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Resumo

As reservas de capital representam um instrumento fundamental no processo de gestão
de risco das empresas de seguros, sendo utilizadas no cálculo do capital económico e re-
gulamentar. Como o valor das reservas e dos prémios é fortemente influenciado pelos
pressupostos atuariais utilizados, a escolha adequada das bases técnicas é um dos temas
de principal interesse para as Companhias de Seguros e para as Entidades Reguladoras.

O principal objetivo deste trabalho é o estudo de um método de construção de cenários
biométricos para o cálculo de reservas e prémios, adotando uma posição conservadora
em relação às bases técnicas de segunda ordem, seguindo a orientação de dois trabalhos
fundamentais neste domínio, Christiansen (2010) e Milbrodt and Stracke (1997). Este
cenário é determinado através da resolução de um problema de maximização da reserva
prospetiva que nos permite definir as bases biométricas de primeira ordem que representam
o pior caso do ponto de vista do Segurador. As apólices do ramo vida são descritas
pelo modelo Markoviano de estados múltiplos, sendo as reservas prospetivas calculadas
recorrendo à equação de Thiele.

O novo regime de solvência da União Europeia, Solvência II, também recorre à noção
de piores cenários, por forma a quantificar os requisitos de capitais no ramo vida, em-
bora com uma definição diferente. Assim, um objetivo adicional, e também importante,
deste trabalho é procurar integrar o método estudado no enquadramento estabelecido pelo
projeto Solvência II.

O novo método, bem como as propostas anteriores existentes na literatura, serão ob-
jeto de apresentação e discussão, recorrendo nomeadamente a dois Casos de Estudo, que
permitirão observar a sua praticabilidade no cálculo dos prémios e das reservas, enquanto
se avalia uma possível aplicação no enquadramento estabelecido em Solvência II. Por forma
a fazê-lo, os casos analisados pelo autor serão estendidos a outros produtos que, embora
não sendo comuns no mercado Português, pela sua complexidade, nos permitem mostrar
toda a versatilidade inerente ao modelo e tirar importantes conclusões.

Palavras-Chave: Seguros Vida, Prémios, Reserva, Pior Cenário, Sum-at-Risk, Solvên-
cia II
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Abstract

Reserves are a fundamental tool in insurance risk management since they are used to
determine the economic or regulatory capital required for insurers to remain solvent. As
the values of reserves and premiums are strongly dependent on the actuarial assumptions
used, the choice of the adequate elements of the technical basis is a major concern of both
regulators and insurance companies.

The main purpose of this work is to study a method for the construction of biometric
worst-case scenarios that allow premiums and reserves to be on the safe side with respect to
given confidence bands for the biometric second-order basis, following the essential works of
Christiansen (2010) and Milbrodt and Stracke (1997). This scenario is obtained by solving
a maximization problem for the prospective reserve that allows one to find the worst-case
biometric valuation basis from the insurer’s point of view. In life insurance, policies are
often described by the multi-state Markov model of life contingencies and the prospective
reserves computed using Thiele’s equation.

The new solvency regime of the European Union, Solvency II, also uses worst-case
scenarios, although constructed in a different way, in order to quantify the solvency capital
requirements for life insurance business. Thus, a further important purpose of this thesis
is to integrate the method in study under the Solvency II framework.

The new method, as well as the previous approaches offered in the literature, will
be presented and discussed with two Case Studies, demonstrating the usefulness for the
calculations of premiums and reserves, while a possible application in the calculation of
solvency reserves in Solvency II are introducing. In order to do so, the examples discussed
by the author are extended to products, which although not common in the Portuguese
market, are complex situations that allow us to show the versatility of the model in study
and to derive significant conclusions.

Keywords: Life insurance, Premiums, Reserve, Worst-case Scenario, Sum-at-Risk, Solvency II
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Chapter 1

Introduction

Since the early 18th century that actuaries applied scientific principles and techniques to
life insurance problems involving risk, uncertainty and finance. Although the basic risks
insured have not changed, contracts have become more complex in recent years as well as
the techniques needed to manage them.

The insurer should use those techniques to maintain the total liabilities plus the com-
pany’s net value equal to its total assets. Assets are mainly investments such as bonds,
equities and property, resulting from the collection of premiums from the policyholders and
from earnings on the investments. On the other hand, the liabilities of life insurers primar-
ily comprise the reserves hold to back its obligations to policyholders and beneficiaries. As
a matter of fact, the calculation of the sum of the reserves for all policies in force and the
value of all the company’s investments, at the valuation time, is an important element in
the financial control of an insurance company.

The legal framework for the insurance activity in member states of the European Union
(EU) is based upon common rules. In Portugal, the Portuguese Insurance and Pension
Funds Supervisory Authority (ISP) ensures that insurance companies carry out their busi-
ness in accordance with the European law, supervising the prudent management. In order
to do so, ISP requires each company to maintain its reserves at a level that will assure
payment of all policy obligations as they fall due. In fact, reserves are not only used to
determine the profit or loss for the company over any time period, but also to determine
the economic or regulatory capital needed to remain solvent, being a fundamental tool in
insurance risk management.

When a life insurance company enters into an insurance contract it does not know
the precise moment when the benefits and expenses will occur or how much they will
be. The life insurance company underwrites a set of risks and accepts the premiums,
entering into a long term contractual commitment to pay certain benefits. Thus, life
insurance calculations are performed on technical basis, which is the set of estimates and
assumptions that are used to project future cash flows under a life insurance contract and
discount them to the present. They are, for instance, mortality probabilities, disability
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probabilities, reactivation probabilities and interest rates. Following Macdonald (2004),
technical bases have three main purposes: pricing, i.e. setting premiums, valuation for
solvency and valuation in order to measure and distribute surplus. In many countries,
the basis used to calculate premiums, called premium basis, differ from the assumptions
used to calculate the reserves, that is, the valuation basis. Another distinction is between
first-order basis and second-order basis. While first-order basis include a safety margin,
making conservative or safe-side assumptions about the future, the second-order basis, in
principle, do not contain any margin and consists in the best estimate with respect to the
insured population, being often called experience basis.

The past has shown that the variation in the actuarial assumptions can be wide within
a contract period, for instance, the recent increase in life expectancies in many developed
countries. The influence such changes can have on premiums and reserves is an important
issue and the choice of the technical basis is a major concern of regulators and insurance
companies. As a matter of fact, premiums and reserves should be set on the safe-side, in
the sense that they should be high enough to cover the benefits in all possible scenarios. In
order to do so, it is a common method to choose first-order technical basis that represents
some worst-case scenario for the insurer.

Literature offers three ways for the construction of these scenarios. There is a first
method based on the sum-at-risk which was developed by Lidstone (1905), Norberg (1985),
Hoem (1988), Ramlau-Hansen (1988) and Linnemann (1993). Verbally, it studies the fin-
ancial effect at any point in time resulting from the transition of the policyholder from one
state to another. The authors showed that, for a given first-order basis with corresponding
sums-at-risk for the different states of the policy, the premiums and reserves are on the
safe side if: the second-order basis is smaller than the first-order basis when the first-order
sums-at-risk are positive; or the second-order basis is greater than the first-order basis
when the first-order sums-at-risk are negative.

The two other methods are based on derivatives. The second one was presented by
Dienst (1995), Bowers et al. (1997), Christiansen and Helwich (2008) and Christiansen
(2008a,b) and approximates the relevant functions with local linearisations by using first-
order derivatives, given that worst-case scenarios can be found much more easily for linear
mappings. The third one, developed by Kalashnikov and Norberg (2003), differentiates
the reserve and premium with respect to one arbitrary real parameter and, using the
assumption of normality, obtains confidence bands for them in an one step-approach.

However, as we will see later, none of these three methods is an exact method and all
of them have problems: the first method does not tell us how to find the first-order basis;
the second method works only for narrow confidence bands and yields only approximate
results; the third method runs counter to the traditional rules of insurance regulation in
many countries. Trying to fill this gap in the literature, Christiansen (2010) presents a
new method.

The method allows one to construct the biometric worst-case scenarios that let premi-
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ums and reserves be always on the safe side with respect to given confidence bands for the
biometric second-order basis. Thus, one should choose the first-order valuation basis that
maximizes the reserve with respect to all biometric scenarios within the bounds imposed
for our actuarial assumptions. The method allows to construct such scenarios for homo-
geneous portfolios of single life insurance policies and the results are especially interesting
for life insurance policies with a mixed character, i.e., survival and occurrence character.

There are two main purposes in this thesis:

1. To explore the method introduced by Christiansen (2010) and adapting it to the
Portuguese case (at this point, use was made of the practical knowledge the author
acquired while performing her professional tasks);

2. Attention should be paid to the fact that the new solvency regime of the EU,
Solvency II (Directive 2009/138/EC), uses worst-case scenarios for the calculation
of the solvency capital requirement (SCR) in life insurance business. Thus, a pos-
sible application of this method in the Solvency II framework is also discussed.

The paper is organized as follows: In Chapter 2 we introduce the basic concepts of life
insurance. In Chapter 3 we start with the general modelling framework for multi-state
life policies based on Time-Continuous Markov Model for life insurance and on Thiele’s
Equations and then describe the methods offered in the literature to construct biometric
worst-case scenarios. In Chapter 4, numerical applications are presented and discussed with
the purpose of showing how this new approach is useful to obtain premiums and reserves
on the safe side and in the calculations of biometric solvency reserves for Solvency II.
The study is completed with some conclusions and suggestions for further research, in
Chapter 5. Some results that would lead to an easier reading are presented in appendix
because the size restrictions of the text.
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Chapter 2

Life Insurance

The origins of the concept of life insurance go back to burial clubs in Rome, in 100 B.C.,
which were created to pay for the funeral of members. Norton (1852) refers that traditional
life insurance were established in the early 18th century, in order to provide financial
assistance to widows in the event of policyholder death. These policies remains very similar
to the contracts written up to the 1980s, experienced enormous changes in the last three
decades.

2.1 Types of contracts

In its simplest form, an insurance policy is a contract between two parties placing obliga-
tions on both of them. The policyholder agrees to pay an amount or a series of amounts
to the insurer, called premiums, in return for a later payment or set of payments from the
insurer, called benefit(s), if and when the event insured against occurs.

Life insurance policies exist in many forms, most of them providing considerable flexib-
ility in premiums (amount, duration and frequency) and benefits (amount and the circum-
stances under which these will be paid). The benefits payable under simple life insurance
contracts are of two main types: insurance or annuity. While the term insurance is usually
used when the benefit is paid as a single lump sum, contingent on the death or on survival
of the policyholder to a predetermined maturity date, an annuity is a benefit in the form
of a regular series of payments, usually depends on the survival of the policyholder.

The traditional life insurance products are the whole life, term, endowment and pure
endowment insurance and can be seen for instance in Bowers et al. (1997), Gerber (1997)
and Dickson et al. (2012). The plainest life insurance contract is the whole life insurance
which pays a benefit, called the sum assured, on the policyholder’s death. If the sum
assured is paid provided death occurs during a specified period, the term of the contract,
it is called a term insurance. On the other hand, a pure endowment contract provides a sum
assured at the end of a fixed term, if the policyholder is then alive. Finally, an endowment
insurance is a combination of a term insurance and a pure endowment insurance which
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pays a sum assured either on death of the policyholder or at the end of a specified term,
whichever occurs first.

Annuity contracts provides payments of amounts, which might be level or variable, at
stated times, provided a life is still alive. There are many variants of annuity contracts,
described e.g. in Garcia and Simões (2010). For instance, a whole life annuity provides
payments until the death of the annuitant; if the payments are made for some maximum
period, provided the annuitant survives that period, it is called a term annuity; and in the
deferred annuity the start of payment is deferred for a given term.

There are other life contingent risks, depending on the state of health of the policy-
holder, described e.g. in Booth et al. (2005) as health insurance products: income pro-
tection insurance; critical illness insurance; long-term care insurance and private medical
insurance. For instance, while an income protection insurance replaces some income to
the insured whilst they are unable to work, by reason of illness or injury, a critical illness
insurance pays a benefit on diagnosis of a severe condition, such as certain cancers or heart
disease.

In recent years, in order to competing for policyholders’ savings with other institutions,
insurers have provided more flexible products that combine the death benefit coverage with
a significant investment element, known as the modern insurance contracts (Dickson et al.,
2012).

2.2 The loss random variable

The cash flows for a life insurance contract consist of the insurance and/or annuity benefit
outgo (with associated expenses) and the premium income. All of the cash flows in a
contract are uncertain, depending on the death, survival or possibly the state of health
of a life, unless the contract is purchased by a single premium, in which case there is no
uncertainty regarding the premium income. Therefore, the loss incurred by the insurer on
a particular policy can be modelled with the loss random variable L.

Definition 2.2.1. Consider a policy which is still in force t years after it was issued. The

random loss variable at time t, L (t), is the difference between the present values of future

outgo and of future income: L (t) = PV [FutureOutgo]− PV [Future Income].

Insurers wish to determine a distribution for L (t) with the purpose of finding the
adequate premium for a given benefit and compute reserves.

2.3 Premiums

Under an insurance policy the policyholder agrees to pay premiums to the insurance com-
pany. Regarding to the frequency and amount, the premium payment arrangement will
commonly be:

5



- one single payment, known as a single premium;
- a regular series of m payments of a constant or varying amount, made every 1/m

years, typically quarterly or monthly, known as regular premiums.

The key feature of any life insurance policy is that premiums are payable in advance, so
the first payment is always due at the time the policy is effected.

The benchmark principle for calculating premiums is the equivalence principle (Gerber,
1997). This method consists in finding the premiums that set the expected present value
of the income equal to the expected present value of the outgo:

EPV of benefit outgo = EPV of premium income

or equivalently E [L (t)] = 0.
However, there are other classical methods of calculating premiums, such as the port-

folio percentile premium principle or the utility principle (Bowers et al., 1997), and more
contemporary approaches, used commonly for non-traditional policies, that consists in con-
sider the cash flows from the contract and to set the premium to satisfy a specified profit
criterion (Dickson et al., 2012; Booth et al., 2005)

2.4 Provisions and Policy Values

A reserve is the amount set aside by the insurer to meet its future obligations, i.e. to pay
policyholder’s benefits and, where appropriate, future expenses. In reserve calculations it
is possible to look to the future cash-flows forward leading to the calculation of present
values, or backward leading to the calculation of accumulations (The Actuarial Profession,
2013, CT5 Contingencies). This concepts lead to two types of reserves:

- Retrospective reserve is the accumulated value of premiums received less benefits
paid up to time t, on a specified basis.

- Prospective reserve is the expected present value of the loss random variable, on a
specified basis.

The prospective reserve is an important element in the financial control because if the
insurer holds funds equal to the reserve and the future experience follows the reserve basis
then, averaging over many policies, the combination of reserve and future premiums will
be sufficient to pay the future benefits and expenses. In general terms, at a certain point
in time t,

V (t) + EPV at t of future premiums = EPV at t of future benefits+ expenses

where V (t) is the the prospective reserve at time t (Bowers et al., 1997).
In practice, the retrospective reserve will be equal to the prospective reserve when all

calculations are performed on the same basis.
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2.5 Thiele’s equation

2.5.1 Reserving for a policy with discrete annual cash flows

Following Dickson et al. (2012), consider a policy issued to a life aged x under which
premiums, expenses and claims can occur only at the start or end of the year. Suppose
this policy has been in force for t years, where t ≥ 0. Consider the (t+ 1)th year and the
following notation:

- Pt: premium payable at time t;
- Et: premium-related expense payable at time t;
- bt+1: sum insured payable at time t+ 1 if the policyholder dies in the year;
- et+1: expense of paying the sum insured at time t+ 1;
- tV : prospective reserve for a policy in force at time t (t+1V denotes the prospective reserve
for a policy in force at time t+ 1);
- qx+t: probability that the policyholder, alive at time t, dies in the year;
- px+t: probability that the policyholder, alive at time t, survives to age x+ t+ 1;
- Kx+t: curtate future life time for a life aged x;
- it: rate of interest assumed earned in the year.

The loss random variable at time t is

Lt =

(1 + it)
−1

(bt+1 + et+1)− Pt + Et if Kx+t = 0 (with probability qx+t)

(1 + it)
−1
Lt+1 − Pt + Et if Kx+t ≥ 1 (with probability px+t)

and therefore, the prospective reserve can be defined as

tV = E [Lt] = qx+t (1 + it)
−1

(bt+1 + et+1) + px+t (1 + it)
−1

t+1V − (Pt − Et) (2.5.1)

In words, equation (2.5.1) states that the reserve at the start of the year should be equal to
the present value of expected cost of the death benefits at the year end (the benefit is bt+1

plus expenses et+1 payable with probability qx+t) plus the present value of the expected
cost of setting up the reserve at the year end (the reserve of amount t+1V is required with
probability px+t) minus the premium cash-flows (Pt − Et).

2.5.2 Thiele’s Differential Equations

The concepts presented above extend to policies where regular payments are payable con-
tinuously and sums insured are payable immediately on death (Appendix A.1). In practice,
it is common to represent the prospective reserve as a system of linear differential equations
describing the dynamics of reserves in life insurance in continuous time. These equations
are called Thiele’s differential equations and are of the form (Wolthuis, 2003; Dickson et al.,
2012):

d

dt
V (t) = δtV (t) + Pt − Et − (bt + et − V (t))µx+t (2.5.2)
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While the left-hand side of the formula is the rate of increase in the reserve at time t, the
right-hand side explains the individual factors affecting the value of V (t). These factors
are the following: interest is being earned on the current amount of the reserve and the
rate of increase at time t is δtV (t); premium income, minus premium-related expenses, is
increasing the reserve at rate Pt − Et; claims, plus claim-related expenses, decrease this
amount at rate (bt + et − V (t))µx+t.

One advantage of Thiele’s equation arises from its versatility and flexibility, because it
can easily accommodate variable premiums, benefits and interest rates. In this paper we
will return to Thiele’s equation in sub-section 3.1.2.
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Chapter 3

Biometric worst-case scenarios

The main reference for this work is Christiansen (2010). The model therein presented is of
the most interest, since it allows one to construct biometric worst-case scenarios that let
premiums and reserves be always on the safe side with respect to given confidence bands
for the biometric second-order basis. In order to do so, one should choose the first-order
valuation basis that represents some worst scenario from the insurer’s point of view and as
such maximizes the reserve. In this chapter, we start with the theoretics of the problem,
we look at the three previous approaches offered in the literature and then describe the
model.

3.1 Theoretics of the Problem

Christiansen (2010) uses Thiele’s equation in the Markov model of life contingencies to
derive formulas concerning the expected actual development of reserves. The author follows
the general approach of Milbrodt and Stracke (1997) using the argument that it is valid
to the discrete and continuous methods, as well as the mixed cases. Thus, this section is
focused on these two works, essential for the development of the thesis.

3.1.1 Time-Continuous Markov Model for life and other contingencies

Multi-state models are one of the most important developments in actuarial science since
they simplify and provide a sound foundation for some traditional actuarial techniques.
The Markov model (Ross, 1996; Wolthuis, 2003), a special type of a multi-state model,
is a very useful instrument to model life insurance and annuities as it provides sufficient
generality to cover most situations in the insurance of persons and satisfy the so-called
Markov property under which the future development of the process depends only on the
present state and not on its full history so far.

One application of the Markov model in life insurance is to determine expected present
values of payments that are contingent upon the sojourn in certain states or upon trans-
itions between the states (Wolthuis, 2003). Basically, life insurance risks are given by
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random maps of states. At every time after policy issue the state of the policy is recor-
ded and this corresponds to modelling risks by jump processes, according to the following
definition (The Actuarial Profession, 2013, CT4 Models):

Definition 3.1.1. A continuous-time Markov process Xt, t ≥ 0 with a discrete, i.e. finite
or countable, state space S is called a Markov jump process.

3.1.1.1 Time-inhomogeneous Markov jump processes

We start this sub-section by discussing the important features of time-inhomogeneous
Markov jump processes and then introduce the integrated form of Kolmogorov backward
Equations (used later in sub-section 3.1.2). In order to do so, consider a general insurance
policy issued at time 0, with term T and modelled by a Markovian jump process (Xt)t∈[0,T ]

with finite state space S. Transitions between states are governed by the transition prob-
abilities, with the transition space denoted by J =

{
(j, k) ∈ S2| j 6= k

}
. Assume that it is

an inhomogeneous time-continuous Markov process where the transition probabilities for
each fixed period of time vary in time. Thus, it is necessary to specify the beginning and
the end of the interval [s, t], instead of just its length t− s.

Definition 3.1.2. The transition probability pjk (s, t) is the conditional probability that
the process is in state k at time t, given that the process is in state j at time s, irrespective
of the way in which state k is reached (Markov property), that is:

pjk (s, t) = P (Xt = k|Xs = j) , 0 ≤ s ≤ t ≤ T, (j, k) ∈ S2, P (Xs = j) > 0

pjk (s, t) = 0, otherwise.

Furthermore,
pjk (s, s) = δjk, s ≥ 0, (j, k) ∈ S2, (3.1.1)

where δjk is the Kronecker delta, which is equal to 0 for j 6= k and equal to 1 for j = k.

The transition probabilities satisfy properties (1)-(2) below (Milbrodt and Stracke, 1997):

(1) 0 ≤ pjk (s, t) ≤ 1, 0 ≤ s ≤ t, (j, k) ∈ S2.

(2)
∑

k∈S pjk (s, t) = 1, 0 ≤ s ≤ t, j ∈ S.

In words, since the state space S is finite, there exists a finite-dimensional transition
probability matrix denoted by p (s, t) = (pjk)(j,k)∈S2 where all elements are non negative
and all rows sum to unity.

Chapman-Kolmogorov equations: If Xt is a Markov process, the transition probab-
ilities obey the Chapman-Kolmogorov equations:

pjk (s, t) =
∑
i∈S

pji (s, r) pik (r, t) 0 ≤ s ≤ r ≤ t, (j, k) ∈ S2 (3.1.2)
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that expresses the fact that if a process is in state j at time s and is in state k at time t the
transition occurs via some state i ∈ S at an arbitrary intermediate time r. Equivalently,
written in matrix form we have

p(s, t) = p (s, r) p(r, t) 0 ≤ s ≤ r ≤ t, (j, k) ∈ S2.

To avoid difficulties with null-sets, the concept of regular transition matrices is now intro-
duced (Milbrodt and Stracke, 1997).

Definition 3.1.3. The transition matrix p (s, t) is regular if it satisfies the Chapman-
Kolmogorov Equations (3.1.2) and equation (3.1.1), without exceptional sets - null sets.
If in addition pjk (s, �) is right continuous for every s ∈ [0, T ], (j, k) ∈ S2, then p (s, t) is
called a right continuous regular transition matrix.

Intensities of transition: Intensities of transition are the fundamental concept in con-
tinuous time. In order to differentiate the transition probabilities we will assume that the
functions pjk (s, t) are continuously differentiable. This assumption implies the existence
of the following quantities.

Definition 3.1.4. For 0 ≤ s ≤ t , (j, k) ∈ J , the transition intensity from state j to state
k is

µjk (s) =

[
∂

∂t
pjk (s, t)

]
t=s

= lim
h→0

pjk (s, s+ h)− δjk
h

and the intensity of decrement for state j is

µjj (t) = −
∑
k 6=j

µjk (t) .

In addition, the matrix of transition intensities µjk (t) is µ (t) = (µjk)(j,k)∈S2 .

Assumption 3.1.5. The intensity function for the transition from state j to state k,
µjk (t), j 6= k, exists.

Based on Alioum (2013), the concepts of cumulative transition intensity qjk (s, t) follow.

Definition 3.1.6. For 0 ≤ s ≤ t , (j, k) ∈ J :

(1) The cumulative transition intensity from state j to state k is qjk (s, t) =
´ t
s µjk (t) dt.

(2) The cumulative intensity of decrement for state j is qjj (s, t) = −
´ t
s µjj (t) dt.

(3) The matrix of cumulative transition intensities qjk (s, t) is qJ = q (s, t) = (qjk)(j,k)∈S2 .

The cumulative transition intensity matrices satisfies the following properties (Milbrodt
and Stracke, 1997).
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Lemma 3.1.7. If s ≥ 0 and (j, k) ∈ S2 satisfy P (Xs = j) > 0, then

(1) qjk (s, r) + qjk (r, t) = qjk (s, t) , s ≤ r ≤ t.

(2) limt→s qjk (s, t) = qjk (s, s) = 0.

(3) qjk (s, t) ≥ 0 , qjj (s, t) ≤ 0, s ≤ t, j 6= k.

(4) qjj (s, t) = −
∑

k 6=j qjk (s, t) , s ≤ t.

(5) 4qjj (t) = qjj (t)− qjj (t−) ≥ −1, t > 0.

(6) 4qjj (t0) = qjj (t0)− qjj (t0−) = −1⇒ qjj (t) is constant on [t0, T ].

Again, to avoid difficulties with null-sets, the concept of regular transition intensity
matrices follows.

Definition 3.1.8. The cumulative transition intensity matrix q (s, t) is regular if it satisfies
properties (1)-(6) in Lemma 3.1.7 without exceptional sets - null sets.

Assumption 3.1.9. The Markovian jump process(Xt)t∈[0,T ] has a regular cumulative trans-
ition intensity matrix q.

Kolmogorov backward integral equations: Define the probability of staying unin-
terruptedly in the current state j in the interval [s, t] as: pjj (s, t) = e

´ t
s µjj(r)dr. Let the

residual holding time Rs be the amount of time between s and the next jump and let
X+
s = Xs+Rs . Conditional on Rs and X+

s and using the law of total probability

pjk (s, t) = P [Xt = j|Xs = k]

= δjkpjj (s, t) +
∑

i 6=j
´ t
s pjj (s, r)µji (r)P [Xt = k|Xs = j, Rs = r − s,X+

s = i] dr

and therefore

pjk (s, t) = δjkpjj (s, t) +
∑
i 6=j

ˆ t

s
pjj (s, r)µji (r) pik (r, t) dr. (3.1.3)

pjj (s, r)µji (r) pik (r, t) is the probability of remaining in state j from time s to time r,
then making a transition to state i at time r, and finally going from state i to state k
between times r and t. To take into account the possible values of Rs we integrate from
r = s to r = t , and to take into account all possible intermediate states we sum over all
possible values of i 6= j.

Milbrodt and Stracke (1997) present the backward integral equations using the cumu-
lative transition intensities, as follows:

pjk (s, t) = δjk +
∑
i∈S

ˆ t

s
pik (w, t) dqji (w) . (3.1.4)
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3.1.1.2 Insurance benefits and premiums

Let us consider the general insurance policy introduced in 3.1.1.1. Contractual payments
between the insurer and the policyholder are taken to be on a continuous time basis. At
any time t ∈ [0, T ] the policy provides (Wolthuis, 2003):

- Lump sum benefits bjk (t) upon a transition from state j to k, payable at time
DT (t) ≥ t , for (j, k) ∈ J . bjk (t) are deterministic non negative functions with
bounded variation and DT (t), DT : (0,∞) → (0,∞), is an increasing function
introduced by Milbrodt and Stracke (1997) in order to model the difference that may
occur between the payment date and the time of transition. To simplify notation,
assume that DT (T ) = T .

- Annuity payments Bj (t) during sojourn in a state j defined in a cumulative man-
ner, i.e. Bj (t) is the total amount paid in time [0, t]. Bj (t) are right continuous
deterministic functions with bounded variation. While benefits paid to the insured
have a positive sign, premiums paid by the insured have a negative sign.

For reasons of simplicity, expenses and single premiums are disregarded. However, the
theory may be easily developed to incorporate these topics. For instance, expenses may
be considered as additional benefits.

3.1.1.3 Interest model

In the literature a large number of interest models is available (Brigo and Mercurio, 2006).
Christiansen (2010), assumes that the investment portfolio of the insurance company earns
interest according to the compound interest model with interest intensity function ϕ and
cumulative intensity Φ. In the general case, interest cumulative intensity Φ can be defined
based on the interest function r (t) as bellow (Milbrodt and Stracke, 1997).

Definition 3.1.10. Let r (t) be an interest function, non decreasing and right-continuous,
equal to 1 at time zero. Then Φ (t) =

´ t
0

1
r(s−)dr (s) , t ≥ 0.

It follows that the value at time s of a unit payable at time t > s is

υ (s, t) =

∏
(s,t]

(1 + dΦ)

−1

(3.1.5)

for partitions s < t0 < t1<... < tn = t.
Furthermore, when the cumulative intensity function Φ is a step-function, one can separate
the jumps of Φ (t) from its continuous part and get the generalized exponential formula

υ (s, t) = e(−Φc(t)−Φc(s))
∏

τ∈(s,t]

(1 +4Φ (τ))−1 (3.1.6)
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where Φc (t) = Φ (t) −
∑

τ≤t4Φ (τ) for all t is the continuous part of Φ and 4Φ (t) =

Φ (t)− Φ (t−) .

Further details about (3.1.5) and (3.1.6) can be found in Jacod (1975) and Gill (1980,
Lemma 3.2.1 and Appendix 4).

3.1.2 Reserves and Thiele’s Equations revisited

Naturally, the definition of prospective reserve for a policy modelled using a multi-state
model continues to be the expected value of the future loss random variable, with one
obvious additional requirement. Due to the Markov property, the reserve depends on
the current state of the policy and the time elapsed since entering this state. Formally,
considering the three basic elements of the time-continuous Markov model presented in the
previous section, the Definition 3.1.11 follows.

Definition 3.1.11. The prospective reserve for the policy that is in state i at time s, given
that q is a regular matrix, is defined by

Vi (s) =
∑
j∈S

ˆ
(s,T ]

υ (s, t) pij (s, t) dBj (t)+
∑

(j,k)∈J

ˆ
(s,T ]

υ (s, DT (t)) bjk (t) pij (s, t−) dqjk (t) .

(3.1.7)

Both terms in the right-hand side of the equation concern expected present values over
the interval (s, T ]. The first term is the expected present value of annuity payments made
during the sojourn in states of the Markov chain, and the second term is the expected
present value of the lump-sum insurance benefits. Random variables are both the times of
transition and the states to where the transitions occur.

Under appropriate smoothness conditions, Milbrodt and Stracke (1997) show that
Thiele’s differential equations are obtained differentiating (3.1.7):

d

dt
Vi (t) = −bi (t) + (ϕ (t)− µii (t))Vi (t)−

∑
k 6=i

(υ (t,DT (t)) bik (t) + Vk (t))µik (t) (3.1.8)

Formula (3.1.8) can be interpreted in the same way as formula (2.5.2). During sojourns
in state i, the reserve changes as a result of interest being earned at rate ϕ (t)Vi (t), and
benefits being paid at rate bi(t). Transitions from state i to any other state k at time t,
also lead to changes in the prospective reserve: a decrease of bik (t) as the insurer has to
pay at time DT (t) any lump sum benefit contingent on jumping from state i to state k;
a decrease of Vk (t) as the insurer has to set up the appropriate reserve in the new state;
and an increase of Vi (t) as this amount is no longer needed (for all possible transitions we
have µii (t)Vi (t)).

The authors named equations (3.1.7) "Thiele’s integral equations of type 1" and es-
tablished another system of integral equations for the prospective reserve referred to as
"Thiele’s integral equations of type 2". For the second ones, the existence of a regular
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cumulative transition intensity and transition intensity matrices that satisfy the backward
integral equations identically, i.e.. without exceptional sets, is required.

As a matter of fact, if the cumulative transition intensity matrix q (s, t) is regular, then
the transition probability matrix p (s, t) has a representation of the form

p (s, t) =
∏
(s,t]

(I + dq), (3.1.9)

where I denotes the appropriate unit matrix. Furthermore, according to Andersen et al.
(1991), the product-integral of p over intervals of the form [0, t] can be defined as

p(s, t) = lim
max |ti−ti−1|→0

∏
(I + q (ti)− q (ti−1)) ,

where s < t0 < t1 < ... < tn = t is a partition of [s, t].

From this derivations, Milbrodt and Stracke (1997, Lemma 4.7) prove the regularity
conditions required in the Lemma below.

Lemma 3.1.12. Let Xt be Markov, q a regular cumulative transition matrix for Xt and
p defined by the product in (3.1.9). Then p is a right continuous regular transition matrix
for Xt that satisfies the backward integral equations (3.1.3) and (3.1.4) identically.

For Thiele’s integral equations of type 2, stronger integrability conditions, which do
only make sense if q is regular, are also required. Following Milbrodt and Stracke (1997),
these are listed in Assumption (3.1.13).

Assumption 3.1.13.

(1)
∑

j∈S |Bj | (T ) <∞.

(2)
∑

(j,k)∈J
´

(0,T ] υ (t, DT (t)) bjk (t) dqjk (t) <∞.

(3)
∑

j∈S
∑

(j,k)∈J
´

(0,T ]

´
(t,T ] υ (0, s) d|Bj | (s) r (t) dqjk (t) <∞.

(4)
∑

(i,l)∈J
∑

(j,k)∈J
´

(0,T ]

´
(t,T ] υ (0, DT (s)) bjk (s) dqjk (s) r (t) dqil (t) <∞.

At this stage, it is now possible to present Thiele’s integral equation of type 2 (Milbrodt
and Stracke, 1997, Theorem 4.8).

Theorem 3.1.14. (Thiele’s integral equation of type 2) Let Xt be Markov with a regular
cumulative transition intensity matrix q and p be a right continuous regular transition
matrix for Xt, which satisfies the backward integral equations (3.1.3) identically. Assume
that the integrability conditions (1)-(4) hold and fix a version of the prospective reserve by
(3.1.7). Then for every s ∈ [0, T ], i ∈ S:

Vi (s) = Bi (T )−Bi(s)−
ˆ

(s,T ]
Vi (t−) dΦ (t) +

∑
j:j 6=i

ˆ
(s,T ]

Rij (t) dqij (t) (3.1.10)
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where Rij (t)is the so-called sum-at-risk associated with a possible transition from state i
to state j at time t,

Rij(t) = υ (t,DT (t)) bij (t) + Vj (t) +4Bj(t)− Vi (t)−4Bi (t) ,

4Bj (t) = Bj (t)−Bj (t−).

The interpretation of the system of integral equations in terms of infinitesimal sojourn
payments Bi (T ) − Bi (s), infinitesimal interest premiums Vi (t−) dΦ (t) and infinitesimal
sums-at-risk Rij (t) dqij (t) is the same as for the classical Thiele’s equation. We should
point out that Thiele’s integral equations of type 1 imply Thiele’s integral equations of
type 2 and vice versa. Proofs are presented in Milbrodt and Stracke (1997).

If further Φ and the qjk have the intensities ϕ and µjk, then (3.1.10) becomes:

Vi (s) = Bi (T )−Bi(s)−
ˆ

(s,T ]
Vi (t−)ϕ (t) dt+

∑
j:j 6=i

ˆ
(s,T ]

Rij (t)µij (t) dt. (3.1.11)

Additionally, from (3.1.7) we get an initial condition for Thiele’s integral equation
system: Vi (T ) = 0 for all i ∈ S.

From now on, following Christiansen’s approach (2010), the prospective reserve is
defined as in (3.1.10) and (3.1.11).

3.2 The existing approaches

As already referred, before Christiansen (2010), literature offered three main frameworks
for the construction of a biometric first-order valuation basis. In this section, we give a
more detailed survey of these approaches.

3.2.1 Sum-at-risk

Lidstone (1905) studied the effect on reserves of variations in valuation basis and contract
terms in discrete time. Lidstone’s ideas are extended to a continuous time version, using
Thiele’s differential equations, by Norberg (1985). Later, Hoem (1988), Ramlau-Hansen
(1988) and Linnemann (1993) studied the expected profit resulting from changes in valu-
ation basis.
The basic safe-side requirement introduced for the Markov model by Hoem (1988) is

V ∗i (t) ≤ Vi (t) ,

where V ∗i (t) is the prospective reserve for a policy that is in state i at time t, calculated
using the second-order basis. It means that the reserve on the first-order basis is always
sufficient to cover the reserve needed, according to the second-order basis. Note that the
difference Vi (t)− V ∗i (t) can be interpreted as the expected profit of the insurer.
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Assuming premiums, benefits and the prospective reserve at time T to be equal on first
and second order basis, Linnemann (1993) shows that changes in the prospective reserves
for a closed insurance portfolio caused by alterations in the technical basis are given by

Vi (t)− V ∗i (t) =

ˆ T

t
υ∗ (t, u)

∑
k

p∗ik (t, u) g∗k (u) du, (3.2.1)

where g∗k = (ϕ∗ − ϕ)Vk (u) −
∑

l (µ
∗
kl (u)− µkl (u))Rkl (u). Observe that if g∗k ≥ 0 for all

k and u, then Vi (t) ≥ V ∗i (t) for all i and t and the basic safe-side requirement is fulfilled.
A sufficient condition is, of course, that ϕ∗ ≥ ϕ and the second-order biometric basis is
smaller than the first-order basis at ages for which the sum-at-risk is positive, and vice
versa (Ramlau-Hansen, 1988).

When the purpose is to study changes in the prospective reserves caused only by alter-
ations in the biometric technical basis, equation (3.2.1) reduces to

Vi (t)− V ∗i (t) =

ˆ T

t
υ∗ (t, u)

∑
k

p∗ik (t, u)

(
−
∑
l

(µ∗kl (u)− µkl (u))Rkl (u)

)
du. (3.2.2)

For a given first-order basis with corresponding sum-at-risk, all the referred authors showed
that reserves are on the safe-side if: µkl (u) ≥ µ∗kl (u) whenever Rij (u) ≥ 0 and µkl (u) ≤
µ∗kl (u) whenever Rij (u) ≤ 0. Unfortunately, we can not say anything about the alternative
scenarios. Thus, there are situations where the sum-at-risk method guarantees to be on
the safe-side only for a small number of possible second-order basis within the confidence
bounds. Following Christiansen (2010), the solution to this problem is to set the first-order
basis equal to the upper bounds of the confidence bands where the first-order sums-at-risk
are positive and to the lower bounds where it is negative. However, the sum-at-risk method
does not explain how to find such first-order basis.

3.2.2 Derivatives: local linearisations

Using derivatives, Dienst (1995) studied the impact in the premium caused by changes in
disability probabilities and Bowers et al. (1997) analyse the sensitivity of the expected loss
with respect to the interest rate. Christiansen (2008a,b) gives a general formula for the
sensitivity of the prospective reserve and the premium of an individual insurance contract
with respect to changes in a large number of parameters of the technical basis.

Following Christiansen (2008a), the gradient vector of the prospective reserve Vi (t)

associated with a possible transition from state j to state k at time s is

∇qjkVi (t, s) = 1(t,T ] (s) pij (t, s−) υ (t, s)Rjk (s)

and the prospective reserve Vi (t, qJ) (written in this way to show its dependence on the
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biometric valuation basis) can be locally approximated by the first-order Taylor expansion

Vi (t, qJ +H) w Vi (t, qJ) +

ˆ
∇qjkVi(t, u)dH,

where H is a local shift and ∇qjkVi (t) measures the local sensitivity of the prospective
reserve Vi (t) to changes of the transition rates at any time s ∈ [0, T ].

The problem is that as differentiation is in general a local concept, we can only study
infinitesimal changes of the transition rates. Hence, the method based on derivatives works
only for narrow confidence bands and yields not exact but only approximate results.

3.2.3 Derivatives: one-step approach

The method proposed by Kalashnikov and Norberg (2003) consists in differentiating the
reserve with respect to one arbitrary real parameter θ, which may be an element of the
valuation basis or an element of the design of the contract. They consider that the estimator
θ̂ of the p-dimensional parameter θ is consistent and asymptotically normally distributed
with mean θ and variance matrix Σ (θ). Then, by combination of the so-called Scheffé
method and the Delta method (Sverdrup, 1986), confidence intervals with asymptotic
confidence level 1− ε of the form

Vi (t, θ) ∈ Vi
(
t, θ̂
)
±
√
χ2
(p,1−ε)DVi

(
t, θ̂
)

Σ̂DV Ti

(
t, θ̂
)

can be obtained, where DVi (t, θ) =
(

∂
∂θ1

Vi (t, θ) , . . . , ∂
∂θp

Vi (t, θ)
)
, Σ̂ is a consistent estimator

of Σ (θ) and χ2
(p,1−ε) is the 1 − ε fractile of the chi-squared distribution with p degrees of

freedom.
The confidence intervals for reserves are obtained directly in one step in contrast with

other methods that first find the confidence intervals for the valuation basis and then use
these to construct the confidence bands for reserves. However, Christiansen (2010) argues
that the one-step approach may be very appealing, but it runs counter to the traditional
rules of insurance regulation in many countries. For instance, under the Solvency II regime,
after computing the reserves the effect of changes in valuation basis is studied, by applying
stress scenarios. We will expand on this in the next chapter.

3.3 The model

As explained above, the three previous methods have weaknesses and are not exact. To
fill this gap, Christiansen (2010) gave a new approach for the construction of worst-case
scenarios: based on Thiele’s integral equation, another integral equation is developed whose
solution yields the maximal prospective reserve with respect to all cumulative transition
intensities within some confidence band. In this section, we introduce the method proposed
by Christiansen (2010). The proofs of the results in this section will be omitted but can
be found in the original work.
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3.3.1 The confidence bands

The first step is to impose some bounds for the actuarial assumptions, for instance by ap-
plying statistical methods on the past data, and reducing the future uncertainties to certain
intervals. In the case where intensities do not exist, the author defines the confidence bands
for the intensities of the form

Ljk (t)− Ljk (s) ≤ qjk (t)− qjk (s) ≤ Ujk (t)− Ujk (s) , (3.3.1)

t ≥ s, and considers that L and U are regular cumulative transition intensity matrices.

Assuming that the transition matrix qJ is differentiable, it means that the intensities matrix
µJ exists and the confidence bands can be written as follows

ljk (t) ≤ µjk (t) ≤ ujk (t) , (3.3.2)

where ljk (t) and ujk (t) are integrable functions.

For the states a="active" and d="dead", the prospective reserve of a whole life insurance
is maximized by the bonds uad and Uad, while for a whole life annuity the maximal bonds
are lad and Lad. However, for policies with mixed character or more than two states the
situation is much more complex. The method in study is specially informative for theses
cases.

From now on, in order to emphasize the dependence of prospective reserve Vi (s) on the
biometric valuation basis, the prospective reserve that corresponds to µJ or qJ is denoted
as Vi (s, µJ) or Vi (s, qJ), respectively.

3.3.2 The worst-case integral equation system

Now that confidence bands are defined, it is necessary to find for which µJ within these
bounds the prospective reserve is maximal. This set of transition intensities represent
the biometric worst-case scenario for the insurer and is denoted by µjk. Based on the
sum-at-risk theory, assume that it satisfies the following

µjk (t) =

ujk (t) if R (t, µJ) > 0

ljk (t) if R (t, µJ) < 0
(3.3.3)

for all t ≥ s and (j, k) ∈ J .
As our purpose is to find the biometric first-order basis that sets premiums and reserves

on the safe-side, from equation (3.2.2) it is possible to conclude that if the prospective re-
serve is computed using the biometric scenario (3.3.3), then the basic safe-side requirement
Vi (s, µJ) ≥ Vi (s, µJ) is fulfilled for all µJ with

µjk (t) ≤ µjk (t) = ujk (t) if Rjk (t, µJ) > 0

µjk (t) ≥ µjk (t) = ljk (t) if Rjk (t, µJ) < 0
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and it is the worst-case scenario for the insurer that maximizes the prospective reserve. In
the following we use the intuitive notation Rij = Rij (�, µJ) and V i = Vi (�, µJ). Taking
these results into account, the author presents the called "worst-case integral equation
system" (see Appendix A.2)

V i (s) = Bi (T )−Bi(s)−
´

(s,T ] V i (t−) dΦ (t)

+
∑
j:j 6=i

(´
(s,T ]

1
2 | Rij | (t) (uij − lij) (t) dt+

´
(s,T ]

1
2Rij (t) (uij + lij) (t) dt

)
(3.3.4)

or equivalently, in the cumulative intensity notation,

V i (s) = Bi (T )−Bi(s)−
´

(s,T ] V i (t−) dΦ (t)

+
∑
j:j 6=i

(´
(s,T ]

1
2 | Rij | (t) d (Uij − Lij) (t) +

´
(s,T ]

1
2Rij (t) d (Uij + Lij) (t)

)
,

(3.3.5)
for all i ∈ S and s ∈ [0, T ], with initial condition V i (T ) = 0. Note that the new Thiele’s
integral equation does not directly depends on µjk anymore and as such a maximizing
scenario µJ , with respect to (3.3.2) or (3.3.1), can be constructed as a solution of the
previous integral equation systems (3.3.4) or (3.3.5).

3.3.3 Existence and uniqueness of solutions

Christiansen (2010) shows that if the integrals in (3.1.10) exist, then s 7→ Vi (s) has finite
total variation on [0, T ], that is

‖Vi‖V[0,T ]
≤ ‖Bi‖V[0,T ]

+
´
(0,T ]

| Vi (t−) | dΦ (t) +
∑
j:j 6=i

´
(0,T ]

| Rij (t) | dqij (t) <∞,

and as such
(
Vi |[0,T ]

)
i∈S can be seen as an element of the Banach space

BV
|S|
[0,T ] =

{
f : [0, T ]→ R|S| |

∑|S|
i=1

‖fi‖V[0,T ]
<∞, f (T ) = 0, f (t) = f (t+ 0)

}

with norm ‖f‖
V
|S|
[0,T ]

=
∑|S|

i=1 ‖fi‖V[0,T ]
, where ‖ � ‖V[0,T ]

is the total variation on [0, T ].

Taking these two results into account, the author proves the existence and the unique-
ness of the solution of the worst-case integral equation systems (3.3.4) and (3.3.5) and that
this solution is always maximal.

Theorem 3.3.1. There always exists a unique solution
(
V j

)
j∈S ∈ BV

|S|
[0,T ] for integral

equation system (3.3.5).

Theorem 3.3.2. If
(
V j

)
j∈S ∈ BV

|S|
[0,T ] is a solution of integral equation system (3.3.5),

then V j (s) ≥ Vj (s, qJ) for all j ∈ S, s ∈ [0, T ] and any regular cumulative transition
intensity matrix qJ that satisfies (3.3.1).
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Under the assumption that intensities exist, the worst-case scenario is constructed by
choosing the upper bound where the sum-at-risk of the solution of (3.3.4) is positive and the
lower bound where it is negative. In the general case, the worst-case scenario is constructed
as follows (Christiansen, 2010).

Corollary 3.3.3. Let
(
V j

)
j∈S ∈ BV

|S|
[0,T ] be a solution of integral equation system (3.3.5).

Then q̃ defined by q̃jj (t) = −
∑
k 6=j q̃jk (t)

q̃jk (t) =
´
(0,T ]∩{Rjk<0} dLjk +

´
(0,T ]∩{Rjk≥0} dUjk

with (j, k) ∈ J, t ∈ [0, T ], is a regular cumulative transition intensity matrix that maximizes
the prospective reserves Vj (s) for all j ∈ S and all s ∈ [0, T ].

Furthermore, an interesting result is that the worst-case scenario q̃ is invariant with
respect to time and space. It means that if we calculate q̃ in state i at the beginning of
the contract period (t = 0), it remains the worst-case scenario at any other time t ∈ [0, T ],
even though the increase of information about the policyholder’s pattern of states and the
progression of time.

However, the uniqueness of the solution depends on the assumption that
{
Rij 6= 0

}
.

In the case where
{
Rij = 0

}
, q̃jk (t) or µ̃jk (t) can be arbitrarily defined within the bounds

(3.3.1) and (3.3.2), respectively.

3.3.4 Solving the Worst-Case Integral Equation

Finally, the author proposes two approaches in order to obtain the solution of the worst-case
integral equation system: an approach based on intensities and a discrete time approach.

3.3.4.1 Approach based on intensities

The assumptions above require the cumulative intensities qjk and Φ to be differentiable
with intensities µjk and ϕ, respectively. The annuity payments that fall due during sojourns
in a state j are modelled by a right-continuous function, that can be written as:

Bj (t) =

ˆ
(0,t]

bj (u) du+
∑

0≤u≤t
4Bj (u) ,

with bj (u) = B
′
j (u) continuous at u and 4Bj (u) = Bj (u)− Bj (u−), where the discrete

time payments 4Bj (u) > 0 may occur in any state j at any time 0 = t0 < t1 < ... <

tn = T . Therefore, in order to solve the worst-case integral equation system we apply the
following algorithm.

Algorithm 3.3.4.

1) Start from the initial condition Vj (tn) = 0
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2) Calculate Vj (tn−), Vj (tn−1−), ..., Vj (0−) by applying

V j (t−) =

V j (t) +4Bj (t) t ∈ [0, T ] , j ∈ S, t ∈ {t1, ..., tn}

V j (t) otherwise
(3.3.6)

3) For the time intervals (ti−1, ti] between discrete time payments, calculate Vj (tn−1), Vj (tn−2),
..., Vj (0) by applying

d

ds
V j (s) = −bj (s) + V j (s)ϕ (s)−

∑
k:k 6=j

(
1

2
| Rjk | (s) (ujk − ljk) (s) +

1

2
Rjk (s) (ujk + ljk) (s)

)
(3.3.7)

This differential equation system can be solved numerically using standard methods, as
Euler Method (Griffiths and Higham, 2010). The idea is to start from Vj (tn) = 0 and cal-
culate Vj (tn−),Vj (tn−1),Vj (tn−1−), Vj (tn−2), ...,Vj (0) , Vj (0−) by applying (3.3.6) and (3.3.7)

in an alternating manner.

3.3.4.2 Discrete time approach

When assumed that transitions between states occur only on a discrete time set {0, 1, 2, ..., T},
the cumulative transition intensity matrix qJ is constant between jumps and they are
weighted by 4qjk (t) = pjk (t−, t) = pjk (t− 1, t). Thus, the confidence bounds are defined
for transition probabilities as follows

4Ljk (t) ≤ pjk (t− 1, t) ≤ 4Ujk (t) , (3.3.8)

for (j, k) ∈ J and t ∈ {1, 2, ..., T}.
The annuity payments that fall due during sojourns in state j are of the form

Bj (t) =

[t]∑
u=0

4Bj (u) .

In order to solve (3.3.5), we use the algorithm below.

Algorithm 3.3.5.
1) Start from the initial condition Vj (T ) = 0;
2) Calculate Vj (t− 1), Vj (t− 2), ..., Vj (0) by applying:

V j (t− 1) = ν (t− 1, t)

(
V j (t) +4Bj (t) +

∑
k:k 6=j

(
1
2 | Rjk | (t)4 (Ujk − Ljk) (t)

+ 1
2Rjk (t)4 (Ujk + Ljk) (t)

)) (3.3.9)

3) For the intervals in between the integer times {0, 1, 2, ..., T}: Vi (s) = υ ([s] , s)
−1
Vi ([s]).
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Chapter 4

Case Studies

We will now apply the model and results in 3.3 to two case studies. This chapter is
the core of the work in the sense that the cases discussed in Christiansen (2010) are
extended in order to accommodate more complex products, and at the same time are
updated according to the most recent developments of the Solvency II regime. While case
study 1 deals with a combination of an annuity and a life insurance product evaluated
in discrete time, case study 2 is a combination of a disability income insurance with a
critical illness insurance policy, evaluated in continuous time. These two policies are not
common products in the Portuguese insurance market but are elaborate cases that allow
us to illustrate the topic in study in a very comprehensive way. In the following, we will
present some aspects of Solvency II that are particularly important nowadays and were
not known when Christiansen (2010) was published, performing this way an update of the
study.

4.1 Solvency II Regime

Solvency II project (Directive 2009/138/EC) is the new regulation framework of the Euro-
pean Union for insurance and reinsurance companies that will replace the Solvency I regime
(Directive 2002/13/EC and Directive 2002/83/EC). Its main target is to ensure the fin-
ancial soundness of insurance undertakings and guarantee their survival during difficult
periods, protecting policyholders and keeping stability of the financial system as a whole.

A first step, the Solvency II Framework Directive 2009/138/EC with the general prin-
ciples of the regime was adopted on November 2009. However, it had to be adapted
in response to the new supervisory structure introduced in the EU’s Treaty of Lisbon
(2007). On 11 March 2014 the European Parliament adopted the Omnibus II Directive
(2014/51/EC) that completes the Solvency II Directive and finalizes the new framework
for insurance regulation and supervision in the EU. The application of the Solvency II
Directive is scheduled for 1 January 2016.

One important feature of the new regime is the establishment of quantitative require-
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ments regarding own funds, in particular the Solvency Capital Requirement (SCR). Article
101.º of the Solvency II Directive (2009/138/EC) requires that the SCR "shall correspond
to the Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking
subject to a confidence level of 99.5% over a one-year period.".

Furthermore, the European standard formula given by the directive uses a modular
approach where the risk modules are in turn built on sub-modules (Fig. A.1, Appendix A.3).
The SCR for each risk is calculated by re-evaluating best estimate (BE) liabilities (Directive
2009/138/EC, Article 77º) under a specific stress scenario and corresponds to the variation
of the basic own funds. These are then aggregated to arrive at the overall SCR, using the
so-called square-root formula:

SCR =

√∑
ij

Corrij × SCRi × SCRj (4.1.1)

where Corrij represents the correlation factor between risks i and j, given on EIOPA
(2014b) (Table A.1, Appendix A.3). EIOPA is the European Insurance and Occupational
Pensions Authority.

In order to refine the methodologies, parameters and assumptions, and to help determ-
ining the quantitative requirements for new solvency rules, several quantitative impact
studies (QIS) have been carried out by EIOPA since 2005. The QIS are the primary means
for testing the design of the future European Standard Formula, as well as the main route
for finding the correct calibration reflecting the VaR 99.5% over a 1-year time horizon. In
preparing the insurance market for the entry into force of the new solvency regime, the
ISP (Circular N.º 1/2014) launched a mandatory quantitative impact study nationwide,
aimed at all companies under to its prudential supervision.

In this work, the focus is on the biometric risks such as mortality risk (mort), longevity
risk (long) and disability or morbidity risk (dis). The Solvency II stress scenarios used to
quantify these risks, presented in (EIOPA, 2014b), are the following:

- 15% increase in mortality rates for each age for SCRmort;
- 20% decrease in mortality rates for each age for SCRlong;
- 35% increase in disability rates for the next year, together with a permanent 25%
increase in disability rates at each age in following years, plus (when applicable) a
permanent 20% decrease in morbidity/disability recovery rates.

Under Solvency II the worst-case for the insurer, i.e. the largest value of future obligations,
corresponds to the BE plus the SCR obtained from these set of stressed scenarios.

However, the standard formula is calibrated at European level and given the diversity
of markets and products, such calibration may reveal inappropriate for some individual in-
surers. In this case, and subject to prior authorization, each insurance company can choose
between setting up its own internal model to calculate the SCR or using the European
standard formula.

24



As a matter of fact, for an insurance company that wishes to exchange the standard
SCR by an internal model-based calculation, or simply intends to study the adequacy of
the standard formula to its risk profile, the worst-case scenario method presented can show
how such "internal stress scenarios" can be derived.

In the next section all the previous elements will be illustrated and applied in order to
show how theory and practice may be so harmoniously combined. The situations in ana-
lysis, although particular, are at the same time profound and allow us to derive significant
conclusions.

4.2 Case Study 1

We start with the policy used by Christiansen (2010) in example 5.1 in order to discuss
the impact of using:

- the Portuguese mortality basis: Case Study (CS) 1.1;
- the term structure of interest rates (TSIR) (Brigo and Mercurio, 2006) to discount
cash-flow and calculate premiums: CS 1.2.

After that, in CS 1.3, we change the term and the amount of the benefits to amounts more
realistic. Lastly, we study two new products with extra covers:

- the disability cover in CS 1.4;
- the survival cover in CS 1.5.

For the different situations described, we present three methods: I - the BE for the reserve
(c.f. section 4.1); II - the worst-case method using the discrete time approach Algorithm
3.3.5; III - the sum-at-risk method defining the transition intensity equal to the lower
bound where the sum-at-risk with respect to the BE is negative and equal to the upper
bound where it is positive (sub-section 3.2.1).

4.2.1 CS 1.1 and CS 1.2

Consider a 30 year old man who buys a policy on 31 December 2013 with the following
benefits:

- Ba (t) = 1, t ≥ 67: a pension of 1 is paid yearly in advance from age 67 on till death;
- bad (t) = 17, t ∈ {31, 32, ..., 87}: a sum insured of 17 is paid in case of death before

age 87.

Mortality Basis: According to the last information released by ISP (2013), the most
used life tables in Portugal for the new life insurance policies with death and survival covers
are the Swiss GKM80 and GKF95, respectively. Thus, we take the GKF95 table as the
lower bound 4Lad and the GKM80 table as the upper bound 4Uad in (3.3.8), instead of
the German life tables DAV2004R and DAV2008T used by the author. Given the mixed
character of this policy, it seems reasonable to continue using the arithmetic average of
that tables as BE: (50%GKF95 + 50%GKM80) (Fig. A.2, Appendix A.4).
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Financial Basis: Under Solvency II, cash-flows should be discounted using the relevant
TSIR (Directive 2009/138/EC, Article 77.º). During EIOPA 2014 Stress Test Exercise,
EIOPA (2014a) provided a curve for Portugal (Fig. A.6, Appendix A.4).

In order to measure the impact of financial basis we considered the following situations:

CS 1.1 Flat term structure: An interest rate of 2.25% is used in premiums and
reserve calculations (Christiansen, 2010);

CS 1.2 TSIR: The risk-free interest rate term structure provided by EIOPA (2014a)
is used to discount the reserve from one period to the previous one: ν (t− 1, t)

in (3.3.9). As in real practice, premiums are computed using a constant technical
interest rate, we assume that it is equal to the internal rate implicit in all outflows
discounted using the zero coupon curve plus a bonus factor of 0.5%. The obtained
rate is 3.796%.

As usual, the annual premium is paid in advance till retirement or death, whichever occurs
first, and is computed using the equivalence principle method and the BE mortality basis.
The results are in Table 4.1.

CS 1.1 - Flat Structure CS 1.2 - TSIR

Premium 0.39639 0.26208
Technical Interest Rate 2.25% 3.796%

Table 4.1: CS 1.1 and CS 1.2 - Premiums and technical interest rates

As might be expected, the resulting premiums are different from the one obtained by
Christiansen (2010): 0.390147. The new mortality basis has a small positive impact on
premiums (CS 1.1) given the highest mortality rates of Swiss BE (Fig. A.4, Appendix A.4).
It becomes more significant when combined with the negative interest rate impact (CS 1.2).
Table 4.2 shows the reserve at contract time 0−, i.e., at age 30−, in state active Va (0−)

for the three different methods.

Method Mortality Basis
Reserve CS 1.1 Reserve CS 1.2

(Flat Structure) ( STIR)

I - Best Estimate 50% GKF95 + 50% GKM80 0 0.25155

II - Worst-case Lower bound: GKF95
0.65464 0.66323

Scenario Method Upper bound: GKM80

III - Sum-at-risk Method
Lower bound: GKF95

0.63576 0.65591
Upper bound: GKM80

Table 4.2: CS 1.1 and CS 1.2 - Prospective reserve Va
(
0−

)

(The results obtained by the author under each of the previous methods are 0, 1.1647 and
1.0034, respectively.)
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In CS 1.1, the BE is null because the premiums basis is equal to the valuation basis.
In order to analyse the impact of using the Portuguese mortality basis, we observe that
the life table GKF95 is less conservative than DAV2004R for annuities, while GKM80
is more conservative than DAV2008T until age 83 for policies with occurrence character
(Fig. A.3, Appendix A.4). Thus, given the mixed character of the policies in study, the
application of Swiss life tables leads always to lower reserves, even when we use GKF95 and
GKM80 separately. Further, even using the most conservative of these tables instead of the
worst-case or the sum-at-risk methods may underestimate the risk of mortality changes.

If we use the TSIR, the BE is greater than zero, meaning the insurer expects to make
a loss on this policy from the outset. It sounds uncomfortable but is not uncommon in
practice, explained by the fact that valuation basis may be more conservative than the
premium basis. The introduction of the term structure of interest rate leads to an increase
in the reserves, under the three methods.

In both situations, the worst-case scenario method required the highest reserve pointing
out that although the stress scenarios seem quite demanding that is not necessarily the
case. From now one, we will consider the Swiss life tables and the TSIR as the applicable
basis.

4.2.2 CS 1.3, CS 1.4 and CS 1.5

Now, consider that the policy was bought by a 35 year old man and the products purchased
are as follows.

CS 1.3: Whole life Annuity and Temporary Insurance

- Ba (t) = 14 000, t ≥ 66: a pension of 14 000 is paid yearly in advance from age 66
(the retirement age in Portugal for the year 2014) till death;
- bad (t) = 200 000, t ∈ {39, 40, ..., 75}: a sum insured of 200 000 is paid in case of
death before age 75, after a deferred period of 3 years during which no benefits are
paid.

CS 1.4: Whole life Annuity and Temporary Insurance with Disability Benefits

Death benefits are the same as in CS 1.3 provided that the disability benefit has
not already been paid; There is also a disability benefit: bai (t) = 150 000, t ∈
{37, 38, ..., 66}: a sum insured of 150 000 is paid in case of permanent disability
before age 66, after a deferred period of 1 year during which no benefits are paid.

CS 1.5: Whole life Annuity and Endowment Insurance with disability Benefits

Benefits as in CS 1.4. Now the survival cover at age 75 is Ba (75) = 14 000 + 25 000,
provided that the life is able at that time.

Note that product in CS 1.3 is similar to the one considered in CS 1.1 and 1.2 but with
terms and benefits that seem to be most appropriate. We use it as the starting point to
analyse the individual impact of introducing the new covers.
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Disability basis: According to ISP (2013), disability tables are often given by reinsurers.
Thus, we take the Swiss Re 2001 as the lower bound 4Lai and the Individual TPD Refer-
ence Table of Swiss Re (TPD) as the upper bound 4Uai in (3.3.8), and again seems to be
reasonable to consider as BE (50%SwissRe2001 + 50%TPD) (Fig. A.5, Appendix A.4).
As the maximum age in both tables is 64, we assume that disability rate at age 65 is equal
to that at age 64 since the disability rates are already stabilised.

The annual premium is paid in advance till retirement, disability or death, whichever
occurs first. The results are in Table 4.3.

CS 1.3 CS 1.4 CS 1.5

Premium 3 833.71 3 942.14 4 127.15
Technical Interest Rate 3.657% 3.632% 3.638%

Table 4.3: CS 1.3, 1.4 and 1.5 - Premiums and technical interest rates

As expected, the introduction of a new cover leads to an increase in premiums.

Table 4.4 present the reserves in state active at time 0− under the three usual methods.

Method Mortality Basis Disability Basis

I - Best Estimate 50% GKF95 + 50% GKM80 50% SwissRE2001 + 50% TPD

II - Worst-case Lower bound: GKF95 Lower bound: SwissRe2001
Scenario Method Upper bound: GKM80 Upper bound: TPD

III - Sum-at-risk Method
Lower bound: GKF95 Lower bound: SwissRe2001
Upper bound: GKM80 Upper bound: TPD

Method CS 1.3 CS 1.4 CS 1.5

I - Best Estimate 2 740.59 2 436.05 2 620.86
II - Worst-case Scenario Method 11 276.00 10 445.34 10 240.43
III - Sum-at-risk Method 11 099.97 10 289.12 9 978.43

Table 4.4: CS 1.3, 1.4 and 1.5 - Prospective reserve Va
(
0−

)

Naturally, the introduction of the new covers produces changes in the BE reserve. This is
explained by the change in technical interest rate that leads to an increase in premiums.
If we consider the same interest rate of 3.657% in premiums calculations, the reserve will
always increase to 2 854.23 and 2 964.18 in CS 1.4 and 1.5.

Under methods II and III, if the insurer increases the premiums as in Table 4.3, it
can offer extra covers to the policyholders and the diversification of risks leads to an
improvement on its worst-case scenario. Furthermore, note that the reserves obtained
by method II are always higher than those required by method III. Thus, it is possible to
conclude that within the confidence bands, there are scenarios that are worse, i.e. that lead
to a higher reserve, than the worst scenarios used by the sum-at-risk method (section A.4.2,
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Appendix A.4). The use of it instead of the worst-case method does not guarantee that
we are on the safe side and may underestimate the risk of biometric rate changes.

From now on focus is on CS 1.5. Consider the "internal stress scenarios" based on
our confidence bands (sub-section 4.2.1) and the Solvency II stress scenarios presented in
EIOPA (2014b). EIOPA (2014b, SCR.7.12.) suggests that for policies providing benefits
both in case of death and survival, contingent on the life of the same insured person,
the mortality and longevity scenarios should be applied to the policy as a whole without
decomposing it into the annuity and the life insurance. Therefore, after obtaining the stress
scenarios and calculating the SCR’s, they are aggregate with the "square-root formula"
using the correlation factors in matrix Table. A.1, Appendix A.3. Table 4.5 summarizes
the results.

Scenario A - Internal stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario GKM80 BE
Longevity Stress Scenario GKF95 BE
Disability Stress Scenario BE TPD

Scenario B - Solvency II stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario Increase of 15% in BE BE
Longevity Stress Scenario Decrease of 20% in BE BE
Disability Stress Scenario BE Increase of 35%/ 25% in BE

Scenario Method SCR Reserve

A Standard formula of Solvency II 1 698.97 4 319.83

Mortality Stress Scenario 1 467.06 4 087.92
Longevity Stress Scenario 1 276.71 3 897.57
Disability Stress Scenario 51.87 2 672.73

B Standard formula of Solvency II 653.85 3 274.70

Mortality Stress Scenario 68.49 2 689.35
Longevity Stress Scenario 514.53 3 135.39
Disability Stress Scenario 402.40 3 023.26

Table 4.5: CS 1.5 - Standard formula of Solvency II

Observe that while the prevailing risk in scenario A is the mortality risk, in scenario B
is the longevity risk. Remembering that the worst-case scenario (Table 4.4) requires a
reserve of 10 240.43, the value obtained in scenario A is lower and a possible explanation
is that although the square-root formula considers the correlation between the risks, it
disregards mixed mortality scenarios. Furthermore, according to Theorem 3.3.2 scenarios
µ̄ad and µ̄ai obtained by method II are the worst scenarios that can occur in terms of
increasing liabilities with respect to the used confidence bands, so the standard formula of
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Solvency II applied to the "internal stress scenarios" may underestimate the risk of changes
in the mortality and disability rates.

The reserve in scenario B is also lower than the one required by the worst-case scenario
method. However, the same conclusion is only valid to Solvency II stress scenarios if the
insurer considers that the confidence bands GKF95/GKM80 and SwissRe2001/TPD are
the most appropriate and realistic. If it is the case, may be the calibration of standard
formula of Solvency II reveals inappropriate for the insurer and it should consider its own
internal model to calculate the SCR.

After evaluating the obtained overall results, in case of policies with both survival and
occurrence character, the worst-case method seems to be the most adequate in order to
obtain reserves on the safe side under the assumptions made. Further details about this
Case Study can be seen in Appendix A.4.

4.3 Case Study 2

In Christiansen (2010), the continuous time approach (sub-section 3.3.4.1) is illustrated
in example 5.2. In this Case Study, we return to that illustration but considering a more
complex product that provides a death benefit, a disability income benefit and a critical
illness benefit as follows:

- bai (t) = 20 000: a benefit of 20 000 is payable immediately on the active life be-
coming critically ill;
- bsi (t) = 18 000: a benefit of 18 000 is payable immediately on the sick life becoming
critically ill;
- bad (t) = bsd = 10 000: a benefit of 10 000 is payable immediately on the death,
provided that the life has not already been paid a critical illness benefit;
- bs (t) = 1 000: a disability income annuity of 1 000 is payable every month while the
life is disabled. Note that the first payment will be made 1 month after the policy
starts, if the policyholder is in state sick at that time.

The policy may be described by the four-state Markov model depicted in Fig. 4.1.

Figure 4.1: Disability Income Protection & Critical Illness Model
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Assume that the policy was bought by a 30 year-old female in state active a and ends at
age 66 or the first time the policyholder reaches states i or d, whichever occurs first. Thus,
in each time t the reserve in states a and s must be computed. Furthermore, the single
premium is paid at the time the contract is effected using (4.3.1) as bellow

P = 20 000 Ā ai
30:36| + 18 000 Ā si

30:36| + 10 000
(
Āad

30:36| + Āsd
30:36|

)
+ 1 000 a

(12)s

30:36| (4.3.1)

We will assume an interest rate of i = 3.5%, i.e. ϕ (t) = log (1.035). Note that an
increase/decrease in the interest rate leads to a decrease/increase in reserves.

As it was not possible to find transition intensities fitted to real data to describe the
model, the following theoretical functions based on Dickson et al. (2012) are used as our
BE (Fig. A.8, Appendix A.5).

µ̃as (t) = 0.0004 + 0.0000035× exp (0.14t) µ̃ai (t) = 0.05× µ̃as (t) µ̃sd(t) = µ̃ad (t)

µ̃ad (t) = 0.0005 + 0.000076× exp (0.09t) µ̃sa (t) = 0.1× µ̃as (t) µ̃si (t) = µ̃as (t)

(4.3.2)
The upper and lower bounds of confidence bands were chosen randomly between [0.65, 1.35]

(the maximum amplitude of the biometric Solvency II shocks) with step 0.5

las (t) = 0.7× µ̃as (t) ≤ µas (t) ≤ uas (t) = 1.3× µ̃as (t)

lai (t) = 0.7× µ̃ai (t) ≤ µai (t) ≤ uai (t) = 1.3× µ̃ai (t)

lad (t) = 0.8× µ̃ad (t) ≤ µad (t) ≤ uad (t) = 1.15× µ̃ad (t)

lsa (t) = 0.8× µ̃sa (t) ≤ µsa (t) ≤ usa (t) = 1.15× µ̃sa (t)

lsi (t) = 0.7× µ̃si (t) ≤ µsi (t) ≤ usi (t) = 1.15× µ̃si (t)

lsd (t) = 0.9× µ̃sd (t) ≤ µsd (t) ≤ usd (t) = 1.05× µ̃sd (t) .

(4.3.3)

As the policy is bought by a woman in state active, the premium should be equal to the
reserve in that state Va (0). Table 4.6 summarizes the results for the three methods, using
Euler method (Griffiths and Higham, 2010) with a step of 0.0001.

Method Reserve

I - Best Estimate 8 466.33
II - Worst-case Scenario Method 10 708.15
III - Sum-at-risk Method 10 679.31

Table 4.6: CS 2 - Prospective reserve Va
(
0−

)

At this stage, it is important to study what happens if the second-order valuation basis is
different from the first order valuation basis.

The worst-case method (Algorithm 3.3.4) makes the premium increase by 2 241.82,
while according to the sum-at-risk method the increase should be 2 212.97 (section A.5.2,
Appendix A.5). As there is no reason to exclude method II if we allow for method III, the
use of the sum-at-risk method instead of the worst-case method may underestimate the
risk of rate changes in biometric transition intensities.
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Under Solvency II regime, a critical illness insurance that also provides a benefit in case
of death should be classified as life insurance obligations because the main risk driver is
usually death (rather than contracting the illness), while a pure income protection should
be classified as health insurance obligations. We consider that it is not appropriate to
unbundle contracts and then our policy is classified as life obligations. According to EIOPA
(2014b, SCR 7.38), the disability shock should be applied to all transition rates from one
status to a more severe health status: µ̃as, µ̃ai and µ̃si. In the same way, the mortality
and longevity stresses are applied to transition intensities µ̃ad and µ̃sd. As usual, we deal
with internal and Solvency II stress scenarios, aggregating SCR’s with the "square-root
formula". Table 4.7 summarizes the results.

Scenario A - Internal stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario uad (t), usd (t) BE
Longevity Stress Scenario lad (t), lsd (t) BE
Disability Stress Scenario BE uas (t) , uai (t), usi (t), lsa (t)

Scenario B - Solvency II stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario Increase of 15% in µ̃ad, µ̃sd BE
Longevity Stress Scenario Decrease of 20% in µ̃ad, µ̃sd BE

Disability Stress Scenario BE
Increase of 35%/25% in µ̃as, µ̃ai, µ̃si

Decrease of 20% in µ̃sa

Scenario Method SCR Reserve

A Standard formula of Solvency II 1 983.34 10 449.68

Mortality Stress Scenario 26.89 8 493.23
Longevity Stress Scenario 0 8 440.36
Disability Stress Scenario 1 976.45 10 442.78

B Standard formula of Solvency II 1 631.10 10 097.43

Mortality Stress Scenario 0 8 453.47
Longevity Stress Scenario 16.05 8 482.38
Disability Stress Scenario 1 631.02 10 097.35

Table 4.7: CS 2 - Standard formula of Solvency II

Note that the prevailing risk in both scenarios is the disability risk. From the results, it
is possible to see that the premiums obtained in scenarios A and B are less than those
required by the worst-case method. Within the confidence bands (4.3.3), the worst-case
method shows that additional liabilities of 2 241.82 can occur and again the square-root
formula (4.1.1) applied to the "internal stress scenarios" underestimates the risk of mortal-
ity and disability rate changes to this product. Additionally, if the insurer believes that the
confidence bands (4.3.3) are the most adequate may be the standard formula of Solvency II
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applied to the external stress scenarios reveals inappropriate underestimating the risks in
study.

Therefore, the final premium should be 10 708.15, under the assumption that the con-
fidence bands (4.3.3) are the ones that best reflect the reality of the insurer.

4.3.1 Sensitivity analysis

As the transition intensities (4.3.2) are a mere example, in order to development some kind
of sensitivity analysis we performed the calculations again using the transition intensities
µ̃as (t) and µ̃ad (t) based on Ramlau-Hansen (1991), constructing the remaining ones as in
(4.3.2):

µ̃as (t) = 0.0004 + 100.06t−5.46 µ̃ai (t) = 0.05× µ̃as (t) µ̃sd(t) = µ̃ad (t)

µ̃ad (t) = 0.0005 + 100.038t−4.12 µ̃sa (t) = 0.1× µ̃as (t) µ̃si (t) = µ̃as (t)
(4.3.4)

and the confidence bands (4.3.3). Table 4.8 summarizes the results.

Method Reserve

I - Best Estimate 7 928.34
II - Worst-case Scenario Method 10 031.84
III - Sum-at-risk Method 10 010.04

Table 4.8: CS 2 Sensitivity analysis - Prospective reserve Va
(
0−

)
The new transitions intensities are less conservative than (4.3.2) (Fig. A.8, Appendix A.5),
leading to lower reserves under all methods. Even so, while method I leads to a premium
of 7 928.34, methods II and III show that additional liabilities of 2 103.51 and 2 081.70 can
occur.

After evaluating the obtained overall results, in case of policies that are a combination
of disability income insurance and critical illness insurance, the worst-case method seems
to be the most adequate in order to obtain reserves and premiums on the safe side. The
worst-case scenarios obtained by the worst-case and the sum-at-risk methods as well as
the the evolution of the reserves in states active and sick, Va (t) and Vs (t) can be seen in
Appendix A.5.
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Chapter 5

Conclusion

Over the course of this thesis, we mostly explore and apply the worst-case scenario method
proposed by Christiansen (2010). It allows to find the first order valuation basis that
represents the worst-scenario from the insurer’s point of view within all scenarios contained
in a given confidence region. By worst-scenario we mean the one that maximizes the
prospective reserve for given benefits and premiums.

Following the method, after imposing some bounds for our actuarial assumptions and
setting the confidence bands, we define the first order basis to be equal to the upper bounds
of these confidence bands where the sum-at-risk are positive and equal to the lower bound
where it is negative. By that, it is possible to formulate a maximization problem for
the prospective reserve finding a worst-case valuation basis, denoted "worst-case integral
equation system", and give a solution for it (the problem has an unique solution which is
maximal in all relevant situations). Contrarily to other methods that can be found in the
literature, the worst-case integral equation system is fully solved using a discrete approach
and an approach based on intensities, and always yields exact results even if the confidence
bands are arbitrarily wide. Thus, the worst-case method proposed by Christiansen (2010)
allows to find the first order valuation basis that set premiums and reserves on the safe
side and so to quantify the biometric risk that the insurer suffers associated to adverse
experience.

The method was illustrated with two case studies demonstrating the usefulness for the
calculation of premiums and technical reserves. For all the situations presented in both
cases, the reserves required by the worst-case method scenario method are greater than the
values obtained by the sum-at-risk method. In means that, within the confidence bands
there are often biometric scenarios that are worse (leading to higher reserves) than the
worst scenarios used by the second method. Thus, as if we allow for one method, there is
no reason to exclude the other, we can conclude that the use of the sum-at-risk method
instead of the worst-case method may underestimate the risk of rate changes in biometric
transition intensities. In addition, we see that for policies with mixed character such as
in case study 1, the choice of a table from the upper and lower bounds, even if it falls
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over the table that seems to be more conservative, it does not imply the highest liability
increases that can occur. Therefore, after evaluating the obtained overall results, the worst-
case method seems to be the most adequate in order to obtain prospective reserves and
premiums on the safe side with respect to the used confidence bands.

Solvency II, the new solvency regime of the EU also uses worst-case scenarios (Solvency
II stress scenarios) for the calculation of solvency capital requirements. Applying the
Standard formula of Solvency II to "internal stress scenarios" and to Solvency II stress
scenarios, we discuss how the method in study could improve the calculation of biometric
solvency reserves. In both case studies, when the standard formula is applied to the
internal stress scenarios, the obtained reserve is lower than the one required by the worst-
case method. It was showed that the worst-case method leads to the worst scenarios that
can occur in terms of increasing liabilities with respect to the used confidence bands and
cannot be exceeded any more. Thus, we can conclude that the use of the standard formula
of Solvency II may underestimate the risk of mortality/disability rate changes depending
on the type of policy in study. When the standard formula of Solvency II is applied to
Solvency II stress scenarios, the confidence bands used are not the same. Therefore, if the
insurer assumes that these new confidence bands are the most appropriate and realistic,
once again, the standard formula of Solvency II may underestimate the biometric risk.

We should point out that the standard formula is calibrated at European level and
given the diversity of markets and products, such calibration may be inappropriate for
some individual insurers. It is the case in both situations: if the insurer believes that
the internal confidence bands are the most appropriate and realist, then the aggregation
matrix suggested by EIOPA (2014b) and/or the stress scenarios are not the most adequate
to this type of products. Therefore, the insurer should consider its own internal model to
calculate the reserves and use the worst-case method to define the internal stress scenarios.

The worst-case calculations performed over the work are based on single life insurance
policies. However, the invariance property of the worst-case scenario leads to the conclusion
that results remain still valid on a portfolio level, for homogeneous portfolios. It means that
the only difference that we allow for is that policies may start at different calendar times.
Since we do not consider inhomogeneous portfolios, extending the results to heterogeneous
portfolios is an interesting field for future research.

In closing, we believe this study is a contribution to better understanding the worst-
case scenario method proposed by Christiansen (2010) and to enhance the usefulness of
this for the calculations of premiums and reserves on the safe side and, as such, the pos-
sible application in calculation of biometric solvency reserves for Solvency II under the
Portuguese framework.
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Appendix A

A.1 Reserving for a policy with continuous cash flows

Following Dickson et al. (2012), consider a policy where regular payments (premiums
and/or annuities) are payable continuously and sums insured are payable immediately
on death. If the policy is issued to a life aged x and let

- Pt the annual rate of premium payable at time t;

- Et the annual rate premium-related expense payable at time t;

- bt the sum insured payable at time t if the policyholder dies at exact time t;

- et the expense of paying the sum insured at time t;

- V (t) the prospective reserve for a policy in force at time t;

- µx+t the force of mortality at age x+ t;

- δt the force of interest per year assumed earned at time t.

Then the prospective reserve can be written as

V (t) =

ˆ ∞
t

υ (r)

υ (t)
(br + er) r−tpx+t µx+rdr −

ˆ ∞
t

υ (r)

υ (t)
(Pr − Er) r−tpx+tdr,

where υ (t) = exp
{
−
´∞

0 δsds
}
.

This equality can be used to calculate V (t) by numerical integration.
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A.2 The worst-case integral equation system

We start by replacing the transition intensities µij (t) in Thiele’s integral equation system
(3.1.11) with scenario µ̄ij (t) (3.3.3). The last integral in (3.1.11) has the form:

´
(s,T ]

Rij (t)µij (t) dt =
´
(s,T ]∩{Rij<0}Rij (t) lij (t) dt+

´
(s,T ]∩{Rij>0}Rij (t)uij (t) dt

Noting that

´
(s,T ]∩{Rij<0}Rij (t) lij (t) dt = 1

2

´
(s,T ]

Rij (t) lij (t) dt+ 1
2

´
(s,T ]

R (t) lij (t) dt

= 1
2

´
(s,T ]

Rij (t) lij (t) dt− 1
2

´
(s,T ]

| Rij | (t) lij (t) dt

and

´
(s,T ]∩{Rij>0}Rij (t)uij (t) dt = 1

2

´
(s,T ]

Rij (t)uij (t) dt+ 1
2

´
(s,T ]

R (t)uij (t) dt

= 1
2

´
(s,T ]

Rij (t)uij (t) dt+ 1
2

´
(s,T ]

| Rij | (t)uij (t) dt
.

Thus, the right-hand side of the integral can be written as

´
(s,T ]

Rij (t)µij (t) dt = 1
2

´
(s,T ]

Rij (t) lij (t) dt− 1
2

´
(s,T ]

| Rij | (t) lij (t) dt

+ 1
2

´
(s,T ]

Rij (t)uij (t) dt+ 1
2

´
(s,T ]

| Rij | (t)uij (t) dt

and Thiele’s integral equation system (3.1.11) have the form

V i (s) = Bi (T )−Bi(s)−
´
(s,T ]

V i (t−) dΦ (t)

+
∑
j:j 6=i

(´
(s,T ]

1
2 | Rij | (t) (uij − lij) (t) dt+

´
(s,T ]

1
2Rij (t) (uij + lij) (t) dt

)

called the worst-case integral equation system.
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A.3 Overall structure of the SCR and Correlation Matrix

The calculation of the Solvency Capital Requirement according to the standard formula is
divided into modules as follows:

Figure A.1: Overall structure of the Solvency Capital Requirement. Source: EIOPA (2014b)

The mortality risk, longevity risk and disability risk in the life module are aggregated using
the following correlation factors provided by EIOPA (2014b).

Mortality Longevity Disability
Mortality 1
Longevity -0.25 1
Disability 0.25 0 1

Table A.1: Correlation matrix for biometric life insurance risks. Source: EIOPA (2014b)
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A.4 Case Study 1

A.4.1 Technical Basis

Mortality Basis
Fig. A.2 shows mortality tables GKF95 and GKM80 and the arithmetic average of two
tables (50%GKF95 + 50%GKM80), in a logarithmic basis.

Figure A.2: Log mortality rates: BE, GFK95 and GKM80

In Fig. A.3 it is possible to compare the German mortality tables DAV2004R and DAV2008T
with Swiss mortality tables GKF95 and GKM80.

Figure A.3: Log mortality rates: GFK95 & GKM80; DAV2004R & DAV2008T
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It is also possible to compare the respective BE’s in Fig. A.4.

Figure A.4: Log mortality rates: BE of GFK95 & GKM80; BE of DAV2004R & DAV2008T

From the figures it is possible to see that the Swiss table GKF95 is less conservative
than the German table DAV2004R for annuities while GKM80 is more conservative than
DAV2008T until age 83 for life insurance with occurrence character. The BE resulting
from Swiss life tables has higher mortality rates than the German BE.

Disability Basis
Fig. A.5 shows the disability tables TPD and SwissRe2001 and the arithmetic average of
two tables (50%SwissRE2001 + 50%TPD), in a logarithmic basis.

Figure A.5: Log disability rates: BE, TPD and SwissRe2001
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Term Structure of Interest Rate
Fig. A.6 presents the risk-free interest rate term structure for Portugal as of 31 Decem-
ber 2013, without volatility adjustment provided by EIOPA during the 2014 Stress Test
Exercise.

Figure A.6: Term Structure of Interest Rates - 31 December 2013

A.4.2 The worst-case scenarios

The worst mortality scenarios obtained by the worst-case scenario and the sum-at-risk
methods in CS 1.1, CS 1.2 and CS 1.3 are the following:

Worst-case Scenario Sum-at-risk Method

µ̄ad (t) =

uad (t) : t ∈ [31, 59] ∪ [80, 87]

lad (t) : else
µad (t) =

uad (t) : t ∈ [31, 60] ∪ [78, 87]

lad (t) : else

CS 1.1 CS 1.1

µ̄ad (t) =

uad (t) : t ∈ [31, 64] ∪ [77, 87]

lad (t) : else
µad (t) =

uad (t) : t ∈ [31, 65] ∪ [75, 87]

lad (t) : else

CS 1.2 CS 1.2

µ̄ad (t) =

uad (t) : t ∈ [39, 64] ∪ [69, 75]

lad (t) : else
µad (t) =

uad (t) : t ∈ [39, 75]

lad (t) : else

CS 1.3 CS 1.3
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Below, the worst mortality and disability scenarios defined by the worst-case scenario and
by the sum-at-risk method are presented:

Worst-case Scenario Sum-at-risk Method

µ̄ad (t) =

uad (t) : t ∈ [39, 64] ∪ [69, 75]

lad (t) : else
µad (t) =

uad (t) : t ∈ [39, 75]

lad (t) : else

µ̄ai (t) =

uai (t) : t ∈ [37, 59]

lai (t) : else
µai (t) =

uai (t) : t ∈ [37, 61]

lai (t) : else

CS 1.4 CS 1.4

µ̄ad (t) =

uad (t) : t ∈ [39, 63] ∪ [71, 75]

lad (t) : else
µad (t) =

uad (t) : t ∈ [39, 65] ∪ [68, 75]

lad (t) : else

µ̄ai (t) =

uai (t) : t ∈ [37, 59]

lai (t) : else
µai (t) =

uai (t) : t ∈ [37, 60]

lai (t) : else

CS 1.5 CS 1.5

In all case studies there is a difference between the worst mortality scenario and disabil-
ity scenario provided by the sum-at-risk method and the worst-case method. Moreover,
observe that the worst mortality scenarios in CS 1.3 and CS 1.4 are equal.

A.4.3 Standard Formula of Solvency II

Given the the internal stress scenarios and Solvency II stress scenarios in Table A.2,

Scenario A - Internal stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario GKM80 BE
Longevity Stress Scenario GKF95 BE
Disability Stress Scenario BE TPD

Scenario B - Solvency II stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario Increase of 15% in BE BE
Longevity Stress Scenario Decrease of 20% in BE BE
Disability Stress Scenario BE Increase of 35%/ 25% in BE

Table A.2: CS 1 - Internal stress scenarios and Solvency II stress scenarios
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Table A.3 shows the results of the application of the square-root formula to these stress
scenarios in CS 1.1 and CS 1.2.

Scenario Method
CS 1.1 CS 1.2

SCR Reserve SCR Reserve

A Standard formula of Solvency II 0.09768 0.09768 0.28970 0.54125

Mortality Stress Scenario 0.09768 0.09768 0.28970 0.54125
Longevity Stress Scenario 0 -0.06800 0 -0.08190

B Standard formula of Solvency II 0.05300 0.05300 0.11001 0.36156

Mortality Stress Scenario 0.05300 0.05300 0.11001 0.36156
Longevity Stress Scenario 0 -0.06554 0 0.09682

Table A.3: CS 1.1 and CS 1.2 - Standard formula of Solvency II

Table A.4 shows the results of the application of the square-root formula to the internal
stress scenarios and Solvency II stress scenarios in CS 1.3 and CS 1.4.

Scenario Method
CS 1.3 CS 1.4

SCR Reserve SCR Reserve

A Standard formula of Solvency II 2 086.84 4 827.43 2 187.58 4 623.64

Mortality Stress Scenario 2 146.98 4 887.58 2 227.98 4 664.04
Longevity Stress Scenario 719.65 3 460.24 319.34 2 755.40
Disability Stress Scenario - - 63.99 2 500.04

B Standard formula of Solvency II 357.79 3 098.39 648.29 3 084.35

Mortality Stress Scenario 238.05 2 978.65 311.04 2 747.10
Longevity Stress Scenario 333.17 3 073.76 164.30 2 600.35
Disability Stress Scenario - - 495.07 2 931.13

Table A.4: CS 1.3 and CS 1.4 - Standard formula of Solvency II

In CS 1.3 there is no disability benefit, so there is no value to disability stress scenario.
From the results we can conclude that the Standard Formula of Solvency II underestimates
the risk of biometric rate changes in all that situations presented in Case Study 1.
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A.4.4 The evolution of reserves

Fig. A.7 shows the evolution of the prospective reserve in state active under the assumptions
described in CS 1.5.

Figure A.7: CS 1.5 - Prospective reserve Va (t)

Observe that the reserves calculated using the worst-case scenario method and the sum-at-
risk method seem to be close due to the total amount of the reserves but they are different.
The worst-case method leads to a higher reserve than the value obtained from the sum-
at-risk method. Under the three methods, the reserve increases and then decreases. The
largest value occurs at age 65, time t = 30 when the last premium is paid.
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A.5 Case Study 2

A.5.1 Technical Basis

Fig. A.8 shows the transitions intensities (4.3.2) (continuous line - (j, k)) and (4.3.4) (dot
line - (j, k)′) used in Case Study 2, in a logarithmic basis.

Figure A.8: Log transition intensities

The results shows that transition intensities (4.3.2) are more conservative than transition
intensities (4.3.4).

A.5.2 The worst-case scenarios

The worst biometric scenarios obtained by the worst-case scenario method and the sum-
at-risk method, using transition intensities (4.3.2), are the following:

Worst-case Scenario Sum-at-risk Method

µ̄ad (t) =

lad (t) : t ∈ (30.0001, 55.2393)

uad (t) : t ∈ else

µ̄sd (t) =


lsd (t) : t ∈ (30.0001, 65.25)∪

{65.3333}

usd (t) : else

µ̄si (t) =


lsi (t) : t ∈ (30.00001, 64.5)∪

(64.5203, 64.5833) ∪ {64.6667}

usi (t) : t ∈ else

µ̄as (t) = uas (t)

µ̄ai (t) = uai (t)

µ̄sa (t) = lsa (t)

µad (t) =

lad (t) : t ∈ (41.9647, 47.8879)

uad (t) : t ∈ else

µsd (t) =


lsd (t) : t ∈ (30.0001, 65.25)∪

{65.3333}

usd (t) : else

µsi (t) =


lsi (t) : t ∈ (30.0001, 64.5)∪

{64.5833, 64.6667}

usi (t) : t ∈ else

µas (t) = uas (t)

µai (t) = uai (t)

µsa (t) = lsa (t)
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Under transition intensities (4.3.4), the worst-case scenarios obtained are:

Worst-case Scenario Sum-at-risk Method

µ̄ad (t) =

lad (t) : t ∈ (30.0001, 53.5074)

uad (t) : t ∈ else

µ̄sd (t) =


lsd (t) : t ∈ (30.0001, 65.25)∪

{65.3333}

usd (t) : else

µ̄si (t) =


lsi (t) : t ∈ (30.0001, 64.50)∪

{64.5833, 64.6667}

usi (t) : t ∈ else

µ̄as (t) = uas (t)

µ̄ai (t) = uai (t)

µ̄sa (t) = lsa (t)

µad (t) = uad (t)

µsd (t) =


lsd (t) : t ∈ (30.0001, 65.25)∪

{65.3333}

usd (t) : else

µsi (t) =


lsi (t) : t ∈ (30.0001, 64.50)∪

{64.58333}

usi (t) : else

µas (t) = uas (t)

µai (t) = uai (t)

µsa (t) = lsa (t)

A.5.3 Standard Formula of Solvency II

Table A.6 shows the results of the application of the square-root formula to the internal
stress scenarios and Solvency II stress scenarios (Table A.5) using transition intensities
(4.3.4).

Scenario A - Internal stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario uad (t), usd (t) BE
Longevity Stress Scenario lad (t), lsd (t) BE
Disability Stress Scenario BE uas (t) , uai (t), usi (t), lsa (t)

Scenario B - Solvency II stress scenarios

Mortality Basis Disability Basis

Mortality Stress Scenario Increase of 15% in µ̃ad, µ̃sd BE
Longevity Stress Scenario Decrease of 20% in µ̃ad, µ̃sd BE

Disability Stress Scenario BE
Increase of 35%/25% in µ̃as, µ̃ai, µ̃si

Decrease of 20% in µ̃sa

Table A.5: CS 2 - Internal stress scenarios and Solvency II stress scenarios
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Scenario Method SCR Reserve

A Standard formula of Solvency II 1 889.98 9 818.32

Mortality Stress Scenario 34.80 7 963.14
Longevity Stress Scenario 0 7 889.93
Disability Stress Scenario 1 880.98 9 809.32

B Standard formula of Solvency II 1 555.79 9 484.13

Mortality Stress Scenario 1.46 7 929.79
Longevity Stress Scenario 0 7 924.95
Disability Stress Scenario 1 555.43 9 483.76

Table A.6: CS 2 Sensitivity analysis - Standard formula of Solvency II

Results leads to the same conclusions than when transition intensities (4.3.2) are used: the
the Standard Formula of Solvency II underestimates the risk of biometric rate changes.

A.5.4 The evolution of reserves

Fig. A.9 shows the evolution of the prospective reserve in state active, using transition
intensities (4.3.2).

Figure A.9: CS 2 - Prospective reserve Va (t)
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The evolution of the prospective reserve in state stick using transition intensities in (4.3.2)
is presented in Fig. A.10.

Figure A.10: CS 2 - Prospective reserve Vs (t)

Once again, the reserves calculated using the worst-case scenario method and the sum-at-
risk method seem to be close but the first method leads to a higher reserve than the second
one.
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