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ABSTRACT

The main result of this dissertation is the proof of the triple sum series formula for the
price of an European call option driven by the Variance Gamma process. With this in-
tention, we present some notions and properties of Lévy processes and multidimensional
complex analysis, with emphasis on the application of residue calculus to the Mellin-
Barnes Integral. Subsequently, we construct the Mellin-Barnes integral representation, in
C3, for the price of the option and, buttressed with the aforementioned residue calculus,
we deduce the triple sum series representation for the price of the European option and
its corresponding greeks. Finally, with the use of the new formula, some values for a
particular case study are computed and discussed.

KEYWORDS: Lévy Process; Variance Gamma Process; Multidimensional Complex
Analysis; Mellin Transform; Option Pricing.
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RESUMO

O resultado principal desta dissertação é a demonstração da fórmula de serie de soma
tripla para o preço de uma opção Europeia induzido por um processo Variance Gamma.
Com esta intenção, apresentamos certas propriedades e noções sobre processos de Lévy
e análise complexa multidimensional, dando ênfase à aplicação do cálculo de resíduos ao
integral Mellin-Barnes. Subsequentemente, iremos construir a representação na forma do
integral Mellin-Barnes, em C3, para o preço de uma opção e, apoiados pelo anteriormente
mencionado cálculo de resíduos, deduziremos a representação em serie de soma tripla
para o preço de uma opção Europeia e os seus correspondentes gregos. Para terminar,
dando uso à nova formula, serão computados e discutidos alguns valores para um caso de
estudo particular.

PALAVRAS-CHAVE: Processo de Lévy; Processo Variance Gamma; Análise Com-
plexa Multidimensional; Transformada de Mellin; Valorização de Opções.
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1 INTRODUCTION

One of pivotal tasks of mathematical finance is the pricing of financial derivatives,
such as options, yet it can be an arduous task to develop a model that is both consistent
with the empirical evidence, soluble and its numerical estimation neither erroneous nor
time consuming. One of the first attempts to solve this quandary, was the Gaussian model
first introduced by Fischer Black and Myron Scholes in [7], and latter expanded by Robert
Merton in [21], aptly named the Black-Scholes model, where the nondeterministic vari-
able in the underlying asset is modeled by a geometric Brownian motion. Its simplicity
and the admission of a close formula for the option price, are the main reason why, till
this day, it remains the most used model by market practitioners. Still the model fails
to account for either sudden price drops or raises that can be expressed as discontinuous
price jumps; moreover it assumes the volatility to remain constant for changes in relation
to the strike price and time to maturity contrary to the empirical data and, furthermore
the distributions of asset returns have been shown to be negatively skewed and exhibit
fat-tails which is not captured by the symmetric Gaussian model.

Many generalizations of the Black-Scholes model have been introduced, such as mod-
els with stochastic volatility or regime switching multifractal models, but the one we will
be examining assumes that the underlying asset price dynamics is described by a Lévy
Process, namely the Variance Gamma process, first proposed by Dilip Madan and Eugene
Seneta in [17].

The descriptive power of models based on Lévy processes for accurately portray-
ing financial markets (not displaying the aforementioned problems present in the Black-
Scholes model) has been known since the works of Benoît Mandelbrot [20] and Eugene
Fama [11], and with the advent of technology and computer development have been gain-
ing traction in recent decades. Yet, the Black-Scholes model remains mostly ubiquitous,
the main reason for this state of affairs, is that pricing models based on Lévy processes, at
best, admit a semi-closed pricing formula, or prices must be computed must be computed
by numerical simulations.

In recent years, in order to circumvent this problem, a more theoretical approach has
been undertaken directed at α-stable Lévy processes, Lα,β (see [24]). The first ma-
jor breakthrough, presented by Peter Carr and Liuren Wu [9], was the restriction of
parameter β, of Lα,β , to −1, forcing negative skewness and the existence of condi-
tional moments of all orders and thus guaranteeing the existence of a martingale mea-
sure and finite option values. Independently, research carried out by Rudolf Gorenflo
and Francesco Mainardi among others into the space-time fractional diffusion equations(∗

0D
γ
t − µθDαx

)
g (x, t) = 0, where ∗0D

γ
t is the Caputo fractional derivative and θDαx the

1



1 INTRODUCTION

Riesz-Feller fractional derivative, has yield important results (see [19], [12], [18] and [13]
for more details). Namely its solution, the Green Function gθα,γ(x, t), can be represented
by a Mellin-Barnes integral of a Gamma fraction

gθα,γ(x, t) =
1

αx

1

2πi

c1+i∞∫
c1−i∞

Γ( t1
α

)Γ(1− t1
α

)Γ(1− t1)

Γ(1− γt1
α

)Γ(α−θ
2α
t1)Γ(1− α−θ

2α
t1)

(
x

(−µtγ)1/α

)t1
dt1 (1)

and for the case where γ = 1, (1) describes the probability distribution of an α-stable
Lévy process. The last piece of the puzzle, came from the works of Mikael Passare,
August Tsikh and Oleg Zhadanov in [23], [22] and [27], where they ascertained that
under certain conditions Residue Calculus can be applied to a Mellin-Barnes integral of a
Gamma fraction converting it into a multiple sum series.

Finally, Jean-Phillipe Aguilar, Cyril Coste and Jan Korbel, in their works [1], [2]
and [3] used the green function (1) to express the price of an European option as a Mellin-
Barnes integral and applying the previously mentioned results developed by Passare et al,
were able to arrive at a series representation for an European call option

Cα,γ(S,K, r, µ, τ) =
Ke−rτ

α

∞∑
n=0
m=0

(−1)n

n!Γ(1− γ n−m−1
α

)

×
(
− log

S

K
− rτ − µτ

)n
(−µτ γ)

1+m−n
α (2)

This dissertation takes after these works. Due to the Variance Gamma process being
expressed by the difference of two Gamma processes we will need to extended the Theo-
rem for the representation of the Double Mellin-Barnes Integral by a sum of residues, pre-
sented in [27], to the Triple Mellin-Barnes Integral case. Subsequently, we will develop
a Mellin-Barnes integral representation for the price of an European call option under the
Variance Gamma model, and similarly to [1], will use the previous result to express the
aforementioned call option price as a triple series representation, and complement it, with
the corresponding formulas for the greek functions.

This dissertation is organized as follows: Section 2 will introduce preliminary con-
cepts such as Lévy processes, the Variance Gamma process and Multi-dimensional Residue
Theory and discuss some of their properties. In Section 3, we will prove the representa-
tion of the triple Mellin-Barnes Integral by a sum of residues Theorem. In Section 4 we
present the main results of this thesis, the derivation of the triple series representation for
an European call option under the Variance Gamma model, and the subsequential greek
functions. In Section 5 taking advantage of the data in [25] we will test the accuracy of
the Variance Gamma formula and its greeks. The last section is dedicated to conclusions.

2



PRELIMINARY THEORY LÉVY PROCESSES

2 PRELIMINARY THEORY

2.1 Lévy Processes

Fist we start by giving a brief summary of Lévy processes. We will enumerate, without
proof, concepts, definitions and propositions, that are basal for the derivation of the main
results of this thesis. A more in depth overview of this subject can be founded in the
textbooks [4] and [10]. We start by formally defining a Lévy process.

Definition 1 (Lévy Process). Let X = {Xt : t ≥ 0} be stochastic process in the proba-

bility space (Ω,F , P ). We say X is a Levy process if:

1. X0 = 0, (a.s.)

2. X has independent stationary increments, i.e. for any n ∈ N partition of time

intervals 0 = t0 < t1 ≤ ... < tn < ∞, the random variables Xtj+1
− Xtj are

independent and Xtj+1
−Xtj

d
= Xtj+1−tj , for all 0 ≤ j ≤ n.

3. X is stochastic continuous, i.e. for any α > 0 and s > 0, we have:

lim
t→s

P (|Xt −Xs| > α) = 0 (3)

Note that the property of independent stationary increments, implies that Lévy pro-
cesses are infinity divisible, and reflects the weak market efficiency hypothesis, that is,
present and past values and historical trends cannot be used to predict the future value of
assets. Also observe that Brownian motions are a particular case of Lévy processes, still
Lévy processes do not impose trajectory continuity, this laxity will permit the replication
of price jumps observed in the market.

To have a better grasp of a Lévy process behavior consider its decomposition:

Theorem 1 (Lévy-Itô decomposition). LetX be a Lévy process. There exists a vector b ∈
Rd, a Brownian motion processBA with covariance matrixA ∈ Rd×d and an independent

compensated Poisson measure Ñ on R+ × Rd, such that Xt can be decomposed as:

Xt = bt+BA(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xÑ(t, dx) (4)

Theorem 1 states that every Lévy process can be view as the sum of a drift component
bt, a diffusion component given by the Brownian motionBA(t), a small jumps component
expressed by

∫
|x|<1

xÑ(t, dx) and a big jump component given by
∫
|x|≥1

xÑ(t, dx).

3



PRELIMINARY THEORY LÉVY PROCESSES

While the Lévy-Itô decomposition may thoroughly describe the behavior of a Lévy
process, we may also want a more succinct description fitter for describing more complex
processes.

Theorem 2 (Lévy Khintchine). LetX be a Lévy process then there exists a vector b ∈ Rd,

a positive defined symmetric matrix A ∈ Rd×d and a Lévy measure ν on Rd \ {0}, such

that, for all u ∈ Rd, the characteristic function of Xt will be given by:

φXt(u) = exp

t
i〈b, u〉 − 〈u,Au〉

2
+

∫
Rd\{0}

[ei〈u,y〉 − 1− i〈u, y〉1|y|<1(y)] ν(dy)


 (5)

where a Lévy measure is a Borel measure defined in Rd \ {0} such that∫
Rd\{0}

min{|y|2, 1}ν(dy) ≤ ∞ (6)

Since any Lévy process can be completely described by the triplet (b, A, ν), its charac-
teristic function becomes a ubiquitous way of presenting it. processes such as the CGMY,
the Generalized Tempered Stable, the Finite Moment Log-Stable, among others, are gen-
erally described this way rather than by their Lévy-Itô decomposition.

We must now inquire about the computation of option prices using Lévy processes.
The Black-Scholes model assumes the absence of arbitrage and market completeness.
Further, since an equivalent martingale measure Q exists if and only if the market is
arbitrage free, and Q is unique if and only if it the market is complete, then the Black-
Scholes model ensures the existence and uniqueness of Q. Recall that Q is equivalent to
the real observed probability measure P, and Ste−(r−q)t, is martingale under Q. Therefore
asset price dynamics under Q will be given by:

ST = Ste

(
r−q−σ

2

2

)
τ+BQ

τ , where τ = T − t. (7)

As might be expected, considering Lévy processes are much more encompassing than
diffusion processes, neither market completeness nor absence of arbitrage are guaranteed.
Since we will be using the Variance Gamma process which has both positive and negative
jumps, as can be seen in (11), absence of arbitrage will be achieved, on the other hand,
market completeness will not. Among the plurality of possible martingale measures, for
simplicity and due to its verisimilitude with real market results, we will chose the mean
correcting martingale measure. Under this measure asset price dynamics will be:

ST = Ste
(r−q)τ+XQ

τ −log

(
φ
X

Q
τ

(−i)
)

(8)

4



PRELIMINARY THEORY VARIANCE GAMMA PROCESS

Note that these dynamics mirror the Black-Scholes case and that Ste−(r−q)t is martin-
gale under Q. Therefore using the risk neutral valuation formula we can finally express
the price for an European call option as:

C(S,K, r, τ) = e−(r−q)τEQ

[(
Se

(r−q)τ+XQ
τ −log

(
φ
X

Q
τ

(−i)
)
−K

)+]
(9)

Formula (9) will be the one used to prove our main result in Section 4.

2.2 Variance Gamma Process

The main result of this dissertation will be the computation of a triple series sum
for the price of an European option driven by the Variance Gamma model. Therefore,
our next course of action, will be to briefly introduce the two equivalent definitions of
the Variance Gamma process and their respective properties. The proof of the properties
are straightforward, yet for a more thorough overview of Variance Gamma process we
recommend, [17], [16] and [25].

Definition 2. The Variance Gamma process XV G (t;σ, ν, θ) is a Brownian motion θt +

σB(t) ∼ N(θt, σ2t) with drift θ ∈ R and volatility σ > 0, coupled with an independent

subordinator gamma process Gν
t ∼ Gamma(t/ν, 1/ν), where t ≥ 0 and ν > 0, that is:

XV G (t;σ, ν, θ) = θGν
t + σB(Gν

t ) (10)

Under this definition one can, by direct computation, easily arrive at the following
properties:

Proposition 1. The characteristic function, mean, variance, skewness and kurtosis of the

Variance Gamma process XV G (t;σ, ν, θ) are respectively given by:

• Characteristic function: φV G(u, t;σ, ν, θ) =
(
1− iuθν + σ2νu2/2

)− t
ν

• Mean: E[XV G(t)] = θ

• Variance: V ar[XV G(t)] = σ2 + νθ2

• Skewness: Skew[XV G(t)] = θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

• Kurtosis: Kurt[XV G(t)] = 3(1 + 2ν − νσ4(σ2 + νθ2)−2)

While expression (10) is the original definition of the Variance Gamma process, the
following, due to its expedience, will be the one we will use to prove our main result in
section 4.

5



PRELIMINARY THEORY ONE-DIMENSIONAL RESIDUE CALCULUS

Definition 3. The Variance Gamma process XV G (t;C,G,M) is the difference of two

independent gamma processes G1
t ∼ Gamma(Ct, 1/M) and G2

t ∼ Gamma(Ct, 1/G):

XV G(t;C,G,M) = G1
t −G2

t (11)

Analogously to the previews definition one can easily arrive at the following properties
by direct computation:

Proposition 2. The characteristic function, mean, variance, skewness and kurtosis of the

Variance Gamma process XV G (t;C,G,M) are respectively given by

• Characteristic function: φV G(u, t;C,G,M) =

[
MG

MG+ iu(M −G) + u2

]−Ct
• Mean: E[XV G(t)] = C(G−M)/(MG)

• Variance: V ar[XV G(t)] = C(G2 +M2)/(MG)2

• Skewness: Skew[XV G(t)] = 2C−1/2(G3 −M3)/(G2 +M2)3/2

• Kurtosis: Kurt[XV G(t)] = 3(1 + 2C−1(G4 +M4)/(M2 +G2)2)

Lastly, observe that the characteristic functions for both definitions will the same after

application of variable changes C =
1

ν
, G =

(√
θ2ν2

4
+
σ2ν

2
− θν

2

)−1

and M =(√
θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

, that is, they are the same process.

2.3 One-Dimensional Residue Calculus

This subsection will summarize some results of one dimensional complex analysis, for
the proofs or a more in depth theory overview we recommend the textbooks [15] and [5].
The first thing to recall is the definition of residue of a meromorphic function f on an
isolated singularity a:

Resa f =
1

2πi

∫
γ

f (12)

where γ : [0, 1]→ C is the closed path γ(t) = a+ re2πi for r small enough.

6



PRELIMINARY THEORY ONE-DIMENSIONAL RESIDUE CALCULUS

Consider the Laurent expansion f(z) =
∑∞

n=−∞ cn(z − a) on the singularity a. The
previous definition is equivalent to Resa f = c−1. The residue computation for some
functions is facilitated by this last result, for example, the residues of the gamma function
Γ(z) =

∫∞
0
xz−1ezdx can easily be seen to be:

Res−n Γ(z) = lim
z→∞

(z + n)Γ(z) =
(−1)n

n!
(13)

The logical next step will be to generalize the expression (12) for any open setA. This
leads us to the Cauchy’s Residue theorem:

Theorem 3 (Cauchy’s Residue Theorem). Letf be a meromorphic function in an open

set U , and γ a closed chain in U \ A homologous to 0, where A is the set of poles of f in

U , then

1

2πi

∫
γ

f =
∑
a∈A

Wγ(a) · Resa f (14)

where Wγ(a) = 1
2πi

∫
γ

dw
w−a is the winding number, that is the number of times the path γ

circumvents counterclockwise the pole a.

Now say we want to compute the integral on the real axis
∫∞
−∞ f(z)dz = lim

R→∞

∫ R
−R f(z)dz.

Consider γ to be a path consisting of a segment on the real line [−R,R] and an upper
semi-circle S+

R := {z ∈ C : |z| = R, Im(z) > 0}, then the path integral can be written as
the sum

∫ R
−R f(z)dz+

∫
S+
R
f(z)dz. If

∫
S+
R
f(z)dz → 0 as R→∞, we can take advantage

of the Cauchy Residue theorem and conclude the integral
∫∞
−∞ f(z)dz will be given by

2πi times the sum of the residues of f on the set of its singularities, N , in the upper plane
Π+ = {z ∈ C : Im(z) > 0}. Formally:

Theorem 4 (Jordan Theorem). Let f be a meromorphic function in C continuous on R
(hence, it lacks any singularities in R). If there exists a constant c such that for |z| big

enough we have |f(z)| ≤ c
|z|α , for some α > 1, then limR←∞

∫
SR
f = 0 which in turn

implies that ∫ ∞
−∞

f(z)dz = 2πi
∑

a∈N∩Π+

Resa f (15)

7



PRELIMINARY THEORY MULTI-DIMENSIONAL RESIDUE CALCULUS

2.4 Multidimensional Residue Calculus

Now let us extrapolate the previous results and definitions to the general multidimen-
sional case. A more in depth theoretical overview of multidimensional complex analysis
can be found in the textbooks [14] and [6].

Definition 4 (Grothendieck Residue). Let h and fi, for any index i ∈ {1, ..., n}, be func-

tions in Cn, where h is holomorphic. Consider the meromorphic differential n-form:

ω =
h(z)dz

f1(z)...fn(z)
, dz = dz1 ∧ ... ∧ dzn, (16)

which has the singularitiesDj = {z ∈ C : fj(z) = 0}, such that the intersection
⋂n
j=1 Dj

is discrete. The Grothendieck residue on a singularity a ∈
⋂n
j=1Dj is defined as

Resa ω =
1

(2πi)n

∫
Ca

ω (17)

where Ca = {z ∈ Ua : |fj(z)| = ε, j = 1, ..., n} is a cycle in a small neighborhood Ua of

the singularity a with the orientation d(arg f1) ∧ ... ∧ d(arg fn) ≥ 0.

Before proceeding we will formalize the concept of a multidimensional polyhedron
in Cn. The two following definitions will underpin most of the theorems from sections 3
and 4.

Definition 5 (Polyhedron). Consider a proper (the inverse images of a compact set are

compact) holomorphic map g : Cn → G whereG = G1× ...×Gn is a domain (connected

open subset of a finite-dimensional vector space) where, for each j = 1, ..., n, Gj ⊂ C
is a domain with piecewise smooth boundary. We define a polyhedron Π as the inverse

image:

Π := g−1(G) (18)

and for a multi-index K = {k1, ..., kp} ⊂ {1, ..., n} we define the polyhedron’s faces as

σK := {z : gk(z) ∈ ∂Gk for k ∈ K, gj(z) ∈ Gj for j ∈ KC} (19)

Definition 6 (Compatible divisors). Consider the polyhedron Π and the family of divisors

{Di}i∈{1,...,n}, they are said to be compatible if for any i ∈ {1, ..., n} we get:

σi ∩Di = ∅ (20)

8



PRELIMINARY THEORY MULTI-DIMENSIONAL RESIDUE CALCULUS

Analogously to the one dimensional integral on the real-axis (15), we may want to
compute an integral

∫
σ
ω where ω is the meromorphic form (16) and σ is the boundary

of an polyhedron Π. For an unbounded polyhedron we need the integrand to vanish as it
goes to infinity. To achieve this goal let us introduce the auxiliary functions

ρj =
|fj|2

‖f‖2 , for any j ∈ {1, ..., n} (21)

where ‖f‖2 = |f1|2 + ... + |fn|2. Using the functions (21) we define the differential
(n, p− 1)-forms as

ξJ =
∑
j∈J

(−1)(j,J)−1ρj∂ρJ [j] ∧ ω (22)

where J = {j1, ..., js} ⊂ {1, ..., n}, for 1 < s ≤ n, is a multi-index, (j, J) is the position
of j in set J and ∂ρJ [j] = ∂ρj1 ∧ ...[j]... ∧ ∂js . We now define the multidimensional
condition analogous to limR→∞

∫
SR
f(z)dz = 0.

Definition 7 (Jordan condition). Consider the sphere SR = {z ∈ σ : ‖z‖ = R}, where

σ = σ12...n is the boundary of the polyhedron Π. A differential form ξJ satisfies the Jordan

condition on face σJo , where Jo = {1, ..., n}\J , if there exists a sequence of positive real

numbers Rk that goes to infinity, such that

lim
k→∞

∫
SRk∩σJo

ξJ = 0 (23)

Note that for n = 1, there exists only one form ξ = ω and thus the condition (23) cor-
responds to unidimensional condition limz→∞

∫
SR
f(z)dz = 0. For the multidimensional

case consider the set N = {z ∈ Cn : ‖f(z)‖ = 0} =
⋂n
i=1 Di, we thus gave:

Theorem 5 (The Jordan Lemma). Let ω be a meromorphic form with the polar divisors

{Di}i∈{1,...,n} compatible with polyhedron Π. If for every multi-index J the form ξJ satis-

fies the Jordan condition on the face σJo , we get∫
σ

ω = (2πi)n
∑

a∈N∩Π

Resa ω (24)

The Jordan’s Lemma proof can be found in [23] with a step taken from [14].

9
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3 MELLIN-BARNES INTEGRAL

We will start by enumerating concepts and properties for the one-dimensional and
three-dimensional Mellin-Barnes integral, which will be crucial when proving the main
result of this dissertation. For a more in dept look at Fourier, Laplace and Mellin Trans-
forms and their corresponding properties the book [26] is recommended.

3.1 One-Dimensional Mellin-Barnes Integral

Definition 8 (Mellin-Barnes Integral). The Mellin-Barnes Integral is given by a ratio of

products of Gamma functions of linear arguments

Φ(t) :=
1

2πi

∫ γ+i∞

γ−i∞

∏m
j=1 Γ(ajz + bj)∏p
k=1 Γ(ckz + dk)

t−zdz (25)

where its characteristic quantity, ∆, is defined by

∆ =
m∑
j=1

aj −
p∑

k=1

ck (26)

Before proceeding let us state the Stirling’s approximation of the gamma function

Γ(z) =
√

2πzz−1/2e−zO

(
1 +

1

z

)
−−−−→
|z|→∞

√
2πzz−1/2e−z (27)

Equipped with this expression one can easily see how ∆ governs the behavior of the
ratio of Gammas as |z| → ∞, and therefore which residues, of the singularities to left or
to right of the strip, one will sum to compute the integral (25):

Φ(t) =


∑

Re(sn)<γ

Ressn

(∏m
j=1 Γ(ajz+bj)∏p
k=1 Γ(ckz+dk)

)
t−sn if ∆ > 0

−
∑

Re(sn)>γ

Ressn

(∏m
j=1 Γ(ajz+bj)∏p
k=1 Γ(ckz+dk)

)
t−sn if ∆ < 0

(28)

For example, one can express an exponential term ex as a Mellin-Barnes integral:

ex =
∞∑
n=0

xn

n!
=

γ+i∞∫
γ−i∞

(−1)−tΓ(t)x−t
dt

2πi
(29)

where γ > 0.
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3.2 Multidimensional Mellin-Barnes Integral

Let us now extend the Mellin-Barnes integral to the general multidimensional case.

Definition 9 (Multiple Mellin-Barnes Integral). The Multiple Mellin-Barnes integral is

given by a ratio of products of Gamma functions

Φ(t) =
1

(2πi)n

∫
γ+iRn

∏m
j=1 Γ(sj(z))∏p
k=1 Γ(qk(z))

t−zdz (30)

where sj(z) :=
∑n

ν=1 ajνzν + bj and qk(z) :=
∑n

ν=1 ckνzν +dk are multi-linear functions

and the terms t−z and dz represent t−z11 ...t−znn and dz = dz1...dzn, respectively.

In order to simplify the notation for complex numbers, from now on we will use the
notation xν := Re(zν), yν := Im(zν), for any ν = 1, ..., n, and we will denote the vectors
with coefficients aj,ν and cj,ν by aj and cj respectively.

Theorem 6. Let S1 = {y ∈ Rn : |y| = 1} be the unit sphere in Rn. Consider the constant

α := min
y∈S1

(
m∑
j=1

|〈aj, y〉| −
p∑
j=1

|〈cj, y〉|

)
(31)

and the domain set

U = {t ∈ (Cn \ 0)n : |arg tν | < π, ν = 1, ..., n, ‖arg t‖ < (π/2)α} (32)

The Multi Mellin-Barnes integral in (30) converges absolutely for t ∈ U .

Proof. See Appendix.
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MELLIN-BARNES INTEGRAL THREE-DIMENSIONAL MELLIN-BARNES INTEGRAL

3.3 Three-Dimensional Mellin-Barnes Integral

In this section, similarly to what we did previously for the unidimensional case, we
will present the triple Mellin-Barnes integral and deduce its formula as a sum of residues.
To achieve this end let us first consider its integral form:

Φ(t) =
1

(2πi)3

∫
γ+iR3

m∏
j=1

Γ(aj1z1 + aj2z2 + aj3z3 + bj)

p∏
k=1

Γ(ck1z1 + ck2z2 + ck3z3 + dj)

t−z1t−z2t−z3dz1 ∧ dz2 ∧ dz3 (33)

Henceforth, for brevity, we will denote the 3-form integrand of (33) by ω. Its zeroes
will be the complex planes Lνj = {(z1, z2, z3) ∈ C3 : aj1z1 + aj2z2 + aj3z3 + bj = −ν},
for any ν ∈ N and j ∈ {1, ...,m}, which represent each singularity given by the gamma
functions present in the numerator of the form ω. We will also denote the vectors aj :=aj1aj2
aj3

, ck :=

ak1

ak2

ak3

 and, most importantly, define the characteristic vector as

∆ =
m∑
j=1

aj −
p∑

k=1

ck (34)

Suppose that ∆ is a nonzero vector. In this case, we can define the plane P∆ where its
real part intersects the point γ and has ∆ as its normal vector, i.e. P∆ := {z ∈ C3 :

Re(〈∆, z〉) = Re(〈∆, γ〉)}, and thereupon we can define the admissible-polyhedra, Π∆,
as the real volume "below" P∆, i.e. Π∆ := {z ∈ C3 : Re(〈∆, z〉)) ≤ Re(〈∆, γ〉)}.

Taking into account all these previous demarcations, we can construct an admissible
polyhedron Π ⊂ Π∆, that will be uniquely defined by the linear function g : C3 → G,
where Π = g−1(G) and

g(z) =

n1

n2

n3

 (Re(z)− γ) + i Im(z), (35)

with the image G = {z ∈ C3 : Re(z1) ≥ 0,Re(z2) ≥ 0,Re(z3) ≥ 0}, i.e the first octant.
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MELLIN-BARNES INTEGRAL THREE-DIMENSIONAL MELLIN-BARNES INTEGRAL

From (19) and (35) we can ascertain that its only vertex is σ1,2,3 = γ and that n1, n2

and n3 are the normal vectors of the faces σ1, σ2 and σ3 of the polyhedron:

σ1 = {z ∈ C3 : Re(〈n1, z〉) = Re(〈n1, z〉),

Re(〈n2, z〉) ≥ Re(〈n2, z〉),Re(〈n3, z〉) ≥ Re(〈n3, z〉)} (36)

σ2 = {z ∈ C3 : Re(〈n1, z〉) ≥ Re(〈n1, z〉),

Re(〈n2, z〉) = Re(〈n2, z〉),Re(〈n3, z〉) ≥ Re(〈n3, z〉)} (37)

σ3 = {z ∈ C3 : Re(〈n1, z〉) ≥ Re(〈n1, z〉),

Re(〈n2, z〉) ≥ Re(〈n2, z〉),Re(〈n3, z〉) = Re(〈n3, z〉)} (38)

If the polyhedron was providently constructed, we can balkanize the singularities, Lνj ,
into three distinct sets, such that they are compatible with the polyhedron, i.e.:

D1 =
⋃

j∈{1,...,m}
ν∈N

Lνj∩σ1=∅

Lνj , D2 =
⋃

j∈{1,...,m}
ν∈N

Lνj∩σ2=∅

Lνj , D3 =
⋃

j∈{1,...,m}
ν∈N

Lνj∩σ3=∅

Lνj (39)

Theorem 7 (Residue formula for the Triple Mellin-Barnes integral). Let ω be the 3-form

integrand of (33) with characteristic vector ∆ 6= 0 and divisors D1, D2 and D3, defined

in (39), compatible with the admissible polyhedron Π ⊂ Π∆, then the sum formula holds:

1

(2πi)3

∫
γ+iR3

ω =
∑

t∈Π∩D1∩D2∩D3

Rest ω (40)

where the series on the right-hand side converges absolutely for any t ∈ U , for U defined

in (32).

Proof. See Appendix.
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4 OPTION PRICING DRIVEN BY A VARIANCE GAMMA PROCESS

Equipped with the results of the previous chapter we will now center our attention
in deducing the main result of this thesis, the formula for the price of an European call
option under the Variance Gamma model. Similar to the derivation present in [1], we will
arrive at this result in two steps. First we will derive the Mellin-Barnes representation for
the aforementioned call option and secondly we will use residue calculus to derive the
triple sum series formula.

4.1 Mellin-Barnes Representation for a Call Option

Before computing the call option price let us recall that from (11) the Variance Gamma
process can be defined as the difference between two independent gamma processes:

XV G(τ ;C,G,M) = G1
τ −G2

τ (41)

where G1
τ ∼ Gamma(Cτ, 1/M) and G2

τ ∼ Gamma(Cτ, 1/G) for G > 0, M > 0 and
G > 0. The probability density function of a gamma processG ∼ Gamma(α, β) is given
by

fG(α,β)(x) =
βα

Γ(α)
xα−1e−βx (42)

Given these definitions we can now state and derive the Mellin-Barnes integral repre-
sentation in C3 for an European call option under the Variance Gamma model.

Proposition 3 (Mellin-Barnes representation for a Call Option under Variance Gamma).
Let us denote [log] := log S

K
+ (r − q)τ − µτ and consider the polyhedra P1, P2 ⊂ C3

defined by:

P1 := {z ∈ C3 : 0 < Re(z1) < 1, 0 < Re(z2), 0 < Re(z3) < Cτ, (43)

Re(z1) + Re(z2) + Re(z3) > 1 + 2Cτ}

P2 := {z ∈ C3 : 0 < Re(z1) < 1, 0 < Re(z2) < Cτ, 0 < Re(z3) < Cτ} (44)

Then, the price of an European call option driven by the Variance Gamma process is

given by the formula:

CV G(S,K, r, µ, τ) =
K(GM)Cτe−(r−q)τ

Γ(Cτ)2
(I1
V G(S,K, r, µ, τ)

+ 1[log]>0I
2
V G(S,K, r, µ, τ)) (45)

14
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where, for any c1 ∈ P1 and c2,∈ P2, we define I1
V G and I2

V G as:

I1
V G(S,K, r, µ, τ) :=∫

c1+iR3

(−1)−t
Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)Γ(−1− 2Cτ + t+ tx + ty)

Γ(1− Cτ + tx)

×M−txG−ty(−[log])1+2Cτ−t−tx−ty dt

2πi
∧ dtx

2πi
∧ dty

2πi
(46)

I2
V G(S,K, r, µ, τ) :=

∫
c2+iR3

(−1)Cτ−t−tx
Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − tx)Γ(Cτ − ty)

Γ(2 + 2Cτ − t− tx − ty)

×M−txG−ty [log]1+2Cτ−t−tx−ty dt

2πi
∧ dtx

2πi
∧ dty

2πi
(47)

Proof. For the mean correcting martingale measure Q in (7) the price of an European Call
Option under the Variance Gamma process (41), according to (9), is defined as:

CV G(S,K, r, µ, τ) = e−(r−q)τEQ[(ST −K)+] (48)

= e−(r−q)τEQ[(Se(r−q)τ−µτ+XV G(τ ;C,G,M) −K)+] (49)

= e−(r−q)τ
∫ +∞

0

∫ +∞

0

(Se(r−q)τ−µτ+x−y −K)+gG1
τ
(x)gG2

τ
(y)dx dy (50)

= Ke−(r−q)τ
∫ +∞

0

∫ +∞

0

(
e[log]+x−y − 1

)+
gG1

τ
(x)gG2

τ
(y)dx dy (51)

By definition G1
τ ∼ Gamma(Cτ, 1/M) and G2

τ ∼ Gamma(Cτ, 1/G), hence from
(42) their probability density functions are given respectively by gG1

τ
(x) = MCτ

Γ(Cτ)
xCτ−1e−Mx

and gG2
τ
(y) = GCτ

Γ(Cτ)
yCτ−1e−Gy, thus:

CV G(S,K, r, µ, τ) =
K(GM)Cτe−(r−q)τ

Γ(Cτ)2

×
∫ +∞

0

∫ +∞

0

(
e[log]+x−y − 1

)+
xCτ−1e−MxyCτ−1e−Gydx dy (52)

In order for the term (e[log]+x−y− 1)+ to be different from zero we must have y ≤ x+

[log]. Also notice, that by definition, both x and y are non-negative, hence the acceptable
values of x and y are constrained to the green area of Figure-1.
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FIGURE 1: Area of variable (x, y) constraint

According to Figure-1, the values for which the integral is not zero are given by the
set {(x, y) ∈ R2 : −[log] < x, y < x + [log]} with the removal of the values in the set
{(x, y) ∈ R2 : −[log] < x < 0, y < x + [log]}, in the cases where [log] > 0. Thus CV G
can be expressed as the sum:

CV G(S,K, r, µ, τ) =
K(GM)Cτe−(r−q)τ

Γ(Cτ)2
(I1
V G(S,K, r, µ, τ)

+ 1[log]>0I
2
V G(S,K, r, µ, τ)) (53)

where I1
V G and I2

V G are defined as:

I1
V G(S,K, r, µ, τ) =

∫ +∞

−[log]

∫ x+[log]

0

(
e[log]+x−y − 1

)
xCτ−1e−MxyCτ−1e−Gydx dy (54)

I2
V G(S,K, r, µ, τ) = −

∫ 0

−[log]

∫ x+[log]

0

(
e[log]+x−y − 1

)
xCτ−1e−MxyCτ−1e−Gydx dy (55)

By the Mellin-Barnes representation of the exponential given by equation (29), for

c1 =

[
c11

c12

]
where c11, c12 < 0, we can represent both terms e−Mx and e−Gy as the

integrals
∫ c11+i∞
c11−i∞ Γ(tx)M

−txx−tx dtx
2πi

and
∫ c12+i∞
c12−i∞ Γ(ty)G

−tyx−ty dty
2πi

, respectively.
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Implementing these new representations on the integral of equation (54) results in:

I1
V G(S,K, r, µ, τ) =

∫
c1+iR2

Γ(tx)Γ(ty)M
−txG−ty

×
∫ +∞

−[log]

∫ x+[log]

0

(
e[log]+x−y − 1

)
xCτ−1−txyCτ−1−tydx dy

dtx
2πi

dty
2πi

(56)

=

∫
c1+iR2

Γ(tx)Γ(ty)M
−txG−ty

×
∫ +∞

−[log]

∫ x+[log]

0

(
e[log]+x−y − 1

)
yCτ−1−tydy xCτ−1−txdx

dtx
2πi

dty
2πi

(57)

Applying integration by parts over the y variable to the equation (57), produces:∫
c1+iR2

Γ(tx)Γ(ty)

Cτ − ty
M−txG−ty

×
∫ +∞

−[log]

∫ x+[log]

0

e[log]+x−yyCτ−tydy xCτ−1−txdx
dtx
2πi

dty
2πi

(58)

=

∫
c1+iR2

Γ(tx)Γ(ty)Γ(Cτ − ty)
Γ(Cτ − ty + 1)

M−txG−ty

×
∫ +∞

−[log]

∫ x+[log]

0

e[log]+x−yyCτ−tydy xCτ−1−txdx
dtx
2πi

dty
2πi

(59)

The Mellin-Barnes exponential representation for e[log]+x−y is given by the integral∫ c13+i∞
c13−i∞ Γ(t)([log] + x − y)−t dty

2πi
, where c1,3 < 0. This substitution of terms in (59) will

result in:∫
c1+iR3

(−1)−t
Γ(t)Γ(tx)Γ(ty)Γ(Cτ − ty)

Γ(Cτ − ty + 1)
M−txG−ty

×
∫ +∞

−[log]

∫ x+[log]

0

([log] + x− y)−tyCτ−tydy xCτ−1−txdx
dt

2πi

dtx
2πi

dty
2πi

(60)

where c1 was extended to the third dimension, i.e. c1 =

c11

c12

c13

.
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For the integral
∫ x+[log]

0
([log] +x− y)−tyCτ−tydy in (60) consider the variable change

y := ([log] + x)s, this alteration of variables will result in the expression:∫ x+[log]

0

([log] + x− y)−tyCτ−tydy

= ([log] + x)1+Cτ−t−ty
∫ 1

0

([log] + x− s)−tsCτ−tyds (61)

= ([log] + x)1+Cτ−t−ty Γ(1− t)Γ(Cτ − ty + 1)

Γ(2 + Cτ − t− ty)
(62)

Replacing the expression (62) in the original integral (60) we obtain:∫
c1+iR3

(−1)−t
Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)

Γ(2 + Cτ − t− ty)
M−txG−ty

×
∫ +∞

−[log]

([log] + x)1+Cτ−t−tyxCτ−1−txdx
dt

2πi

dtx
2πi

dty
2πi

(63)

Similarly, for the integral
∫∞
−[log]

([log] + x)1+Cτ−t−tyxCτ−1−txdx in (63) consider the
variable change x := [log]1

s
, this exchange will result in:∫ +∞

−[log]

([log] + x)1+Cτ−t−tyxCτ−1−txdx

= [log]1+2Cτ−t−tx−ty
∫ 0

1

(
1− 1

s

)1+Cτ−t−ty (
−1

s

)Cτ−1−tx
d

(
1

s

)
(64)

= (−[log])1+2Cτ−t−tx−ty
∫ 1

0

(1− s)1+Cτ−t−ty s−2−2Cτ+t+tx+tyds (65)

= (−[log])1+2Cτ−t−tx−ty Γ(2 + Cτ − t− ty)Γ(−1− 2Cτ + t+ tx + ty)

Γ(1− Cτ + tx)
(66)

Replacing the expression (66) on the integral (63) and subsequently inserting the re-
sulting term on the original expression (54) will finally achieve the desired formula (46):

I1
V G(S,K, r, µ, τ) :=∫

c1+iR3

(−1)−t
Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)Γ(−1− 2Cτ + t+ tx + ty)

Γ(1− Cτ + tx)

×M−txG−ty(−[log])1+2Cτ−t−tx−ty dt

2πi
∧ dtx

2πi
∧ dty

2πi
(67)

The integral formula (67) converges if all the arguments of the Gamma functions in
the numerator are positive, this happens when Re(t),Re(tx),Re(ty) > 0, Re(t) < 1,
Re(ty) < Cτ and Re(t) + Re(tx) + Re(ty) > 2Cτ + 1, i.e. Re(t) ∈ P1.
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Conversely, we can charter the same steps for the integral (55) of I2
V G as we did

for (54) of I1
V G; apply the Mellin-Barnes representation of the exponential term to both

e−Mx and e−Gy, subsequently, use integration by parts over the variable y, again apply
the Mellin-Barnes representation of e[log]+x−y, and finally apply the change of variables
x := ([log] + x)s to arrive at:∫

c2+iR2

(−1)1−tΓ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)
Γ(2 + Cτ − t− ty)

M−txG−ty

×
∫ 0

−[log]

([log] + x)1+Cτ−t−tyxCτ−1−txdx
dt

2πi

dtx
2πi

dty
2πi

(68)

Notice that the integral (68) is simply the expression (63), with the difference that, the
variable x in the integral

∫ 0

−[log]
([log]+x)1+Cτ−t−tyxCτ−1−txdx ranges between−[log] and

0 instead of −[log] and +∞. Therefore, for this case, we will apply the variable change
x := −[log]s, which will result in:∫ 0

−[log]

([log] + x)1+Cτ−t−tyxCτ−1−txdx

= [log]1+2Cτ−t−tx−ty(−1)1+Cτ−tx
∫ 1

0

(1− s)1+Cτ−t−tysCτ−1−txds (69)

= [log]1+2Cτ−t−tx−ty(−1)1+Cτ−tx Γ(2 + Cτ − t− ty)Γ(Cτ − tx)
Γ(2 + 2Cτ − t− tx − ty)

(70)

Replace the expression (70) on the integral (68) and subsequently implanting the re-
sulting expression (47) we will arrive at the desired formula:

I2
V G(S,K, r, µ, τ) : =

∫
c2+iR3

(−1)Cτ−t−tx
Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − tx)Γ(Cτ − ty)

Γ(2 + 2Cτ − t− tx − ty)

×M−txG−ty [log]1+2Cτ−t−tx−ty dt

2πi
∧ dtx

2πi
∧ dty

2πi
(71)

The integral formula (71) converges if all the arguments of the Gamma functions in
the numerator are positive, this happens when Re(t),Re(tx),Re(ty) > 0, Re(t) < 1 and
Re(tx),Re(ty) < Cτ , i.e. Re(t) ∈ P2.
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4.2 Residue Summation Formula for a Call Option

We will now state and proof the main result of this thesis, the triple representation
formula for an European call option under the Variance Gamma model.

Theorem 8 (European Call Option Price under the Variance Gamma Process). The price

for an European Call-Option under the Variance Gamma process XV G(τ ;C,G,M) is

given by the formula:

CV G(S,K, r, µ, τ) =
K(GM)Cτe−(r−q)τ

Γ(Cτ)2
(C1

V G(S,K, r, µ, τ) + C2
V G(S,K, r, µ, τ)

+ 1[log]>0C
3
V G(S,K, r, µ, τ)) (72)

where C1
V G, C2

V G and C3
V G are defined as:

C1
V G(S, k, τ, µ, r) :=

∞∑
k=0
n=0
m=0

(−1)n+mΓ(Cτ +m)Γ(−1− 2Cτ − k − n−m)

n!m!Γ(1− Cτ − n)

×MnGm(−[log])1+2Cτ+k+n+m (73)

C2
V G(S, k, τ, µ, r) :=

∞∑
k=0
n=0
m=0

(−1)m
Γ(Cτ +m)Γ(1 + 2Cτ + k − n+m)

n!m!Γ(2 + Cτ + k − n+m)

×M−1−2Cτ−k+n−mGm[log]n (74)

C3
V G(S, k, τ, µ, r) :=

∞∑
k=0
n=0
m=0

(−1)Cτ+m Γ(Cτ + n)Γ(Cτ +m)

n!m!Γ(2 + 2Cτ + k + n+m)

×MnGm[log]1+2Cτ+k+n+m (75)

Proof. The formula (46) for I1
V G can be written as:

I1
V G(S,K, r, µ, τ) =

∫
c1+iR3

ω1
V G (76)

where c1 is a three dimensional point

c11

c12

c13

 ∈ P1 and ω1
V G is a complex differential
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3-form defined by:

ω1
V G := (−1)−t

Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)Γ(−1− 2Cτ + t+ tx + ty)

Γ(1− Cτ + tx)

×M−txG−ty(−[log])1+2Cτ+t+tx+ty
dt

2πi
∧ dtx

2πi
∧ dtx

2πi
(77)

The divisors of ω1
V G (where we used the notation t = (t, tx, ty)) are:

L1
1 := {t ∈ C3 : t = −n, n ∈ N}, L1

2 := {t ∈ C3 : 1− t = −n, n ∈ N}, (78)

L1
3 := {t ∈ C3 : ty = −n, n ∈ N}, L1

4 := {t ∈ C3 : Cτ − ty = −n, n ∈ N}, (79)

L1
5 := {t ∈ C3 : tx = −n, n ∈ N}, (80)

L1
6 := {t ∈ C3 : −1− Cτ + t+ tx + ty = −n, n ∈ N} (81)

By (34) we can compute the characteristic vector of ω1 as:

∆1 =

1

0

0

+

0

1

0

+

0

0

1

+

−1

0

0

+

 0

0

−1

+

1

1

1

−
0

1

0

 =

1

1

1

 (82)

Given the characteristic vector (82) for ω1 we can thus constrict the values of t to the
space where convergence is obtained:

Re(∆1 · t) < Re(∆1 · c)⇔ Re


1

1

1

 ·
 ttx
ty


 < Re


1

1

1

 ·
c1

c2

c3


 (83)

⇔ Re(t) + Re(tx) + Re(ty) < c1 + c2 + c3 (84)

⇔ Re(tx) < c1 + c2 + c3 − Re(t)− Re(ty) (85)

Therefore, the admissible half-space Π∆1 is the one located under the plane (85), i.e.:

Π∆1 :=
{
t ∈ C3 : Re(tx) < c1 + c2 + c3 − Re(t)− Re(ty)

}
(86)

Given the half-space Π∆1 defined by (86), we will now construct an admissible poly-
hedron Π1 = σ1 := g−1

1 (G), as in the case (35), where G is the first octant, which will be
uniquely defined by the linear function:
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g1(t) =

−1 0 0

0 0 −1

−1 −1 −1


 Re(t)− c1

Re(tx)− c2

Re(ty)− c3

+ i

 Im(t)

Im(tx)

Im(ty)

 (87)

Under the linear function (87), the polyhedron Π1 will be admissible, that is,

Π1 = {t ∈ C3 : Re(t) < c1, Re(ty) < c3,

Re(t) + Re(tx) + Re(ty) < c1 + c2 + c3} ⊂ Π∆1 (88)

and its faces σ1
1 , σ1

2 and σ1
3 and vertex σ1

{1,2,3} will be respectively:

σ1
1 = {t ∈ C3 : Re(t) = c1, Re(ty) ≤ c3,

Re(t) + Re(tx) + Re(ty) ≤ c1 + c2 + c3} (89)

σ1
2 = {t ∈ C3 : Re(t) ≤ c1, Re(ty) = c3,

Re(t) + Re(tx) + Re(ty) ≤ c1 + c2 + c3} (90)

σ1
3 = {t ∈ C3 : Re(t) ≤ c1, Re(ty) ≤ c3

Re(t) + Re(tx) + Re(ty) = c1 + c2 + c3} (91)

σ1
{1,2,3} = {t ∈ C3 : Re(t) = c, Re(ty) = c3,

Re(t) + Re(tx) + Re(ty) = c1 + c2 + c3} = c (92)

Finally let’s group the divisors into three families:

D1
1 = L1

1 ∪ L1
2, D1

2 = L1
3 ∪ L1

4, D1
3 = L1

5 ∪ L1
6 (93)

Notice that conditions needed to apply the Jordan lemma are all satisfied, since Π1 ⊂
Π∆1 and the family of divisors is compatible with the polyedron Π1:

σ1
1 ∩D1

1 = ∅, σ1
2 ∩D1

2 = ∅, σ1
3 ∩D1

3 = ∅ (94)

Before applying the residue summation notice that the form ω1
V G can be considered

as having two sets of discontinuity points under the polyhedron Π1; the first set is defined
as S1 := {t ∈ C3 : t = −k, tx = −n, ty = −m, (k, n,m) ∈ N3} which are the
singularity points given by the functions Γ(t), Γ(tx) and Γ(ty), the second set is defined as
S2 := {t ∈ C3 : t = −k, ty = −m, −1−2Cτ+t+tx+ty = −n, (k, n,m) ∈ N3}which
are the discontinuity points given by the functions Γ(t), Γ(tx) and Γ(−1−2Cτt+tx+ty).
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(a) The real part of the planes σ1
1 , σ1

2 and σ1
3 , and

their intersection at the point σ1
{1,2,3}

(b) The discontinuity points of the set S1 illus-
trated as red points

(a) The discontinuity points of set S2, illustrated
as black points

(b) The points of the sets S1 and S2 illustrated
respectively, as red points and black points

FIGURE 3: Discontinuity points under polyhedron Π1

Given this delineated partition we can now express equation (76) as:

I1
V G = C1

V G + C2
V G (95)

where we define the terms C1
V G and C2

V G, respectively as:

C1
V G :=

∑
s∈S1

Ress ω
1
V G, C2

V G :=
∑
s∈S2

Ress ω
1
V G (96)
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The computation of the residues for the first set S1 present in the first series C1
V G of

(96) is straightforward:

Res(−k,−n,−m) ω
1
V G = (−1)−k

(−1)k

k!

(−1)n

n!

(−1)m

m!

× Γ(1 + k)Γ(Cτ +m)Γ(−1− 2Cτ + k + n+m)

Γ(1− Cτ − n)

×MnGm(−[log])1+2Cτ+k+n+m (97)

= (−1)n+mΓ(Cτ +m)Γ(−1− 2Cτ + k + n+m)

n!m!Γ(1− Cτ − n)

×MnGm(−[log])1+2Cτ+k+n+m (98)

Embedding the result (98) on the first equation of (96) will produce:

C1
V G(S, k, τ, µ, r) =

∞∑
k=0
n=0
m=0

(−1)n+mΓ(Cτ +m)Γ(−1− 2Cτ − k − n−m)

n!m!Γ(1− Cτ − n)

×MnGm(−[log])1+2Cτ+k+n+m (99)

For the computation of the residues of second set S2 present in the second series of
(96) let’s consider the variable change:

u := t

uy := ty

ux := −1− 2Cτ + t+ tx + ty

⇔


t = u

ty = uy

tx = 1 + 2Cτ − u+ ux − uy

(100)

If we apply the variables changes in (100) to the expression (77), the form ω1
V G wil be

written as:

ω1
V G = (−1)−u

Γ(u)Γ(1 + 2Cτ − u+ ux − uy)Γ(uy)Γ(1− u)Γ(Cτ − uy)Γ(ux)

Γ(2 + Cτ − u+ ux + uy)

×M−1−2Cτ+u−ux+uyG−uy(−[log])−ux
du

2πi
∧ dux

2πi
∧ duy

2πi
(101)
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Then the residues of the second series C2
V G in (96) are given by:

Res(−k,−n,−m) ω
1
V G = (−1)k

(−1)k

k!
Γ(1 + 2Cτ + k − n+m) (−1)m

m!
Γ(Cτ +m) (−1)n

n!

Γ(2 + Cτ + k − n+m)

×M−1−2Cτ−k+n−mGm(−[log])n (102)

= (−1)n+mΓ(1 + 2Cτ + k − n+m)Γ(Cτ +m)

n!m!Γ(2 + Cτ + k − n+m)

×M−1−2Cτ−k+n−mGm(−[log])n (103)

Finally, replacing the expression (103) on the second equation of (96) results in the
formula:

C2
V G(S, k, τ, µ, r) =

∞∑
k=0
n=0
m=0

(−1)n+mΓ(1 + 2Cτ + k − n+m)Γ(Cτ +m)

n!m!Γ(2 + Cτ + k − n+m)

×M−1−2Cτ−k+n−mGm(−[log])n (104)

Analogously to what we did for I1
V G, the expression (47) of I2

V G can be written as:

I2
V G(S,K, r, µ, τ) =

∫
c2+iR

ω2
V G (105)

where c2 is a three dimensional point

c21

c22

c23

 ∈ P2 and ω2
V G is a complex differential

3-form defined by:

ω2
V G := (−1)Cτ−t−tx

Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − tx)Γ(Cτ − ty)
Γ(2 + 2Cτ − t− tx − ty)

×M−txG−ty(−[log])1+2Cτ−t−tx−ty dt

2πi
∧ dtx

2πi
∧ dtx

2πi
(106)

The divisors of ω2
V G are:

L2
1 := {t ∈ C3 : t = −n, n ∈ N}, L2

2 := {t ∈ C3 : 1− t = −n, n ∈ N} (107)

L2
3 := {t ∈ C3 : tx = −n, n ∈ N}, L2

4 := {t ∈ C3 : Cτ − tx = −n, n ∈ N} (108)

L2
5 := {t ∈ C3 : ty = −n, n ∈ N}, L2

6 := {t ∈ C3 : Cτ − ty = −n, n ∈ N} (109)
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Just like the (82) case, we use (34) to compute the characteristic vector of ω2
V G:

∆2 =

1

0

0

+

0

1

0

+

0

0

1

+

−1

0

0

+

 0

−1

0

+

 0

0

−1

−
−1

−1

−1

 =

1

1

1

 (110)

The resulting characteristic vector of ∆2 expressed in (110), will determine the space
for t where convergence is achieved:

Re(∆2 · t) < Re(∆2 · c)⇔ Re


1

1

1

 ·
 ttx
ty


 < Re


1

1

1

 ·
c1

c2

c3


 (111)

⇔ Re(t) + Re(tx) + Re(ty) < c1 + c2 + c3 (112)

⇔ Re(tx) < c1 + c2 + c3 − Re(t)− Re(ty) (113)

We thus conclude that the admissible half-space Π∆2 is located under the plane (113):

Π∆2 =
{
t ∈ C3 : Re(tx) < +c1 + c2 + c3 − Re(t)− Re(ty)

}
(114)

Similarly to what we did for Π∆1 , given the expression (114) for Π∆2 , we will now
construct an admissible polyhedron Π2 = σ2 := g−1

2 (G), as in the case (35), where G is
the first octant and g2 is the linear function:

g2(t) = −I(Re(t)− c2) + i Im(t) (115)

where I is the identity matrix. Under the linear function prescribed in (115), the polyhe-
dron Π2 will be admissible:

Π2 :=
{
t ∈ C3 : Re(t) < c21, Re(tx) < c22, Re(ty) < c23

}
⊂ Π∆2 (116)

and its faces σ2
1 , σ2

2 and σ2
3 and vertex σ2

{1,2,3} will respectively be:

σ2
1 =

{
t ∈ C3 : Re(t) = c21, Re(tx) ≤ c22, Re(ty) ≤ c23

}
(117)

σ2
2 =

{
t ∈ C3 : Re(tx) = c22, Re(t) ≤ c21, Re(tx) ≤ c23

}
(118)

σ2
3 =

{
t ∈ C3 : Re(ty) = c23, Re(t) ≤ c21, Re(tx) ≤ c22

}
(119)

σ2
{1,2,3} =

{
t ∈ C3 : Re(t) = c21, Re(tx) = c22, Re(ty) = c23

}
= c2 (120)
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Finally we will group the divisors into three sets:

D2
1 = L2

1 ∪ L2
2, D2

2 = L2
3 ∪ L2

4, D2
3 = L2

5 ∪ L2
6 (121)

Given that Π2 ⊂ Π∆2 and the previous partition, the Jordan lemma conditions are all
satisfied, since the family of divisors is compatible with the polyhedron Π2:

σ2
1 ∩D1 = ∅, σ2

2 ∩D2 = ∅, σ2
3 ∩D3 = ∅ (122)

Unlike the ω1
V G case, the form ω2

V G under the polyhedron Π2 has only one set of
residues; S3 = {t ∈ C3 : t = −k, tx = −n, ty = −m, (k, n,m) ∈ N3} resulting from
the functions Γ(t), Γ(tx) and Γ(ty). Therefore equation (47) can be expressed as:

I2
V G = C3

V G :=
∑
s∈S3

Ress ω
2
V G (123)

The computation of the residues of set S3 present in the series of (123) is straightfor-
ward:

Res(−k,−n,−m) ω
2
V G = (−1)Cτ+k+n

(−1)k

k!
(−1)n

n!
(−1)m

m!
Γ(1 + k)Γ(Cτ + n)Γ(Cτ +m)

Γ(2 + 2Cτ + k + n+m)

×MnGm(−[log])1+2Cτ+k+n+m (124)

= (−1)Cτ+m Γ(Cτ + n)Γ(Cτ +m)

n!m!Γ(2 + 2Cτ + k + n+m)

×MnGm(−[log])1+2Cτ+k+n+m (125)

Swapping the term in (125) on equation (123) will result in:

C3
V G(S, k, τ, µ, r) =

∞∑
k=0
n=0
m=0

(−1)Cτ+k+n Γ(Cτ + n)Γ(Cτ +m)

n!m!Γ(2 + 2Cτ + k + n+m)

×MnGm(−[log])1+2Cτ+k+n+m (126)

The derived expressions (99), (104) and (126) ascertain the equalities I1
V G = C1

V G +

C2
V G and I2

V G = C3
V G which proves (72).

The price formula for an European call option given by the expression (72) entails an
easily derivable price for an European put option by the use of the Put-Call parity:

PV G(S,K, r, µ, τ) = CV G(S,K, r, µ, τ)− S(1− e− log S
K
−(r−q)τ ) (127)
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4.3 The Greeks

Given the simple formula for the European call option deduced previously, one may
inquiry to the availability of an equally simple measure for risk exposure. The greeks
quantify the sensibility of the option price to changes in the model parameters. In this
chapter, we will show the existence of series formulas for the ∆, Γ, ρ and Θ measures,
which will be obtained by a differentiation of (72) on the appropriate parameter.

Theorem 9 (The Greeks). The delta, gamma, rho and theta function for an European

option under the Variance Gamma process XV G(τ ;C,G,M) are given by:

• Delta is defined as ∆C := ∂C
∂S

, hence:

∆C(S,K, τ, µ, r) =
K(GM)Cτe−(r−q)τ

SΓ(Cτ)2

∞∑
k=0
n=0
m=0

∆1 + ∆2 + 1[log]>0∆3 (128)

where ∆1, ∆2 and ∆3 are defined as:

∆1 = (−1)n+mΓ(Cτ +m)Γ(−2Cτ − k − n−m)

n!m!Γ(1− Cτ − n)
MnGm(−[log])2Cτ+k+n+m

(129)

∆2 = (−1)m
Γ(Cτ +m)Γ(2Cτ + k − n+m)

n!m!Γ(1 + Cτ + k − n+m)
M−2Cτ−k+n−mGm[log]n (130)

∆3 = (−1)Cτ+m Γ(Cτ + n)Γ(Cτ +m)

n!m!Γ(1 + 2Cτ + k + n+m)
MnGm[log]2Cτ+k+n+m (131)

• Gamma is defined as ΓC := ∂2C
∂S2 , hence:

ΓC(S,K, r, µ, τ) =
K(GM)Cτe−(r−q)τ

S2Γ(Cτ)2

×
∞∑
k=0
n=0
m=0

(Γ1 −∆1) + (Γ2 −∆2) + 1[log]>0(Γ3 −∆3) (132)

where ∆1, ∆2 and ∆3 are described by (129), (130) and (131), respectively, and Γ1, Γ2

and Γ3 are defined as:

Γ1 = (−1)n+mΓ(Cτ +m)Γ(1− 2Cτ − k − n−m)

n!m!Γ(1− Cτ − n)
MnGm(−[log])−1+2Cτ+k+n+m

(133)
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Γ2 = (−1)m
Γ(Cτ +m)Γ(−1 + 2Cτ + k − n+m)

n!m!Γ(Cτ + k − n+m)
M1−2Cτ−k+n−mGm[log]n (134)

Γ3 = (−1)Cτ+m Γ(Cτ + n)Γ(Cτ +m)

n!m!Γ(2Cτ + k + n+m)
MnGm[log]−1+2Cτ+k+n+m (135)

• Rho is defined as ρC := ∂C
∂r

, hence:

ρC(S,K, r, µ, τ) = τS∆C(S,K, r, µ, τ)− τC(S,K, τ, µ, r)

=
Kτ(GM)Cτe−(r−q)τ

Γ(Cτ)2

×
∞∑
k=0
n=0
m=0

(C1
V G −∆1) + (C2

V G −∆2) + 1[log]>0(C3
V G −∆3) (136)

where C1
V G, C2

V G, C2
V G, Γ1, Γ2 and Γ3 are described by (73), (74), (75), (133), (134)

and (135), respectively.

• Theta is defined as ΘC := ∂C
∂t

= −∂C
∂τ

, hence:

ΘC(S,K, r, µ, τ) = −K(GM)Cτe−(r−q)

Γ(Cτ)2

∞∑
k=0
n=0
m=0

(θ1C
1
V G + (r − q − µ)∆1)

+ (θ2C
2
V G + (r − q − µ)∆2) + 1[log]>0(θ3C

3
V G + (r − q − µ)∆3) (137)

where C1
V G, C2

V G, C3
V G, ∆1, ∆2 and ∆3 are expressed in (73), (74), (75), (129), (130)

and (131) respectively and θ1, θ2 and θ3 are defined as:

θ1 = C log(GM)− (r − q)− 2Cψ(Cτ) + Cψ(Cτ +m) (138)

− 2Cψ(−1− 2Cτ − k − n−m) + Cψ(1− Cτ − n) + 2C log(−[log]) (139)

θ2 = C log(GM)− (r − q)− 2Cψ(Cτ) + Cψ(Cτ +m) (140)

+ 2Cψ(1 + 2Cτ + k − n+m)− Cψ(2 + Cτ + k + n+m)− 2C log(M) (141)

θ3 = C log(GM)− (r − q)− 2Cψ(Cτ) + Cψ(Cτ + n) + Cψ(Cτ +m) (142)

− 2Cψ(2 + 2Cτ + k − n+m) + Cπi+ 2C log([log]) (143)

where ψ is the digamma function ψ(z) = d log Γ(z)
dz

= −γ +
∑∞

n=0

(
1

n+1
− 1

n+z

)
.

Proof. The previous results are easily obtained from a direct differentiation of the expres-
sions (73), (74) and (75) for the terms C1

V G, C2
V G and C3

V G, for the chosen parameter (i.e.
S, S2, r or t), and sequentially proper rearrangement of the terms.
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5 NUMERICAL RESULTS

The theorems of the previous section can be heuristically observed to be sound. To
do this, firstly, we will compare the results obtained by the formula (72) with a both a
Monte Carlo simulation for an European call option (under the Variance Gamma process)
and the actual values observed on the Market. We also take these results to observe the
speed of convergence of the new method. Secondly, we will see that it is well behaved,
that is, its price for any initial stock value and its implied volatility smile is similar to the
expected behavior observed in any stock. Thirdly we will study the behavior of the greek
measures (128), (132), (136) and (137), derived in the previous chapter, and compared
them to the ones in the Black-Scholes model.

The programs for the following subsection can be found in the GitHub page with
URL: https://github.com/pedrofebrer/Thesis-Programms.

5.1 Variance Gamma Formula Values

For the aforementioned comparison we will use the values of an European call option
with the S&P500 as its underlying asset, bought at the close of the market at April 18th

2002. According to [25], at the close of the market on 18 April 2002, we had a risk free
rate of return r = 1.9%, a dividend of q = 1, 2% and the stock price closed at S0 =

1124.47, with volatility 0.1812 and risk neutral parameters C = 1.3574, G = 5.8704 and
M = 14.2699 for the Variance Gamma model.

The results are presented in the Table-I below. We used the parameters n = 22, m =

27 and k = 7 for the direct Variance Gamma formula (72), denoted by "F", we simulated
10000 trajectories for the Monte Carlo method, denoted by "MC" and the observed market
values are denoted by "Real":

Time of maturity
Strike May June September December March June December
Price 2002 2002 2002 2002 2003 2003 2003

F MC Real F MC Real F MC Real F MC Real F MC Real F MC Real F MC Real

975 152.90 151.97 - 157.13 157.53 - 167.68 167.54 161.60 177.56 176.02 173.30 186.82 185.68 - 195.53 191.31 - 211.61 209.91 -
995 133.54 132.68 - 138.46 138.69 - 150.40 150.30 144.80 161.27 160.02 157.00 171.28 170.35 - 180.59 176.55 182.10 197.56 196.05 -

1025 104.78 104.05 - 110.97 111.21 - 125.28 125.23 120.10 137.74 136.93 133.10 148.90 148.26 146.50 159.09 155.34 - 177.36 176.13 -
1050 81.16 80.54 - 88.68 88.93 84.50 105.24 105.24 100.70 119.08 118.64 114.80 131.19 130.75 - 142.08 138.54 143.00 161.35 160.37 171.40
1075 58.01 57.48 - 67.14 67.33 64.30 86.18 86.28 82.50 101.40 101.31 97.60 114.41 114.16 - 125.96 122.61 - 146.14 145.35 -
1090 44.42 43.99 43.10 54.69 54.89 - 75.31 75.46 - 91.32 91.44 - 104.83 104.67 - 116.73 113.50 - 137.40 136.73 -
1100 35.56 35.18 35.60 46.66 46.86 - 68.32 68.52 65.50 84.84 85.06 81.20 98.66 98.56 96.20 110.78 107.61 111.30 131.74 131.16 140.40
1110 26.90 26.57 - 38.87 39.08 39.50 61.56 61.78 - 78.56 78.86 - 92.66 92.62 - 104.98 101.89 - 126.22 125.73 -
1120 18.52 18.24 22.90 31.39 31.60 33.50 55.07 55.29 - 72.49 72.86 - 86.85 86.85 - 99.35 96.36 - 120.83 120.43 -
1125 14.48 14.25 20.20 27.80 28.00 30.70 51.92 52.16 51.00 69.54 69.94 66.90 84.02 84.04 81.70 96.60 93.64 97.00 118.19 117.83 -
1130 10.61 10.41 - 24.31 24.52 28.00 48.85 49.10 - 66.64 67.08 - 81.23 81.27 - 93.89 90.97 - 115.58 115.27 -
1135 7.10 6.92 - 20.97 21.17 25.60 45.86 46.11 45.50 63.81 64.27 - 78.49 78.56 - 91.22 88.35 - 113.00 112.74 -
1140 6.00 5.84 13.30 17.80 18.01 23.20 42.95 43.22 - 61.03 61.52 58.90 75.81 75.90 - 88.59 85.78 - 110.47 110.25 -
1150 4.66 4.56 - 12.58 12.79 19.10 37.39 37.70 38.10 55.67 56.20 53.90 70.58 70.73 68.30 83.47 80.75 83.30 105.49 105.36 112.80
1160 3.76 3.69 - 10.04 10.21 15.30 32.22 32.59 - 50.57 51.13 - 65.56 65.76 - 78.52 75.89 - 100.66 100.61 -
1170 3.08 3.05 - 8.26 8.42 12.10 27.51 27.91 - 45.74 46.34 - 60.76 61.00 - 73.75 71.21 - 95.97 96.00 -
1175 2.81 2.79 - 7.53 7.69 10.90 25.35 25.78 27.70 43.44 44.05 42.50 58.43 58.70 56.60 71.44 68.93 - 93.68 93.75 99.80
1200 1.82 1.84 - 4.94 5.09 - 17.24 17.71 19.60 33.06 33.80 33.00 47.66 48.02 46.10 60.54 58.32 60.90 82.76 83.02 -
1225 1.22 1.28 - 3.36 3.51 - 12.22 12.73 13.20 24.81 25.56 24.90 38.33 38.77 36.90 50.81 48.86 49.80 72.72 73.17 -
1250 0.84 0.94 - 2.35 2.49 - 8.84 9.41 - 18.74 19.42 18.30 30.51 31.03 29.30 42.26 40.55 41.20 63.56 64.19 66.90
1275 0.59 0.71 - 1.67 1.84 - 6.49 7.11 - 14.26 14.84 13.20 24.18 24.75 22.50 34.88 33.44 - 55.28 56.01 -
1300 0.42 0.55 - 1.21 1.38 - 4.81 5.43 - 10.92 11.44 - 19.17 19.71 17.20 28.64 27.42 27.10 47.85 48.63 49.50
1325 0.31 0.44 - 0.88 1.05 - 3.61 4.17 - 8.42 8.93 - 15.23 15.77 12.80 23.45 22.43 - 41.24 42.05 -
1350 0.23 0.35 - 0.65 0.81 - 2.73 3.23 - 6.52 7.03 - 12.12 12.66 - 19.18 18.38 17.10 35.41 36.28 35.70
1400 0.12 0.23 - 0.37 0.49 - 1.59 2.04 - 3.98 4.41 - 7.74 8.25 - 12.84 12.27 10.10 25.88 26.82 25.20
1450 0.07 0.17 - 0.21 0.30 - 0.95 1.32 - 2.47 2.81 - 5.00 5.50 - 8.63 8.22 - 18.79 19.73 17.00
1500 0.04 0.12 - 0.13 0.19 - 0.58 0.91 - 1.56 1.83 - 3.27 3.74 - 5.84 5.53 - 13.60 14.50 12.20

TABLE I: S&P 500 Call Option prices and estimations
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We will take advantage of 75 actual recorded values presented in Table-I, and make
an error estimation for each model, by calculating their respective root mean square er-
ror, which is given by the formula RMSE =

√∑n
i=1(market pricei −model pricei)2/n.

Under this metric the deviations from the observed results are:

RMSE

Black-Scholes 6.6692
Variance Gamma Monte Carlo 3.6959

Variance Gamma Formula 3.5183

TABLE II: Root Mean Square Error

Therefore not only is the formula (72) more expedient due to much lower computa-
tional time (in our tests it was between 72 and 92 times faster), but it also outperforms
the Monte-Carlo method (and consequently the Black-Scholes by a wide margin). There
may be rare events where the Monte-Carlo returns a better result, due to its randomness,
but in all the simulation we executed this event was never realized.

5.2 Convergence of the Variance Gamma Formula

In order to study the numerical convergence and precision of the new formula we
must first realize that observing the value of each isolated term in the triple sum (72) is
fallacious since an unit increase of, for instance, parameter n will lead to the sum of an
extram×k terms, which may lead to an error of substantially higher magnitude than each
individual term. For example, for all the strike prices K and times to maturity τ of Table-
I, the values of the terms at n,m, k = 10 are always zero, under a two decimal numerical
precision. On the other hand, the values reached for the double sum series when n = 10

and 0 ≤ m, k ≤ 10 can be as low as −67.679 (for K = 975 and τ = 81× 7/365), as can
seen in Table-III.

As one would expect from the definition [log] = log S
K

+ (r− q)τ −µτ , the higher the
time to maturity τ the higher will be the double series sum value, as can be seen in Table-
III where the strike price is 975. Similarly, the more S differs from K the higher will be
the sum value, as can be observed in Table-IV where the time of maturity is September
2002. In both of these cases we will have to choose bigger values for the parameters n,
m and k in order to assure convergence. That is, to ensure that the triple sum series in
(72) from 0 to some fixed nmax, mmax and kmax values, for each respective n, m and k
parameter, will yield a truncation error lower than some chosen numerical precision.
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Time of May June September December March June December
Maturity 2002 2002 2002 2002 2003 2003 2003

Error 0.000 0.000 0.145 0.296 2.197 -22.501 -67.679

TABLE III: Values for the double series where n = 10, 0 ≤ m, k ≤ 10 and K = 975

Strike 975 995 1025 1050 1075 1100 1200 1300 1325 1350 1400 1450 1500

Error 0.145 0.049 0.008 0.001 0.000 0.000 0.000 0.000 0.001 0.004 0.049 0.333 1.579

TABLE IV: Values for the double series where n = 10, 0 ≤ m, k ≤ 10 and τ = 81×7/365

Let us denote each term of the sum (72) by CV G(n,m, k), given this notation we can
write CV G =

∑∞
n=0

∑∞
m=0

∑∞
k=0CV G(n,m, k). To determine the values nmax, mmax and

kmax for which the sum CV G converges, for all values K and τ of Table-I, we will apply
the euclidean norm to the 189 resulting values from the three possible double sum series:
the series computed by summing the terms of CV G for a fixed n and 0 ≤ m, k ≤ n, i.e.
Cn const
V G (n) =

∑n
m=0

∑n
k=0CV G(n,m, k), the series computed by summing the terms of

CV G for a fixed m and 0 ≤ n, k ≤ m, i.e. Cm const
V G (m) =

∑m
n=0

∑m
k=0CV G(n,m, k) and

the series computed by summing the terms of CV G for a fixed k and 0 ≤ n,m ≤ k, i.e.
Ck const
V G (k) =

∑k
n=0

∑k
m=0CV G(n,m, k).

Double series sum
Cn const
V G (m) Cm const

V G (m) Ck const
V G (k)

0 1584.541 1584.541 1584.541
1 947.283 1654.716 93.741
2 1490.255 2180.378 14.829
3 400.789 2229.189 0.663
4 536.914 1871.335 0.124
5 355.390 1354.925 0.008
6 364.206 880.180 0.001
7 291.953 528.778 0.000
8 218.112 300.352 0.000
9 142.454 163.798 0.000

10 83.357 86.648 0.000
11 43.583 44.762 0.000
12 20.626 22.685 0.000
13 8.891 11.314 0.000

Double series sum
Cn const
V G (n) Cm const

V G (m) Ck const
V G (k)

14 3.521 5.567 0.000
15 1.289 2.707 0.000
16 0.439 1.303 0.000
17 0.140 0.621 0.000
18 0.041 0.294 0.000
19 0.012 0.138 0.000
20 0.003 0.064 0.000
21 0.001 0.030 0.000
22 0.000 0.014 0.000
23 0.000 0.006 0.000
24 0.000 0.003 0.000
25 0.000 0.001 0.000
26 0.000 0.001 0.000
27 0.000 0.000 0.000

TABLE V: Convergence of the three double series

From the values above we can ascertain, that for anyK and τ of Table-I, we can assure
convergence with a two decimal precision, when the sum of the three double sum series
has a result lower than 0.005, for instance n = 22, m = 27 and k = 7.
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5.3 Option Price Behavior for the Variance Gamma Formula

Hitherto we only applied the formula for the same initial stock value. Still the formulas
for the European options under the Variance Gamma (72) and (127), present the typical
behavior for different initial stock values. In fact, if we take K = 1100 for the same
parameters of the previous subsection and vary the initial stock price S0, we get the typical
call and put option behavior. This can be seen by the difference given by our formula and
the Black-Scholes formula for the price of an European Option:

FIGURE 4: Variance Gamma and Black Scholes Formulas Price Differences

One of the most important tool used in finance is called the implied volatility, which
consists in finding the volatility for which the model employed (typically the Black-
Scholes model) in determining the option prices is congruent with the observed values
C, that is, the values σI such that CBS(S,K, r, σI , τ) = C holds. In our particular case
we fixed the time to maturity at τ = 35 × 7/365, while the rest of the variables remain
equal to the previews section, and applied the Newton algorithm to compute σI .

FIGURE 5: Implied Volatility

As can be observed from Figure-5, the formula (72) displays a volatility smile typi-
cally present in most assets, including the present asset.
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5.4 The Greek Formulas Behavior

Greeks are extremely important for financial institutions and their endeavors such as
hedging against market uncertainty. Therefore we terminate this section by visualizing
the behavior of greek functions under the Variance Gamma model and contrasting them
with the ones under the Black-Scholes model.

FIGURE 6: Greeks

As can be seen, the greek measures for the Variance Gamma model, seem similar
enough to the ones of the Black-Scholes, yet they exhibit enough discrepancies to be
worthy of note, primarily in the Gamma and Theta functions, presumably due to its higher
similitude with the empirical data. These seemingly more accurate new greek functions
only involve the simple computation of triple sum series, which is a stark contrast with
the much more ponderous old-school scheme method used for Lévy processes.
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6 CONCLUSIONS

In this dissertation, we have derived a triple Mellin-Barnes integral representation for
the price of an European call option driven by a Variance Gamma process (45). Subse-
quently we applied multidimensional residue calculus to the aforementioned integral and
computed a triple sum series for the the European call option (72). Triple sum series for
the delta, gamma, rho and theta greeks were also found by direct differentiation. When
tested, (72) exhibited the behavior typically observed in the market for European options,
for instance the volatility smile, and it outperformed the Monte-Carlo simulation method
in both accuracy and computational time. The greeks also displayed their conventional
behavior.

For practical applications, the simplicity present in the aforementioned formulas (such
as the lack of necessity of simulations for pricing European options, or of schemes to com-
pute the greeks), coupled with their higher rates of precision and much lower computation
time makes them ideal for financial practitioners, without the necessity for more theoret-
ical concepts such as schemes, complex calculus and fractional calculus. For example
formulas (128) and (132) can be directly used to generate a portfolio with optimal delta
and gamma hedge strategies.

In terms of future research the most obvious course of action would be to compare the
formula (72), in terms of accuracy and computational time, to other semi-closed formulas
such as the Bessel functions representation formula or the Fast Fourier Transform for the
price of an European call option under the Variance Gamma model (which their definition
and proof are presented in the papers [16] and [8] respectively).

For more theoretical results, the more pressing question will be the ability to use a
similar reasoning as presented in Section 4, to arrive at a sum series for the more gen-
eral CGMY process and Generalized Tempered Stable process, even if this necessitates a
higher dimensional Mellin-Barnes integral. One also might inquire further to the pricing
of more complex financial instruments, like American or Barrier options, and specially
instruments like Asian option, where the integral involved in their definition seems to
make them a prime candidate for residue calculus.
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A PROOFS

A.1 Proof of Theorem 7

Proof. Before tackling the proof, note that for any z ∈ C we have the inequality:∣∣∣√2πzz−1/2e−z
∣∣∣ =
√

2π(|z|ei arg(z))Re(z)+i Im(z)−1/2e−Re(z)−i Im(z) arg(z) (144)

=
√

2π|z|Re(z)−1/2e− arg(z) Im(z)−Re(z) (145)

≥ c1|z|Re(z)−1/2e−
π
2
| Im(z|)−|Re(z)| (146)

for some constant c1 and also the inequality:∣∣∣√2πzz−1/2e−z
∣∣∣ =
√

2π|z|Re(z)−1/2e− arg(z) Im(z)−Re(z) (147)

≤ c2|z|Re(z)−1/2e−
π
2
| Im(z)|+|Re(z)| (148)

The last inequality (148) is verified if and only if the inequality − arg(z) Im(z) −
Re(z) ≤ −π

2
| Im(z)| + |Re(z)| is valid. Inasmuch as we can write sj = reiθ, where

r ∈ R+
0 and θ ∈ [−π, π], the inequality can be written as rθ sin θ−r cos θ ≤ −π

2
|r sin θ|+

|r cos θ| which hols for any for any r ∈ R+ and θ ∈] − π, π[. In fact the inequality is
equivalent to 0 ≤ (θ − π/2) sin θ + 2 cos θ for θ ∈ [0, π/2], 0 ≤ (θ − π/2) sin θ for
θ ∈ [π/2, π], 0 ≤ (θ + π/2) sin θ for θ ∈ [−π/2, 0] and 0 ≤ (θ + π/2) sin θ + 2 cos θ for
θ ∈ [−π,−π/2] which are all true, therefore the inequality (148) will hold.

If z does not intersect the set Z−0 + i{0}, then as |z| → ∞ we can apply the Stirling
Formula (27) and from the expressions (146) and (148) we know there exists constants c1

and c2 such that:

c1|z|Re(z)−1/2e−
π
2
| Im(z)|−|Re(z)| < |Γ(z)| < c2(ε)|z|Re(z)−1/2e−

π
2
| Im(z)|+|Re(z)| (149)

On the other hand, if we constrict the real value, x, to a compact set K ⊂ R \ Z−0 , x
will be bounded and the gamma function will be continuous in the domain K + iR. We
can thus denote its supremum as M = supx∈K |x| <∞ and infimum as m = infx∈K |x|.
Under this notation we have e−M < e−|x| and e|x| < eM and also as |y| → ∞ we have
|x + iy| =

√
x2 + y2 ∼ (1 + |y|). Applying these properties to (149) results in the

inequalities

k1(|y|+ 1)x−1/2e−
π
2
|y| < |Γ(x+ iy)| < k2(ε)(|y|+ 1)x−1/2e−

π
2
|y| (150)
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for some constants k1 and k2. Taking advantage of the inequalities (150), we can bound
the integrand of expression (30) by:∣∣∣∣∣
∏m

j=1 Γ(sj(z))∏p
k=1 Γ(qk(z))

t−z

∣∣∣∣∣ ≤ C

∏m
j=1

(
|〈aj, x〉|

)〈aj ,x〉+bj−1/2∏p
j=1

(
|〈cj, x〉|

)〈cj ,x〉+bj−1/2
(151)

× exp

{
|〈y, arg t〉| − π

2

(
m∑
j=1

|〈aj, y〉| −
p∑
j=1

|〈cj, y〉|

)}
(152)

for some constant C. If for all y ∈ Rn and t ∈ (Cn \ {0})n the inequality

|〈y, arg t〉| < π

2

(
m∑
j=1

|〈aj, y〉| −
m∑
j=1

|〈aj, y〉|

)
(153)

is satisfied, then the integrand in (30) decreases exponentially as ‖y‖ → ∞, making the
integral converge absolutely. Taking into account (31) the inequality (153) will hold if

max
y∈S1

|〈y, arg t〉| < π

2
α (154)

By the Cauchy-Schwartz inequality

max
y∈S1

|〈y, arg t〉| ≤ max
y∈S1

‖y‖‖arg t‖ = ‖arg t‖ (155)

and since we are working in U , ‖arg t‖ < π
2
α which concludes our proof.

A.2 Proof of Theorem 8

Proof. We will extrapolate the proof present in [27], to the three dimensional case. We
begin by separating the gammas in the numerator of the form ω into three groups Γ1, Γ2,
Γ3, such that, for the singularities in (35) the zeroes of f1 do not intersect D1, the ones
of f2, D2, and the ones of f3, D3, .i.e. ∀i∈{1,2,3}Ker(fi) ∩ Di = ∅. Similarly we also
denote the multiple gammas in the denominator of ω by Γ4. Taking this new notation into
account we can write the form ω in the standard form (30), i.e:

ω =
hdz1 ∧ dz2 ∧ dz3

f1f2f3

(156)

where f1, f2, f3 and h are defined by:

f1 =
1

Γ1

, f2 =
1

Γ2

, f3 =
1

Γ3

, h =
t−z11 t−z22 t−z33

Γ4

(157)
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The proof of the theorem follows once we are able to validate compatibility and the
Jordan conditions, i.e. (23), under the polyhedron Π. The first thing to note is that, by
definition, the zeroes D1, D2 and D3 are compatible with the polyhedron Π. Secondly,
observe that there exists a linear transformation, g−1, the inverse of (35), that simplifies
the proof. Thus, we can, without lost of generality, apply this linear change of variables,
which will result in the real part of σ being the first octant, the real part of σ1, σ2 and σ3 the
{y, z}-plane, {x, z}-plane and the {x, y}-plane, respectively, the real part of σ{1,2}, σ{1,3}
and σ{2,3} the z-axis, y-axis and the x-axis, respectively and Re(γ) = Re(σ{1,2,3}) = 0.
This linear transformation will obviously also be applied to the ω-form. Under this new
change of variables it will suffice for us to prove the Jordan lemma for the differential
forms

ξ1 =
hf 1dz

f2f3‖f‖
, ξ2 =

hf 2dz

f1f3‖f‖
, ξ3 =

hf 3dz

f1f2‖f‖
, (158)

ξ{2,3} = h
f 2df 3 − f 3df 2

f1||f ||4
dz, ξ{1,3} = h

f 1df 3 − f 3df 1

f2||f ||4
dz, (159)

ξ{1,2} = h
f 1df 2 − f 2df 1

f3||f ||4
dz, ξ{1,2,3} = ξ1

{1,2,3} + ξ2
{1,2,3} + ξ3

{1,2,3} (160)

on the corresponding half-spaces:

σ{2,3} = l1 + iR3, σ{1,3} = l2 + iR3, σ{1,2} = l3 + iR3, (161)

σ1 = P{2,3} + iR3, σ2 = P{1,3} + iR3, σ3 = P{1,2} + iR3, σ∅ = V + iR3 (162)

where, ξ1
{1,2,3}, ξ

2
{1,2,3} and ξ3

{1,2,3} are defined by

ξ1
{1,2,3} = h

f 1df 2df 3 − f 2df 1df 3 + f 3df 1df 2

||f ||6
dz, (163)

ξ2
{1,2,3} = −2h

f 1f 3df 2

(
f1df 1 + f2df 2 + f3df 3

)
||f ||8

dz, (164)

ξ3
{1,2,3} = h

f 1f 2f 3

(
f1df 1 + f2df 2 + f3df 3

)2

||f ||10
dz (165)

and l1, l2, l3, P{2,3}, P{1,3} and P{1,2} are subsequently defined by l1 = {x ∈ R3 : x1 ≥
0, x2 = 0, x3 = 0}, l2 = {x ∈ R3 : x1 = 0, x2 ≥ 0, x3 = 0}, l3 = {x ∈ R3 :

x1 = 0, x2 = 0, x3 ≥ 0}, P2,3 = {x ∈ R3 : x1 = 0, x2 ≥ 0, x3 ≥ 0}, P1,3 = {x ∈
R3 : x1 ≥ 0, x2 = 0, x3 ≥ 0}, P1,2 = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 = 0} and
V = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}.
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Further, the computation of the integral ξ1 over σ{2,3} will be analogous to ξ2 over
σ{1,3} and ξ3 over σ{1,2}, as will the computation of ξ{2,3} over σ1 to ξ{1,3} over σ2 and
ξ{1,2} over σ3. Thus it will suffice to examine just three cases: (211), (215) and (220).

Now let’s consider the sequence of sets Uk = {x + iy ∈ C3 : ‖x‖ ≤ Rk, ‖y‖ ≤ Rk},
where Rk → ∞ as k → ∞. Define the surface Sk = ∂Uk and let ξ be one of the seven
integrands of (158), (159) or (160) defined on its corresponding σ of (161) or (162), it is
a well known property of Lebesgue integrals that there exists a constant c ∈ R, such that:∫

σ∩Sk
ξ ≤ ‖Sk‖ sup

(σ∩Sk)\Z
‖ξ‖ ≤ cR5

k sup
(σ∩Sk)\Z

‖ξ‖ (166)

where Z is a set with zero Lebesgue measure. Our job will be to prove that as k → ∞,
‖ξ‖ → 0 at an exponential rate, resulting in the integral in (166), and consequently all
(211), (215) and (220) being zero. In order to achieve this, we will divide σ∩Sk in to two
sets:

Bk = {x+ iy ∈ σ : ‖x‖ ≤ Rk, ‖y‖ = Rk} (167)

Ok = {x+ iy ∈ σ : ‖x‖ = Rk, ‖y‖ ≤ Rk} (168)

Depending on the σ we are working with, this separation will yield different results.
For instance, for σ1 we have Bk = {x + iy ∈ C3 : 0 ≤ x1 ≤ Rk, ‖y‖ = Rk} and
Ok = {x + iy ∈ C3 : x1 = Rk, ‖y‖ ≤ Rk}, for σ1,2 we have Bk = {x + iy ∈ C3 :

x2
1 + x2

2 ≤ R2
k, ‖y‖ = Rk} and Ok = {x + iy ∈ C3 : x2

1 + x2
2 = R2

k, ‖y‖ ≤ Rk} and for
σ1,2,3 we haveBk = {x+ iy ∈ C3 : x2

1 + x2
2 + x2

3 ≤ R2
k, ‖y‖ = Rk} andOk = {x+ iy ∈

C3 : x2
1 + x2

2 + x2
3 = Rk, ‖y‖ ≤ Rk}.

As a final tool for our proof consider the set Uδ = {z ∈ C3 : |sj(z) + ν| ≥ δ > 0, j =

1, ...,m; ν ∈ N}, which removes a neighborhood in U around the singularities present in
the numerator of the ratio of products of gamma functions in ω. Hence we can write left
most term of (166) as:∫

σ∩Sk
ξ =

∫
Ok∩Uδ

ξ +

∫
Bk∩Uδ

ξ +

∫
σ∩Sk∩Uc

δ

ξ (169)

Our proof will consist of three steps: firstly to estimate the value of ‖ω‖|Ok∩Uδ , sec-
ondly to estimate the value of ‖ω‖|Bk∩Uδ , thirdly to extend the two previous results to the
value of the integral to the set of neighborhoods U c

δ (in the proof of Lemmas 1 2 and 3).
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Step 1:

Recall that for any z ∈ C3 we have sj(z) = 〈aj, x〉 + bj + i〈aj, y〉, also for any
point in the three-dimensional space, x ∈ R3, there exist θ ∈ [0, 2π[ and φ ∈ [0, π[

such that x = ‖x‖x̂ = ‖x‖(sinφ cos θ, sinφ sin θ, cosφ), hence the real part of sj(z) for
z ∈ Ok is given by Re(sj(z)) = Rk〈aj, x̂〉 + bj . Having fixed θ and φ, and given we
are working in the space Ok ∩ Uδ, we will chose the radii Rk such that Re(sj(z)) wont
intersect the singularities of the form ω, (the latter case will be dealt in the lemmas). Thus,
the numerator of the form ω can be segregated into two terms, the ones where 〈aj, x̂〉 > 0,
which we will order as µ + 1 ≤ j ≤ m, and the ones where 〈aj, x̂〉 < 0, which we will
order as 1 ≤ j ≤ µ. Analogously, we can sort the denominator of ω , where 〈cj, x̂〉 > 0,
for χ + 1 ≤ j ≤ p, and 〈cj, x̂〉 < 0, for 1 ≤ j ≤ χ. In this case, as Rk → +∞ we have
Re(sj|Ok) → +∞ and Re(qj|Ok) → +∞ for µ ≤ j ≤ m and χ ≤ j ≤ p, respectively,
and Re((1− sj)|Ok)→ +∞ and Re((1− qj)|Ok)→ +∞ for 1 ≤ j ≤ µ and 1 ≤ j ≤ χ,
respectively. Therefore, if we use the relation Γ(sj)Γ(1−sj) = π/ sin(πsj) and the apply
the Stirling formula (27), we get:

∣∣∣∣Γ1Γ2Γ3

Γ4

∣∣∣∣∣∣∣∣
Ok

≤ k1

∣∣∣∣∣∣
∏µ

j=1
1

sin(πsj)(1−sj)(1−sj)−1/2e−(1−sj)

∏m
j=µ+1 s

sj−1/2
j e−sj∏χ

j=1
1

sin(πqj)(1−qj)(1−qj)−1/2e−(1−qj)

∏p
j=χ+1 q

qj−1/2
j e−qj

∣∣∣∣∣∣ (170)

≤ k2

∣∣∣∣∣
∏µ

j=1(1− sj)sj−1/2
∏m

j=µ+1 s
sj−1/2
j e−

∑m
j=1 sj

∏χ
j=1 sin(πqj)∏µ

j=1(1− sj)sj−1/2
∏m

j=µ+1 s
sj−1/2
j e−

∑m
j=1 sj

∏χ
j=1 sin(πqj)

∣∣∣∣∣ (171)

where k1 and k2 are undetermined constants independent of either k or y values.

Since all the linear equations sj and qj are on the set Ok, we have ‖x‖ = Rk and
‖y‖ ≤ Rk. Given this parametrization, the modulus of the functions sj , 1 − sj , qj and
1 − qj are bounded below by A1Rk and above by A2Rk for some constants A1, A2 > 0,
in fact:

|sj| ≤
∥∥aj∥∥‖x‖+ |bj|+

∥∥aj∥∥‖y‖ ≤ ∥∥aj∥∥Rk +
|bj|
R1

Rk +
∥∥aj∥∥Rk ≤ A2Rk (172)

|sj| ≥ ||aji||xi| − |bj|| ≥ |A1Rk − |bj|| ≥ A1Rk (173)

For the first step of (172) we applied the Cauchy-Schwartz inequality, for (173) we chosen
aji, where i ∈ {1, 2, 3}, different from 0, and A1 ≤ Rk|x̂i|. The proofs for the linear
equations 1− sj , qj and 1− qj are analogous.

Now if we take note that Rk〈ai, x̂〉 < 0 and −Rk‖cj‖ ≤ Rk〈cj, x̂〉 < 0 for 1 ≤ i ≤ µ

and χ ≤ j ≤ p respectively and Rk‖ai‖ ≥ Rk〈ai, x̂〉 > 0 and Rk‖cj‖ ≥ Rk〈cj, x̂〉 > 0

for 1 ≤ i ≤ µ and χ ≤ j ≤ p, respectively, we conclude that:
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∣∣∣∣∣
∏µ

j=1(1− sj)sj−1/2
∏m

j=µ+1 s
sj−1/2
j∏χ

j=1(1− qj)qj−1/2
∏p

j=χ+1 q
qj−1/2
j

∣∣∣∣∣ ≤
∣∣∣∣∣
∏µ

j=1(A1Rke
i arg(1−sj))Rk〈aj ,x̂〉+bj−1/2+i Im(sj)∏χ

j=1(A2Rkei arg(1−qj))Rk〈cj ,x̂〉+dj−1/2+i Im(qj)

∣∣∣∣∣
×

∣∣∣∣∣
∏m

j=µ+1(A2Rke
i arg(sj))Rk〈aj ,x̂〉+bj−1/2+i Im(sj)∏p

j=χ+1(A1Rkei arg(1−qj))Rk〈cj ,x̂〉+dj−1/2+i Im(qj)

∣∣∣∣∣ (174)

≤
∏µ

j=1(A1Rk)
Rk〈aj ,x̂〉+bj−1/2

∏m
j=µ+1(A2Rk)

Rk〈aj ,x̂〉+bj−1/2∏χ
j=1(A2Rk)

Rk〈cj ,x̂〉+dj−1/2
∏p

j=χ+1(A1Rk)
Rk〈cj ,x̂〉+dj−1/2

× e−
∑µ
j=1 Im(sj) arg(1−sj)−

∑m
j=µ+1 Im(sj) arg(sj)

e−
∑µ
j=1 Im(qj) arg(1−qj)−

∑m
j=µ+1 Im(qj) arg(qj)

(175)

≤ c0R
c1
k c

Rk
2 R

c3‖y‖
k R

Rk〈∆,x̂〉
k (176)

where c0, c1, c2 and c3 are constants that we can define without any recourse to the angles
θ and ψ, making the upper bound (176) hold for every z ∈ Ok ∩ Uδ. More concretely we
define:

c0 =

max
µ∈{0,...,m}

A

µ∑
j=1

bj−µ/2

1 max
µ∈{0,...,m}

A

m∑
j=µ+1

bj−(m−µ)/2

2

min
χ∈{0,...,p}

A
∑χ
j=1 bj−χ/2

1 min
χ∈{0,...,p}

A
∑p
j=χ+1 bj−(p−χ)/2

2

(177)

≥ A
∑µ
j=1 bj−µ/2

1 A
∑m
j=µ+1 bj−(m−µ)/2

2

A
∑χ
j=1 bj−χ/2

1 A
∑p
j=χ+1 bj−(p−χ)/2

2

(178)

c1 =

[
m∑
j=1

|bj|
p∑
j=1

|dj|+
p

2

]
≥

m∑
j=1

bj −
p∑
j=1

dj +
p−m

2
(179)

c2 = max

{
A
∑m
j=1 ‖aj‖+

∑p
j=1 ‖cj‖

1 , A
−
∑m
j=1 ‖aj‖−

∑p
j=1 ‖cj‖

1

}
(180)

×max

{
A

[
∑m
j=1 ‖aj‖+

∑p
j=1 ‖cj‖]

2 , A
−
∑m
j=1 ‖aj‖−

∑p
j=1 ‖cj‖

2

}
(181)

≥ A
∑µ
j=1〈aj ,x̂〉

1 A
(1+δ)

∑m
j=µ+1〈aj ,x̂〉

2

A
∑χ
j=1〈cj ,x̂〉

1 A
∑p
j=χ+1〈cj ,x̂〉

2

(182)

c3‖y‖ = π

[
m∑
j=1

‖aj‖+

p∑
j=1

‖cj‖

]
‖y‖ ≥ π

m∑
j=1

Im(sj) + π

p∑
j=1

Im(qj) (183)

≥ e−
∑µ
j=1 Im(sj) arg(1−sj)−

∑m
j=µ+1 Im(sj) arg(sj)

e−
∑µ
j=1 Im(qj) arg(1−qj)−

∑m
j=µ+1 Im(qj) arg(q))

(184)

where in (183) we used the Cauchy-Schwartz inequality in conjunction with the fact that
〈aj, y〉 = Im(sj) and 〈cj, y〉 = Im(qj).
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Now let’s recall that ∆ =
∑m

j=1 aj −
∑p

j=1 cj , which we will use to define the value
∆x := 〈∆, x̂〉. Observe that since we are working in Ok ∩ Uδ, there doesn’t exist a
sequence zi ∈ Ok ∩Uδ such that sin

(
π(〈aj, z〉+ bj)

)
goes to zero, otherwise inasmuch as

sin and 〈aj, z〉+bj are continuous, we would have zi ∈ U c
δ , which is a contradiction, hence

0 < infz∈Ok∩Uδ sin
(
π(〈aj, z〉+ bj)

)
and supz∈Ok∩Uδ 1/

∏µ
j=1 sin

(
π(〈aj, z〉+ bj)

)
< ∞.

On the other hand, for the sin’s in the denominator of ω, there exists a constant c such
that:∣∣∣∣∣
χ∏
j=1

sin(πqj)

∣∣∣∣∣ =

χ∏
j=1

∣∣∣∣eiπRe(qj)e−π Im(qj) − e−iπRe(qj)eπ Im(qj)

2i

∣∣∣∣ ≤ χ∏
j=1

eπ|Im(qj)| ≤ ecRk (185)

Similarly, by applying the Cauchy-Schwartz inequality to the modulus of t−z we have:

∣∣t−z11 t−z22 t−z33

∣∣ = |t1|−x1|t2|−x2|t3|−x3e〈y,arg t〉

≤ |t1|−x1|t2|−x2 |t3|−x3e|y|| arg t| ≤ e−‖x‖〈log |t|,x̂〉e| arg t|Rk (186)

Therefore all the terms of ω not present in (170) grow at most exponentially as Rk →
∞. If we combine the results from (176), (185) and (186) we get:∣∣∣∣Γ1Γ2Γ3

Γ4

t−z
∣∣∣∣∣∣∣∣
Ok∩Uδ

≤ c(t)RkRRk∆x

k (187)

where c(t) > 0 and is independent from k and y. Since ∆x < 0, from (187) as k → ∞
the first integral of (169) vanishes.

Step 2:

Before tackling the second integral in (169), let’s restate the inequality (149):

c1|z|Re(z)−1/2e−
π
2
| Im(z)|−|Re(z)| < |Γ(z)| < c2(ε)|z|Re(z)−1/2e−

π
2
| Im(z)|+|Re(z)| (188)

In Bk∩Uδ we have 0 ≤ ‖x‖ ≤ Rk and ‖y‖ = Rk. analogously to (172) and (173), for
Rk big enough, the modulus of the functions sj , 1− sj , qj and 1− qj are bounded below
by A1Rk and above by A2Rk for some constants A1, A2 > 0, in fact:

|sj| ≤
∥∥aj∥∥‖x‖+ |bj|+

∥∥aj∥∥‖y‖ ≤ ‖aj‖Rk +
|bj|
R1

Rk +
∥∥aj∥∥Rk ≤ A2Rk (189)

|sj| ≥ |〈aj, x〉 − |bj + 〈aj, y〉|| ≥ c|〈aj, x〉| ≥ A1‖x‖ (190)

where we defined A1 = c inf
θ∈[0,2π[
φ∈[0,π[

√
a2
j1 sin2 φ cos2 θ + a2

j2 cos2 φ cos2 θ + a2
j3 sin2 φ. The
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second step of (190) is valid when Rk → ∞ because the value in
∣∣bj + 〈aj, y〉

∣∣ will
become significantly greater than

∣∣〈aj, x〉∣∣. These results remain for 1− sj , qj and 1− qj .
Combining the inequalities (189) and (189) with (188) we obtain:

|Γ(sj)| < c2(A2Rk)
‖x‖〈aj ,x̂〉|sj|bj−1/2e−

π
2
|Im(sj)|+|Re(sj)| if 〈aj, x̂〉 ≥ 0, (191)

|Γ(sj)| < c2(A1‖x‖)‖x‖〈aj ,x̂〉|sj|bj−1/2e−
π
2
|Im(sj)|+|Re(sj)| if 〈aj, x̂〉 < 0, (192)

|Γ(qj)| > c1(A1‖x‖)‖x‖〈cj ,x̂〉|qj|dj−1/2e−
π
2
|Im(qj)|−|Re(qj)| if 〈cj, x̂〉 > 0, (193)

|Γ(qj)| > c1(A1Rk)
‖x‖〈cj ,x̂〉|qj|dj−1/2e−

π
2
|Im(qj)|−|Re(qj)| if 〈cj, x̂〉 ≤ 0. (194)

Just like we did in step one we will fix θ and φ, i.e. fix x̂, and using the above
estimates and the fact that Im(sj) = 〈aj, y〉 and Im(qj) = 〈cj, y〉 we can bound the value
of
∣∣∣Γ1Γ2Γ3

Γ4
t−z
∣∣∣ by:

∣∣∣∣Γ1Γ2Γ3

Γ4

t−z
∣∣∣∣ ≤

µ∏
j=1

c2 (A1‖x‖)‖x‖〈aj ,x̂〉 |sj|bj−1/2e−
π
2
|Im(sj)|+|Re(sj)|

χ∏
j=1

c1 (A2Rk)
‖x‖〈cj ,x̂〉 |qj|dj−1/2e−

π
2
|Im(qj)|−|Re(qj)|

×

m∏
j=µ+1

c2 (A2Rk)
‖x‖〈aj ,x̂〉 |sj|bj−1/2e−

π
2
|Im(sj)|+|Re(sj)|

p∏
j=χ+1

c1 (A1‖x‖)‖x‖〈cj ,x̂〉 |qj|dj−1/2e−
π
2
|Im(qj)|+|Re(qj)|

|t1|x1 |t2|x2|t3|x3e|〈y,arg t〉| (195)

≤ C‖x‖A‖x‖RB
k D(x, y)E‖x‖eF (y) (196)

where A, B and C and E are constants of the form:

A =

〈
µ∑
j=1

aj −
p∑

j=χ+1

cj, x̂

〉
(197)

B =

〈
m∑

j=µ+1

aj −
χ∑
j=1

cj, x̂

〉
(198)

C ≥ c−p1 cm2 (199)

E = A
〈∑µ

j=1 aj−
∑p
j=χ+1 cj ,x̂〉

1 A
〈∑m

j=µ+1 aj−
∑χ
j=1 cj ,x̂〉

2 e
∑m
j=1 |〈aj ,x̂〉|+

∑p
j=1 |〈cj ,x̂〉| (200)

and D(x, y) and F (y) are the functions:

D(x, y) =

∏m
j=1 |〈aj, x〉+ bj + i〈aj, y〉|bj−1/2∏p
j=1 |〈cj, x〉+ dj + i〈cj, y〉|dj−1/2

(201)

F (y) = |〈y, arg t〉| − π

2

(
m∑
j=1

|〈ajy〉| −
p∑
j=1

|〈cj, y〉|

)
(202)
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As we shown in (153) to (155), F (y) is negative for all y ∈ σ, therefore since ‖y‖ =

Rk, as Rk → ∞, eF (y) goes to zero at an exponentially rate. If ‖x‖ increases as Rk

increases, we can just use the arguments from step 1 to show that ‖ξ‖ goes to zero, hence
E‖x‖ must be bounded. Since D(x, y) increases at most at a polynomial rate, our last
requirement is to show that ‖x‖A‖x‖RB

k increases, at most, at a slower rate than eF (y)

decreases.

First thing to note is that by construction A defined in (197) is negative and B defined
in (198) is positive. Secondly by definition, for any x + iy ∈ σ we have ∆x = 〈∆, x̂〉 <
0, therefore since A + B = ∆x < 0, we have −B/A < 1. Consider the function
fR(x) = xAxRBx, its derivative is given by f ′R(x) = fR(x)(A log x + A + B logR)

with a zero of value xM = R−B/a/e. In other words, fR(x) has a maximum at xM of

fR(xM) =
(
e−

B
A

)R−B/A
. Therefore even if we choose ‖x‖ = xM , the term ‖x‖A‖x‖RB

k

will increase at a rate lower that eF (y) decreases. We conclude that as k →∞ the second
integral of (169) vanishes.

Step 3:

We will now undertake the third integral of (169) where the singularities of the form
ω are present. Let’s define Pj,ν = {x + yi ∈ C3 : 〈aj, x〉 = −bj − ν, 〈aj, y〉 = 0} and
Vj,ν ⊃ Pj,ν as the open sets that contain the discontinuity given by the values in Pj,ν . If
we fix the angles θx, φx, θy, φy, for the aforementioned discontinuity, we can restate the
previews equations as ‖x‖〈aj, x̂〉 = −bj − ν and ‖y‖〈aj, ŷ〉 = 0.

For the case where Pj,ν ∩ Ok 6= ∅, we have ‖x‖ = Rk and the real part of the sin-
gularities will be given by the one dimensional segments Tk,j,ν = {x ∈ R3 : ‖x‖ =

Rk, 〈aj, x〉 = −bj − ν}. Hence, we can chose the radii Rk’s, such that, for each point
x = Rk1x̂ = Rk(sinφ cos θ, sinφ sin θ, cosφ) belonging the two dimensional segment of
Tk1,j,ν , when we increase the radius from Rk1 to Rk2 , the points with the same angles θ
and φ but now with the higher length Rk2 , i.e. Rk2x̂, will not intersect Tk2,j,µ, for any
µ ∈ N and k2 > k1, and will intersect the remaining Tk1,i,µ at most one time, for any
µ ∈ N, j 6= i and k2 > k1. We can construct the radii Rk’s in order for this event to occur,
because the set containing all the two dimensional segments Tk,j,ν is countable. In fact,
we can define its (surjective) enumerating function as:

η : N3 −→ {Tk,j,ν}k,j,ν
(k, j, ν) 7−→ Tk,j,ν , (203)

where k ∈ N represents the radii Rk, j ∈ {1, ...,m} represents the Gamma function and
ν ∈ N the zero in the Gamma function.
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This entails that as k →∞ the upper bound (176) deduced in step 1 will still hold for
any angles θx and φx.

The case where Pj,ν ∩ Bk 6= ∅ is slightly more complicated. Let’s consider Sj,ν =

{i ∈ {1, 2, ...,m} : ∀z∈Vj,ν 〈ai, z〉 /∈ Z−0 }, the multi-index set of the gammas that don’t
have a singularity under si(z), and Zj,ν = {i ∈ {1, 2, ...,m} : ∀z∈Vj,ν 〈ai, z〉 ∈ Z−0 },
the multi-index set of the gammas that are singularities have a singularity under si(z).
Note that the reason for this distinction is that in some instances we may be working with
multiple singularity simultaneously in one neighborhood Vj,ν ∩Bk 6= ∅.

Since we are dealing with a case where x ∈ K \ Z−0 , where K is compact, by the
inequalities (150) the estimate upper bound for the modulus of ωt−z is given by:

∣∣∣∣∣
∏m

j=1 Γ(sj(z))∏p
k=1 Γ(qk(z))

t−z

∣∣∣∣∣ ≤
∏

i∈Sj,ν
(|〈ai, x〉|+ 1)〈ai,x〉+bi−1/2

∏p
k=1

(
|〈cj, x〉|+ 1

)〈cj ,x〉+bj−1/2

× exp

{
|〈y, arg t〉| − π

2

(
m∑
j=1

|〈aj, y〉| −
p∑
j=1

|〈cj, y〉|

)}

×

∣∣∣∣∣∣
∏
i∈Zj,ν

Γ(〈ai, z〉+ bi)

∣∣∣∣∣∣ (204)

Consider α defined in (30), for each t in the domainU defined (144) we have ‖arg t‖ <
(π/2)α if we apply the Cauchy-Schwartz inequality, |〈y, arg t〉| ≤ ‖arg t‖‖y‖, we get:

|〈y, arg t〉| ≤ π

2
α′‖y‖ for some α′ < α (205)

Consider the parametrization given by x = p0
1, y = v0λ + v1θ + p0

2 of the plane
Pj,ν ∩ Bk where (p0

1 and p0
2 are points and v1 and v2 are vectors). The neighborhood Vjν

around Pjν ∩ Bk can be defined as the intersection of the parallel planes {x + iy ∈ C3 :

x = p1, y = v0λ+ v1θ + p2} with Bk where p1 and p2 are in the neighborhood of p0
1 and

p0
2. If we take into account that

∑
Zj,ν
〈aj, y〉 vanishes on Pj,ν , we have:∑

i∈Sj,ν

|〈ai, y〉| −
p∑

k=1

|〈ci, y〉|

∣∣∣∣∣∣
Vj,ν

=

∑
i∈Sj,ν

|〈ai, v0〉| −
p∑

k=1

|〈ci, v0〉|

 ‖λ‖
+

∑
i∈Sj,ν

|〈ai, v1〉| −
p∑

k=1

|〈ci, v1〉|

 ‖θ‖+K1 (206)
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=

∑
i∈Sj,ν

|〈ai, y〉| −
p∑

k=1

|〈ci, y〉|

∣∣∣∣∣∣
Pj,ν

+K2 (207)

=

(
m∑
i=1

|〈ai, y〉| −
p∑

k=1

|〈ci, y〉|

)∣∣∣∣∣
Pj,ν

+K3 (208)

≥ α‖y‖+K4 (209)

where the K1, K2, K3, and K4 are bounded constants. Hence, for any x + iy ∈ Vj,ν the
following inequality will hold:

|〈y, arg t〉| − π

2

∑
i∈Sj,ν

|〈ai, y〉| −
p∑

k=1

|〈ck, y〉|

 ≤ π

2
(α′ − α)‖y‖+K4 (210)

In other words,
∣∣∣∣∏i∈Sj,ν

Γ(si(z))∏p
k=1 Γ(qk(z))

t−z
∣∣∣∣ decreases exponentially as Rk increases.

What remains to be shown is that the forms ξ1, ξ{2,3} and ξ{1,2,3} (the proofs for the
remaining forms are analogous) decrease as Rk increases, whether or not they are in Uδ
or its complement. Of necessity, for the latter case, we will have to show that the forms
are bounded at any point where the Gamma functions are discontinuous.

These properties will be demonstrated in the following lemmas:

Lemma 1. There exists a sequence of radii Rk, such that Rk →∞ and for which

lim
k→∞

∫
σ{2,3}∩Sk

ξ1 = 0 (211)

Proof. For the form ξ1 it is easier to recall that ξ1 = ρ1 ∧ ω which can be written as:

ξ1 =
|f1|2

‖f‖2 ∧ hdz =

1
|Γ1|2

1
|Γ1|2

+ 1
|Γ2|2

+ 1
|Γ3|2
∧ Γ1Γ2Γ3

Γ4

t−zdz (212)

where Γ1, Γ2, Γ3 and Γ4 are a product of a subset of Gamma functions present in the
numerator and denominator of ω defined at the beginning of the proof of the theorem 7.
Knowing this, the following inequality for the norm of ξ1 will hold true for any z ∈ Uδ:

‖ξ1‖ ≤
1

1 + |Γ1|2

|Γ2|2
+ |Γ1|2

|Γ3|2
‖ω‖ (213)

Since 1
1+a2/b2+a2/c2

≤ 1, for any a, b, c ∈ R, then the first factor of the inequality (213)
is bounded by 1 and the second factor, as we deduced previously, decreases exponentially
as Rk increases.
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On the other hand, the complementary set, U c
δ , will include the complex planes Lνj =

{z ∈ C3 : sj(z) = −ν} of D1, D2 and D3. Recall from (39), we have D1 ∩ σ1 = ∅,
D2 ∩ σ2 = ∅ and D3 ∩ σ3 = ∅ which implies that σ{2,3} ∩ (D2 ∪ D3) = ∅. Since we
are working in σ{2,3} we will only consider the planes Lνj in D1. We will represent Γ1

as the product Γ′1 · Γ′′1, where Γ′1 is the product of the functions Γ(sj(z)) in Γ1 without
singularities on Lνj and Γ′′1 is the product of the functions Γ(sj(z)) in Γ1 with singularities
on Lνj , where we will denote by s the number of factors in Γ′′1. Taking this notation into
account, the following inequality for the norm of ξ1 will hold true for any z ∈ U c

δ :

‖ξ1‖ ≤

−2s︷ ︸︸ ︷
1

1 +
|Γ′1|2|Γ′′1 |2
|Γ2|2

+
|Γ′1|2|Γ′′1 |2
|Γ3|2

s︷︸︸︷
|Γ′′1|

∥∥∥∥Γ′1Γ2Γ3

Γ4

t−z
∥∥∥∥ (214)

The first factor has a zero of order 2s, the second factor has a pole of order s, and the
third factor decreases exponentially asRk increases. Therefore the product of the first and
second factors have a zero of order s. This in conjunction with the previous deductions
completes the proof of lemma 1.

Lemma 2. There exists a sequence of radii Rk, such that Rk →∞ and for which

lim
k→∞

∫
σ1∩Sk

ξ{2,3} = 0 (215)

Proof. The proof of lemma 2 will be similar to lemma 1. From equation (157) and (158)
the form ξ{2,3} can be written down as:

ξ{2,3} =
f 2df 3d− f 3df 2

f1||f ||4
∧ hdz =

− 1
Γ2

dΓ3

Γ
2
3

+ 1
Γ3

dΓ2

Γ
2
2

1
Γ1

(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)2 ∧
t−z

Γ4

dz (216)

Hence, the following inequality for the norm of ξ{2,3} will hold true for any z ∈ Uδ:

∥∥ξ{2,3}∥∥ =

∥∥∥∥∥∥
1

|Γ2|2|Γ3|2

(
dΓ2

Γ2
− dΓ3

Γ3

)
1

|Γ1|4|Γ2|4|Γ3|4
(
|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2

)2

∥∥∥∥∥∥
∥∥∥∥Γ1Γ2Γ3

Γ4

t−z
∥∥∥∥ (217)

≤ |Γ1|4|Γ2|2|Γ3|2(
|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2

)2

∥∥∥∥dΓ2

Γ2

− dΓ3

Γ3

∥∥∥∥‖ω‖ (218)

Since a2bc
a2b2+a2c2+b2c2

≤ 1, for a, b, c ≥ 0, then the first factor of the inequality (218)
is bounded by 1. The second factor is the difference between two digamma functions,
ψ(z) = −γ+

∑∞
n=0

(
1

n+1
− 1

n+z

)
, taking into account the inequalityψ(z) ≤ log(z − 1 + eγ),

the second factor increases no faster than logarithm of Rk. The third factor as we deduced
previously decreases exponentially as Rk increases.
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For the complementary set, U c
δ , from (39), we haveD1∩σ1 = ∅. Since we are working

in σ1 which may intersect D2 and D3, without loss of generality, we will consider the
planes Lνj of the divisors D2. As we did in the previews lemma, we will represent Γ2 as
the product Γ′2 · Γ′′2, where Γ′2 is the product of the Γ(sj(z)) in Γ2 without singularities
on Lνj and Γ′′2 is the product of the Γ(sj(z)) in Γ2 with singularities on Lνj , where we will
denote by s the number of factors in Γ′′2. We should also take note that by definition ψ2

will have one pole in Lνj . Taking this notation into account, the following inequality for
the norm of ξ{2,3} will hold true for any z ∈ U c

δ :

∥∥ξ{2,3}∥∥ ≤
2s−4s=−2s︷ ︸︸ ︷

|Γ1|4|Γ2|2|Γ3|2(
|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2

)2

1︷ ︸︸ ︷
‖ψ2 − ψ3‖

s︷︸︸︷
|Γ′′2|

∥∥∥∥Γ1Γ′2Γ3

Γ4

t−z
∥∥∥∥ (219)

The first factor has a zero of order 2s, the second factor has a first order pole, the third
factor has a pole of order s, and the fourth factor decreases exponentially as Rk increases.
Therefore the product of the first, second and third factor has a zero of order s − 1, and
taking into account that s ≥ 1, then

∥∥ξ{2,3}∥∥ is bounded and decreases exponentially. This
in conjunction with the previous deductions completes the proof of lemma 2.

Lemma 3. There exists a sequence of radii Rk, such that Rk →∞ and for which

lim
k→∞

∫
σ∅∩Sk

ξ{1,2,3} = 0 (220)

Proof. The proof of lemma 3 is slightly more complex than the previews two. First recall,
from (160), (163), (164) and (165), that ξ{1,2,3} = ξ1

{1,2,3} + ξ2
{1,2,3} + ξ3

{1,2,3}, where

ξ1
{1,2,3} =

f 1df 2df 3 − f 2df 1df 3 + f 3df 1df 2

||f ||6
∧ hdz (221)

=

1
Γ1

dΓ2

Γ
2
2

dΓ3

Γ
2
3

− Γ2
dΓ1

Γ
2
1

dΓ3

Γ
2
3

− Γ3
dΓ1

Γ
2
1

dΓ2

Γ
2
2

(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)3 ∧ t
−z

Γ4

dz (222)

ξ2
{1,2,3} = −2

f 1f 3df 2

(
f1df 1 + f2df 2 + f3df 3

)
||f ||8

∧ hdz (223)

= −2

1
Γ1

1
Γ3

dΓ2

Γ
2
2

(
1

Γ1

dΓ1

Γ
2
1

+ 1
Γ2

dΓ2

Γ
2
2

+ 1
Γ3

dΓ3

Γ
2
3

)
(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)4 ∧ t

−z

Γ4

dz (224)

ξ3
{1,2,3} =

f 1f 2f 3

(
f1df 1 + f2df 2 + f3df 3

)2

||f ||10
∧ hdz (225)

=

1
Γ1

1
Γ2

1
Γ3

(
1

Γ1

dΓ1

Γ
2
1

+ 1
Γ2

dΓ2

Γ
2
2

+ 1
Γ3

dΓ3

Γ
2
3

)2

(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)5 ∧ t
−z

Γ4

dz (226)
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Analogously to what we did in the previous lemmas we will compute an upper bound
for the norm of the three forms. Starting with ξ1

{1,2,3}:

||ξ1
{1,2,3}|| =

∥∥∥∥∥∥
1

Γ1Γ2Γ3

(
dΓ2

Γ2

dΓ3

Γ3
− dΓ1

Γ1

dΓ3

Γ3
+ dΓ1

Γ1

dΓ2

Γ2

)
1

|Γ1|6|Γ2|6|Γ3|6
(
|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2

)3 ∧
t−z

Γ4

dz

∥∥∥∥∥∥ (227)

≤ |Γ1|4|Γ2|4|Γ3|4(
|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2

)3

∥∥∥∥dΓ2

Γ2

dΓ3

Γ3

− dΓ1

Γ1

dΓ3

Γ3

+
dΓ1

Γ1

dΓ2

Γ2

∥∥∥∥‖ω‖ (228)

For ξ2
{1,2,3} we get the estimation:

∥∥ξ2
{1,2,3}

∥∥ = 2

∥∥∥∥∥∥
1

Γ1

1
Γ2

1
Γ3

dΓ2

Γ2

(
1

Γ2
1

dΓ1

Γ1
+ 1

Γ2
2

dΓ2

Γ2
+ 1

Γ2
3

dΓ3

Γ3

)
(
1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2

)4 ∧ t
−z

Γ4

dz

∥∥∥∥∥∥ (229)

≤ 2

1
|Γ1|2|Γ2|2|Γ3|2(

1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2
)4

∥∥∥∥dΓ2

Γ2

∥∥∥∥∥∥∥∥ 1

Γ2
1

dΓ1

Γ1

+
1

Γ2
2

dΓ2

Γ2

+
1

Γ2
3

dΓ3

Γ3

∥∥∥∥‖ω‖ (230)

≤ 2

1
|Γ1|2|Γ2|2|Γ3|2(

1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2
)4

(
1

|Γ1|2
+

1

|Γ2|2
+

1

|Γ3|2

)

×

(
sup

i∈{1,2,3}

∥∥∥∥dΓi

Γi

∥∥∥∥2
)
‖ω‖ (231)

≤ 2
|Γ1|4|Γ2|4|Γ3|4(

|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2
)3

(
sup

i∈{1,2,3}

∥∥∥∥dΓi

Γi

∥∥∥∥2
)
‖ω‖ (232)

and finally for ξ3
{1,2,3} if we apply the Cauchy-Schwartz inequality we get the upper bound:

∥∥ξ3
{1,2,3}

∥∥ =

∥∥∥∥∥∥∥
1

Γ1

1
Γ2

1
Γ3

(
1

Γ1

dΓ1

Γ
2
1

+ 1
Γ2

dΓ2

Γ
2
2

+ 1
Γ3

dΓ3

Γ
2
3

)2

(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)5 ∧ t
−z

Γ4

dz

∥∥∥∥∥∥∥ (233)

≤
1

|Γ1|2|Γ2|2|Γ3|2

(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)5

×

∥∥∥∥∥
(

1

|Γ1|2
dΓ1

Γ1

+
1

|Γ2|2
dΓ2

Γ2

+
1

|Γ3|2
dΓ3

Γ3

)2
∥∥∥∥∥‖ω‖ (234)

≤
1

|Γ1|2|Γ2|2|Γ3|2

(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)5

(
1

|Γ1|2
+

1

|Γ2|2
+

1

|Γ3|2

)2

×

∥∥∥∥∥
(
dΓ1

Γ1

)2

+

(
dΓ2

Γ2

)2

+

(
dΓ3

Γ3

)2
∥∥∥∥∥‖ω‖ (235)
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≤ |Γ1|4|Γ2|4|Γ3|4(
|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2

)3

×

∥∥∥∥∥
(
dΓ1

Γ1

)2

+

(
dΓ2

Γ2

)2

+

(
dΓ3

Γ3

)2
∥∥∥∥∥‖ω‖ (236)

For either of the three upper bounds (228), (232) or (236), since a2b2c2

(ab+ac+bc)3
≤ 1, for

any a, b, c ≥ 0, the first factor is bounded by one, the second factor increases no faster than
the square logarithm of Rk, and the third factor decreases exponentially as Rk increases.

Since we are working in σ{1,2,3} which may intersect D1, D2 and D3, without loss of
generality for ξ1

{1,2,3} and ξ3
{1,2,3}, we will consider the planes Lνj of the divisors D2, for

all ξ2
{1,2,3} we will have to address at least one of the other divisors set. As we did in the

previews lemma, we will represent Γi as the product Γ′i ·Γ′′i , where Γ′i is the product of the
Γ(sj(z)) in Γi without singularities on Lνj and Γ′′i is the product of the Γ(sj(z)) in Γi with
singularities on Lνj , where we will denote by s the number of factors in Γ′′2. We should
also take note that by definition ψ2 will have one pole in Lνj . Taking this notation into
account, the following inequality for the norm of ξ{1,2,3} will hold true for any z ∈ U c

δ :

||ξ1
{1,2,3}|| ≤

4s−6s=−2s︷ ︸︸ ︷
|Γ1|4|Γ2|4|Γ3|4(

|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2
)3

×

1︷ ︸︸ ︷∥∥∥∥dΓ2

Γ2

dΓ3

Γ3

− dΓ1

Γ1

dΓ3

Γ3

+
dΓ1

Γ1

dΓ2

Γ2

∥∥∥∥
s︷︸︸︷
|Γ′′2|

∥∥∥∥Γ1Γ′2Γ3

Γ4

t−z
∥∥∥∥ (237)

The first factor has a zero of order 2s, the second factor has a first order pole, the third
factor has a pole of order s, and the fourth factor decreases exponentially as Rk increases.
Therefore the product of the first, second and third factor has a zero of order s − 1, and
taking into account that s ≥ 1, then

∥∥ξ{2,3}∥∥ is bounded and decreases exponentially.

For ξ2
{1,2,3} notice that

∥∥ξ2
{1,2,3}

∥∥ ≤ 2

6s−8s=−2s︷ ︸︸ ︷
|Γ1|6|Γ2|6|Γ3|6(

|Γ1|2|Γ2|2 + |Γ1|2|Γ3|2 + |Γ2|2|Γ3|2
)4

1∨0︷ ︸︸ ︷∥∥∥∥dΓ2

Γ2

∥∥∥∥
×

1−2s∨1︷ ︸︸ ︷∥∥∥∥ 1

Γ2
1

dΓ1

Γ1

+
1

Γ2
2

dΓ2

Γ2

+
1

Γ2
3

dΓ3

Γ3

∥∥∥∥
s∨0︷︸︸︷
|Γ′′2|

∥∥∥∥Γ1Γ′2Γ3

Γ4

t−z
∥∥∥∥ (238)
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If we are working with the singularities D1 or D3 the first factor has a zero of order
2s, the second factor has a first order pole, the third factor has a pole of order 1 − 2s,
the fourth factor as a pole of order s and the fifth factor decreases exponentially as Rk

increases. Therefore the product of the first, second, third and fourth factor has a zero of
order 2s− 2, and taking into account that s ≥ 1, then

∥∥∥ξ2
{1,2,3}

∥∥∥ is bounded and decreases
exponentially. For the singularities in D2 the first factor has a zero of order 2s, the second
and fourth factors do not have neither a pole nor a zero, the third factor has a pole of order
1 and the fifth factor decreases exponentially as Rk increases. Therefore the product of
the first, second, third and fourth factor has a zero of order 2s−1, and taking into account
that s ≥ 1, then

∥∥∥ξ2
{1,2,3}

∥∥∥ is bounded and decreases exponentially.

Finally for ξ3
{1,2,3}:

∥∥ξ3
{1,2,3}

∥∥ ≤
8s−10s=−2s︷ ︸︸ ︷
|Γ1|8|Γ2|8|Γ3|8

(1/|Γ1|2 + 1/|Γ2|2 + 1/|Γ3|2)5

×

0︷ ︸︸ ︷∥∥∥∥∥
(

1

|Γ1|2
dΓ1

Γ1

+
1

|Γ2|2
dΓ2

Γ2

+
1

|Γ3|2
dΓ3

Γ3

)2
∥∥∥∥∥

s︷︸︸︷
|Γ′′2|

∥∥∥∥Γ1Γ′2Γ3

Γ4

t−z
∥∥∥∥ (239)

The first factor has a zero of order 2s, the second factor has a neither a pole nor a zero,
the third factor has a pole of order s, and the fourth factor decreases exponentially as Rk

increases. Therefore the product of the first, second and third factor has a zero of order s,
and taking into account that s ≥ 1, then

∥∥∥ξ3
{1,2,3}

∥∥∥ is zero. This in conjunction with the
previous deductions completes the proof of lemma 3.
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