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Abstract
This thesis makes an evaluation of the path-dependency/independency of the most
widespread Portfolio Insurance strategies, i.e. CPPI, OBPI and SLPI, using Monte
Carlo simulations. Also, it is known that for the CPPI with multiplier higher than 1,
an undesirable path-dependent behavior called ‘cash-lock’, can occur in some market
scenarios. But in what scenarios and how often?

In this thesis we show on an empirical level, that for most of the chosen market
scenarios, CPPI 3 and CPPI 5 strategies can in fact get cash-locked easily. This is a
rather undesirable feature to investors, particularly if it occurs on investments whose
return has to be paid at a long maturity, which is the case for many of the CPPIs
offered by financing institutions. To clearly show the path dependency we assume we
know the value of the underlying risky asset not only at inception but also at maturity,
and study the payoff distributions for the different PI under different market conditions
and product specifications. To do so, we proceed with Monte Carlo simulations of the
underlying risky asset paths, all conditioned to the same final value using Gaussian
Processes for Machine Learning Regression. We model the risky asset as geometric
Brownian motion.

We expect that this study will contribute to reinforce the idea that CPPI
products need affordable solutions to prevent cash-locked investments, which is a major
drawback to investors.

Keywords: Portfolio Insurance strategies, CPPI, OBPI, SLPI, path-dependencies,
cash-lock, Monte-Carlo simulations, conditioned geometric Brownian motion.
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Resumo
Esta tese faz uma avaliação das (in)dependências do caminho das estratégias mais difun-
didas de Portfolio Insurance (PI), ou seja, CPPI, OBPI e SLPI, utilizando simulações
de Monte Carlo. Além disso, sabe-se que para a estratégia CPPI com multiplicador
superior a 1, um comportamento dependente do caminho e indesejável chamado ‘cash-
lock’, i.e bloqueio no activo sem risco, pode ocorrer em alguns cenários de mercado.
Mas em que situações e com que frequência?

Neste trabalho mostramos por via de simulações, que para a maioria dos
cenários de mercado escolhidos, as estratégias CPPI 3 e CPPI 5 podem facilmente
ficar . Esta é uma característica muito indesejável para os investidores, especialmente
se ocorrer em investimentos que não estão totalmente cobertos e cujo retorno tem que
ser pago num longo prazo de vencimento, que é o caso de muitos dos CPPIs oferecidos
pelas instituições financeiras. Para destacar a dependência do caminho, assumimos que
se sabe o valor do activo de risco na maturidade. Estudamos, assim, as distribuições do
valor na maturidade das diferentes estratégias PI sob diferentes condições de mercado
e de produto. Para isso, procedemos com simulações de Monte Carlo dos caminhos
do activo de risco subjacente, todos condicionados com o mesmo valor final, usando
a regressão de Processos Gaussianos para Aprendizagem Automática. Neste estudo,
modelou-se o activo de risco de acordo com o movimento Browniano geométrico.

Esperamos que este estudo contribua para reforçar a ideia de que os produtos
CPPI com m > 1 precisam de soluções acessíveis para evitar que os investimentos
terminem em cash-lock, o que é uma grande desvantagem para os investidores.

Keywords: Portfolio Insurance, CPPI, OBPI, SLPI, dependência no caminho, simu-
lações de Monte Carlo, cash-lock, movimento Browniano geométrico condicionado.
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Chapter 1

Introduction
The idea of introducing insurance in investment portfolios was first proposed by Leland
and Rubinstein (1976). The main motivation was to prevent the contagious divestment
movements observed in the stock market crash of 1973-74, which led to the loss of sig-
nificant potential gains in the subsequent 1975 rise. Therefore, a portfolio insurance
(PI) would consist of an asset allocation strategy between a risk-free asset and a risky
asset, so that the combination would give the investor both security and some partic-
ipation in upside performance. Leland and Rubinstein (1976) developed the first PI,
the Option Based Portfolio Insurance (OBPI) strategy, realizing that the risky asset,
e.g. a stock or financial index, can be insured by a put option written on it and whose
strike price is the amount to be insured. As listed options are not are not available for
long maturities and with adequate prices for most investors, Rubinstein (1985) used the
Black and Scholes (1973) (B-S) pricing model and presented a dynamic asset alloca-
tion strategy between a risky and a risk-free asset (bond) to replicate put/call options,
which would synthesize the OBPI strategy with a more accessible price.1

Following the work of Merton (1971), Perold (1986) introduced the Constant
Proportion Portfolio Insurance (CPPI) strategy as one possible solution to the Merton
problem for an investor with a HARA utility function (Kingston, 1988). The strategy
also consists of a dynamic asset allocation between a risky and a risk-free asset in
order to guarantee a certain percentage of the investment at maturity. However, it is
considerably simpler than the OBPI in its implementation which can be very appealing
to a great number of investors and issuers. The term proportional derives from the
fact that for every rebalancing date, the amount of the portfolio invested in the risky
asset (exposure) is proportional to the cushion. The cushion is the difference between
the total portfolio value at that instant and the present value (with the risk-free asset’s
interest rate) of the amount insured at maturity (floor). The term constant is simply
because the proportionality factor is fixed at inception for the entire investment period.
This constant is called the multiplier, m ≥ 1, and in the present thesis we focus on three
values, m = 1, 3, 5, denoting the associated strategy as CPPI m. Moreover, CPPI1 is
simply a path-independent Buy and Hold plus Bond strategy, and CPPI 3 and 5 are
path-dependent strategies.

Since the first appearance of the OBPI and CPPI strategies, extensive literature
has sprouted on the subject with different objectives and methodologies. The first

1In most literature about PI, the term synthetic OBPI is shortened to OBPI, so we follow the same
rule.
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studies concern the properties of continuous-time PI (Bookstaber and Langsam, 2000;
Black and Perold, 1992, e.g.) where CPPI is analyzed. A comparison of OBPI and
CPPI strategies is also provided in this context, where Black and Rouhani (1989)
conclude that OBPI outperforms under moderate market increases while CPPI has
better performance when the risky asset suffers large drops or increases. Bertrand and
Prigent (2002, 2005) also make a comparison using various criteria such as the first four
moments of the probability distributions of both PI payoffs. They verify that the CPPI
strategy performs better than OBPI when the insured amount at maturity increases,
because the OBPI call is less likely to be exercised.

For empirical evaluations the discrete-time trading is a more realistic approach
and Cesari and Cremonini (2003) compare an extensive variety of the most used PI
strategies, arriving at the conclusion that CPPI has better performance only in bear
and no-trend markets. A comparison of OBPI, CPPI and Stop-Loss Portfolio Insurance
(SLPI) strategies is also studied in the papers of Annaert et al. (2009) and Zagst and
Kraus (2011), using stochastic dominance criteria, but verifying no dominance between
the strategies with exception of CPPI 3 dominating OBPI on third order in the second
paper. In Bertrand and Prigent (2011) CPPI is concluded to be a better strategy
than OBPI under the Omega performance ratio criteria. In Costa and Gaspar (2011)
the OBPI, CPPI and SLPI are also compared under diverse market scenarios using
statistical and performance measures. They also applied the strategies to three main
world stock indices during the subprime crisis of 2008 and verified that CPPI 3 and 5
would become attached to the floor at some point in the investment period and were
unable to recover from it till maturity. This behavior is usually called ‘cash-lock’.

Cash-lock occurs when the risky asset undergoes a severe slide and as a con-
sequence, the portfolio becomes almost uniquely invested in the risk-free asset. When
this happens, the exposure to the risky asset never recovers, even if the market grows
again. This behavior is extremely undesirable for an investor, especially if he has a
contractualized payoff at a long maturity. This means CPPIs are subject to an addi-
tional conceptual/design risk, as the cash-lock ‘mechanism’ alone introduces a serious
path-dependency. In this study we look deeper into the dependency generated by that
mechanism alone which contradicts one of the main purposes of PI: allow participation
in upside market movements.

In literature, the risky asset paths are simulated by Monte Carlo methods and
modeled by stochastic processes. In this regard, the final value of the risky asset is
also stochastic. The PI strategies that are calculated over all simulated paths, give rise
to a distribution of the final payoffs. In this distribution, the path-dependency risk is
blended in the uncertainty of the final risky asset value and thus it is not possible to
analyze the frequency of cash-lock occurrences in CPPI 3 and 5. The question that

2
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arises is When and how often do these cash-lock events happen?. Hence, in this study we
isolate the path-dependency/design risk from the risk inherent to the stochasticity of
the underlying asset, assuming fixed maturity prices for the underlying. In other words,
it can be understood as a ‘what if’ analysis which allows us to study CPPI performance
in scenarios where, by construction, we know that the underlying risky asset will double
or triple in price. Taking a different perspective, we try to take the point of view of an
investor that ‘bets’ the risky asset will grow to a given level at maturity and is wondering
which PI to choose. This analysis demands a different approach for simulating the risky
asset in respect to previous studies. We address this issue using Gaussian Processes for
Machine Learning Regression to simulate stock price sequences all ending at the same
specified value. This procedure will be applied to a variety of scenarios. Regarding
the business sciences which is the core discipline where the present master resides, it is
important to refer that many companies, particularly in the insurance industry, have
invested in CPPI m > 1 products. Those investments suffered cash-lock occurrences
when facing more volatile periods of their underlying assets such as the subprime crisis.
We expect that this study contributes to reinforce the idea that CPPI products need
new improvements to prevent cash-locked investments, which is in the interest of both
singular and collective investors.

In the following chapter, we expose the theoretical background necessary to
comprehend the construction of the different Portfolio Insurance strategies under study.
We also provide a final example depicting a situation where the CPPI 3 and 5 could
become cash-locked. In Chapter 3 we present the methodology used in the simulation
of the risky asset, the parameter scenarios involved and and the statistical methods.
Further, in Chapter 4 the statistical results are shown and then discussed in Chapter
5. Chapter 6 has the main conclusions of this thesis and further research topics are
suggested in the end.

3



Chapter 2

Portfolio Insurance Background
In general there are three types of investment strategies: (1) buy-and-hold which is a
neutral strategy in the sense that there is no reaction if either market rises or falls, (2)
buy-falling/sell-rising stocks corresponding to a concave payoff diagram, and (3) buy-
rising/sell-falling stocks which supports upward performance while giving downward
protection. The latter is a Portfolio Insurance (PI) strategy and therefore strategies (2)
and (3) can be thought as selling and buying PI, respectively (see Perold and Sharpe
(1988)).

A PI strategy can be categorized by its construction type - static vs dynamic -
and by its terminal payoff behavior - path-dependent vs path-independent. Concerning
the first aspect, a static PI strategy is such that the original asset allocation rule stays
fixed for the whole period of the investment. Contrarily, a dynamic PI strategy bases
on an algorithm which is built in such a way that it usually creates a convex payoff
function by reacting to market conditions. As for the path-dependency, a PI strategy
is path-independent if the payoff only depends on the terminal value of the portfolio
and the corresponding parameters of the hedge, and vice-versa. Table 2.1 shows how
some examples of PI strategies that integrate in the this framework. In this text we
give particular emphasis to CPPI strategy due to its path-dependent nature.

Path-independent Path-dependent
Static · OBPI with listed put · Stop-Loss

Dynamic · OBPI with replicated put/call · CPPI

Table 2.1: Adapted from Köstner (2004). Portfolio Insurance classification according
to its Static/Dynamic construction vs path-dependency.

In this text we consider the usual choice of the assets that compose a portfolio
p: the risky or performance asset, S (e.g. stock), which is modeled by a stochastic
process, and the risk-free asset, B (e.g. bond), i.e. riskless cash accounts that are used
to assure the minimum payoff the investor has initially negotiated. Thus, PI can be
represented for every t ∈ [0, T ] by the pair (νB, νS), which are the risky asset number
and the number of bonds, respectively. The portfolio value (V p

t )t∈[0,T ] is hence given by
V p
t = νB

t Bt + νS
t St (Balder and Mahayni, 2010). In this thesis we consider only self-

financing PI, i.e. with no exogenous injection or withdrawal of money during ]0, T [.
Naturally, the CPPI, OBPI and SLPI strategies correspond to this type of strategies
which can only purchase more assets if they have previously sold others. This self-

4
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financing property implies that (see e.g. Bjork (2009))

dV p
t = νB

t dBt + νS
t dSt, (2.1)

and typically the insured component of the investment can be translated into the ex-
pression

BT = ηV p
0 , (2.2)

where η (typically ranging from 80% to 100%) is the percentage of the initial invested
capital to be insured. Assuming non-arbitrage, at t = 0 we have νS

0 > 0 and hence V p
0 >

νB
0 B0, which mean η is limited to the future value of the initial portfolio investment,

and therefore 0 ≤ η < erT (Zagst and Kraus, 2011). In other words, an investor can
never insure more than the present value of its investment. This percentage is one of
the scenario parameters used in the results of this thesis, because of it influence on PI
performance.

2.1 Stop-Loss Portfolio Insurance (SLPI)
As its name suggests, this simple strategy consists on the portfolio being entirely in-
vested into the risky asset, and if it falls below the investor’s pre-established floor
Ft, the portfolio is automatically rebalanced into the risk-free asset. The floor is a
representation of the bond with continuously compound interest in [t, T ]:

Ft = FT e
−r(T−t). (2.3)

Thus, the portfolio value of the SLPI strategy can be formally defined by

V SLPI
t =

V0

S0

St1{τ>t} + Ft1{τ≤t}, (2.4)

where τ = inf{t > 0 : V SLPI
t = Ft} is the first instant that the portfolio ‘touches’

the floor barrier, if it exists.1 The indicator functions (1{τ>t}, 1{τ≤t}) are respectively
(1, 0) if τ /∈]0, t] - i.e., in this period the portfolio never touched the barrier - and (0, 1),
otherwise. Therefore, SLPI is clearly a path-dependent strategy because its value at t

depends on wether the risky asset path dropped to F before t. In other words, if we
imagine two stock paths leading to the same ending, if one has reached the floor barrier
and the other hasn’t, the final portfolio value will be FT and ST , respectively.

1Note that we do not include t = 0 because it would mean deliberate investment in the risk-free
asset. Also note that if {t > 0 : V SLPI

t = Ft} = ∅, then its infimum is ∞ and the definition also holds.

5
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2.2 Option Based Portfolio Insurance (OBPI)
An option is a contingent claim where the investor purchases the right, but not the
obligation, to buy (call) or sell (put) the underlying asset S at a specified strike price
K.2 For the sake of simplicity and because OBPI strategy is not the main focus of this
thesis, we consider only the European call option which restricts the exercise only at
expiration date T . The exercise payoff can be defined by the following contract function
(Lundvik, 2005):

Φ(ST ) = max[(ST −K), 0]. (2.5)

To exemplify, let us assume for a certain stock that S0 = 100. The main idea is to pay
at t = 0 a certain amount, say P = 10, that gives the right to buy the stock at t = T

for the price of, suppose K = 120. The option buyer is thus expecting (or wishing) that
at expiration date T , at least ST > K + P to profit.3 In this case, e.g. ST = 150, the
simplest operation the investor can do is to buy S by its rightful price of 120 and sell it
immediately after by its market value 150, yielding a profit of (−10−120+150) = 20.4

But of course ST < K could also happen and if so, the investor does nothing and the
contract expires out of the money, leaving a loss of 10.

Now as for the 10 price of the call option, it must be generated by a certain
function that in some way measures the probability that St may end up above or bellow
the strike price K. The Black-Scholes (B-S) model deals with this issue by assuming
completeness of the financial market, that there are no arbitrage possibilities, among
other assumptions that make the model an approximation to the real financial market.
But if we can buy options in the market we need not bother with this for now.

The main idea of OBPI, as introduced by Leland and Rubinstein (1976) consists
in buying q call options and investing the amount F0 = FT e

−rT in Zero-Coupon (Z-C)
bonds, that will insure the principal investment if the call expires out of the money.
Therefore, the proportion q and exercise price K are such that:

V OBPI
0 = qCall(0, S0) + FT e

−rT , (2.6a)
FT = qK, (2.6b)

2Contingent claim is a financial asset (claim) whose future payoff depends (contingent) on the
uncertain value of another risky asset.

3More accurately, an investor may want to take into account the present value of K, but let us
simplify.

4It might seem that a 20 profit is not very attractive comparing to the 150 − 100 = 50 profit of
the simple buy-and-hold strategy. However, one should note that in this case the leverage effect of
the option (200%) is largely superior than of the buy-and-hold approach (50%), so if the buyer had
purchased 10 calls on the same stock, he would pay 100 and profit 200.

6
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where FT = ηV OBPI
0 - recall eq.(2.2) - and thus, both can be found numerically.

Since the listed call + bond OBPI is a static PI strategy (table 2.1), once we have all
parameters set to begin the strategy, no further calculations are required until t = T

where the exercise of the contract takes place and the value of the portfolio is given by

V OBPI
T = q max[(ST −K), 0] + FT =

{
qST if ST > K

qK if ST < K
(2.7)

As it was mentioned before, listed options are usually unreachable to most
investors. An alternative solution to this problem is to replicate (hedge) options by
creating a dynamic PI strategy consisting of risky-assets and bonds only. In other
words, we want (νB, νS) such that it matches the performance of an OBPI strategy for
every t ∈ [0, T [. Again, since we consider only the simple case of European call option,
the model can deliver a closed-form price function for this type of option.

In the B-S framework asset B is also considered a continuously compound Z-C
bond at risk-free interest rate r and St follows a geometric Brownian motion (GBM),
i.e.

dBt = rBtdt ⇒ Bt = BT e
−r(T−t), (2.8a)

dSt = St(µdt+ σdWt) ⇒ St = S0e
(µ−σ2

2
)t+σWt , (2.8b)

where (Wt)t∈[0,T ] is a Brownian motion and µ > r ≥ 0 and σ > 0 are commonly
referred to as the drift and volatility parameters, respectively. With this model, the call
function can be obtained by introducing the contract function of eq.(2.5) as a boundary
condition to the B-S partial differential equation, yielding the following solution (for
derivation of the B-S equation see, e.g., Hull (2008)):

Call(t, St) = St N (d1)−Ke−r(T−t)N (d2), (2.9)

where N (.) ≡ N (0, 1; .) is the cumulative distribution function for the standard normal
distribution and

d1 ≡ d1(t, St) =
1

σ
√
T − t

[
log St

K
+

(
r +

σ2

2

)
(T − t)

]
(2.10a)

d2 ≡ d2(t, St) = d1 − σ
√
T − t. (2.10b)

Hence, the replicated portfolio is given in terms of asset numbers by νB
t = q[1−N (d2)]

and νS
t = qN (d1) for t ∈ [0, T [ and for t = T , eq.(2.7) also holds.5 Note that this

5Parallelly, the put-call parity relation Put(t, St)+St = Call(t, St)+Ke−r(T−t) tells us that there
are many other ways to build an OBPI strategy, namely to replicate a call based PI strategy using

7
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strategy is model dependent, as it is necessary to estimate a proper value for σ, usually
based on historical data of the stock or index. Fig.2.1 illustrates a synthetic OBPI
path.
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DJ Euro Stoxx 50

Figure 2.1: Synthetic OBPI strategy applied over DJ Euro Stoxx 50 index: V0 = 100;
r = 4%; η = 100%.

2.3 Constant Proportion Portfolio Insurance (CPPI)
The Constant Proportion Portfolio Insurance is a dynamic asset allocation strategy
witch leverages the participation in the risky asset movements and simultaneously en-
sures the purchase of risk-free bond that matures at the predefined floor value FT

required by the investor.
In general, the literature refers to the amount invested in the risky asset as the

exposure of the portfolio V to the risky asset S and we shall denote it by (Et)t∈[0,T ]. The
amount invested in the risk-free asset B is simply the rest of the portfolio V −E. Thus,
we can verify that the relation V = E+(V −E) obviously holds, which becomes much
more enlightening if we rewrite it as V = E

S
S + V−E

B
B because we now can compare

it with eq.(2.1). In fact, we can see that νS = E
S

and νB = V−E
B

. In the case of the
CPPI strategy, the exposure is given by the difference between the portfolio value and
the floor, namely the cushion C, leveraged by a constant m (typically 1 ≥ m ≥ 5), i.e

Et = mCt = m(V cppi
t − Ft). (2.11)

As an example, let us suppose at t = 0 an investor invests 100 in this CPPI strategy
with m = 3 and with full guarantee (η = 100%), i.e FT = 100 . Taking r = 4% and

put options. We focus, however, only on the PI strategy with the call option.

8
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T = 5 years we have F0 = 100e−0.04×5 ≈ 81.87 and C0 = 100−81.87 = 18.13. Therefore,
initially we have E0 = 3C0 = 54.39 invested in the risky asset and the rest 100−E0 =

45.61 in bonds. Now the evolution of both S and B assets play its role. Assume, to
simplify, that the next trading day takes place exactly a year after (t = 1) and S has
risen 10%. We have F1 = 85.21 and hence V1 = 54.39(1 + 10%) + 45.61F1

F0
= 107.3,

because B evolves at the same rate of Ft, r. Therefore, C1 = 107.3 − 85.21 = 22.09,
E1 = 66.27 and V1 −E1 = 41.03. An example of CPPI 3 applied to the DJ Euro Stoxx
index index is shown at three different dates in Fig. 2.2. We can see in this case that the
exposure proportion becomes very short which mean the investment ended practically
cash-locked.

CPPI, m=3; DJ Euro Stoxx 50

Floor Cushion Zero-Cupon Bonds Risky Asset Exposure

2873.13

778.056

1317.02

2334.17

3109.69

1015.3

1079.1

3045.89

3373.12

136.216

3100.69

408.649

Date

1000

2000

3000

4000

05�01�2006 28�12�2007 08�01�2010

Figure 2.2: Bar chart of CPPI 3 structure at three different dates. Underlying Asset:
DJ Euro Stoxx 50 index.

If we are considering continuous-time trade, the pair (νS, νB) defined in the
second paragraph of section 2.3 can be introduced in eq.(2.1), yielding

dVt =
Et

St

dSt +
Vt − Et

Bt

dBt. (2.12)

Again, the model for both risky and risk-free assets in eq. 2.8 is useful to formulate
a continuous-time closed-form solution of a CPPI path. Taking this model, the CPPI
exposure definition in eq.(2.11) and introducing both in eq.(2.12) we obtain (after some
simple algebra - see Appendix A), a log-normal type stochastic differential equation
for the cushion. Hence, the CPPI value at any given instant follows immediately by
Vt = Ct + Ft:

V cppi
t = V cppi

0

[
ηe−r(T−t) + (1− ηe−rT )eλt

(
St

S0

)m
]
, (2.13)

9
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where λ = (1 − m)(r + mσ2

2
) and η is still as defined in eq.(2.2) (see e.g. Cont and

Tankov (2009)). However, a continuous-time based CPPI is not representative of the
discrete trading day reality. The discrete rebalancing algorithm which is applied in real
cases is given in the following chapter.

10



Chapter 3

Methodology
In this thesis we propose to study how the different portfolio insurance strategies vary
with the value of the stock at maturity T . In other words, we seek to simulate N stock
paths S with initial value S0 all ending at the same fixed ST . In particular, this analysis
is suggested as a way to analyze path-dependencies of PI, specifically CPPI 3 and 5
strategies. We model stock trajectories using geometric Brownian motion for its wide
usage in the literature. However in this case the geometric Brownian motion paths are
tied to ST at maturity.

3.1 Gaussian Processes For Machine Learning Regression
To generate the conditioned GBM paths, we use gaussian processes for machine learning
regression (GPR), which is given by Rasmussen and Williams (2005). Following this
work, applications to different stochastic processes are provided by Sousa et al. (2012),
in particular for the GBM. The GBM follows a lognormal distribution, which means
its logarithm is a gaussian process. Therefore, we generate a process yt which is a
Brownian Motion with drift and conditioned to yn (Brownian Bridge) and obtain the
GBM by exponentiation i.e. St = S0e

yt . Furthermore, this choice is motivated by the
fact that this is essentially a vectorial procedure, a desirable aspect because the code
was implemented in Mathematica which is a favorable language for matrix operations.

In the general case, the purpose of GPR is to obtain the non-linear regression
function y = f(x⃗) that maps the data (X, y⃗) called the training set, assuming a specific
prior gaussian process, i.e GP ∼ N (m(x⃗, cov(x⃗1, x⃗2)). The matrix X gathers the n

vectors x⃗i = x1
i , . . . , x

d
i which contain the d parameters that originate the corresponding

n observations yi = f(x⃗i) with i = 0, . . . , n. In the present case however, this setting
is much more simplified because x⃗ = t and the training set reduces to the single
observation (tn = T, yn = log ST

S0
). The remaining time steps t0, t1, . . . , tn−1 are collected

in the vector t∗ called the test set and represent the instants where y∗i = f(t∗i ), i =
0, . . . , n−1 was not observed.1 The regression process is also gaussian and it is obtained
by the mean and covariance functions of the process defined by all the trajectories of
the prior process that passes through the training set. Since the process is gaussian,

1The arrow representation was only used to represent the general case of a vector with i = 1, . . . , d
different parameters. In this case we use only one parameter, t. Different points k = 0, . . . , n are
collected in vectors represented by bold font, e.g. t = (t0, t1, . . . , tn)

11
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we have [
yn

y∗

]
∼ N

([
m(T )

m∗

]
,

[
cov(T, T ) cov∗⊤

cov∗ cov∗∗

])
(3.1)

where m∗ =
(
m(0),m(t1), . . . ,m(tn−1)

)
, cov∗ =

(
cov(0, T ), cov(t1, T ), . . . , cov(tn−1, T )

)
and the matrix elements (cov∗∗)ij = cov(t∗i , t

∗
j), with i, j = 0, 1, . . . , n − 1. The condi-

tional distribution is given by

p(y∗ | t∗, T, yn) ∼ N
(

m∗ +
yn −m(T )

cov(T, T )
cov∗, cov∗∗ − 1

cov(T, T )
cov∗cov∗⊤

)
, (3.2)

where one should note that cov∗cov∗⊤ must be read as an outer product resulting in
a n× n matrix with elements cov(ti, T ) · cov(tj, T ), i, j = 0, . . . , n− 1. The mean and
covariance of this process are used to build respectively the regression function and
regression confidence, by extending to the whole t set. Therefore, the posterior process
on the data has the following mean and covariance functions

mD(t) = m(t) +
1

cov(T, T )
cov(t, T )(yn −m(T )), (3.3a)

covD(s, t) = cov(s, t)− 1

cov(T, T )
cov(s, T )cov(t, T ), (3.3b)

Hence, using eqs. (3.3a) we can simulate any path of a gaussian process with mean m

and covariance cov that passes through (in this case end at) (T, yn). In our particular
framework, we deal with a Brownian motion with mean and covariance given by

m(t) =

(
µ− σ2

2

)
t, (3.4a)

cov(s, t) = σ2 min(s, t), (3.4b)

where µ and σ are again the drift and volatility, respectively. The imposition of the
training set (T, log ST

S0
) will particularize equations 3.3. Noting that cov(ti, T ) = σ2ti,

∀i=0,...,n, eq. 3.3a simplifies significantly to

mD(t) =

(
µ− σ2

2

)
t+

σ2t

σ2T

[
log ST

S0

−
(
µ− σ2

2

)
T

]
=

t

T
log ST

S0

. (3.5)

This result as the important meaning that mD(t) does not depend on µ, which also
means that the GBM tied to one point gives place to the natural reparametrization
of µ by µ̃ = 1

T
log ST

S0
= log

[(
ST

S0

)1/T ]. We should in fact expect this result, because
the risky asset is assumed log-normal which means that the annualized return will be

12
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eµ̃ =
(
ST

S0

)1/T . Additionally eq. 3.3b can also be reduced to

covD(s, t) = σ2(min(s, t)− st) = σ2

{
s− st , s ≤ t

t− st , s > t
(3.6)

Now the Brownian bridge path can be obtained by (see Glasserman (2003))

B = mD + CZ, (3.7)

where C is the Cholesky decomposition of covD, i.e. the covariance matrix whose
elements are given by eq. (3.6), and Z is a vector of the standard normally distributed
N (0, I) random numbers. Finally, the GBM paths are simulated by exponentiation of
the Brownian bridge process, i.e St = S0e

Bt so that ST = S0e
logST /S0 .

0 1 2 3 4 5
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200

250

300

350

Figure 3.1: Two geometric Brownian motion paths conditioned to ST = 100 (red) and ST =
300 (blue), simulated with gaussian processes for machine learning regression. T = 5 and
∆t = 1/100.

3.2 CPPI Implementation
We now proceed with an intuitive approach to CPPI in a discrete-time basis, making it
more identifiable with the real world. For a more formal approach see Brandl (2009).
Contrary to the continuous case, in the ‘real world’ traders are restricted to the official
discrete trading days. Therefore, one must be prudent by choosing a proper multiplier,
as the strategy can only insure that Vt ≥ Ft for a limited drop in the market between
two consecutive trading days. To the risk of the stock dropping at a rate greater than
the threshold we call it gap risk. A smaller period between the trading days reduces
path-dependency and gap risk.

Let us then consider the simplest case of a partition of the time interval [0, T ]
consisting of n + 1 equidistant tk time steps, i.e t0 = 0 < t1 < . . . < tn = T and

13
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tk+1 − tk = T/n ≡ ∆t,∀k=0,...,n. Now from the self financing condition in discrete form
(see eq.(A.3)), eq.(2.12) can be rewritten in terms of tk, i.e ∆Vk+1 ≡ Vk+1 − Vk is given
by (to ease the notation let xtk ≡ xk):

∆Vk+1 =
Ek

Sk

∆Sk+1 +
Vk − Ek

Bk

∆Bk+1. (3.8)

As we consider the non-existence of short-selling, the CPPI exposure has to be defined
with an inferior barrier of zero, i.e

Ek = max[mCk, 0] =

{
m(V cppi

k − Fk) if V cppi
k ≥ Fk

0 if V cppi
k < Fk.

(3.9)

Note that in the continuous case, the null branch is not necessary because continuous
rebalancing makes sure that Vt ≥ Ft,∀t ∈ [0, T ]. Hence we see that the assets’ numbers
are νS

k = max[mCk,0]
Sk

and νB
k = Vk−max[mCk,0]

Bk
and so the portfolio value is given by

V cppi
k+1 =


m
(
V cppi
k − Fk

) Sk+1

Sk

+
(
V cppi
k (1−m) +mFk

) Bk+1

Bk

if V cppi
k ≥ Fk

V cppi
k

Bk+1

Bk

if V cppi
k < Fk,

(3.10)

Thus, given the inputs V0, η, r, T and m we obtain F0 and E0; with Bk

Bk−1
= e−r(T−tk)

e−r(T−tk−1)
=

er(tk−tk−1) = erT/n we are given Fk = Bk

Bk−1
Fk−1; and at last given Sk we have all that

is necessary to know the following Vk, (k = 1, . . . , n) by the recursion expression in
eq.(3.10). But if we want to track the evolution of each the cushion, the exposure and
the Z-C bond parts, then we can create the following loop:

Algorithm 1 CPPI algorithm pseudo-code.
1: for k = 1 → n do
2: Evaluate Vk from eq.(3.10);
3: Calculate Fk = ηV0e

r(T−tk) and Ck with the condition:
4: if Vk ≥ Fk then
5: Ck = Vk − Fk;
6: else
7: Ck = 0;
8: end if
9: Calculate risky asset exposure Ek = mCk and the rest Vk−Ek on risk-free asset;

10: end for

In other words, in every time step tk+1, CPPI algorithm invests the previous
Vk, allocates Ek = m(Vk − Fk) ≥ 0 in S and Vk − Ek in B, and obtains Vk+1 by the
stochastic variations of S and the known growth of B. Figure 3.2 shows an application
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of the CPPI strategies on a world stock index, where we can again observe cash-lock
occurrences for CPPI 3 and 5.
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DJ Euro Stoxx 50

Figure 3.2: CPPI 1, 3 and 5 applied over DJ Euro Stoxx 50 index. V0 = 100; r = 4%;
η = 100%.

3.3 Parameters and Performance Measures
In this thesis all algorithms to generate the stock values and the corresponding portfolio
insurance strategies were implemented in Mathematica. We compare tree of the most
proliferated PI strategies: CPPI, SLPI and OBPI. We separate the CPPI strategy
according to its multiplier values m = 1, 3, 5 and treat them as different strategies to
be confronted. In fact, CPPI 1 is essentially different from the other two for its path-
independent characteristic. It can be thought of as the simple strategy of buying the
risky asset plus the risk-free asset separately, so that at each point in time, the portfolio
value is always the sum of both assets till it matures, regardless of the path taken.

The simulations count on two types of parameters to implement: the proce-
dural which will be fixed for every simulation and the scenario parameters which will
assume different values that will recreate different scenarios. Among the first group are
the initial portfolio investment V0 = 100, the rebalancing frequency, i.e, constant time
increments are ∆t = 1/100, which can be thought as the trading days being separated
periodically by (1, 2, 2) days, the number of time steps is n = T/∆t, the number of
paths / simulations N = 10000 (as in Annaert et al. (2009)) and the risk-free interest
rate is always r = 4%. The choice of the latter is also among the general usage (e.g.
5% in Costa and Gaspar (2011), 3% and 4% in Cont and Tankov (2009)).

The scenario parameters will vary so that their impact on PI performances and
distributions are analyzed. Following the literature these parameters and the respective
reference values are the volatility of the stock, σ:{15%, 40%}, the percentage of the
initial portfolio to be insured η:{100%, 80%}, the maturity of the investment T :{5, 15}
and the stock value at maturity ST :{100, 150, 200, 250, 300}. The combination of these
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parameters result in 40 different cases. The main difference on this scenario setup with
respect to other literature, is the fixation of ST and the consequent substitution of µ
(see 3.1). The present work also extends the scenarios used in Costa and Gaspar (2011)
by introducing T = 15 to the analysis, since long maturities can be found in some PI
products. Another particularity is the choice of ST values all above S0 = 100. The
reason is due to the fact that for negative rates of return of the underlying risky asset,
PI strategies will return only the guarantee as they end invested almost entirely on
the risk-free asset. We are concerned to find which PI perform better on large positive
market trends, i.e. potentiate most upside performance. We also choose ST instead of
the annualized return 1

T
log ST

S0
because the latter varies with T and as we study two

different maturity cases, it seems more intuitive to a certain investor to know exactly
which value he invested in the PI and its payoff value. All the probability density
distributions can be found in Appendix B as an aiding tool for comparison.

In order to analyze and confront the aforementioned PI strategies we have cho-
sen two of the most significant statistical methods for comparison in literature. One is
the study of the first four moments. The moments are often used in literature because
they can easily be interpreted and much information can be withdrawn about the be-
havior of the payoff distributions (see e.g. Prigent and Bertrand (2003); Pezier and
Scheller (2011) and Khuman et al. (2008) uses log-moments). We calculated the cen-
tral moments with the built-in functions delivered by Mathematica and the respective
results are given in the next chapter. Additionally, moment analysis such as the mean-
variance rule is suited only for investors with quadratic expected utility functions, i.e.,
investors whose risk-aversion increases with growing wealth. As this restricts most of
the investors’ risk-profiles, we must consider other measures that the sake of consistency
of the present analysis.

Hence, we also use Stochastic Dominance (SD) criteria because it incorpo-
rates a wider class of expected utility functions in the analysis. Stochastic Dominance
was introduced by Quirk and Saposnik (1962) as a more general decision rule than
the moment analysis and based on assumptions about the utility function of the in-
vestor. Subsequent studies introduced higher order stochastic dominances (second and
third order by Hadar and Russell (1969); Whitmore (1970) respectively) restricting the
set of utility functions. The general framework assumes investors are von Neumann-
Morgenstern-rational and maximize expected utility (Linton et al., 2003). In this thesis
we consider the three orders: first-order SD (FSD) on which is assumed that investors
choose only the portfolio with the highest payoff, i.e have utility functions with positive
first derivative (Biswas, 2012); second-order SD (SSD) that implies a concave utility
function, meaning that risk aversion increases; and the third-order SD (TSD) which
requires that investors have convex utility functions, i.e., are risk-seekers when their
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wealth grows.
Some studies also take into account the analysis of a variety of performance

ratios. In the present work however we do not make this approach because in our
particular framework the PI payoff distributions of path-independent vs path-dependent
are completely different: path-independent strategies result in degenerate distributions
while path-dependent are flat. Comparing both types in terms of ratios that have less
into account the specific shapes of the distributions can be misleading (Annaert et al.,
2009). Furthermore, SD criteria are founded on expected utility theory, which is more
desirable for making conclusions based on the risk profiles of investor. The formal
definition is given in the respective section on the following chapter.
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Chapter 4

Results

4.1 Moment Analysis
This section is dedicated to the presentation of the first four moments, i.e, the mean,
variance, skewness and kurtosis. Actually the second and fourth moments are adjusted
to their most used and more easily interpretable forms: respectively the standard devi-
ation which is the square root of the variance, and the excess kurtosis which is simply
equal to kurtosis - 3. The latter adjustment takes advantage of the fact that normal
distribution has 0 kurtosis, hence makes comparison more intuitive. All moments are
obtained from the density distribution functions of the portfolio payoff at maturity,
VT , for each PI strategy in all scenarios. In the present section we only catalog the key
results of each strategy for the different parameter cases and leave its discussion to the
respective chapter.

Before we move on to the analysis of results, recall that CPPI 1 and OBPI are
the only path-independent strategies chosen for the comparisons and that all simulated
paths of the risky asset end at value ST with probability 1. Therefore, CPPI 1 and
OBPI distributions are degenerate with a single 100% weighted bar. The OBPI values
were computed according to the BS model (recall in section 2.2 we use the Synthetic
OBPI) while the CPPI 1 payoff at maturity is simply the sum of the insured amount
ηV0 plus the amount invested in the stock, i.e. V0 − ηV0e

−rT . One must also note
that the different ST values displayed on the left column can be associated with a Buy
and Hold (B&H) strategy with initial investment of S0 = 100. Hence we can compare
directly the path-independent strategies with the simplest B&H strategy, but the path-
dependent must be framed carefully with the other moments. In this regard we have
BT = {122.14, 182.21} for T = {5, 15} respectively. We begin the analysis with the
mean values in Table 4.1.

CPPI 1 strategy mean values do not vary with volatility (path-independence).
In general, CPPI 1 exhibits a slight improvement from η = 100% to η = 80% and
longer maturity. It outperforms the B&H strategy in the (ST = 100 , T = 5) and
(ST = {100, 150} , T = 15). Moreover, CPPI 1 has a better performance than the
OBPI strategy for high volatility and long maturity, but also for ST ≤ 150 when
(σ = 15%, T = 15) and (σ = 45%, T = 5). CPPI 3 is highly dependent on σ which is
due to its path-dependency. The low mean values for σ = 40% suggest high cash-lock
occurrences. While in both volatility cases those occurrences may obviously decrease

18



João Carvalho Portfolio Insurance Strategies: An Analysis of Path-Dependencies 19

under higher ST realizations, only for σ = 15% we can see possible cases of CPPI 3
performing better than B&H for (ST = 300 , η = 100%) and (ST ≥ 200 , η = 80%).
For the CPPI 5 strategy the means also show an extreme dependence on the volatility
and maturity as cash-lock events may happen for almost every simulation for σ = 40%
and T = 15. However, for σ = 15% this strategy can outperform B&H not only for
(ST = 300 , η = 100%) but also in (ST ≥ 200 , η = 80%) cases. As for the OBPI we
can see that even though it is a path-independent strategy the mean values decrease
with volatility because the synthetic OBPI is model dependent on which σ is a required
parameter. Therefore we verify that there in any case OBPI outperforms the B&H,
but in low volatile markets it is close to B&H and does perform better than CPPI 1
in the majority of ST values. Finally, the SLPI mean values are very similar to the
OBPI, with exception of some cases of σ = 40%, but the two strategies are different in
respect to path-dependency.

Table 4.1: Mean of the PI payoff distributions. V0 = 100

Η = 100%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 118.1 108.7 102.6 100.0 100.0 118.1 101.1 100.0 100.0 100.0

150 127.2 129.3 120.1 139.7 139.1 127.2 103.7 100.0 100.0 110.6

T=5 200 136.3 169.4 184.8 186.3 192.4 136.3 108.7 100.1 131.5 132.8

250 145.3 235.4 358.4 232.8 245.4 145.3 117.1 100.2 164.3 161.4

300 154.4 333.7 741.6 279.4 296.9 154.4 129.6 100.6 197.2 193.6

100 145.1 104.9 100.1 100.0 100.0 145.1 100.0 100.0 100.0 100.0

150 167.7 116.6 101.0 144.5 138.7 167.7 100.0 100.0 108.9 109.9

T=15 200 190.2 139.5 104.4 192.7 192.1 190.2 100.1 100.0 145.2 130.6

250 212.8 177.2 113.6 240.9 244.5 212.8 100.1 100.0 181.5 157.2

300 235.4 233.4 133.9 289.1 296.5 235.4 100.3 100.0 217.8 187.1

Η = 80%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 114.5 96.49 84.99 98.56 96.64 114.5 82.04 80.00 82.06 84.83

150 131.8 135.7 118.2 147.8 149.5 131.8 86.97 80.03 123.1 116.2

T=5 200 149.0 212.0 241.3 197.1 199.9 149.0 96.61 80.14 164.1 158.2

250 166.3 337.7 571.9 246.4 250.0 166.3 112.6 80.43 205.1 203.5

300 183.5 524.8 1301. 295.7 300.0 183.5 136.4 81.10 246.2 250.3

100 136.1 86.12 80.17 98.62 93.58 136.1 80.01 80.00 81.41 83.11

150 164.1 100.7 81.30 147.9 147.0 164.1 80.04 80.00 122.1 105.6

T=15 200 192.2 129.1 85.51 197.2 198.8 192.2 80.09 80.00 162.8 137.9

250 220.2 175.9 96.88 246.5 249.6 220.2 80.19 80.00 203.5 174.6

300 248.3 245.8 122.1 295.9 299.8 248.3 80.32 80.00 244.2 213.7

In the following three moments, the analysis is reduced to the path-dependent
strategies, CPPI 3 and 5. CPPI 1 and OBPI are obviously left aside because of their
degeneracy. SLPI is also path-dependent, but in a different manner, because it has only
two possible outcomes: BT or ST , whichever is the highest at maturity. This means
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that we do not need the higher order moments to interpret the characteristics of this
strategy. All the information is on the probabilities of the two outcomes which are
depicted in Table 4.2. Yet, we still deliver some observations about the skewness and
kurtosis of SLPI.

Table 4.2: SLPI probabilities.

Η=100% Η=80%

Σ=15% Σ=40%

ST ST FT ST FT

100 1. 1. 1. 1.

150 0.7819 0.2181 0.211 0.789

T=5 200 0.9243 0.0757 0.3277 0.6723

250 0.969 0.031 0.4096 0.5904

300 0.9843 0.0157 0.468 0.532

100 1. 1. 1. 1.

150 0.7744 0.2256 0.1971 0.8029

T=15 200 0.9214 0.0786 0.3063 0.6937

250 0.9633 0.0367 0.3815 0.6185

300 0.9823 0.0177 0.4354 0.5646

Σ=15% Σ=40%

ST FT ST FT

0.8319 0.1681 0.2414 0.7586

0.9924 0.0076 0.5178 0.4822

0.9993 0.0007 0.6518 0.3482

0.9998 0.0002 0.7267 0.2733

0.9999 0.0001 0.7739 0.2261

0.679 0.321 0.1553 0.8447

0.9566 0.0434 0.3653 0.6347

0.9903 0.0097 0.4823 0.5177

0.9977 0.0023 0.5565 0.4435

0.9989 0.0011 0.6077 0.3923

In Table 4.3 it is very clear that with higher volatility the standard deviations
decrease. We see that this translates in more situations where the CPPI 3 and 5 strate-
gies end up cash-locked, according to the means previously analyzed. Equivalently, in
all cases the higher the floor (higher η) the same observation happens because there
is more probability of cash-lock events. We note that both strategies suffer a decrease
in the standard deviation for longer maturities which is enhanced by higher volatil-
ities corroborating the idea that those conditions imply more cash-lock occurrences.
We must also emphasize the fact that higher multipliers amplify the negative effect of
longer maturities. For ST = 100 we see that the SLPI distribution is obviously degen-
erate with only one possible outcome 100 because the final floor value coincides with
ST .

The skewness of a distribution measures its asymmetry with respect to the
mean. Specifically, a negative or left-skewed distribution has a longer left tail whereas
a distribution with a broader right tail has positive or right skewness. Hence zero-
skewed strategies are symmetric. Investors tend to favor positively skewed payoffs, so
an analysis merely based on mean and variance measures would overrate the strategies
which reduce skewness. In Table 4.4 we can see that for CPPI 3 and 5, η does not
influence skewness (not even kurtosis as can be seen further) but the increasing volatility
makes distributions more positive-skewed. In addition higher ST values give place to
very small decreases in skewness while longer T gives more positive skewness. For the
SLPI skewness along with the mean values show the bimodal aspect of the distribution.
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Table 4.3: Standard Deviation of the PI payoff distributions. V0 = 100

Η = 100%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 0 0.1854 0.1892 0 0 0 0.1684 0.001230 0 0

150 0 0.6242 1.438 0 20.65 0 0.5715 0.009846 0 20.40

T=5 200 0 1.475 6.039 0 26.45 0 1.358 0.04289 0 46.94

250 0 2.872 18.34 0 26.00 0 2.657 0.1340 0 73.77

300 0 4.948 45.38 0 24.86 0 4.595 0.3393 0 99.80

100 0 0.1816 0.01701 0 0 0 0.002558 1.388´10
-6

0 0

150 0 0.6135 0.1302 0 20.90 0 0.008712 6.225´10
-10

0 19.89

T=15 200 0 1.454 0.5510 0 26.91 0 0.02078 2.735´10
-9

0 46.10

250 0 2.840 1.686 0 28.21 0 0.04076 8.613´10
-9

0 72.87

300 0 4.906 4.201 0 26.37 0 0.07068 2.198´10
-8

0 99.17

Η = 80%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 0 0.3530 0.3601 0 7.479 0 0.3205 0.002341 0 8.559

150 0 1.188 2.737 0 6.080 0 1.088 0.01874 0 34.98

T=5 200 0 2.807 11.49 0 3.174 0 2.586 0.08164 0 57.17

250 0 5.466 34.91 0 2.404 0 5.058 0.2550 0 75.76

300 0 9.417 86.38 0 2.200 0 8.746 0.6457 0 92.03

100 0 0.2258 0.02114 0 9.338 0 0.003180 1.725´10
-6

0 7.244

150 0 0.7627 0.1619 0 14.26 0 0.01083 7.739´10
-10

0 33.71

T=15 200 0 1.808 0.6850 0 11.76 0 0.02583 3.400´10
-9

0 59.97

250 0 3.531 2.096 0 8.144 0 0.05068 1.071´10
-8

0 84.46

300 0 6.099 5.223 0 7.293 0 0.08788 2.732´10
-8

0 107.4

For σ = 15% it is always left skewed (with exception of ST = 100) because there
were more VT = ST realizations than VT = BT conferring an effective left tail to the
distribution. For higher ST values the left-skewness intensifies because there are less
chances of triggering the stop-loss rule and therefore more weight is given on the right
bar.

The exact interpretation of ‘tailedness’ and ‘peakedness’ of a distribution func-
tion provided by the kurtosis has been subject to wide discussion (and often confusion)
over the past century (DeCarlo, 1997). Yet presently there is still room for presump-
tions that can give alternative measurements of a distributions peak sharpness and tail
fatness, because different shaped distributions with equal kurtosis have been already
found. However it is consensual that shape has to incorporate those two aspects (peak
and tails). Therefore the kurtosis measurement basically assumes that the shoulders
of a distribution are located at the mean plus (and minus) a standard deviation and
scales the fourth moment to its variance. Another common meaning used for kurtosis
is the ‘departure from normality’. Hence, normal/mesokurtic distributions have excess
kurtosis γ2 = 0 (or 3 for kurtosis), γ2 > 0 correspond to leptokurtic curves, i.e., with
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Table 4.4: Skewness (third moment).

Η = 100%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind -0.06993 0.08492 Ind Ind Ind 0.3413 1.797 Ind Ind

150 Ind -0.07020 0.08331 Ind -1.365 Ind 0.3393 1.777 Ind 1.417

T=5 200 Ind -0.07039 0.08217 Ind -3.208 Ind 0.3379 1.763 Ind 0.7342

250 Ind -0.07053 0.08129 Ind -5.412 Ind 0.3368 1.752 Ind 0.3677

300 Ind -0.07065 0.08058 Ind -7.792 Ind 0.3359 1.743 Ind 0.1283

100 Ind 0.04592 0.3100 Ind Ind Ind 0.7670 -99.98 Ind Ind

150 Ind 0.04577 0.3091 Ind -1.313 Ind 0.7657 4.696 Ind 1.523

T=15 200 Ind 0.04567 0.3084 Ind -3.132 Ind 0.7648 4.679 Ind 0.8404

250 Ind 0.04559 0.3079 Ind -4.928 Ind 0.7642 4.666 Ind 0.4879

300 Ind 0.04552 0.3075 Ind -7.315 Ind 0.7636 4.654 Ind 0.2606

Η = 80%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind -0.06993 0.08492 Ind -1.775 Ind 0.3413 1.797 Ind 1.209

150 Ind -0.07020 0.08331 Ind -11.34 Ind 0.3393 1.777 Ind -0.07125

T=5 200 Ind -0.07039 0.08217 Ind -37.76 Ind 0.3379 1.763 Ind -0.6373

250 Ind -0.07053 0.08129 Ind -70.69 Ind 0.3368 1.752 Ind -1.017

300 Ind -0.07065 0.08058 Ind -99.98 Ind 0.3359 1.743 Ind -1.310

100 Ind 0.04592 0.3100 Ind -0.7668 Ind 0.7670 -99.98 Ind 1.903

150 Ind 0.04577 0.3091 Ind -4.482 Ind 0.7657 4.696 Ind 0.5595

T=15 200 Ind 0.04567 0.3084 Ind -10.01 Ind 0.7648 4.679 Ind 0.07084

250 Ind 0.04559 0.3079 Ind -20.78 Ind 0.7642 4.665 Ind -0.2275

300 Ind 0.04552 0.3075 Ind -30.10 Ind 0.7636 4.654 Ind -0.4412

sharp peak and fat tails, while platykurtic shapes measure γ2 < 0, are flat at the peak
and have short tails. This being said it can be observed in Table 4.5 the same indepen-
dence on η as in the skewness values. CPPI 3 and 5 are always leptokurtic but almost
normal for σ = 15% and CPPI 3 has still low positive kurtosis for σ = 45%. However
CPPI 5 bypasses positively the normal range for high σ = 45%, but even more heavily
when adding long maturities large γ2. For the SLPI strategy again kurtosis shows a
different behavior. In general, for low ST the two possible outcome bars are more close
and equitably distributed hence decreasing the absolute value of skewness and kurtosis.
Has ST rises, the left bar stays fixed and the right bard increasingly detaches from the
other as it gains more weight simultaneously.

4.2 Stochastic Dominance
Consider two random variables V1 and V2, and their respective cumulative distribution
functions (CDF), F1(x) and F2(x). Then, we say that V1 ith order stochastically
dominates V2 if and only if D(i)

1 (x) ≤ D
(i)
2 (x) ∀x (with strict inequality for at least one

x), where D
(i)
k =

∫ x

−∞D
(i−1)
k dx and D

(1)
k = Fk(x) (Davidson and Duclos, 2000; Annaert
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Table 4.5: Excess Kurtosis (fourth moment −3).

Η = 100%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind 0.06056 0.06018 Ind Ind Ind 0.2492 6.003 Ind Ind

150 Ind 0.06063 0.05974 Ind -0.1360 Ind 0.2468 5.866 Ind 0.006764

T=5 200 Ind 0.06069 0.05943 Ind 8.292 Ind 0.2451 5.771 Ind -1.461

250 Ind 0.06073 0.05920 Ind 27.29 Ind 0.2438 5.699 Ind -1.865

300 Ind 0.06076 0.05902 Ind 58.71 Ind 0.2428 5.641 Ind -1.984

100 Ind 0.02965 0.1870 Ind Ind Ind 1.073 9995. Ind Ind

150 Ind 0.02963 0.1859 Ind -0.2761 Ind 1.069 42.37 Ind 0.3191

T=15 200 Ind 0.02962 0.1852 Ind 7.808 Ind 1.067 42.06 Ind -1.294

250 Ind 0.02961 0.1847 Ind 22.29 Ind 1.065 41.82 Ind -1.762

300 Ind 0.02960 0.1842 Ind 51.52 Ind 1.063 41.63 Ind -1.932

Η = 80%

Σ = 15% Σ = 40%

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind 0.06056 0.06018 Ind 1.151 Ind 0.2492 6.003 Ind -0.5393

150 Ind 0.06063 0.05974 Ind 126.6 Ind 0.2468 5.866 Ind -1.995

T=5 200 Ind 0.06069 0.05943 Ind 1424. Ind 0.2451 5.771 Ind -1.594

250 Ind 0.06073 0.05920 Ind 4995. Ind 0.2438 5.699 Ind -0.9649

300 Ind 0.06076 0.05902 Ind 9995. Ind 0.2428 5.641 Ind -0.2850

100 Ind 0.02965 0.1870 Ind -1.412 Ind 1.073 9995. Ind 1.623

150 Ind 0.02963 0.1859 Ind 18.09 Ind 1.069 42.37 Ind -1.687

T=15 200 Ind 0.02962 0.1852 Ind 98.10 Ind 1.067 42.06 Ind -1.995

250 Ind 0.02961 0.1847 Ind 429.8 Ind 1.065 41.82 Ind -1.948

300 Ind 0.02960 0.1842 Ind 904.1 Ind 1.063 41.63 Ind -1.805

et al., 2009). We denote V1 stochastically dominates V2 on first (second and third) order
by V1 FSD (respectively SSD, TSD) V2 (as in e.g. Levy and Wiener (1998)). Therefore,
if the CDF of the two strategies intersect or are equal, there is no SD between them.
Fig. 4.1 illustrates an example of three orders of stochastic dominance in a scenario
described in the caption bellow.

Hence, the test is made in both directions because if V1 does not SD V2, it does
not mean that V2 SD V1. Contrarily, it is obvious that if V1 SD V2 we know the reverse
does not. Therefore this study organizes the stochastic dominance results so that no
duplications arise. In addition, successive narrowing of the class of utility functions
contemplated on higher order SD suggests that lower degree SD imply necessarily the
SD on the subsequent orders, i.e., FSD⇒SSD⇒TSD. We now present the tests of
stochastic dominance between the five proposed strategies for each one of the forty cases.
Each column represents the stochastic dominance of the corresponding PI strategy over
the remaining four strategies. The observations on (F, S and T)SD (see Tables (4.6,
4.7 and 4.8) correspondingly) are made separately but the higher the order, the less
observations since the rest are resumed in the lower order SD.

For first order SD, investors who are concerned simply with higher payoff,
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Figure 4.1: Cumulative distribution functions and its sums, depicting the first three orders of stochas-
tic dominance. Scenario: {σ, T, η} = {15%, 5, 100%}.

prefer always CPPI 1 to all other strategies for ST = 100 in every scenario and for
(ST = 150, T = 15), confirming the mean analysis. It also FSD CPPI 3 and 5 in all
scenarios except for σ = 15%, (ST ≥ 150, T = 5) and (ST = 300, T = 15). The choices
of insurance percentage generally do not influence CPPI 1’s dominance, existing only
one exception, where the dominance over OBPI in (ST = 200, σ = 40%, T = 5) and
η = 100% is lost for η = 80%. CPPI 3 FSD all strategies except CPPI 1 for the lowest
ST and η = 100% in all volatility and maturity cases. It also FSD CPPI 5 in every
scenario except for (ST ≥ 250, σ = 15%, T = 5) which are the only cases it dominates
CPPI 1. CPPI 5 FSD all strategies for (ST ≥ 250, σ = 15%, T = 5) for both floor
choices. Also dominates on first order OBPI and SLPI for ST = 100. OBPI dominates
all strategies except SLPI for most cases where ST ≥ 200 except when CPPI 3 and
5 dominate. For ST ≥ 150 it also presents some dominance on low volatile markets.
SLPI first order SD CPPI 3 and 5 for high volatility markets and long maturity.

In respect to second order stochastic dominance, the investors who are risk
averse would choose CPPI 1 over SLPI in some cases of high volatile markets, such
as for (ST = 150, T = 5) and for (ST ≥ 200, T = 15) for both η. CPPI 1 also
dominates CPPI 3 on second order for (ST = 300, σ = 15%, T = 15) for both insurance
percentages as well. OBPI dominates CPPI 3 only in two very different cases: (σ =
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40%, T = 5) and (σ = 15%, T = 15) in both cases for ST = 100 and η = 80%.
Concerning third order stochastic dominance, the investor whose risk aversion

decreases with growing wealth, chooses CPPI 1 over SLPI and OBPI in few cases of
high volatility with long maturity, or low volatility with short maturity, but both cases
for ST = {200, 250}. CPPI 3 and 5 are also preferable to this investor than SLPI for
some cases of low volatility and T = 5: the first strategy for (ST = 150, η = 80%) and
(ST = 100, η = 80%), and the second for (ST = 200, η = 100%). Finally, OBPI also
stochastically dominates on third order the SLPI strategy for ST ≥ 150 and (σ = 15%,
T = 15).
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Table 4.6: First order stochastic dominance.

Η = 100% , Σ = 15% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi5 cppi5 None cppi1,cppi3,cppi5 None
200 None cppi1 cppi1 cppi1,cppi3 None
250 None cppi1 All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η = 100% , Σ = 40% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi3,cppi5,obpi cppi5,obpi obpi None cppi5,obpi
200 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi5
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 cppi5
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η = 100% , Σ = 15% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5 None
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η = 100% , Σ = 40% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5 cppi3,cppi5
200 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
250 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
300 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5

Η = 80% , Σ = 15% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 None
150 cppi5 cppi5 None cppi1,cppi3,cppi5 None
200 None cppi1,obpi,slpi cppi1,obpi,slpi cppi1 None
250 None cppi1,obpi,slpi All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η = 80% , Σ = 40% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi5 cppi5
150 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi5
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 cppi5
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 cppi5
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η = 80% , Σ = 15% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi5
150 All cppi5 None cppi3,cppi5 None
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η = 80% , Σ = 40% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi3,cppi5
150 All cppi5 None cppi3,cppi5 cppi3,cppi5
200 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
250 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
300 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
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Table 4.7: Second order stochastic dominance.

Η = 100% , Σ = 15% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi5 cppi5 None All None
200 None cppi1 cppi1 cppi1,cppi3,cppi5 None
250 None cppi1 All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η = 100% , Σ = 40% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5,obpi obpi None cppi5,obpi
200 All cppi5 None cppi3,cppi5 cppi5
250 cppi3,cppi5 cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None All None

Η = 100% , Σ = 15% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5 cppi5 None All None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η = 100% , Σ = 40% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5 cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5

Η = 80% , Σ = 15% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5,slpi None
150 cppi5 cppi5 None cppi1,cppi3,cppi5 None
200 None cppi1,obpi,slpi cppi1,obpi,slpi cppi1 None
250 None cppi1,obpi,slpi All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η = 80% , Σ = 40% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi5
200 cppi3,cppi5 cppi5 None All cppi5
250 cppi3,cppi5 cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η = 80% , Σ = 15% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5,slpi cppi5
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η = 80% , Σ = 40% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi3,cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
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Table 4.8: Third order stochastic dominance.

Η = 100% , Σ = 15% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi5 cppi5,slpi None All None
200 None cppi1 cppi1,slpi All None
250 None cppi1 All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η = 100% , Σ = 40% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5,obpi obpi None cppi5,obpi
200 All cppi5 None cppi3,cppi5,slpi cppi5
250 cppi3,cppi5,slpi cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None All None

Η = 100% , Σ = 15% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5,slpi cppi5 None All None
250 cppi3,cppi5 cppi5 None All None
300 cppi3,cppi5 cppi5 None All None

Η = 100% , Σ = 40% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5

Η = 80% , Σ = 15% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,slpi None cppi3,cppi5,slpi None
150 cppi5 cppi5 None All None
200 None cppi1,obpi,slpi cppi1,obpi,slpi cppi1 None
250 None cppi1,obpi,slpi All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η = 80% , Σ = 40% , T = 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi5
200 cppi3,cppi5,slpi cppi5 None All cppi5
250 cppi3,cppi5,slpi cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None All None

Η = 80% , Σ = 15% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5,slpi cppi5
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5,slpi cppi5 None All None
250 cppi3,cppi5 cppi5 None All None
300 cppi3,cppi5 cppi5 None All None

Η = 80% , Σ = 40% , T = 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi3,cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
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Chapter 5

Discussion
We now come to the selection and discussion of the most important results presented
in the previous chapter. Our results allow us to make some important conclusions
about the path-(in)dependent behavior of each studied PI. Taking into consideration
the setup for simulations which was carried out in this study, we must always bear
in mind that the simulations highlight the path-dependent behavior of CPPI 3, 5 and
SLPI in contrast with the certainty of the CPPI 1 and OBPI outcomes. For this reason,
we separate the analysis making the comparison between the path-dependent strategies
- CPPI 3 and 5 - and the path-independent strategies - CPPI 1 and OBPI. We must
note that despite SLPI also being a path-dependent strategy, it is only so because of the
two possible outcomes it can assume. Therefore, its distribution is very different than
the distributions of the other path-dependent strategies. In this regard, we treat SLPI
separately, because in some cases it can almost be path-independent, i.e., have one only
possible outcome. Another consequence of simulating conditioned ST , is that this study
focuses only on high trend markets, because for negative returns, PI strategies return
a value equal or insignificantly greater than the guarantee. In other words, taking the
investors perspective, if we know that a stock will fall, we invest in a bond, a saving
account, or simply do nothing. We are concerned to find in which cases cash-lock events
occur for the CPPI 3 and 5, and which PI perform better under large positive market
trends, i.e., assess how these strategies really potentiate upside performance.

5.1 Path-Dependent Strategies and Cash-Lock
The first issue we address is that path-dependent strategies exhibit high cash-lock
occurrences. For example, on a 40% volatility market and maturity of 15 years, we
can see that for every ST value, the payoffs of the path-dependent strategies end up
cash-locked almost 100% of the simulations. This can be observed by the mean almost
coinciding with the floor value, at the same time that the standard deviation ranges
from values of the order of 10−3 to 10−2 for the CPPI 3, and from 10−6 to 10−10 for the
CPPI 5. In these cases the low values of skewness and kurtosis for the CPPI 3 indicate
us the non-existence of significant outliers and thus, almost no exceptions. Despite
the high leptokurtic shape of CPPI 5, cash-lock events are even more frequent given
the extremely low standard deviations. The reason for such frequency of cash-lock
events is because a longer maturity is equivalent to a longer path which ceteris paribus
amplifies path-dependency. But mostly, it is due to the high volatility, which increases
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the probability of larger drops in the underlying risky asset. Still looking at σ = 40%,
we see that even for a 5year-maturity investment, the path-dependent strategies do not
escape a large set of cash-lock events. This can also be observed by the mean values -
also near the floor - and standard deviations ranging from orders of 10−1 to 10 for the
CPPI 3 and 10−3 to 10−1 for the CPPI 5. The only scenario where the path-dependent
strategies perform better than the others, is for the combination of low volatility, short
maturity and high returns of the risky asset: ST > 200 with a guarantee floor of 100%,
where the inequality loses its strictness for η = 80%.

The SLPI is a rather peculiar strategy under the present framework’s perspec-
tive. This strategy resumes to a two outcome lottery: either one receives the insured
amount, or wins the risky asset as if it has been fully invested on it. The obtained
probabilities of each outcome and a comparison with the other PI mean values, tell
us that SLPI is probably the best choice in 6 cases, all of which with low volatility:
for long maturity - 80% guarantee and ST ≥ 200 ; 100% guarantee and ST ≥ 250 -
and for short maturity - 100% guarantee and ST = 200. We carefully use the word
probably because it is not clear for instance that an investor will prefer a SLPI which
has 98.23% probability of returning 300 with the remaining 1.77% chance of returning
100, as opposed to the OBPI strategy whose only possible outcome is 289.1%. This
situation refers to the scenario of T = 15, σ = 15%, ST = 300 and η = 100%.

5.2 Path-Independent Strategies
The study of the path-independent strategies is more direct in the present context. In
general, the obtained moments show that the path-independent strategies are better
suited for high volatile markets and longer maturities, regardless of the risky asset’s
payoffs. This is because they have less probability of being exaggeratedly invested on
the risk-free asset. In particular, the CPPI 1 is better for moderate market increases
and outperforms OBPI for a few cases of high volatility and long maturity. Conversely,
the OBPI is a better choice than CPPI in some low volatile market scenarios.

5.3 Stochastic Dominance
So far we have identified in which scenarios path-dependent strategies are preferable
than path-independent, and vice-versa on the perspective of the analysis of moments.
However, in many cases, it is unclear only by the descriptive statistical analysis to
grasp such conclusions. Therefore, we used stochastic dominance tests which take into
account the whole cumulative distribution of the payoffs at maturity of two different
strategies and provide an answer to whether an investor choses between those two
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strategies. Nevertheless, we see that the results of the stochastic dominant test con-
firm all the conclusions made with the analysis of moments. These results show in
fact that investors who are simply interested in the higher payoffs, choose both CPPI
1 and OBPI over CPPI 3 and 5 strategies in almost all scenarios of high volatility.
The same conclusions were also obtained for the dominance of the path-dependent
strategies, which occurs only in low volatile markets, and short maturities. The SLPI
exhibits dominance over CPPI 3 and 5 only on the combination of high volatility and
long maturity. Between equally path-independent strategies, it becomes more clear
with SD that in general CPPI 1 is chosen over OBPI for high volatile markets and
longer maturities, while the opposite is observed for short maturity investments and
low volatility. In addition, both dominate each other in different situations, CPPI 1
mainly for choices of η = 100% and OBPI for η = 80%. As there have been many
cases found of first order SD, few exceptions emerged for investors who can be both
risk averse and decreasingly risk averse (second order SD), or for investors who have
only the latter risk profile (third order). However, almost every second and third order
of SD happen over SLPI.
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Chapter 6

Conclusion
The present thesis addresses an important issue concerning path-dependent CPPI
strategies which is extremely undesirable for investors and has not yet received an
empirical study. This issue is usually called cash-lock and refers to the event of a PI
becoming excessively invested in the risk-free asset, which transgresses a fundamental
purpose of PI: allow participation in upside performance of the risky asset. Hence the
question that arises is: When and how often do these cash-lock events happen?, which
leads necessarily to an even more important question: Taking into consideration the
cash-lock issue, which PI should an investor choose? In this work we provide an answer
to both questions and emphasize the negative impact of this path-dependent behavior
on PI performance.

To answer the aforementioned questions, we begin by acknowledging that if
we simulate risky asset paths all conditioned to the same final value, we obtain a
single outcome for a path-independent strategy, while a path-dependent gives rise to
a distribution. Hence, the difference between both types of strategies is highlighted
with this approach, which is not encountered in previous studies on this subject. To
achieve this, we assumed the risky asset follows a geometric Brownian motion which
is a Gaussian process and can thus be simulated and conditioned to a fixed final value
using Gaussian Processes for Machine Learning regression.

The main finding of this thesis is that, in fact, cash-lock occurrences on the
path-dependent CPPI 3 and 5 strategies happen very often and prohibit upside par-
ticipation, even in cases where the risky asset triples at maturity. This is particu-
larly patent on high volatile markets and for long maturities which is where the path-
dependencies have more presence. Hence, under such market scenarios this undesirable
risk makes the path-dependent strategies less attractive than the path-independent
CPPI 1 and OBPI strategies. This conclusion is in consonance with previous studies
and is corroborated with our analysis of the moments and stochastic dominance. How-
ever, the Buy and Hold strategy still remains a better choice for higher returns of the
risky asset. Furthermore, in cases where volatility is low, the SLPI is almost identical
to the Buy and Hold strategy. However, SLPI is more dependent on the risk profile of
an investor and the stochastic dominance tests were not conclusive.

We conclude this thesis with our goal achieved: to answer the questions posed
above, presenting a different approach for the analysis of PI strategies. We also find it
contributes as a warning for investors who think of purchasing those products, which
still need much improvement in the design process so that cash-lock risk is reduced.
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We believe this topic alone has much more to be studied and discussed. In
particular, there are other sources of path-dependency that can be introduced, e.g.,
borrowing constraints or different trading schedules. Such aspects can increase the
cash-lock risk and thus we suggest further investigations on this matter, introducing
more frictions on both market and PI levels. Additionally, a more realistic model for
the risky asset such as with stochastic volatility should be introduced as we consider the
GBM choice a limitation to this study. In this case however, conditioning paths with
Gaussian processes for machine learning could prove to be a quite challenging task. We
also consider that an analytic approach to the cash-lock behavior under discrete-time
trading is an interesting matter of research.
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Appendix A

Auxiliary Calculations
Self-Financing Portfolios

Consider a portfolio p consisting of (S1, . . . , Sa) assets and the respective asset
numbers (ν1, . . . , νa). To ease the notation let xtk ≡ xk. Hence, the portfolio value at
time tk is given by (see e.g. Bjork (2009)):

Vk =
a∑

i=1

νi
kS

i
k. (A.1)

Now let us define in discrete-time the increment ∆Vk = Vk − Vk−1. Then

∆Vk =∆
( a∑

i=1

νiSi
)
k
=

a∑
i=1

∆(νiSi)k =
a∑

i=1

[
νi
kS

i
k − νi

k−1S
i
k−1

]
=

=
a∑

i=1

[
(νi

k − νi
k−1)S

i
k + νi

k−1(S
i
k − Si

k−1)
]
=

=
a∑

i=1

[
∆νi

kS
i
k + νi

k−1∆Si
k

]
. (A.2)

where the passage from the first line to the second line is done by adding and subtracting∑a
i=1 ν

i
k−1S

i
k. The self-financing condition means that all changes in the portfolio value

are due to the assets changes exclusively, i.e. there is no external money inflow to or
outflow from the portfolio. Mathematically this is the same as stating that νi

k−1S
i
k =

νi
kS

i
k, i.e ∆νi

kS
i
k = 0, ∀i = 0, . . . , a and thus (A.2) becomes:

∆Vk =
a∑

i=1

νi
k−1∆Si

k. (A.3)
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CPPI Cushion SDE

We obtain the cushion SDE simply by putting Vt and Et in terms of Ct in
eq.(2.12) and using the B-S choice for St and Bt in (2.8):

dV cppi
t =

Et

St

dSt +
Vt − Et

Bt

dBt

= mCt
dSt

St

+ (Ft + Ct −mCt)
dBt

Bt

= mCt(µdt+ σdWt) + r(1−m)Ctdt+ Ftrdt

= Ct

(
[mµ+ (1−m)r]dt+mσdWt

)
+ dFt

d(V cppi
t − Ft) = dCt = Ct(adt+ bdWt), (A.4)

where a = mµ+ (1−m)r and b = mσ. Hence, the cushion is a GBM with drift a and
volatility b, and which solution is given by eq.(2.8b):

Ct = C0e
[mµ+(1−m)r− (mσ)2

2
]t+mσWt

= (V cppi
0 − F0)e

[(1−m)r− (mσ)2

2
+mσ2

2
]t+(mµ−mσ2

2
)t+mσWt

= V cppi
0 (1− ηe−rT )

(
St

S0

)m

eλt (A.5)

where λ = (1−m)r− (m−m2)σ
2

2
= (1−m)(r−mσ2

2
). Now Vt comes immediately by

Ft + Ct:

V cppi
t = V cppi

0

[
ηe−r(T−t) + (1− ηe−rT )

(
St

S0

)m

eλt

]
. (A.6)
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Appendix B

Probability Density Functions
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Figure B.1: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {15%, 5, 100%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}
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Figure B.2: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {40%, 5, 100%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}
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Figure B.3: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {15%, 15, 100%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}
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Figure B.4: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {40%, 15, 100%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}
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Figure B.5: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {15%, 5, 80%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}
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Figure B.6: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {40%, 5, 80%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}

44



João Carvalho Portfolio Insurance Strategies: An Analysis of Path-Dependencies 45

80 90 100 110 120 130

0.0

0.2

0.4

0.6

0.8

1.0

80 90 100 110 120 130

0.0

0.2

0.4

0.6

0.8

1.0

ST = 100.

CPPI 1

CPPI 3

CPPI 5

OBPI

SLPI

(a) ST = 100

80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

ST = 150.

CPPI 1

CPPI 3

CPPI 5

OBPI

SLPI

(b) ST = 150

80 100 120 140 160 180 200

0.0

0.2

0.4

0.6

0.8

1.0

80 100 120 140 160 180 200

0.0

0.2

0.4

0.6

0.8

1.0

ST = 200.

CPPI 1

CPPI 3

CPPI 5

OBPI

SLPI

(c) ST = 200

100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

ST = 250.

CPPI 1

CPPI 3

CPPI 5

OBPI

SLPI

(d) ST = 250

100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

ST = 300.

CPPI 1

CPPI 3

CPPI 5

OBPI

SLPI

(e) ST = 300

Figure B.7: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {15%, 15, 80%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}
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Figure B.8: Probability density functions of the PI’s payoff at maturity.
Scenario: {σ, T, η} = {40%, 15, 80%}. Procedural parameters: {N,∆t, r, V0} = {10000, 0.01, 4%, 100}
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