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Resumo

As equações de Lotka-Volterra, também conhecidas por equações de predador-presa, são um conjunto

de equações diferencias não-lineares construı́das para descrever a relação dinâmica entre espécies na

natureza. No entanto, desde a sua publicação vários autores têm vindo a provar que estes sistemas

dinâmicos têm diversas aplicações fora da área da biologia. Este trabalho tem como objetivo apro-

fundar as possı́veis aplicações destas equações ao sistema bancário e à economia. Considerando o

sistema bancário, estudamos três possı́veis sistemas dinâmicos que podem descrever a relação entre

o volume de depósitos e empréstimos num banco. Também apontamos as semelhanças entre um sis-

tema bancário de três nı́veis e uma cadeia alimentar e estudamos a sua estabilidade. Olhando para

as aplicações à economia, começamos por estudar o famoso modelo de Goodwin para ciclos de de-

semprego e crescimento dos ordenados. Para terminar, apresentamos um par de equações predador-

presa que descrevem a relação entre bens capitais e bens de consumo, e concluı́mos que os ciclos

económicos são endógenos, auto-sustentáveis e não-lineares.

Palavras-chave: Lotka-Volterra, Predador-Presa, Ciclos Económicos, Sistema Bancário, Sis-

tema Ecológico.
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Abstract

The Lotka-Volterra equations, frequently referred to as predator-prey equations, are a set of non-linear

differential equations constructed to describe the interaction dynamics between different species in na-

ture. Yet, since their publication many authors have proved that the applications of these equations go

way beyond mathematical biology. The present work focuses on their application to the banking system

and to economics. Regarding the banking system, we study three dynamical systems that may describe

the relationship between deposit and loan growth in a bank’s balance sheet. In addition, we look at the

resemblance between a three level ecological food chain and a three level banking system, and study

its stability. As for the applications to economics, we study the famous Goodwin’s model for the cyclic

behavior of wages and employment. To finish our work we present a pair of predator-prey equations that

model the dynamical relationship between consumption and capital goods, finding that economic cycles

are endogenous, self-sustained and non-linear.

Keywords: Lotka-Volterra Equations, Predator-Prey Dynamics, Economic Cycles, Banking Sys-

tem.
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Chapter 1

Introduction

The Lotka-Volterra equations, often referred to as the predator-prey equations, are first order non-linear

differential equations that describe the dynamics of populations in systems where multiple species, with

distinct characteristics, interact.

In the United States, 1925, Alfred Lotka proposed a model to describe a chemical reaction with oscil-

lating concentrations. A year later, in Italy, the mathematician Vito Volterra, when trying to explain the

observed increase in predator fish (that caused a decrease in prey fish) in the Adriatic Sea during World

War I, independently arrived to the same set of equations proposed by Lotka. This model proposed by

Lotka and Volterra is considered to be the simplest model for predator-prey interactions.

If we aim to study the populations’ dynamics in a single species environment, we should concentrate

on factors such as the natural growth rate and the environment’s carrying capacity. Yet, if we aim for a

more realistic approach we need to study interacting populations and remember that they affect each

other’s growth rates. Interacting populations affect one another’s evolution, and predicting the result of

their relationship is of high interest to understand how communities are organized and sustained.

Ever since the publication of the predator-prey population model, authors have used these equations not

only in the study of ecological systems but also in other scientific areas. In the present work, we focus

on the applications of the famous Lotka-Volterra equations to economics and to the banking system.

To start, in Chapter 2 we mention some of the most important studies presented throughout time regard-

ing the Lotka-Volterra equations and their possible applications.

In Chapter 3 we present the Lotka-Volterra equations in some of their most common forms: First, the

predator-prey model for two interacting species followed by a generalization for all Lotka-Volterra equa-

tions. Then we present the population dynamics of two species competing for the same resources, later

generalizing it to a competitive system of n species. In the third part of this chapter we present the case
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where species interact in a way that benefits one another, once again starting with the two-species case

and extending the results to an environment of n species.

In Chapter 4 we focus our attention in the applications of the Lotka-Volterra equations to the banking

system. First, we present a dynamical system identical to the two-species predator-prey model that

describes the relationship between deposit and loan growth inside the capital structure of a bank, as

well as some other models constructed for the same porpoise but with different features. In the second

part of this chapter we present a model that compares a three level banking system to a three species

ecological food chain.

In Chapter 5, we look closely at the application of Lotka-Volterra equations to economics. In the first

part of this chapter, we present the original Goodwin model and some of its properties followed by an

improved model proposed by Vadasz. We also study a model presented by Palomba that describes the

dynamical relationship between consumption and capital goods.

2



Chapter 2

Literature Review

The Lotka-Volterra equations for predator-prey models are very famous in mathematics as well as in bi-

ology. The biologist Umberto D’Ancona suggested that the interactions between various animal species

could be mathematically modeled, and this resulted in the publication of [1] and later [2] by the mathe-

matician Vito Volterra. Among the several models proposed by Volterra there is the predator-prey case,

the most famous one. Since Volterra did not know the work of Alfred J. Lotka, who had independently

anticipated some of Volterra’s results in [3], these equations were named Lotka-Volterra equations.

There are many applications of the predator-prey model, including in Game Theory. For example, in

2010 Chen [4] proposed a model for predation behavior applied to Game Theory and concluded that

the smaller predators tend to use a more passive strategy than large predators, and that preys always

prefer an active strategy.

The derivation of dynamical models based on bank profit were first proposed in 2008 by Petersen and

Shoeman [5], who analyzed the Return-on-Assets and the Return-on-Equity of a bank. Later that year,

the economic aspects of the stochastic dynamics model of a bank’s assets and liabilities were presented

on [6]. In 2012, Comes proposed a three dimensional dynamical model to describe the interaction be-

tween levels of the banking system [7] and used the results on the work of Apreutesei [8][9] to study its

stability. In 2013, the first dynamical system of deposit and loan volumes based on the Lotka-Volterra

predator-prey dynamics [10] was presented, and in 2014 Sumarti, Nurfitriyana and Nurwenda studied

the equilibria of this type of dynamical systems [11].

The first application of Lotka-Volterra equations to economics was made in 1939 when Giuseppe Palomba

used the predator-prey equations to model the dynamics between consumption and capital goods [12].

Several years later, in 1967, Goodwin presented a simple model that describes the dynamical relation-

ship between real wages and real employment using the predator-prey dynamics [13], and since this

publication economists have concentrated in two types of research: Authors such as Desai (1973) [14],

Wolfstetter (1982) [15] and Sportelli (1995) [16] focused on the development of more complex models by

3



relaxing some of the original assumptions. On the other hand, Velupillai (1979) [17] and Flaschel (1984)

[18] investigated the stability and other mathematical properties of the model; In addition, authors like

Atkinson (1969) [19] and Harvie (2000) [20] have focused on verifying the model’s validity by testing it.

Apedaille (1994) used the predator-prey paradigm in the modeling of long run trajectories for the shares

of agriculture, industrial and ecospheric wealth in open interacting economy [21]. Chakraborty (2011)

analyzed the predator-prey fishery taking into account the variation of the economic interest of harvesting

[22]. Finally, in 2012 Michalakelis estimated the evolution of market concentration in high technology

saturated markets with dominant players, using Lotka-Volterra equations [23].

4



Chapter 3

Theoretical Framework

Lotka-Volterra systems of equations model the dynamics of n interacting species (and they can also

be applied in the study of financial institutions and economic behavior) According to this model, the

populations change through time according to a system of differential equations of the form

ẋi = xi

(
ri +

n∑
j=1

aijxj

)
, i = 1, ..., n (3.1)

where ri ∈ R and A = (aij) is a matrix of real entries.

In this chapter we will start by studying a general predator-prey system of equations for two interacting

species and some of its important features. Later, we will return to the general form of a Lotka-Volterra

system and focus our attention on two specific types of interaction between species: competitive and

cooperative. For each of these cases we analyze the two species model followed by a generalization to

a system of n species.

3.1 The Predator-Prey Model

In the early 90’s Volterra presented a model to describe the evolution of predator and prey fish popula-

tions in the Adriatic Sea. He based his model in two assumptions: First, in the absence of predators the

per capita growth rate of the prey population is constant and positive. Otherwise, it decreases linearly

as function of the predator population; Second, in the absence of prey the per capita growth rate of the

predator population is constant and negative. Otherwise, it increases linearly as a function of the prey

population.

Let N(t) denote the prey population and P (t) the predator population at time t ≥ 0. The previous
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assumptions translate into

1

N

dN

dt
= a− bP

1

P

dP

dt
= cN − d

(3.2)

where a, b, c, d > 0 are constants and
(
N(0), P (0)

)
= (N0, P0). Also, if we manipulate the previous

equations we get
d

dt

{
d logN − cN + a logP − bP

}
= 0. (3.3)

Let us define H : R+
0 × R+

0 → R such that

H(N,P ) = d logN − cN + a logP − bP.

It is easy to see that d
dtH(N,P ) = 0 i.e H is constant along the trajectories

(
N(t), P (t)

)
. Since we aim

to study H(N,P ) depending on the initial condition (N0, P0), we split the problem in two cases.

First, we assume that (N0, P0) ∈ R+ × R+, so we have the guarantee that H(N0, P0) is finite and all

trajectories (N(t), P (t)) evolve so that H
(
N(t), P (t)

)
= H(N0, P0). This happens because H(N,P ) is

a strictly concave function which implies that the orbits are periodic and that the function has a unique

maximum where ∇H = 0, i.e

(N,P ) =
(d
c
,
a

b

)
.

For the particular case where a = 2, b = 2.5, c = 2.3 and d = 2.7 the stability of the predator-prey

system can be found in figure 3.1.

Figure 3.1: Stability of the Predator-Prey Model.

Second, we consider the possibility of either N0 or P0 being null, which allows us to obtain explicit

solutions to the system in (3.1):

N0 = 0 =⇒ N(t) = 0 , P (t) = P0e
−dt

P0 = 0 =⇒ N(t) = N0e
at , P (t) = 0

(3.4)

6



Therefore, as t → ∞, the solution exponentially approaches the origin along the line N = 0 and expo-

nentially goes to infinity along the line P = 0. Figure 3.2 shows the population of the predators across

time in the absence of preys and figure 3.3 shows the evolution of the prey population in the absence of

their predators.

Figure 3.2: Predator population without Prey Figure 3.3: Prey population without Predators

After studying these two cases we can conclude that the model makes basic sense, since regardless

of the choice of initial condition we obtain non-negative populations. At this point we find it useful to

introduce Volterra’s Principle: Suppose that N0 > 0 and P0 > 0. If T is the period of the closed orbit

through (N0, P0) then the averages of P (t) and N(t) over T are given respectively by

1

T

∫ T

0

P (t)dt =
a

b

1

T

∫ T

0

N(t)dt =
d

c
.

(3.5)

Another important feature concerning the predator-prey equations is that system (3.2) is Hamiltonian,

with H as its Hamiltonian function. Introducing the canonical coordinates p = logN and q = logP we

get

H(N,P ) = h(p, q) = dp− cep + aq − beq

and the Lotka-Volterra equations are transformed into the canonical equations of Hamilton:

dp

dt
=

1

N

dN

dt
= a− bP = a− beq = dh

dq

dq

dt
=

1

P

dP

dt
= cN − d = cep − d = −dh

dp
.

(3.6)

3.2 General Lotka-Volterra Systems

Before further discussing Lotka-Volterra systems, we need to present some important definitions and

results.
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Theorem 1 (Picard’s existence theorem) Given an open set U ⊆ Rn, a function f : U → Rn that is

locally Lipshitz in x ∈ U and a point x0 ∈ U , the differential equation ẋ = f(x) with x(t0) = x0 has an

unique solution x : I → U on some open interval I containing t0.

Definition 1 We say that the vector field f : U → Rn generates the flow ϕt : U → U where ϕt(x) = φ(x, t)

for x ∈ U and t ∈ I = (a, b) ⊆ R for some a, b ∈ R if

dφ(x, t)

dt

∣∣∣∣
t=τ

= f
(
φ(x, τ)

)
, ∀x ∈ U, τ ∈ I.

Definition 2 (Steady State) A Steady state of ẋ = f(x) is a point x ∈ U for which f(x) = 0.

Definition 3 (Forward invariant set) A set S ⊆ U is a forward invariant set for ϕt if whenever x ∈ S we

have ϕt(x) ∈ S for all t ≥ 0.

Definition 4 (Omega limit point) A point p ∈ U is an omega limit point of x ∈ U if there are points

ϕt1(x), ϕt2(x), ... on the orbit of x such that tk → +∞ and ϕtk → p as k →∞.

Definition 5 (Alpha limit point) A point p ∈ U is an alpha limit point of x ∈ U if there are points

ϕt1(x), ϕt2(x), ... on the orbit of x such that tk → −∞ and ϕtk → p as k →∞.

Recall that the general Lotka-Volterra model is of the form (3.1). Applying Picard’s existence theo-

rem we conclude local existence and uniqueness of solutions for any initial condition. Suppose that

x(0) = (x01, x02, ..., x0n) has x0k = 0 for k ∈ J ⊂ {1, ..., n} so that some species are initially absent.

Then, uniqueness of solution tells us that these species are absent for all t.

Theorem 2 For a model of the form (3.1) the coordinate axes and the subspaces spanned by them,

and (R+)n, are all forward invariant. In simpler words, populations that start non-negative remain non-

negative throughout finite time.

Theorem 3 (Interior steady states) There exists an interior steady state p ∈ (R+)n if and only if (3.1)

has omega or alpha limit points in (R+)n.

Proof: The proof can be found in [24].

Theorem 4 (Time averages) Suppose that x(t) is a periodic orbit of (3.1) of period T . If (3.1) has a

unique interior steady state x∗ ∈ (R+)n, then

1

T

∫ T

0

x(t)dt = x∗.

8



Proof:

ẋi = xi

(
ri +

n∑
j=1

aijxj

)
=⇒ 1

T

∫ T

0

ẋi(t)

xi(t)
dt =

1

T

∫ T

0

ri +
(
Ax(t)

)
i
dt

=⇒ 1

T

(
log x(T )− log x(0)

)
= r +

[
A
( 1

T

∫ T

0

x(t)dt
)]

=⇒ 0 = A−1r +
1

T

∫ T

0

x(t)dt

=⇒ 1

T

∫ T

0

x(t)dt = −A−1r

=⇒ 1

T

∫ T

0

x(t)dt = x∗

(3.7)

3.3 Competitive Lotka-Volterra Systems

The competitive Lotka-Volterra equations describe a model for the population dynamics of species com-

peting for some common resource. These equations cover both competition between members of the

same species and competition between members of different species. While in the predator-prey equa-

tions the population model is exponential, in the competitive case it follows the logistic equations we will

introduce throughout this section.

3.3.1 Two Species Dynamics

When considering an environment with a single population, the logistic equation is

dN

dt
= ρN

(
1− N

K

)
, (3.8)

where N(t) is the size of the population at time t, ρ is the per-capita growth rate and K is the maximum

population density that the environment can carry, often referred to as the environmental carrying ca-

pacity. The quadratic term of the equation represents the competition between members of the same

species for a common resource and we call this intraspecific competition. The previously presented

logistic equation has an explicit solution of the form

N(t) =
N0

N0

K +
(
1− N0

K

)
e−ρt

which implies that as t → ∞ the population approaches its carrying, regardless the initial condition N0.

This tendency is illustrated in figure 3.4.

To write a model for competition in an environment with two species we need to take into account, as well

as the intraspecific competition mentioned before, the competition between different species denoted as

interspecific competition. Therefore we need two logistic equations similar to (3.8), one for the population

9



Figure 3.4: Unidimentional Logistic Equations.

of each species and both with an extra term representing the interspecific competition. This new model

writes

dN1

dt
= ρ1N1

(
1− N1

K1
− c1N2

)
dN2

dt
= ρ2N2

(
1− N2

K2
− c2N1

) (3.9)

where c1, c2 > 0 are the relative sizes that measure the aggressiveness of the competition between the

two species. Aiming to study the solution of (3.9) we define N1(0) = N10 and N2(0) = N20, and split the

problem in two cases.

First, we consider the case where either N10 or N20 is null. Using the solution for the single-species

logistic equation, we conclude that in the absence of one species the other approaches exponentially its

carrying capacity:

N10 = 0 =⇒ N1(t) = 0 , N2(t) =
N20

N20

K +
(
1− N20

K

)
e−ρ2t

N20 = 0 =⇒ N1(t) =
N10

N10

K +
(
1− N10

K

)
e−ρ1t

, N2(t) = 0.

(3.10)

In the second case we assume both N10 and N20 to be positive numbers. For simplicity of calculations

we set new variables and parameters: u1 = N1

K1
; u2 = N2

K2
; a12 = c1K2; a21 = c2K1; τ = ρ1t; ρ = ρ1

ρ2
. This

gives us a new set of equations with less parameters but same behavior as before:

du1
dτ

= u1(1− u1 − a12u2)

du2
dτ

= ρu2(1− u2 − a21u1).
(3.11)

Note that the Jacobian of this system has sign structure

J =

 ∗ ≤ 0

≤ 0 ∗


10



more specifically, it is of the form

J =

1− 2u1 − a12u2 −a12u1
−ρa21 ρ(1− 2u2 − a21u1)


Our first step in studying (3.11) is finding the lines on which u̇1 = 0 and u̇2 = 0:

u1 = 0 ∨ 1− u1 − a12u2 = 0

u2 = 0 ∨ 1− u2 − a21u1 = 0
(3.12)

and these conditions allow us to identify the equilibrium points of the system:

(0, 0); (1, 0); (0, 1); P =
( 1− a12
1− a12a21

,
1− a21

1− a12a21

)
.

The second step in studying (3.11) is to assure that the coordinates of the steady points we found do

not contradict the non-negativity of the populations. The first three points present no problem since they

are in the non-negative part of the coordinate axes regardless the choice of parameters. As for P , we

need to look at the values of a12 and a21.

The third and final step consists in studying the stability of each of the equilibrium points of (3.11),

depending on the choice of parameters:

• Case 1: a12, a21 < 1;

The steady state P is stable, (0, 0) is unstable and both (1, 0) and (0, 1) are saddles. These

small values for a12 and a21 represent a competition that is not too aggressive and results in both

populations coexisting in an equilibrium and never reaching their respective carrying capacities, as

it shows in figure 3.5.

• Case 2: a12, a21 > 1;

The steady states P and (0, 0) are unstable nodes. Here, both (1, 0) and (0, 1) are stable and

there is an invisible line that separates the plane in two regions. Above this line all trajectories go

to (1, 0), otherwise they are attracted to (0, 1). Orbits that start in the separation line converge to

the unstable node P . The higher values for a12 and a21 considered in this case represent strong

interspecific competition which leads to one of the species eventually winning and the other being

driven to extinction. The winner depends upon which has the starting advantage, as is shown on

figure 3.6.

• Case 3: a12 < 1, a21 > 1;

In this case there is no interior steady state P . The states (0, 0) and (0, 1) are unstable but (1, 0) is

stable and attracts all trajectories. Here we have a12, which represents how competitive species 2

is towards species 1, smaller that a21. As it is illustrated in figure 3.7. the less competitive species

is driven to extinction.
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• Case 4: a12 > 1, a21 < 1;

Once again there is no interior steady state P . Here (0, 0) and (1, 0) are unstable but (0, 1) is stable

and all interior trajectories go to this state. In this case species 2 is more competitive and figure

3.8 shows that this leads to the extinction of species 1.

Figure 3.5: a12 = 0.5 and a21 = 0.25 Figure 3.6: a12 = 1.5 and a21 = 1.2

Figure 3.7: a12 = 0.5 and a21 = 2.1 Figure 3.8: a12 = 1.5 and a21 = 0.5

3.3.2 N Species Dynamics

Now we consider the Lotka-Volterra system

ẋi = xi

(
ri −

n∑
j=1

aijxj

)
, i = 1, ..., n (3.13)

under the special condition that aij > 0 for all i, j ∈ {1, ..., n}. This means that each species competes

with all other species and that individuals of the same species compete with each other. Note that if

ri ≤ 0, even in the absence of competitors, species i would lead itself to extinction. For that reason,

from now on we consider ri > 0 for each i = 1, ..., n. Also, note that the Jacobian of system (3.13) has
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sign structure:

J =


∗ ≤ ≤ . . . ≤

≤ ∗ ≤ . . . ≤
...

...
...

. . .
...

≤ ≤ ≤ . . . ∗


Lemma 1 Since aij > 0 and ri > 0, all orbits of (3.13) are bounded.

Proof: We know that (R+
0 )
n is invariant. Also, from

ẋi = xi

(
ri +

n∑
j=1

aijxj

)
=⇒ rixi − xi

n∑
j=1

aijxj

=⇒ ẋi ≤ rixi − aiix2i

=⇒ ẋi < 0 if xi >
ri
aii

(3.14)

we can conclude that for each i = 1, ..., n the population xi is bounded.

Lemma 2 Under the assumption that


rj
ajj <

ri
aij
, if 1 ≤ i < j ≤ n

rj
ajj

> ri
aij
, if n ≥ i > j ≥ 1

the competitive system (3.13) has no interior steady state.

Proof: According to [24], if x∗ is an interior steady state then:

ai1
ri
x∗1 +

ai2
ri
x∗2 + ...+

ain
ri
x∗n = 1, i = 1, ..., n.

Therefore, for each i we can write

(
a11
r1
− ai1

ri

)
x∗1 +

(
a12
r1
− ai2

ri

)
x∗2 + ...+

(
a1n
r1
− ain

ri

)
x∗n = 0

and if we specify i = n we get

(
a11
r1
− an1

rn

)
x∗1 +

(
a12
r1
− an2

rn

)
x∗2 + ...+

(
a1n
r1
− ann

rn

)
x∗n = 0.

From the second equation on Lemma 2, we know that the only x∗ that verifies this equality is the trivial

equilibrium x∗ = 0. Therefore, the system (3.12) has no interior steady states.

Theorem 5 (Extinction in competitive Lotka-Volterra) Under the assumptions on Lemma 2,
(
r1
a11
, 0, ..., 0

)
is globally attracting on (R+)n.
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3.4 Cooperative Lotka-Volterra Systems

In contrast with the previous section, here we study the dynamics of an environment where species

cooperate with each other but elements of the same species still compete for the same resources.

Cooperative Lotka-Volterra logistic equations model the density of a pool of species taking into account

that they work together for common benefit. This phenomenon, when considering only two species, is

called mutualism.

3.4.1 Two Species Dynamics

Mutualism is the way two organisms of different species exist in a relationship where each individual

benefits from the activity of the other. It contrasts with interspecific competition, where one species

benefit at the ”expense” of the other. The logistic equations for the case of mutualism are similar to the

ones in the case of competition (3.9), the only difference being the sign of the interaction terms. For this

type of problem we have

dN1

dt
= ρ1N1

(
1− N1

K1
+ c1N2

)
dN2

dt
= ρ2N2

(
1− N2

K2
+ c2N1

)
.

(3.15)

Allowing one species to start with null population implies that it will remain null for all time, which leads

us to the solution in (3.10) once again. On the other hand, when considering initial populations N10 and

N20 positive we introduce the same parameters and variables as we did when simplifying the competitive

two-species dynamics and obtain

du1
dτ

= u1(1− u1 + a12u2)

du2
dτ

= ρu2(1− u2 + a21u1)

(3.16)

with steady states

(0, 0); (1, 0); (0, 1); P =
( 1 + a12
1− a12a21

,
1 + a21

1− a12a21

)
.

Note that P only exists when a12a21 < 1, since we need to guarantee the non-negativity of the popula-

tions. The Jacobian of this system has sign structure

J =

 ∗ ≥ 0

≥ 0 ∗
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more specifically

J =

1− 2u1 + a12u2 a12u1

ρu2a21 ρ(1− 2u2 + a21u1)



To study the stability of the two species cooperative equilibrium we consider the following cases:

• Case 1: a12a21 < 1;

There are four steady states and all trajectories converge to the stable node P , the only one which

does not lie on the coordinate axes. This behavior holds regardless of the choice of a12 and a21,

which is illustrated in figures 3.9 and 3.10.

• Case 2: a12a21 > 1;

There are only three steady states : (0, 0), (0, 1) and (1, 0). In the absence of an interior state P

all orbits diverge to infinity as can be observed in figures 3.11 and 3.12. This behavior holds for all

values of a12 and a21.

Figure 3.9: a12 = 0.5 and a21 = 0.25 Figure 3.10: a12 = 1.5 and a21 = 0.5

Figure 3.11: a12 = 1.5 and a21 = 1.2 Figure 3.12: a12 = 0.5 and a21 = 2.1
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3.4.2 N Species Dynamics

To study Lotka-Volterra cooperative systems for the interaction of n species, we simply write

ẋi = xi

(
ri +

n∑
j=1

aijxj

)
, i = 1, ..., n (3.17)

where ri ∈ R, A = (aij) is a matrix of real entries and aij ≥ 0 when i 6= j. This is very similar to the

general case, but with the restriction that the term representing interspecific interaction is non-negative

due to each species benefiting from the existence of the others. Therefore, the interaction matrix A has

off-diagonal elements greater or equal than zero and the Jacobian of (3.17) has the sign structure :

J =


∗ ≥ ≥ . . . ≥

≥ ∗ ≥ . . . ≥
...

...
...

. . .
...

≥ ≥ ≥ . . . ∗


Definition 6 (Cooperative matrix) We say that any real n× n matrix with the previous sign structure is

cooperative.

Definition 7 (Negatively diagonally dominant) A matrix A is negatively diagonally dominant if there

exists d ∈ Rn such that di > 0 and aiidi+
∑
i 6=j |aijdj | < 0 for all i = 1, ..., n. When A is cooperative, this

translates to (Ad)i < 0 for all i = 1, ..., n.

Definition 8 (Stable Matrix) A square matrix A is said to be stable if every eigenvalue of A has strictly

negative real part.

Lemma 3 Let A be a cooperative matrix. Then A is stable if and only if it is negatively diagonally domi-

nant.

Proof: First, let us assume that A is a stable cooperative matrix. Then, for a sufficiently large positive c

we get a non-negative matrix of the form B = A + cI. Therefore, by the Perron-Frobenius theorem we

can guarantee the existence of a spectral radius λ = ρ(B) ≥ 0 and v > 0 such that Bv = λv = ρ(B)v,

which means Av = (ρ(B) − c)v where ρ(B) < c (because we are assuming A to be a stable matrix).

Then, the series

A−1 = −1

c

(
I +

1

c
B +

1

c2
B2 + ...

)
converges and all tranches of the sum are ≤ 0. If we set d = −A−1(1, ..., 1)T , it is easy to see that d > 0

and that Ad = −(1, ..., 1)T < 0 meaning that A is negatively diagonally dominant.

On the other hand, assuming that A is negatively diagonally dominant, we can guarantee the existence

of a vector d > 0 such that Ad < 0. Note that aii < 0 for each i = 1, ..., n. Let λ be an eigenvalue of
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A with an eigenvector x to the right. Also, let yi = xi

di
and we choose m such that |ym| = maxi|yi| > 0.

Then,

λdiyi =

n∑
j=1

aijdjyj

and in particular, taking i = m and dividing by ym we can write

λdm = dmamm +

n∑
j 6=m

djamj
yj
ym

.

Since by hypothesis we have that

aiidi +
∑
i 6=j

|aijdj | < 0

we can conclude

|λdm − dmamm| ≤
n∑

j 6=m

djamj

∣∣∣ yi
ym

∣∣∣ ≤ n∑
j 6=m

djamj < −dmamm

which means that |λ−amm| < −amm, implying that for every choice of λ it has negative real part. There-

fore, the cooperative matrix A is stable.

Corollary 1 If A is cooperative and ri > 0 for all i = 1, ..., n then Ax + r = 0 has an unique interior

solution x ∈ (R+)n if and only if A is stable.

Definition 9 (Lyapunov stability) A steady state x∗ is said to be Lyapunov stable if for any ε > 0 there

is δ > 0 such that for all x0 with |x∗ − x0| < δ we have |ϕ(x0, t) − x∗| < ε for all t ≥ 0. A steady state is

said to be unstable if it is not Lyapunov stable.

Definition 10 (Asymptotic stability) A steady state x∗ is said to be locally asymptotically stable if it is

Lyapunov stable and there is ρ > 0 such that for all x0 with |x∗ − x0| < ρ we have |ϕ(x0, t)− x∗| < ε for

all t ≥ 0.

Theorem 6 (Global convergence for cooperative Lotka-Volterra) Suppose that the system (3.15),

with each ri > 0, has an unique interior steady state x∗ and that A has non-negative off diagonal el-

ements. Then, x∗ is globally asymptotically stable on (R+)n and all (boundary) orbits are uniformly

bounded as t→∞.

Proof: The proof can be found in [24].
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Chapter 4

Lotka-Volterra Equations in the

Banking System

Banking regulations can be governmental and non-governmental and they are managed with specific

requirements, restraints and guidance. This guarantees transparency between banks and the institutions

with whom they work. Financial institutions have high influence on the economy and their behavior can

have great impact regarding global instability.

4.1 Deposit and Loan Growth

Banks use the deposits made by clients as funds to administer loans and they benefit from the differ-

ence between the interest rates agreed to on the deposits and loans. For this reason, it is important to

understand the interaction between deposit and loan volume.

Sumarti, Nurfitriyana and Nurwenda (2014) [10] proposed a dynamical system for deposits and loan

volumes in a bank using the predator-prey equations. They argued that, as the existence of predators

depends on the existence of prey, the existence of loans depends on the existence of deposits since the

bank’s loan volume is defined as a portion of its deposit volume.

In a bank’s balance we find its liabilities, assets and equity. The bank’s liabilities are the obligations that

must be paid in the future, and the bank’s assets consist on the investments and resources expected to

give income in the future. The bank’s equity is calculated by making the difference between its assets

and liabilities.

The main liabilities of a bank are the deposits made by costumers (D) while its main assets are the

loans (L), the primary reserve (R1) and the secondary reserve (R2). Their interaction is described by

L+R1 +R2 = D (4.1)
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which means that there is a relationship between the volume of loans and reserves, and the deposits.

Next, we will explore this dependence starting by comparing it with a predator-prey interaction where the

loans and reserves represent the predators and the deposits represent the prey.

4.1.1 A Simple Model

The model proposed in [10] for the interaction between loan and deposit volumes based on the Lotka-

Volterra predator-prey equations writes:

1

D

dD

dt
= α− pL

1

L

dL

dt
= pD − β

(4.2)

where α is the interest rate of the deposit and β is the interest rate of the loan, which makes both pa-

rameters positive constants. Furthermore, p is the maximum mixture rate between deposit and loan

volumes. Looking at this system we can observe that an increase in α will cause and increase in deposit

volume, as an increase in β will cause a decrease in loan volume. On the other hand an increase on

pDL, which represents the mixture between the deposit and loan volumes, will cause a decrease in the

growth of deposit volume and an increase in loan volume growth though time.

System (4.2) has three equilibrium points:

P1 = (0, 0); P2 =
(β
p
,
α

p

)
;

In the context of our problem, P1 is a saddle point and P2 is a stable node if α < β, i.e the interest rate

on the deposit is lower than the interest rate of the loan, which makes sense according to reality.

Assuming α = 0.3, β = 0.5 and p = 20 the stability of this model for the dynamics of deposit and loan

growth is illustrated in figure 4.1

Figure 4.1: Stability of the Simple Model for Deposit and Loan Growth.
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Note that, just like the predator-prey system in (3.2), this model can be written in Hamiltonian coor-

dinates. Considering m = logD and n = logL and denoting by H the Hamiltonian function we can

write

H(D,L) = h(m,n) = βm− pem + αn− pen.

Then, the equations in (4.2) become

dm

dt
=

1

D

dD

dt
= α− pL = α− pen =

dh

dn
dn

dt
=

1

L

dL

dt
= pD − β = pem − β = − dh

dm
.

(4.3)

which proves that the system is Hamiltonian.

4.1.2 A model with Michaelis-Menten Response

Kar (2005) [25] proposed a model on this subject based on a study presented by Michaelis and Menten

(1913) [26] concerning the saturation curve for enzyme reactions. Kar’s model was based on the as-

sumption that the deposit volume is limited and the loan volume approaches a constant as the deposits

increase. Note that, under these conditions, the model no longer follows a Lotka-Volterra system of

equations:

dD

dt
= αD

(
1− D

k

)
− pDL

1 + bD
dL

dt
=

pDL

1 + bD
− βL

(4.4)

where α, β, k, p and b are positive constants. Furthermore, k is the carrying capacity of the deposit vol-

ume and p
b is the maximum portion of the deposits that can be invested in the loans.

This model has three equilibrium points:

P ′1 = (0, 0); P ′2 = (k, 0); P ′3 =

(
β

p− bβ
,
α
(
pk − (1 + bk)β

)
k(bβ − p)2

)
;

Here P ′1 is once again a saddle point and P ′2 is stable if β = pk
1+bk , i.e the interest rate of the loan will rise

with an increase in the deposit’s carrying capacity k. Furthermore, P ′3 only exists if β 6= p
b and is a stable

equilibrium if
α

2pk(bβ − p)
(
(bk + 1)bβ2 + (1− bk)pβ

)
< 0

and

β <
p(bk − 1)

b(bk + 1)
.
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4.1.3 A model with Reserve Requirement

Kar (2005) [25] also proposed a model including reserve requirements, i.e requirements regarding the

amount of cash a bank must hold in reserve considering the deposits made by customers. This money

must be in the bank’s vaults or at a Federal Reserve bank. If we consider mD the protected reserve, the

model is of the form

dD

dt
= αD

(
1− D

k

)
− p(1−m)DL

1 + b(1−m)D

dL

dt
=

p(1−m)DL

1 + b(1−m)D
− βL

(4.5)

with equilibrium points:

P ′′1 = (0, 0); P ′′2 = (k, 0); P ′′3 =

(
β

(1−m)(p− bβ)
,

(
(bk(1−m)− 1)β + (1−m)pk

)
α

k(1−m)2(bβ − p)2

)
;

As in the previous models P ′′1 is a saddle point. On the other hand, P ′′2 is a stable equilibrium as long as

we guarantee that, for α < 1

β >
k(1−m)p

1 + k(1−m)b
.

Furthermore, P ′′3 will be stable if

α
((
− (1−m)b2k − b

)
β2 +

(
(1−m)pbk − p

)
β
)

2(1−m)pk(bβ + p)
< 0

and

β <
p
(
(1−m)bk − 1

)
b
(
(1−m)bk + 1

) .

4.2 Three Level Banking System

Thompson (2011) [27] argued that the financial system behaves like an ecological network in the fol-

lowing way: ”Considering a three level food chain in ecological systems, we have biomass transfer from

Herbivorous to Carnivorous and from plants to Herbivorous. On the other hand, in a financial system we

have capital transfer from Mother Bank to Subsidiary Bank, and from Subsidiary Bank to Individuals or

Companies.” A subsidiary bank is a type of foreign bank that is located in a country but is owned by a

foreign mother bank. Subsidiary banks are regulated by their mother banks and at the same time have

to perform under the rules of the host country.

If we consider x1(t) and x2(t) the number of subsidiary and mother banks respectively, and x3(t) the

number of clients of the subsidiary banks, the banking system in figure 4.3 translates into the following
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Figure 4.2: Three Level Ecological System Figure 4.3: Three Level Banking System

dynamics:

ẋ1(t) = x1(t)(a1 − b1x2(t) + c1x3(t))

ẋ2(t) = x2(t)(−a2 + b2x1(t))

ẋ3(t) = x3(t)(a3 − b3x1(t))

(4.6)

where ai, bi, ci > 0, i ∈ {1, 2, 3}. This system represents a three-level banking system where a top

predator Mother Bank ”feeds” on a intermediate consumer Subsidiary Bank , which ”feeds” on the In-

dividuals that use its services. Furthermore, from Haimovici (1980) [28] and Apreutesei (2006) [9] we

know that for every initial solution (x1(0), x2(0), x3(0)) system (4.6) has an unique solution which is con-

tinuous in R+
0 .

To study system (4.6) we start by solving each planar system in its respective coordinate plane. First,

we notice that in the absence of mother banks (x2 = 0) the equations are reduced to a two-species

predator prey model similar to the one studied in Section 3.1. In this case, we have closed orbits around

the equilibrium
(
a1
b1
, a3b3 , 0

)
for all possible values of the parameters.

When considering the solution of (4.6) on the plane x1 = 0 (when the subsidiary banks are absent from

the system) we arrive to the system

ẋ1(t) = 0

ẋ2(t) = −a2x2

ẋ3(t) = a3x3

(4.7)

The equation ẋ2(t) = −a2x2 implies that x2(t) → 0 exponentially as t → ∞, while ẋ3(t) = a3x3 means

that x3(t) → ∞ exponentially as t → ∞. The behavior of the three level system in the absence of

subsidiary banks is illustrated in figure 4.4, for the particular case where a2, a3 = 1.

As for the scenario where the individuals/companies that use the services of the subsidiary banks are
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missing from the equations (x3 = 0), the system we need to solve becomes

ẋ1(t) = x1(−a1 − c1x2)

ẋ2(t) = x2(−a2 + b2x1)

ẋ3(t) = 0

(4.8)

Looking at system (4.8), we can easily see that ẋ1 ≤ −a1x1. This means that, as t grows to infinity,

x1(t) will become null causing x2(t) to exponentially decay to zero. This tendency makes sense when

we think of the three level banking system: in the absence of clients for the subsidiary banks, they will

disappear since there is no demand for their services and that will cause the mother banks to also go

extinct.

Figure 4.4: Solution of System (4.6) on the plane x1 = 0.

When studying the equilibrium of system (4.6), we first need to find the steady states by solving

ẋ1(t) = 0

ẋ2(t) = 0

ẋ3(t) = 0.

(4.9)

In the context of our problem, we find two equilibrium points:

P1 = (0, 0, 0); P2 =
(a2
b2
,
a1
b1
, 0
)
;

Next, to find the stability of this steady states, we compute the Jacobian of (4.6):

J =


a1 − b1x2 + c1x3 −b1x1 c1x1

b2x2 −a2 + b2x1 0

−b3x3 0 a3 − b3x1


Looking at J , we conclude that P1 is an unstable equilibrium and that P2 is stable if a3b2 − a2b3 < 0,

otherwise it is also unstable.
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Chapter 5

Lotka-Volterra Equations in

Economics

5.1 Goodwin’s Model

The behavior of economic systems has been described in three different ways in the literature. The first

models considered the markets to be in a stable equilibrium, i.e even with random shocks the equilib-

rium is always be restored. Later in time, models started to be constructed based on the assumption

that growth is cyclical and its equilibrium is affected by past changes. More recently, with the arrival of

modern statistical methods, economists found that random shocks create what features chaotic behav-

ior: economic relations resemble white noise and economic motion is random.

Goodwin (1967) [13] presented a model describing the dynamic relationship between wages and em-

ployment. Later on, this model was improved so it would incorporate the three behaviors of economic

systems mentioned before: The economy would have stable wages and employment but small pertur-

bations could lead cycles. Furthermore, a drastic change would cause the economy exhibit chaotic

behaviour.

Throughout this section we will study Goodwin’s original model as well as some of its shortfalls, and

to finish we will present an improved model that incorporates some important features missing in the

original one.

5.1.1 The Original Model

Goodwin’s economic model resembles the Lotka-Volterra predator-prey model, where wages correspond

to the predators and employment to the prey. When the employment levels are high, the employed

workers have more bargaining power which rises the wages and diminishes the profits. This decrease

of profits will cause less workers to be hired and employment will fall, which then leads to an increase of
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profits. With more profit more workers will be hired causing a rise in employment levels and so a cycle

arises.

These cycles are not the same as business cycles but they are related, since a recession can affect

the employment cycle and,contrarily, changes in wages can cause a recession. Goodwin’s main goal

with his study is to understand the cyclical behavior of employment, using the predator-prey equations

to dynamically model income distribution and employment levels.

Goodwin’s model has its origin in an idea in Marx (1887) [29]. Marx believed that ”capitalism’s alternate

ups and downs are a result of the dynamic interaction between profits, wages and employment”. To

mathematically express this variations, Goodwin used the predator-prey equations and wrote his model

based on the following assumptions:

Assumption 1: Both technological progress and growth in labor force are constant.

Assumption 2: There are only two factors of production (labor and capital).

Assumption 3: All quantities mentioned are real and net.

Assumption 4: All wages are consumed and all profits are saved and invested.

Assumption 5: The ratio between capital and output is constant.

Assumption 6: The real wage rate rises in the neighborhood of full employment.

Constant technological progress means growth in labor productivity of the form

a = a0e
αt, α > 0

where a is the labor productivity that grows at a constant rate α. On the other hand, assuming constant

growth in labor force we can write

n = n0e
βt, β > 0

where n represents the labor force growing at a constant rate β. Also, denoting as k the capital and as

q the output, we obtain a constant capital-output ratio of

σ =
k

q
.

If we consider w the wage rate, then the worker’s share of output will be given by

u =
w

a

which makes the capitalists’ share of output 1 − u. As was assumed, all wages are consumed and all

profits are saved and invested, meaning that the growth rate of capital is the same as investment which
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is equal to the profit and therefore

k̇ = (1− u)q.

Through some easy computations we find that the growth rate of capital over time is of the form

k̇

k
=

(1− u)
σ

and since we have a fixed capital-output ratio the growth rate of output over time will be the same:

q̇

q
=

(1− u)
σ

.

At this point it makes sense to consider the employment as

l =
q

a

and after some manipulation of the formulas we find that the change in employment over time is of the

form
l̇

l
=

(1− u)
σ

− α.

The real employment rate is calculated by dividing employment by labor force

v =
l

n

implying that the growth rate of real employment over time changes according to

v̇

v
=

(1− u)
σ

− (α+ β). (5.1)

As was mentioned before, Goodwin assumes that the real wage rate rises in the neighborhood of full

employment. Therefore, we can describe the wage growth as

ẇ

w
= ρv − γ

and since the real wage rate is

u =
w

a

we finally obtain
u̇

u
= −(α+ γ) + ρv. (5.2)

Equations (5.1) and (5.2) together describe Goodwin’s employment-wage cycle model:

v̇ =
[( 1
σ
− (α+ β)

)
− u

σ

]
v

u̇ =
[
− (α+ γ) + ρv

]
u.

(5.3)
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Goodwin arrived to a Lotka-Volterra predator-prey model of the form

v̇ = (η1 − θ1u)v

u̇ = (−η2 + θ2v)u
(5.4)

where

η1 =
1

σ
− (α+ β)

η2 = α+ γ

(5.5)

and

θ1 =
1

σ

θ2 = ρ.

(5.6)

In the original predator-prey system we identify the predator and the prey by the fact that the predator

population grows faster with an increase of prey population, while the prey population grows faster with

a decrease of predator population. Looking at (5.4) it is clear that the employment v represents the prey

and the wages u the predators of this system.

We already know from the previous chapter that, in the presence of both species, the predator-prey

model’s solution is a family of closed cycles with a common equilibrium point. For the system in (5.4)

that point is

(v∗, u∗) =
(η2
θ2
,
η1
θ1

)
.

Using the original parameters, we can write the center of the economic model as

(v∗, u∗) =

(
(α+ γ)

ρ
, 1− (α+ β)σ

)
. (5.7)

5.1.2 A Revised Model

Goodwin’s model has some shortfalls, some of them even pointed out by Goodwin himself in his later

work.

Unlimited Growth

The first problem with this model arises when we look at (5.4) and see that, in the absence of wages u,

the employment rate is given by

v = v0e
η1t

which means it grows exponentially, passes full employment and continues to grow without boundaries.

In reality, employment cannot increase without limits and drawbacks on productivity, since additional
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workers are unlikely to be as productive as employed workers. Furthermore, labor market downsizing

often excludes the less trained workers first, as an upsizing may lead to the acceptance of who is

available regardless their training and skills. To make this model more realistic, one should consider a

logistic saturation so that at u = 0 we have

v̇ = η1

(
1− v

K

)
v.

In this model, we should considerK = 1, since the employment rate can’t be bigger than 100%. Including

this feature, the model would write:

v̇ = η1(1− v)v − θ1vu

u̇ = (−η2 + θ2v)u
(5.8)

Wages and Employment

The second problem with Goodwin’s original model is the reaction of wages to employment, since any

changes in wages as a result of changes in employment cannot be instantaneous as they are assumed

to be. Wage contracts planed ahead and usually not don’t into account future demand for labor, causing

a delay in the reaction of wages to employment. This delay can be introduced in (5.8) by replacing in the

second equation

v =

∫ t

0

v(τ)G(t− τ)dτ

where G is a non negative integrable weight function that verifies

∫ t

−∞
G(t− τ)dτ =

∫ ∞
t

G(s)ds = 1.

Therefore, the way wages depend on the past employment levels can be set according to the choice of

function G. With this modification, the new model writes

v̇ = η1(1− v)v − θ1vu

u̇ = −η2u+ θ2u

∫ t

0

v(τ)G(t− τ)dτ.
(5.9)

Structural Instability

The structural instability of Goodwin’s model is considered to be its worst fault. This instabililty comes

from the fact that small changes in the initial condition (v0, u0) may lead to a much different behavior

of solutions. Cushing (1977) [30] and MacDonald (1977) [31] managed to stabilize the solutions by

choosing as weight function

G(s) = ae−as, a > 0.
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This means that these authors considered that employers take into account changes in the company’s

profits before making the wage contracts. Due to the constant capital-output ratio and the fact that output

is strongly connected to employment, employers discount past employment levels using a as a discount

rate. Using this weight function, the authors guarantee that the furthest in the past an employment level

is the less it affects the wages. Furthermore, if we consider a time period s large enough the influence

becomes practically null, as can be observed in figure 5.1.

Figure 5.1: Weight Function G(s) = ae−as, a = 0.75.

These authors wrote a variation of system (5.9) without structural instability:

v̇ = η1(1− v)v − θ1vu

u̇ = −η2u+ θ2u

∫ t

0

v(τ)ae−a(t−τ)dτ.
(5.10)

At this point we have an improved model for the dynamic relationship of wage and employment, making

our next step the study of its solution and stability properties.

5.1.3 An Improved Model

Solution and Stability

Looking at the topics mentioned before, Vadasz (2008) [32] proposed an improved model of the form

ẋ = η1(1− x)x− θ1xy

ẏ = −η2y + θ2yz

ż = a(x− z)

(5.11)

where x represents the employment, y the wages and z stands for the expectations of future employment

levels based on past employment levels. The third equation of the system shows that this expectations

change continuously and correct themselves.
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The system in (5.11) has three equilibrium points:

S1 = (0, 0, 0)

S2 = (1, 0, 1)

S3 =

(
η2
θ2
,
(
1− η2

θ2

)η1
θ1
,
η2
θ2

) (5.12)

Vadasz studied the stability of this steady states and he reached the following conclusions:

• The equilibrium S1 is a saddle point regardless of the choice of parameters.

• The equilibrium S2 is asymptotically stable only if η2 > θ2. This condition implies that there is a

wage decrease, but since S2 represents the case where zero wages correspond to full employ-

ment, it is invalid for this case. As a result, S2 becomes an unstable node in the context of the

model studied;

• To study the stability of S3 we consider three cases. Let µ = 1
a .

– If θ2(θ2 − θ1)− η1η2 < 0 then S3 is asymptotically stable, regardless the delay;

– If θ2(θ2 − θ1)− η1η2 > 0 and µ
(
θ2 − η2 − η1η2

θ2

)
< 1 then S3 is asymptotically stable;

– If θ2(θ2 − θ1)− η1η2 > 0 and µ
(
θ2 − η2 − η1η2

θ2

)
> 1 then S3 is unstable;

Further Improvements

Although the changes mentioned before improve Goodwin’s model by making it more realistic, the weight

function chosen doesn’t incorporate the phenomenon of rising wages during a recession. Instead, it

slows the growth of wages when employment levels start decreasing. To get a model closer to reality,

one should choose a weight function of the form

G(s) = a2se−as, a > 0.

This choice of function introduces a delay on how wages react to employment, and assumes a maximum

at s = 1
a such that G( 1a ) =

a
e . For the particular case where a = 0.75 the weight function is illustrated in

figure 5.2.

For this particular choice of parameter, the bigger weight corresponds to employment at s = 1, 33 with

G = 0.276. Choosing a = 0.75 means that the employment level of nine months ago has the largest

influence on the present wages, and as can be seen in figure 5.2 the employment levels far back in the

past have almost no effect on current salaries.
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According to Vadasz, choosing this type of weight function would transform the system in (5.11) in

ẋ = η1(1− x)x− θ1xy

ẏ = −η2y + θ2yz1

ż1 = a(z2 − z1)

ż2 = a(x− z2).

(5.13)

Looking at this model, one can see that the real wages in the second equation will be set according to

past employment with dynamic relationship described by last two equations of the system.

Figure 5.2: Weight Function G(s) = a2se−as, a = 0.75.

5.2 Palomba’s Model

The author famous for introducing the Lotka-Volterra dynamics in economics is Goodwin (1967). Yet, as

pointed out by Massimo di Mateo (1988) [26], the economist Giuseppe Palomba had used these equa-

tions in a book published in 1939. Throughout this section we will study Palomba’s work and results

concerning the application of Lotka-Volterra dynamics in economics.

Palomba (1939) [12] considers an economy where there are only two types of goods: consumption

goods, such as clothing and food, and capital goods, such as buildings and machinery. The model is

built under the following assumptions:

Assumption 1: There are two types of goods: goods of type a, which consist of goods ready for im-

mediate consumption and goods that directly enter into their production; goods of type b, namely capital

goods that directly enter into the production of other capital goods and only indirectly into the production

of consumption goods.

Assumption 2: The economy is in a dynamic situation tending to increase its capital equipment. This

means that it is necessary to reduce consumption in order to invest and increase capital stock. There-
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fore, some of the commodities of type a are allocated to category b.

Assumption 3: In any given time goods of type a have a coefficient of increase equal to ε1, and this

growth may be caused by long-term forces such as productivity and labor force growth. On the other

hand, goods of type b have a coefficient of increase equal to −ε2. Since ε1 and ε2 are positive constants,

these coefficients imply that if there is no change in destination as mentioned in assumption 2, then

goods of type a would increase continuously while goods of type b would decrease towards zero.

Assumption 4: The coefficient of decrease of goods of type a, due to changes in destination, is equal

to −γ1, while the coefficient of increase of the goods of type b, due to the same reason, is equal to γ2.

Here, γ1 and γ2 are positive constants.

Palomba denoted as C1 the volume of the goods of type a, and as C2 the volume of the goods of type b.

The assumptions previously made translate into the following equations:

dC1

dt
= C1(ε1 − γ1C2)

dC2

dt
= −C2(ε2 − γ2C1)

(5.14)

For the simplicity of of future computations we define α1 = ε1, α2 = −ε2, β1 = −γ1 and β2 = γ2. With

this notation we obtain a system equivalent to the previous one

dC1

dt
= C1(α1 + β1C2)

dC2

dt
= C2(α2 + β2C1)

(5.15)

Manipulating system (4.14) we find that

β2
dC1

dt
− β1

dC2

dt
= β2C1α1 − α2γ1C1

α2
1

C1

dC1

dt
− α1

1

C2

dC2

dt
= β1C2α2 − α1β2C1.

(5.16)

and if we sum these conditions we get

β2
dC1

dt
+ α2

1

C1

dC1

dt
− β1

dC2

dt
− α1

1

C2

dC2

dt
= 0.

Integrating both sides of this equality we obtain

β2C1 + α2 logC1 − β1C2 − α1 logC2 = k′,

where k′ is a constant. Therefore, applying the exponential function to both sides of the equation we get

eβ2C1Cα2
1 = keβ1C2Cα1

2
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where k = ek
′
. If we go back to the original notation, the previous equality writes

eγ2C1C−ε21 = ke−γ1C2Cε12 . (5.17)

Furthermore, if we let

Y = eγ2C1C−ε21

X = e−γ1C2Cε12

(5.18)

we finally obtain

Y = kX. (5.19)

Palomba studied the behavior of this system following closely the work of Lotka and Volterra on their

predator-prey model, where one species feeds on the other. He then made two important observations.

First, he states that the economy’s ondulatory behavior depends solely on the variables involved and

their interaction. In other words, he says that cycles are endogenous, self-sustained and consequently

non-linear. Considering the year when this study was published this was a surprising statement for the

scientific community, since in that period the models proposed by mathematical economists for business

cycles were linear and required exogenous factors, such as random shocks, to keep their cyclic behavior.

Only in the 1950’s did Goodwin start to develop non-linear models for economic cycles, which lead him

to the construction of his famous model for wages and employment presented in the previous section.

Second, he points out that the parameters ε1, ε2, γ1 and γ2 should be considered general functions of

time, instead of static values. With this new feature, Palomba’s model would write

dC1

dt
= C1[ε1(t) + γ1(t)C1]

dC2

dt
= C2[ε2(t) + γ2(t)C1]

(5.20)

Unlike the predator-prey model, where in the presence of both species the orbits are closed curves,

the orbits of this improved model do not have a known shape since they depend on the nature of the

functions ε1(t), ε2(t), γ1(t) and γ2(t).
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Chapter 6

Conclusions

In nature, species compete, expand and seek resources to continue their existence. The Lotka-Volterra

equations model these loss-win interactions and can be used in many fields of study besides the equi-

librium of ecosystems. Throughout our work, we have studied some of their possible applications to the

banking system and economics.

Studying the application of Lotka-Volterra equations to the banking system, we first looked at three pos-

sible models that can describe the relationship between deposit and loan volume on a bank’s balance

sheet. The stability of these systems has been analyzed and in the three cases the trivial equilibrium

behaves like a saddle point, while the non-trivial equilibria are unstable in the simple model, and condi-

tionally stable in the model with Michaelis-Menten response and in the model with reserve requirement.

Also, the relationship between mother banks, subsidiary banks and the individuals or companies that

use their services has been compared to a three level ecologic food chain. Studying the equilibrium of

this dynamical system we found that, under a specific set of conditions involving the parameters of the

equations, it is possible to find a stable equilibrium for the system.

Regarding the applications of Lotka-Volterra equations to economics, Vadasz found that the original

Goodwin model, after some modifications, is able to accurately predict changes in wages and employ-

ment as well as employment cycles. In addition, Palomba modeled the dynamic relationship between

the volumes of consumption and capital goods. He concluded that economic cycles are non-linear and

endogenous, and suggested that the behavior of these systems should be studied using, as coefficients

for the Lotka-Volterra equations, functions of time rather than the constants on the original model.
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