00577
.48416
.91520
.91932
.07756
.71427
.90969
.97195
.32628
.18680
.85943
.42283
.36472
.35989
.38946
.38755
.48138
.43659
.85124
.50272
.55897
.25940
.83604
.03219
.77835
.27659
.29606
.38448
.36360
.19223
.51331
.46517
.94753

0.64575
.42940
.41717
.07666
.65587
.79424
.23544
.20534
.15234
.86478
.08207
.52668
.73600
.99968
.44853
.53644
.33232
.18198
.60143
.44240
.90923
.28510
.21641
.50059
.15790
.67701
.98234
.57269
.70423
.98326
.08694
.28010
.07643
.99523
.05000
.57532
.73111
.49208
.41496
.08791
.78601
.78105
.60961
.34700
.33512
.13089
.02446
.54193
.01590
.36927 81
.81498
1.43223
-0.21834
-0.61841
-0.20446
0.63433
-0.03961
0.69430
-0.77564
0.54937

fay

N
NOOFRNNOOWNNNHHWOWOOHRHFHFOOOOWHRROHROORRHFHFORKEHEHEREFREFONORFROOROOHR

HFOOHFHROOOOONNMNOONHFOOOOOOOOrRHFHFOOFRFOOUFFOOOOOKHHOKFOHFHKMFOONOKHFHKMFOHFHOHFHOOOOOO

family

Error t value

83645

-0.

2.
.555
.420
.363
.900
.149
.234
.099
.880
.907
.229
.481
.007
.938
.537
.768
.141
.111
.846
.210
.959
.232
.399
.583
.371
.171
.997
.569
.128
.074
.182
.188
.045
.094
.138
.434
.144
.736
.346
.725
.741
.141
.314
.721
.768
.151
.809
.759
.061
.035
.385
.840
.789
.089
.532
.745
.033
.353
.667
.282

w

HFOONOHFHOOUWVUNYNUWRFRWOWRFRORFPFPFOOORPRKFRPROFFROORKFHFOFRRFPEFPFONOKFOOHFOWRON

I | [
O MR OKFKONORHR

036
320

Pr(>|t])
.971321
.020332
.000379
.015532
.716891
.057511
.001641
.814981
.271947
.378981
.364477
.219143
.630200
.044755
.348224
.124323
.077029
.253854
.911724
.064846
.226245
.337329
.816172
.161719
.559653
.170535
.05e-05
.318876
.569089
.897825
.282670
.237089
.234864
.964441
.273953
.001704
.664450
.001670
.082558
.000820
.05e-08
.03e-14
.62e-13
< 2e-16
.471023
.442747
.249724
.418581
.005812
.951117
.972159
.166009
.065771
.429883
.036740
.594879
.081078
.973499
.176202
.095445
.777880

OHFRFRPOOO0OO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0OWOOOODODODODODODODODODODODODO0ODO0ODODOOOO0OOOOO

(=NeleleloleNo ool leleBe N

tweedie(var.power

* %%

* %

* %%

* %
* %

* %%
* %%
* %%
* %%
* %%

* %

.6,
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F4 2.07047 2.54443
F5 -1.30450 0.44204
Fé6 NA NA
F7 0.36149 0.32760
F8 -1.99742 1.99479
F9 0.29003 0.31131
F10 1.00478 0.52154
F1l1 0.47882 0.25487
F12 0.20675 0.38513
F13 -0.57361 0.38866
F15 0.42454 0.61229
EXPOSURE_YEARS 1.99820 0.29843
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1

(Dispersion parameter for Tweedie family taken to be 1190.243)
Null deviance: 2196168 on 18791 degrees of freedom

Residual deviance: 1565215 on 18720 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 22

|
N O

cOOoOrRORRORR

.814
.951

NA

.103
.001
.932
.927
.879
.537
.476
.693
.696

NOOOoOOOOOOoO

.415812
.003171 **

NA

.269852
.316686
.351534
.054051
.060299
.591383
.139990
.488090
.2le-11 ***
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Annex 6 - Tweedie GLM output (full sample)

Call:

glm(formula = cbind(TOTAL_CUSTOS) ~ factor(PAST CLAIM BEHAVIOUR 1) +
factor (PAST_CLAIM BEHAVIOUR_ 2) + factor(NUTS3) + factor(CLASS_CAE) +
factor (SUM_INSURED_CLASS) + Cl + C2 + C3 + C4 + C5 + C6 + C7 +
C8 + C9 + C10 + C11 + C12 + C13 + Cl5 + F1 + F2 + F3 + F4 +
F5 + F7 + F8 + F9 + F10 + Fl1l1 + F12 + F13 + F15 + EXPOSURE_YEARS,

e(var.power = 1.5, link.power =

family = tweedi

Deviance Residuals:
Min 10
-75.585 -10.846

Coefficients:

(Intercept)

factor (PAST_CLAIM B
factor (PAST_CLAIM B
factor (PAST_CLAIM B
factor (PAST_CLAIM B
factor (PAST_CLAIM B
factor (PAST_CLAIM B
factor (PAST_CLAIM B
factor (PAST_CLAIM B
factor (NUTS3)ALENTE

factor (NUTS3)ALGARVE
factor (NUTS3)ALTO ALENTEJO

factor (NUTS3)ALTO T
factor (NUTS3)AVE

factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BAIXO
factor (NUTS3)BEIRA
factor (NUTS3)BEIRA
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factor (NUTS3)DOURO
factor (NUTS3)ENTRE
factor (NUTS3)GRANDE
factor (NUTS3)GRANDE
factor (NUTS3)LEZIRI
factor (NUTS3)MEDIO
factor (NUTS3)MINHO-
factor (NUTS3)NORTE
factor (NUTS3)OESTE
factor (NUTS3)PENINS
factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)PINHAL
factor (NUTS3)REGIAO
factor (NUTS3)REGIAO
factor (NUTS3)SERRA
factor (NUTS3) TAMEGA
factor (CLASS_CAE)2
factor (CLASS_CAE)3
factor (CLASS_CAE)4

Median 30 Max

-8.413 -5.937 238.700

0))

Estimate Std. Error t value Pr(>|t])
-0.039 0.968728
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C15 0.19556 1.15073
F1 1.27905 0.42636
F2 -1.11343 0.40512
F3 0.55799 1.85545
F4 1.38019 2.49447
F5 -1.10048 0.40924
F7 0.51545 0.31617
F8 -1.55645 1.88858
F9 0.36803 0.29868
F10 1.45610 0.45254
F1l1 0.09616 0.22774
F12 0.46176 0.36151
F13 -0.66740 0.34506
F15 -0.09416 0.60972
EXPOSURE_YEARS 1.87690 0.28716
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1

(Dispersion parameter for Tweedie family taken to be 2294.201)
Null deviance: 5237887 on 19068 degrees of freedom

Residual deviance: 3152983 on 18993 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 15
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Annex 7 - Tweedie GLM output (Sum insured in class 7)

Call:
glm(formula = cbind(valor) ~ factor(cobertura) + CAPSEGURO, family = tweedie(var.power =
1.5,

link.power = 0))

Deviance Residuals:
Min 10 Median 30 Max
-96.264 -13.053 -9.926 -4.663 195.198

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 7.195e+00 6.578e-01 10.938 < 2e-16 ***

factor(cobertura)2 -3.177e+01 1.675e+03 -0.019 0.98487
factor(cobertura)3 -1.637e+00 1.027e+00 -1.594 0.11100
factor(cobertura)4 -3.282e+01 1.627e+04 -0.002 0.99839
factor(cobertura)5 -9.318e-01 9.272e-01 -1.005 0.31507
factor(cobertura)6 -3.175e+01 1.447e+03 -0.022 0.98250
factor(cobertura)?7 2.320e+00 7.134e-01 3.252 0.00117 *=*
factor(cobertura)8 1.435e+00 7.493e-01 1.915 0.05563
factor(cobertura)9 -3.789e-01 8.924e-01 -0.425 0.67116
factor(cobertura)l0 -3.176e+01 3.938e+03 -0.008 0.99357
factor(cobertura)ll -3.954e+00 1.701e+00 -2.324 0.02023 *
factor(cobertura)l2 -3.945e+00 2.204e+00 -1.790 0.07366
factor(cobertura)l3 -1.156e+00 1.279e+00 -0.904 0.36607
factor(cobertura)l5 1.392e-01 8.186e-01 0.170 0.86502
CAPSEGURO 4.295e-09 4.027e-10 10.666 < 2e-16 **x*
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1

(Dispersion parameter for Tweedie family taken to be 2304.453)
Null deviance: 1163343 on 1914 degrees of freedom

Residual deviance: 518086 on 1900 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 22
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Annex 8 - Claim frequency output (Sum insured in class 7)

Call:
glm(formula = cbind(NS) ~ factor(Cobertura) + CAPSEGURO, family = quasipoisson)

Deviance Residuals:
Min 10 Median 30 Max
-1.6350 -0.6596 -0.4911 -0.2604 6.9368

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -2.344e+00 3.782e-01 -6.197 7.03e-10 ***

factor (COVER)2 -1.609e+01 8.30le+t02 -0.019 0.9845
factor (COVER) 3 1.443e-01 4.686e-01 0.308 0.7581
factor (COVER)4 -1.66le+01 8.080e+03 -0.002 0.9984
factor (COVER)5 7.965e-01 4.266e-01 1.867 0.0620
factor (COVER)6 -1.608e+01 7.176e+02 -0.022 0.9821
factor (COVER)7 6.578e-01 4.294e-01 1.532 0.1257
factor (COVER)8 -8.109e-01 5.736e-01 -1.414 0.1576
factor (COVER)9 4.452e-01 4.529e-01 0.983 0.3257
factor (COVER)10 -1.608e+01 1.951e+03 -0.008 0.9934
factor (COVER)11l -1.116e+00 6.896e-01 -1.618 0.1057
factor (COVER)12 2.003e-01 5.560e-01 0.360 0.7187
factor (COVER)13 1.174e+00 4.599e-01 2.553 0.0108 *
factor (COVER)15 8.362e-01 4.224e-01 1.980 0.0479 *
SUM_INSURED 2.120e-09 3.017e-10 7.025 2.96e-12 ***
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1

(Dispersion parameter for quasipoisson family taken to be 1.997221)
Null deviance: 1573.5 on 1918 degrees of freedom
Residual deviance: 1356.5 on 1904 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 16



Annex 9 - Claim severity output (Sum insured in class 7)

Call:
glm(formula cbind(Valor) ~ factor(Cobertura) + CAPSEGURO, family = Gamma(link = "log"),
weights = NS)

Deviance Residuals:
Min 10 Median 30 Max
-10.9818 -2.4474 -1.6756 -0.1854 5.1589

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 9.624e+00 6.146e-01 15.659 < 2e-16 ***
factor (COVER)3 -1.317e+00 7.616e-01 -1.729 0.085946 .

factor (COVER)5 -3.965e-01 6.941le-01 -0.571 0.568717

factor (COVER) 7 2.655e+00 6.988e-01 3.799 0.000214 **x*
factor (COVER) 8 2.706e+01 9.675e-01 27.963 < 2e-16 **x*
factor (COVER)9 2.113e-02 7.361le-01 0.029 0.977136

factor (COVER)11 -2.804e+00 1.121e+00 -2.501 0.013492 *
factor (COVER)12 -3.222e+00 9.037e-01 -3.565 0.000494 ***
factor (COVER)13 -1.278e+00 7.476e-01 -1.710 0.089456

factor (COVER)15 -4.171e-01 6.866e-01 -0.607 0.544494
SUM_INSURED 9.513e-10 5.582e-10 1.704 0.090477

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1

(Dispersion parameter for Gamma family taken to be 5.27641)
Null deviance: 1687.0 on 154 degrees of freedom
Residual deviance: 1226.2 on 144 degrees of freedom

AIC: 6372

Number of Fisher Scoring iterations: 25
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