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Resumo

Este trabalho discute sob que condições se pode expressar a função que representa o preço de
uma opção como solução de uma determinada equação integro-diferencial parcial num modelo
exponencial de Lévy. A grande diferença entre o caso aqui considerado e o de Black-Scholes
é que existe na equação um termo não local, o que faz com que a análise seja mais complexa.
Também é discutido sob que condições se pode obter a fórmula de Feynman-Kač para o caso de
um processo de saltos puros e sob que condições o preço de uma opção é solução clássica de uma
equação integro-diferencial. Quando tais condições não são verificadas, considera-se o conceito
de solução de viscosidade, que apenas exige que a função que representa o preço da opção seja
cont́ınua.

Para alguns tipos de processos de Lévy são apresentados resultados de continuidade para os
preços de opções barreira. Para além disso demonstram-se os mesmos resultados para processos
de variação finita e sem componente de difusão. Também são apresentados alguns exemplos
em que a função que representa o preço da opção é descont́ınua. É apresentado um esquema
numérico que permite obter o preço de uma opção de venda Europeia para o caso do processo
”Variance Gamma”. Este esquema de diferenças finitas foi proposto inicialmente por Cont e
Voltchkova para resolver numericamente a equação integro-diferencial parcial associada.

Palavras-Chave:Processos de Lévy,Fórmula de Feynman-Kač,Equação integro-diferencial par-
cial, Valorização de opções.
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Abstract

This dissertation discusses under which conditions we can express the function that represents
the option price as the solution of a certain partial integro-differential equation (PIDE) in a
exponential Lévy model. The main difference between this case and the Black-Scholes case is
that there is a non-local term in the equation, which makes the analysis more complicated. Also,
we discuss under which conditions we can obtain a Feynman-Kač formula for the case of a pure
jump process and discuss the conditions under which option prices are classical solutions of the
PIDEs. When such conditions are not verified, we consider the concept of viscosity solutions
which only requires that the function representing the option price is continuous.

Continuity results for option prices of barrier options are presented for some types of Lévy
processes. In addition, we show the same continuity results for processes of finite variation
and with no diffusion component. Also, we present some examples in which the function that
represents the option price is discontinuous. Moreover, we present a numerical scheme that
gives the price of an European put option for the Variance Gamma process. This finite difference
scheme was initially proposed by Cont and Voltchkova, to solve numerically the associated PIDE.

Keywords:Lévy Processes,Feynman-Kač formula,PIDEs,Option Pricing.
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Chapter 1

Introduction

One of the main reasons for using the Black-Scholes model is the existence of an analytical
formula to price European options. However, evidence from the stock market suggests that
this model is not the most realistic one. It is well known that the sample paths of a Brownian
motion are continuous, but the stock price of a typical company suffers sudden jumps on an
intraday scale, making the price trajectories discontinuous. In the classical Black-Scholes model
the logarithm of the price process has normal distribution. However the empirical distribution
of stock returns exhibits fat tails. Finally, when we calibrate the theoretical prices to the market
prices, we realize that the implied volatility is not constant as a function of strike neither as a
function of time to maturity, contradicting this way the prediction of the Black-Scholes model.
Several alternatives have been proposed in the literature for the generalization of this model.
The models with jumps can, at least in part, solve the problems inherent to the Black-Scholes
model. The jump models have also an important role in the options market. While in the Black-
Scholes model the market is complete, implying that every payoff can be exactly replicated, in
jump models there is no perfect hedge and this way the options are not redundant.

The objective of this thesis is to study under which conditions we can obtain the function
that represents the option price as a solution of a certain partial integro-differential equation.
Moreover, we will discuss some examples where the price function is not regular enough in order
to be a classical solution of this partial integro-differential equation.

The prices of options such as European options and barrier options can be caracterized
in terms of solutions of a partial integro differential equation with some boundary conditions
depending on the type of option considered. Conversely, if we have a solution of a certain partial
integro-differential equation (PIDE) satisfying some conditions, then it is possible to arrive at
a stochastic representation of the Feynman-Kač kind, analogous to the Black-Scholes case. The
main difference between a model with jumps and the Black-Scholes case is a non-local term
that appears in the equation, because now the price process possesses jumps, and the option
price can be discontinuous. This non-local term makes PIDEs less easy to solve than partial
differential equations. However, one of the numerical schemes used in the literature is presented
to solve such equations. In analytical terms, if the price is not a classical (smooth) solution of
the PIDE, the notion of viscosity solution can be used.

In Section 2.1 we present the definition of a Lévy process and some notation related to
Lévy processes. In Section 2.2 we introduce the Lévy exponential models for financial assets. In
Section 2.3 we give some examples of financial models. In Section 3.1 we present the definition of
a price of an European option as a discounted expected value of the terminal payoff and a simple
derivation of the integro-differential equation whose solution is the discounted expected value of

1



2 Chapter 1. Introduction

the terminal payoff. In Section 3.2 we present a result shown by Nualart and Schoutens [NS01]
that allows a probabilistic representation of solutions of PIDE’s through the use of a Feynman-
Kač formula. Section 3.3 is dedicated to present in detail the relation between the price of
European options (Subsection 3.3.1) and barrier options (Subsection 3.3.2), and the solutions of
the associated integro-differential equations. Also, in Subsection 3.3.2 some continuity results
are presented for barrier options. In Section 3.3.3 we present the numerical scheme proposed
by Cont and Voltchkova [CV05a] to solve a partial integro-differential equation and also present
some numerical results. In the begining of Chapter 4, we introduce the notion of viscosity
solution and its rigorous definition is given in full detail in Section 4.1. In Section 4.2 we present
some results concerning the uniqueness and existence of a viscosity solution. In the appendix
we present the proofs of Propositions 3.3.1, 3.3.2 and 3.3.5. Also in the appendix, we presente
the numerical code (Mathemathica Code) used to compute the value of a binary option using
the Monte Carlo method and the code to compute the value of an European option under the
Variance Gamma process using a finite difference scheme proposed in [CV05a].



Chapter 2

Financial Modelling with Lévy
Processes

2.1 Lévy Process: definitions

Let us start with the definition of a Lévy process.

Definition 2.1.1 Consider a fixed probability space (Ω,F ,Q). A stochastic process Xt such
that X0 = 0 is called a Lévy process if:

• Xt has independent increments: for every t0 < t1 < .. < tn, the random variables
Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent.

• Xt has stationary increments: the law of Xt+h −Xt does not depend on t;

• Xt is stochastically continuous ,i.e. for all a > 0 and s > 0:

lim
t→s

P[|Xt −Xs| > a] = 0

We only consider a right continuous with limits to the left (cádlag) version of Xt and will denote
∆Xt = Xt −Xt− , the jump of X at time t.

The characteristic function of Xt has the following Lévy-Khintchine representation
([Sat99],[CT04],[App04]):

E
[
eizXt

]
= etφ(z), φ (z) = −σ

2z2

2
+ iγz +

∫ +∞

−∞

(
eizx − 1− izx1|x|≤1

)
ν (dx) .

where σ ≥ 0 and γ ∈ R and ν is a positive Radon measure on R \ {0} verifying:∫ 1

−1
x2ν (dx) <∞. (2.1)

and ∫
|x|>1

ν (dx) <∞. (2.2)

The measure ν is defined by:

ν (A) = E [# {t ∈ [0, 1] : ∆Xt ∈ A}] =
1

T
E [# {t ∈ [0, T ] : ∆Xt ∈ A}] , A ∈ B(R), (2.3)

3



4 Chapter 2. Financial Modelling with Lévy Processes

and is called the Lévy measure of X. It gives the mean number, per unit of time, of jumps
whose amplitude belongs to A.

The Lévy-Itô decomposition gives a representation whereX is interpreted as a combination of
a Brownian motion with drift and a infinite sum of independent compensated Poisson processes
with several jump sizes x (see [CT04])

Xt = γt+ σWt +

∫ t

0

∫
|x|≥1

xJX (ds, dx) +

∫ t

0

∫
|x|<1

xJ̃X (ds, dx) , (2.4)

where JX is the Poisson random measure defined in the following way:

JX ([0, t]×A) = # {s ∈ [0, t] : ∆Xs ∈ A} . (2.5)

The compensated Poisson measure is defined by:

J̃X ([0, t]×A) = JX ([0, t]×A)− tν (A) . (2.6)

A Lévy process is a strong Markov process, the associated semigroup is a convolution semigroup
and its infinitesimal generator L : f → Lf is an integro-differential operator given by (see
[App04]):

Lf(x) = lim
t→0

E [f (x+Xt)]− f (x)

t
(2.7)

=
σ2

2

∂2f

∂x2
+ γ

∂f

∂x
+

∫
R

[
f (x+ y)− f (x)− y1|x|≤1

∂f

∂x
(x)

]
ν ( dy) , (2.8)

which is well defined for f ∈ C2 (R) with compact support.

2.2 Exponential Lévy models

Let St be a stochastic process representing the price of a financial asset under a filtered proba-
bility space (Ω,F , {Ft} ,P). The filtration {Ft} represents the price history up to time t. If the
market is arbitrage-free, then there is a measure Q equivalent to P under which the discounted
prices of all traded financial assets are Q− martingales. This result is known as the fundamental
theorem of asset pricing (see [CT04]). The measure Q is also known as the risk neutral measure.
We consider here the exponential Lévy model in which the risk-neutral dynamics of St under Q
is given by St = ert+Xt , where Xt is a Lévy process under Q with characteristic triplet (σ, γ, ν).
Then the arbitrage-free market hypothesis imposes that Ŝt = Ste

−rt = eXt is a martingale,
which is equivalent to the following conditions imposed on the triplet (σ, γ, ν)∫

|x|>1
eyν ( dy) <∞, γ = −σ

2

2
−
∫ +∞

−∞

(
ey − 1− y1|y|≤1

)
ν (dy) . (2.9)

Then the infinitesimal generator (2.8) becomes

Lf(x) = −σ
2

2

∂f

∂x
(x) +

σ2

2

∂2f

∂x2
(x) +

∫
R

[
f (x+ y)− f (x)− (ey − 1)

∂f

∂x
(x)

]
ν ( dy) (2.10)

The risk-neutral dynamics of St under Q is given by

St = S0 +

∫ t

0
rSu− du+

∫ t

0
σSu− dWu +

∫ t

0

∫
R

(ex − 1)Su− J̃X (du, dx) . (2.11)
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The price process St is also a Markov process with state space (0,∞) and infinitesimal generator
(see [CT04])

LSf(x) = lim
h→0

E[f(xeXh)]− f(x)

h
(2.12)

= rx
∂f

∂x
(x) +

σ2x2

2

∂2f

∂x2
(x) +

∫
R

[
f (xey)− f (x)− x (ey − 1)

∂f

∂x
(x)

]
ν ( dy)(2.13)

2.3 Examples of Lévy processes in finance

The exponential Lévy models considered in the financial literature are of two types. The first
type of models are called jump-diffusion models where we represent the log-price as a Lévy
process with a non zero diffusion part (σ > 0) and with a jump process with finite activity (i.e
ν(R) < ∞). The second type of models are called infinite activity pure jump models in which
case there is no diffusion part and only a jump process with infinite activity (i.e ν(R) =∞).

There are a variety of exponential Lévy models proposed in the financial modelling literature
that differ from each other only in the choice of the Lévy measure. In this section we present
some examples of models used.

2.3.1 Jump-Diffusion models

A Lévy process of jump-diffusion type is of the following form:

Xt = γt+ σWt +

Nt∑
i=1

Yi

where σ > 0, Nt is a Poisson process with intensity λ that counts the jumps of Xt and Yi, i =
1, 2, 3... are independent and identically distributed random variables with distribution given by
µ. The Lévy measure ν is given by λµ and the drift γ is equal to

−σ
2

2
−
∫
R

(
ey − 1− y1|y|≤1

)
ν ( dy) .

2.3.1.1 Merton’s model

This model was introduced by Merton [Mer76] and was the first jump-diffusion model proposed
in the financial literature. The random variables Yi, i = 1, 2, 3... are normally distributed with
mean µ and variance δ. Its Lévy density is given by:

ν(x) = λ
1

δ
√

2π
e−

(x−m)2

2δ2 (2.14)

Then it’s possible to obtain the probability density of Xt as a series that converges rapidly (see
[CT04]):

pt(x) =
∞∑
j=0

e−λt(λt)j
e
− (x−γt−jm)2

2(σ2t+jδ2)

j!
√

2π(σ2t+ jδ2)
. (2.15)
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Thus, we can express the price of an European call option as a weighted sum of Black-Scholes
prices:

CMerton(S0,K, T, σ, r) = e−rT
∞∑
j=0

e−λt
(λt)j

j!
erjTCBS(S0e

jδ2

T ,K, T, σj , rj), (2.16)

where rj = r − λ(em+ δ2

2 − 1) + jm
T , σj =

√
σ2 + jδ2

T and CBS(S,K, T, σ, r) is the well known
Black-Scholes formula.

2.3.2 Infinite activity pure jump models

The Variance Gammma and Normal Inverse Gaussian (NIG) processes are obtained by a subor-
dination of a Brownian motion and a tempered α-stable process: the Variance Gamma process
correspond to α = 0 and the NIG process corresponds to α = 1/2. These models are popular in
the literature beacuse the probability density of the subordinator is known in a closed form for
those values of α (see [CT04]).

2.3.2.1 Variance Gamma Process

The Variance Gamma process is a pure discontinuous process of infinite activity and finite
variation (

∫
|x|≤1 |x|ν( dx) <∞) that is widely used in the financial modelling. Its Lévy measure

is given by

ν (x) =
1

κ |x|
eAx−B|x| with A =

θ

σ2
and B =

√
θ2 + 2σ

2

κ

σ2
,

where σ and θ are parameters related with the volatility and drift of the Brownian motion with
drift and κ is the parameter related with the variance of the subordinator, in this case the
Gamma process (see [CT04]). The probability density is given by

pt(x) = CeAx|x|
t
kK t

k
− 1

2
(|x|),

where K is the modified Bessel Function of second kind.

The characteristic function of Xt + γt is equal to :

Φt (u) = eituγφt (u) = eituγ
(

1 +
σ2u2κ

2
− iθκu

)−t/κ
,

where γ is determined by the martingale condition and φt (u) is the characteristic function of
Xt. In fact, we must have

E[e−rTST |Ft] = e−rtSt, (2.17)

where

St = S0e
rt+γt+Xt (2.18)

is the risk-neutral process introduced in [MCC98, MM91]. Therefore, γ = 1
κ log(1− σ2κ

2 − θκ).
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2.3.2.2 Normal Inverse Gaussian model

The NIG process is a process of infinite activity and infinite variation without any Brownian
component. Its Lévy measure is given by (see [CT04])

ν (x) =
C

|x|
eAxK1 (B |x|)

and

C =

√
θ2 + σ2

κ

2πσ
√
κ
,A =

θ

σ2
, B =

√
θ2 + σ2

κ

σ2
,

where θ,σ and κ have the same meaning as in the Variance Gamma process. The probability
density is:

pt(x) = CeAx
K1(B

√
x2 + t2σ2

κ )√
x2 + t2σ2

κ

where K is the modified Bessel Function of second kind. The characteristic function is given by

Φt (u) = e
t
κ
− t
κ

√
1+u2σ2κ−2iuθκ. (2.19)

2.3.2.3 Generalized Hyperbolic model

The Generalized Hyperbolic model is a process of infinite variation whithout gaussian part. Its
characteristic function is given by (see [CT04])

φt(u) = eiµu(
α2 − β2

α2 − (β + iu)2
)
t

2κ

K t
κ
(δ
√
λ2 − (β + iu)2)

K t
κ
(δ
√
α2 − β2)

, (2.20)

where δ is a scale parameter, µ is the shift parameter and κ has the same meaning that in the
Variance Gamma process. The parameters λ, α and β determine the shape of the distribution.
The density function

pt(x) = C(
√
δ2 + (x− µ)2)

t
k
− 1

2K t
κ
− 1

2
(α
√
δ2 − (x− µ)2)eβ(x−µ),

where K is the modified bessel function and

C =
(
√
α2 − β2)

t
k

√
2πα

t
κ
− 1

2 δ
t
κK t

κ
(δ
√
α2 − β2)

.

The Variance Gamma process is obtained for µ = 0 and δ = 0. The Normal Inverse Gaussian
process corresponds to λ = −1

2 .



Chapter 3

Integro-differential equations for
option pricing

3.1 Definitions

The value of a European option is defined as the discounted conditional expectation of the
terminal payoff H (ST ) under the risk neutral probability Q:

Ct = C (t, St) = E
[
e−r(T−t)H (ST ) |Ft

]
= E

[
e−r(T−t)H (ST ) |St = S

]
= e−r(T−t)E[H(Ser(T−t)+XT−t)],

because of the Markov property and the fact that Xt is a Lévy process.

If H is in the domain of the infinitesimal generator LS , then if we differentiate C(t, St) with
respect to t ,we obtain the following integro-differential equation

∂C

∂t
(t, S) + LSC (t, S)− rC (t, S) = 0;C (T, S) = H (S) , (3.1)

where LS is defined by (2.13).

Defining τ = T − t, x = ln
(
S
S0

)
, h (x) = H (S0e

x) and f (τ, x) = erτC (T − t, S0e
x) we get

f (τ, x) = E
[
H
(
Serτ+Xτ

)]
= E

[
H
(
S0e

x+rτ+Xτ
)]

= E [h (x+ rτ +Xτ )] . (3.2)

The associated infinitesimal generator is given by (2.10). Then, similarly to the previous case,
differentiating (3.2) with respect to τ we obtain the integro-differential equation

∂f

∂τ
= Lf + r

∂f

∂x
, (τ, x) ∈ (0, T ]× R; (3.3)

f (0, x) = h (x) , x ∈ R. (3.4)

8



3.2. Feynman-Kač formula for PIDEs 9

Indeed, by the definition of the associated infinitesimal generator we get

Lf(x) = lim
k→0

E[f(τ, x+Xk)]− f(τ, x)

k

= lim
k→0

E[h(x+ rτ +Xk+τ )]− E[h(x+ rτ +Xτ )]

k

= lim
k→0

E[h(x+ r(τ + k) +Xk+τ )]− E[h(x+ rτ +Xτ )]

k

− lim
k→0

E[h(x+ r(τ + k) +Xk+τ )]− E[h(x+ rτ +Xk+τ )]

k

=
∂f

∂τ
− lim
k→0

E[h(x+ r(τ + k) +Xk+τ )]− E[h(x+ rτ +Xk+τ )]

k

=
∂f

∂τ
− lim
z→0

r
E[h(x+ z + rτ +X z

r
+τ )]− E[h(x+ rτ +X z

r
+τ )]

z
=
∂f

∂τ
− r∂f

∂x
.

3.2 Feynman-Kač formula for PIDEs

For t ≥ 0, let Ft denote the σ−algebra generated by the random variables {Xs, 0 ≤ s ≤ t} and

H2
T =

{
φt, t ∈ [0, T ] : ‖φ‖2 = E[

∫ T

0
|φt|2 dt] <∞

}
M2
T is the subspace of H2

T that contains predictable processes. Let H2
T (l2) and M2

T (l2) denote
the corresponding spaces of l2-valued processes equipped with the norm:

‖φ‖2 = E[

∫ T

0

∞∑
i=1

|φ(i)
t |2 dt].

Finally set H2
T = H2

T ×M2
T (l2).

Following Nualart and Schoutens [NS00], they define the power-jump processes for every

i = 1, 2, 3, ....,
{
X

(i)
t , t ≥ 0

}
and the compensated power-jump processes or Teugel martingales{

Y i
t = Xi

t − E
[
X

(i)
t

]
, t ≥ 0

}
, in the following way:

X
(1)
t = Xt,

X
(i)
t =

∑
0<s≤t

(∆Xs)
i , i = 2, 3, 4, ....,

Y
(i)
t = X

(i)
t − tE

[
X

(i)
t

]
, i ≥ 1,

Then applying a orthonormalization procedure to the martingales Y (i) we obtain a set of pairwise
strongly orthonormal martingales

{
H(i), t ≥ 0

}
, i = 1, 2, .... such that each H(i) is a linear

combination of the Y (j), j = 1, 2, ...i :

H(i) = ci,iY
(i) + ...+ ci,1Y

(1),

where

c1,1 = [

∫
R
y2ν(dy)]−1/2
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and

E[X1] = a+

∫
|x|≥1

xν(dx).

The constants ci,j are the orthonormalization coefficients of the polynomials
{

1, x, x2, x3, ....
}

with respect to the measure µ(dx) = x2ν(dx) + σ2δ0(dx) and the polynomials we want to find
are of the form

qi−1(x) = ci,1 + ci,2x+ ci,3x
2 + ...+ ci,i−1x

i−2 + ci,ix
i−1, i = 1, 2, 3....

Then, we just have to multiply by x to get the desired pairwise strongly orthonormal martingales:

pi(x) = ci,1x+ ci,2x
2 + ci,3x

3 + ...+ ci,i−1x
i−1 + ci,ix

i, i = 1, 2, 3....

We now see that:

H
(i)
t = pi(Y

(i)).

An important result in Nualart and Schoutens [NS00] is the predictable representation property:

Theorem 3.2.1 Let F ∈ L2(Ω,FT ,P).Then F has a representation of the form:

F = E[F ] +

∞∑
j=1

∫ T

0
φ

(j)
t dH

(j)
t where φ

(j)
t (3.5)

are predictable processes such that

E[

∫ T

0

∞∑
j=1

|φ(j)
t |2 dt] <∞. (3.6)

Consider the Backward Stochastic Differential Equation (BSDE):

−dYt = b(t, Yt− , Zt) dt−
∞∑
i=0

Z
(i)
t dH

(i)
t , YT = ξ (3.7)

where H
(i)
t is the orthonormalized Teugel martingale of order i associated with the Lévy process

X, b : Ω× [0, T ]×R×M2
T (l2)→ R is a measurable function and uniformly Lipschitz in the first

two components and ξ ∈ L2
T .

Consider the particular case of a BSDE:

dYt =
∞∑
i=0

Z
(i)
t dH

(i)
t , YT = h (XT ) (3.8)

Let f(τ, x) be the solution of the following PIDE:

∂f

∂τ
= c

∂f

∂x
+

∫
R

[
f (τ, x+ y)− f (τ, x)− y∂f

∂x

]
ν ( dy) ,

f (0, x) = h (x) (3.9)

where c = r + γ +
∫
|y|≥1 yν ( dy) = a+

∫
|y|≥1 yν ( dy) .
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Defining g (t, x) = f (τ, x), where τ = T − t , we obtain from (3.9):

∂g

∂t
+ c

∂g

∂x
+

∫
R

[
g (t, x+ y)− g (t, x)− y ∂g

∂x

]
ν ( dy) = 0,

g (T, x) = h (x) (3.10)

If g is sufficiently smooth, then by applying the Itô formula to g (t,Xt) we obtain the following
probabilistic representation for the case of a Lévy process given by Xt = (r + γ)t + Jt =
a+ Jt,where Jt is a pure jump process. For a detailed proof of this proposition see [NS01].

Proposition 3.2.1 Assume σ = 0 and ∃λ > 0 such that∫
|x|>1

eλ|x|ν (dx) <∞.

If g ∈ C1,2 is a classical solution of (3.10) and ∂g
∂x and ∂2g

∂x2 are bounded by a polynomial function
of x, uniformly in t, then the unique adapted solution of (3.8) is given by

Yt = g (t,Xt) ,

where

Z1
t =

∫
R

[
g (t,Xt− + y)− g (t,Xt−)− y ∂g

∂x
(t,Xt−)

]
p1 (y) ν ( dy) +

∂g

∂x
(t,Xt−)

(∫
R
y2ν ( dy)

)1/2

,

Zit =

∫
R

[
g (t,Xt− + y)− g (t,Xt−)− y ∂g

∂x
(t,Xt−)

]
pi (y) ν ( dy) , i ≥ 2

and g (t, x) = E [h (XT ) |Xt = x] .

The probabilistic representation

g (t, x) = E [h (XT ) |Xt = x] (3.11)

obtained in the previous proposition is a Feynman-Kač formula for the solution of the PIDE
(3.10).
Sketch of the proof. We can apply Itô’s formula for processes with jumps, presented in
Proposition 8.19 of [CT04], to g(s,Xs) from s = t to s = T :

g(T,XT ) = g(t,Xt) +

∫ T

t

∂g

∂t
(s,Xs−) ds+

∫ T

t

∂g

∂x
(s,Xs−) dXs

+
∑
t<s≤T

[g(s,Xs)− g(s,Xs−)− ∂g

∂x
(s,Xs−)∆Xs]. (3.12)

Making use of Lemma 5 in [NS00] and applying it to h(s, y) = g(s,Xs) − g(s,Xs− + y) −
∂g
∂x(s,Xs−)y we get,

g(T,XT ) = g(t,Xt) +

∫ T

t

∂g

∂t
(s,Xs−) ds+

∫ T

t

∂g

∂x
(s,Xs−) dXs

+

∞∑
i=1

∫ T

t

∫
R

(g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)y)pi(y)ν( dy) dH(i)

s

+

∫ T

t
(

∫
R
g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)yν( dy)) ds. (3.13)
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But Xt = Y
(1)
t + tE[X1] = (

∫
R y

2ν( dy))1/2H
(1)
t + t(a+

∫
|y|≥1 yν( dy)), so

h(XT ) = g(t,Xt) +

∫ T

t
[
∂g

∂t
(s,Xs−) +

∫
R

(g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)y)ν( dy)

+ (a+

∫
|y|≥1

yν( dy))
∂g

∂x
(s,Xs−)] ds+

∫ T

t

∂g

∂x
(s,Xs−)(

∫
R
y2ν( dy))1/2 dH(1)

s

+
∞∑
i=1

∫ T

t
(

∫
R

(g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)y)pi(y)ν( dy)) dH(i)

s . (3.14)

Then because g(t, x) solves (3.9) and taking expectations in (3.14), we get:

g (t, x) = E [h (XT ) |Xt = x] .

The next example shows how to perform the orthonormalization procedure described above
and presents the Feynman-Kač formula for a pure jump process.

Example 3.2.2 Consider the case where we have the sum of two compensated Poisson pro-
cesses, Xt = N1

t + N2
t where N1

t = Nt − λ1t and N2
t = Nt − λ2t, with Lévy measure ν(dx) =

(λ1 + λ2)δ1(x) dx. Then performing a orthonormalization procedure we get

ψ0 = 1⇒ q0 =
1

(
∫
R x

2ν(dx))1/2
=

1

(
∫
R x

2(λ1 + λ2)δ1(x) dx)1/2
=

1

(λ1 + λ2)1/2

ψ1 = x+ a1,0q0 ⇒ ψ1 = x− 〈x, q0〉 q0 = x−
∫
R
x

1√
λ1 + λ2

(λ1 + λ2)x2δ1(x)
1√

λ1 + λ2
dx

= x− 1⇒ ψ1 = 0⇒ q1 = 0.

By recurrence we get that qi = 0, i = 1, 2, 3, ... . Then in terms of previous notation p1(x) =
x√

λ1+λ2
and pi(x) = 0, i = 2, 3, ..., which implies

H
(1)
t =

1√
λ1 + λ2

Xt and H
(i)
t = 0, i = 2, 3, .... (3.15)

Then, by Proposition (3.2.1)

Yt = h (XT )−
∫ T

t
Z(1)
s dH(1)

s ,

where

Z
(1)
t = [g(t, x+ 1)− g(t, x)− ∂g

∂x
]
√
λ1 + λ2 +

∂g

∂x

√
λ1 + λ2 = [g(t, x+ 1)− g(t, x)]

√
λ1 + λ2.

Then,

Yt = h (XT )−
∫ T

t
[g(t,Xs− + 1)− g(t,Xs−)]

√
λ1 + λ2

1√
λ1 + λ2

dXs ⇔

Yt = h (XT )−
∫ T

t
[g(t,Xs− + 1)− g(t,Xs−)] dXs.

Moreover,
g(t, x) = E[h (XT ) |Xt = x]. (3.16)
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Notice that in Proposition 3.2.1, g is assumed to be smooth and its derivatives have to be
bounded by a polynomial function of x, uniformly in t. However, these conditions are rarely
satisfied in applications.

Example 3.2.3 Consider an European call option with payoff function H(x) = (x − 1)+ and
strike price K = 1. We see that the first derivative of the payoff function has a discontinuity at
x = 1:

H
′
(x) =

{
1 if x > 1,
0 if x < 1

Then, we see that the second derivative diverges at x = 1. So, when t tends to T and if the
option is at the money (S = K) the second derivative of the price function tends to the second
derivative of the payoff function that diverges when S = K. This means that the gamma of the
call option is not uniformly bounded in time.

0.02 0.04 0.06 0.08 0.10
T

0.010

0.015

0.020

Gama

Figure 3.1: As T tends to zero the gamma of the option tends to infinity.

3.3 Option prices as classical solutions of PIDEs

3.3.1 European Options

Consider an European option with maturity T and payoff H (ST ).Assume that the payoff func-
tion is a Lipschitz function

|H (x)−H (y)| ≤ c |x− y| (3.17)

for some c > 0. As we already know, the value of that option at time t is :

C (t, St) = E
[
e−r(T−t)H (ST ) |St = S

]
= e−r(T−t)E

[
H
(
Ser(T−t)+XT−t

)]
. (3.18)

We will assume that Ŝt = eXt is a square integrable martingale∫
|x|>1

e2yν (dy) <∞. (3.19)
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Then the dynamics of Ŝt is given by:

dŜt

Ŝt−
= σ dWt +

∫
R

(ex − 1) J̃X (dt, dx) , sup
t∈[0,T ]

E
[
Ŝ2
t

]
<∞. (3.20)

The proofs of the following propositions are presented in [Vol05] and are shown in greater detail
in the appendix. These propositions will be needed to prove the Proposition 3.3.3.

Proposition 3.3.1 Let the payoff function H satisfy the Lipschitz condition (3.17). Then the
forward value of an European option defined by (3.2), f(τ, x) = E[H(Sex+rτ+Xτ )], is continuous
on [0, T ]× R.

Proposition 3.3.2 Let h be a measurable function with polynomial growth at infinity: ∃p >
0, |h(x)| ≤ C(1 + xp). If

σ > 0 or ∃β ∈ (0, 2) such that lim
ε→0

inf
1

ε2−β

∫ ε

−ε
|x|2 ν ( dx) > 0 (3.21)

and

∀n ≥ 0,

∫
|y|>1

|y|nν( dy) <∞, (3.22)

Then, f(τ, x) = E[h(x+ rτ +Xτ )] belongs to C∞((0, T ]× R).

The proof of this proposition, following the proof given in Voltchkova [CV05b], is presented
here in greater detail.

Proposition 3.3.3 Consider the exponential Lévy model St = S0e
rt+Xt where the Lévy process

X verifies (3.19) and (3.21). Then the value of a European option with terminal payoff H (ST )
(satisfying (3.17)) given by

C : [0, T ]× (0,∞)→ R, (t, S)→ C (t, S) = E
[
e−r(T−t)H (ST ) |St = S

]
(3.23)

is continuous on [0, T ] × (0,∞), C∞ on (0, T ) × (0,∞) and satisfies the integro-differential
equation:

∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2S2

2

∂2C

∂S2
(t, S)− rC (t, S) +

+

∫ [
C (t, Sey)− C (t, S)− S (ey − 1)

∂C

∂S
(t, S)

]
ν ( dy) = 0; (3.24)

on [0, T )× (0,∞) with the terminal condition:

C (T, S) = H (S) ,∀S > 0 (3.25)

Proof. By Proposition 3.3.1 we know that C (t, S) = erτf(τ, x) is continuous on [0, T ]×R and
by Proposition 3.3.2, C(t, St) ∈ C∞((0, T )× (0,∞)).

It remains to prove that C (t, S) satisfies (3.24).
The risk neutral dynamics of St under Q is given by

dSt = rSt− dt+ σSt− dWt +

∫
R

(ex − 1)St− J̃X (dt, dx) .
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Applying the Itô formula to Ĉt = e−rtC(t, St) where St = ert+Xt we get (see Proposition
8.18 of [CT04])

d(e−rtC(t, St)) = e−rt(−rC(t, St−) dt+
∂C

∂t
(t, St−) dt+

σ2

2
S2
t−
∂2C

∂S2
(t, St−) dt

+
∂C

∂S
(t, St−) dSt +

∫
R

(C(t, y + St−)− C(t, St−)− y∂C
∂S

(t, St−))J̃S (dt, dy)).

simplifying and plugging in the dynamics for St we get:

dĈt = e−rt
∂C

∂S
(t, St−)σSt− dWt + e−rt

∫
R

(C(t, St−e
x)− C(t, St−))J̃X (dt, dx)

+ e−rt(−rC(t, St−) +
∂C

∂t
(t, St−) +

σ2

2
e−rtS2

t−
∂2C

∂S2
(t, St−) + rSt−

∂C

∂S
(t, St−)

+

∫
R

(C(t, St−e
x)− C(t, St−)− St−(ex − 1)

∂C

∂S
(t, St−))ν( dx)) dt

= b(t) dt+ dMt.

where

b(t) = −rC(t, St−) +
∂C

∂t
(t, St−) +

σ2

2
e−rtS2

t−
∂2C

∂S2
(t, St−) + rSt−

∂C

∂S
(t, St−)

+

∫
R

(C(t, St−e
x)− C(t, St−)− St−(ex − 1)

∂C

∂S
(t, St−))ν( dx),

Mt =

∫ T

0
e−rt

∂C

∂S
(t, St−)σSt− dWt +

∫ T

0
e−rt

∫
R

(C(t, St−e
x)− C(t, St−))J̃X (dt, dx) .

It remains to prove that Mt is a martingale, because by proposition 8.9 of [CT04], if Ĉt−Mt =∫ t
0 b(s) ds is a continuous martingale with finite variation paths then

∫ t
0 b(s) ds = X0 a.s, which

implies that b(t)=0 a.s.
In order for

∫ t
0 e
−rt ∫

R(C(t, St−e
x)−C(t, St−))J̃X (dt, dx) to be a martingale we have to show

that:

E[

∫ T

0
e−2rt

∫
R

(C(t, St−e
x)− C(t, St−))2ν( dx) dt] <∞.

Then, by the Lipschitz condition

E[

∫ T

0
e−2rt

∫
R

(C(t, St−e
x)− C(t, St−))2ν( dx) dt] ≤ E[

∫ T

0
e−2rt

∫
R
c2S2

t−(ex − 1)2ν( dx) dt].

Moreover,

c2

∫
R

(ex − 1)2ν( dx) = c2

∫
|x|≤1

(ex − 1)2ν( dx) + c2

∫
|x|>1

(ex − 1)2ν( dx)

≤ k̃2

∫
|x|≤1

|x|2ν( dx) + c2

∫
|x|>1

(ex − 1)2ν( dx)

= k̃2

∫
|x|≤1

|x|2ν( dx) + c2

∫
|x|>1

(e2x + 1− 2ex)ν( dx)

≤ k̃2

∫
|x|≤1

|x|2ν( dx) + k̃2

∫
|x|>1

(e2x + 1)ν( dx)
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for some k̃ sufficiently big.
Then,

E[

∫ T

0
e−2rt

∫
R
c2S2

t− (ex − 1)2 ν( dx) dt]

≤ E[

∫ T

0
S2
t−e
−2rt

(
k̃2

∫
|x|≤1

|x|2ν( dx) + k̃2

∫
|x|>1

(e2x + 1)ν( dx)

)
dt]

= k̃2

(∫
|x|≤1

|x|2ν( dx) +

∫
|x|>1

(e2x + 1)ν( dx)

)
E[

∫ T

0
S2
t−e
−2rt dt]

= k̃2

(∫
R

1 ∧ |x|2ν( dx) +

∫
|x|>1

e2xν( dx)

)∫ T

0
E[S2

t− ]e−2rt dt <∞.

Then
∫ t

0 e
−rt ∫

R(C(t, St−e
x)− C(t, St−))J̃X (dt, dx) is a square integrable martingale.

It remains to prove that
∫ T

0 e−rt ∂C∂S (t, St−)σSt− dWt is also a martingale, such that Mt is a
martingale.

E[

∫ T

0
e−2rt(

∂C

∂S
(t, St−)σSt−)2 dt] ≤ E[

∫ T

0
e−2rt

∥∥∥∥∂C∂S (t, St−)

∥∥∥∥2

L∞
σ2S2

t− dt]

≤ c2σ2

∫ T

0
e−2rtE[S2

t− ] dt <∞,

because if C is Lipschitz, then ∂C
∂S (t, St−) ∈ L∞.

The condition (3.21) holds for all jump-diffusion models with Brownian component or for
processes with Lévy densities with behavior near zero as ν(x) ∼ c

x1+β with β > 0. This condition
is not satisfied for the Generalized Hyperbolic model or in particular for the Variance Gamma
model. The next example shows that if we do not impose any conditions on a given Lévy triplet,
then the function that represents the price of a binary option is not smooth.

Example 3.3.1 Consider the Generalized Hyperbolic model and for simplicity assume δ = 0.
Then the density function becomes

pt(x) = C|x− µ|
t
κ
− 1

2K| t
κ
− 1

2
|(α|x− µ|)e

β(x−µ).

Notice that, when

z → 0 , Kv(z) ∼
1

2
Γ(v)(

z

2
)−v ⇒

lim
x→µ

p(t, x) = lim
x→µ

C|x− µ|
t
κ
− 1

2K| t
k
− 1

2
|(α|x− µ|)e

β(x−µ)

= lim
x→µ

C|x− µ|
t
κ
− 1

2
−| t

κ
− 1

2
| 1

2
Γ(
t

κ
− 1

2
)eβ(x−µ) =∞

if and only if
t

κ
− 1

2
− | t

κ
− 1

2
| < 0⇔ 2(

t

κ
− 1

2
) < 0.

Then we conclude that p(t, x) is locally unbounded at x = µ if t < κ
2 .

If 0 <
t

κ
− 1

2
− | t

κ
− 1

2
| < 1 , then p(t, x) ∈ C0 but not in C1.

If 0 <
t

κ
− 1

2
− | t

κ
− 1

2
| < 1 or 1 < 2

t

κ
< 2 , then p(t, x) ∈ C0 but not in C1.

If 1 <
t

κ
− 1

2
− | t

κ
− 1

2
| < 2 or 2 < 2

t

κ
< 3 , then p(t, x) ∈ C1 but not in C2.
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So by recurrence we conclude that

if p− 1 <
t

κ
− 1

2
− | t

κ
− 1

2
| < p or p < 2

t

κ
< p+ 1 , then p(t, x) ∈ Cp−1 but not in Cp.

So if t ∈ (pκ2 , (p + 1)κ2 ) then p(t, x) belongs to Cp−1(R) but not in Cp(R) and for t < κ
2 ,

p(t, .) is locally unbounded.

1.0 1.5 2.0
S

0.2

0.4

0.6

0.8

1.0

Price

Figure 3.2: The price of a binary option is not differentiable at the money, using the Monte
Carlo method, when µ = 0 with κ = 2, r = 0, σ = 0.25, θ = −0.1. Blue: T = 0.1, red: T = 0.5,
yellow: T = 1.

Consider a binary option whose payoff function is given by h(x) = 1x≥l0. Its price is given
by

C(t, S) = e−r(T−t)E[H(ST )|St = S] = e−r(T−t)E[h(x+ r(T − t) +XT−t)]

= e−r(T−t)E[1x+r(T−t)+XT−t≥l0 ] = e−r(T−t)Q[x+ r(T − t) +XT−t ≥ l0]

= e−r(T−t)Q[XT−t ≥ l0 − r(T − t)− x] =

∫ ∞
d

p(t, x) dx.

where d = l0−r(T−t)−x. Then for t < k
2 the binary option is continuous but is not differentiable.
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3.3.2 Barrier Options

We now present the result without proof, analogous to Proposition 3.3.3. It tells us that the
price function of a barrier option is smooth enough if and only if it satisfies a PIDE. For a full
detailed proof of this proposition see [Vol05].

Proposition 3.3.4 Consider St = S0e
rt+Xt where the Lévy process X verifies (3.19). Let θt =

inf {s ≥ t|St /∈ (L,U)} where 0 ≤ L < U ≤ ∞ and suppose that H ≥ 0 and ∃N > 0 : H(S) ≤
N(1 + S). Define

Cb(t, S) = e−r(T−t)E[H(ST )1T<θt |St = S], (3.26)

as the value of a knock-out option, where Cb(t, S) ∈ C1,2([0, T ) × (L,U)). Then it satisfies the
integro-differential equation:

∂Cb
∂t

(t, S) + rS
∂Cb
∂S

(t, S) +
σ2S2

2

∂2Cb
∂S2

(t, S)− rCb (t, S) +

+

∫ [
Cb (t, Sey)− Cb (t, S)− S (ey − 1)

∂Cb
∂S

(t, S)

]
ν ( dy) = 0; (3.27)

on [0, T )× (L,U) with the conditions:

Cb (T, S) = H (S) ∀S ∈ (L,U), (3.28)

Cb (t, S) = 0 ∀S /∈ (L,U). (3.29)

Conversely, every solution of (3.27)− (3.29) belonging to C1,2([0, T )× (L,U)) has the stochastic
representation given by (3.26).

Before we study the continuity of barrier option prices we will need the definition of first passage
process: Let {Yt} be a Lévy process defined by Yt = rt + Xt. Finally set Mt = sup0≤s≤t Ys.
Following the notation of Sato [Sat99], we define

Rx = inf {s ≥ 0|Ys > x} , R−x = inf {s ≥ 0| − Ys > x} ,

R
′′
x = inf {s ≥ 0|Ys ∨ Ys− ≥ x} .

We know that {Rx, x ≥ 0} is a process with non-decreasing paths, so we can define Rx−(ω) =
limε→0Rx−ε(ω). As for the right continuity, since Yt is right-continuous, Rx is also right-
continuous. Following the terminology of Voltchkova:

Definition 3.3.2 Consider a Lévy process Yt with triplet (σ, γ, ν).

If σ = 0 and ν(R) <∞, then Yt is of type A (Compound Poisson).

If σ = 0, ν(R) = ∞ and
∫
|x|≤1 |x|ν( dx) < ∞, then Yt is of type B (finite variation,infinite

activity).

If σ > 0 or
∫
|x|≤1 |x|ν( dx) =∞, then Yt is of type C (infinite variation) .

In order to prove the continuity of barrier option prices we need some properties of the
process {Rx}.

The first lemma is an extension of the Lemma 3.5.3 presented in [Vol05], in the sense that
also applies to Lévy processes of type A. The second and third lemmas are presented in [Vol05].
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Lemma 3.3.3 If {Yt} is of type B or C or A with γ 6= 0 then:

∀x > 0,Q[Rx− = Rx] = 1. (3.30)

Proof.
Introducing

Ω1 = {ω ∈ Ω : Rx− < Rx} ,Ω2 =
{
ω ∈ Ω : R

′′
x = Rx

}
.

Define Rx′ = inf {s ≥ 0|Ys ≥ x} By Lemma 49.6 of [Sat99] we have that, for any x > 0,P[Rx =

Rx′ = R
′′
x] = 1, because Yt is non zero and is not Compound Poisson process, which means

that is of type B or C or A with γ 6= 0. Then Q[Ω2] = 1. In order that, Q[Rx− = Rx] = 1
we must have Q[Ω1] = 0, because we always have Rx− ≤ Rx. So we have to prove that
Q[Rx− < Rx] = Q[Rx− < R

′′
x] = Q[Ω1 ∩ Ω2] = 0.

By contradiction, suppose that ∃ω ∈ Ω1 ∩ Ω2 ⇒ ω ∈ Ω1, ω ∈ Ω2.Then,

∃u≥ 0, Rx− = u (3.31)

∃u< t, t = R
′′
x. (3.32)

By definition of Rx− = limε→0, Rx−ε and because Rx− = u we get,

∀δ>0,∃η>0 : |ε| < η ⇒ u− δ < Rx−ε < u+ δ.

∀ε>0, ∀δ>0, ∃s < u+ δ : Ys > x− ε.

Now, choose εn = δn = 1
n → 0.Then,

∃sn∀n : sn < u+
1

n
, Ysn > x− 1

n
.

Because {sn} is bounded, there is a convergent subsequence snk ↑ s0 with s0 ≤ u < t. This
means that,

Ysn > x− 1

n
⇒ Ys−0

≥ x.

and if snk ↓ s0 with s0 ≤ u < t,then

Ysn > x− 1

n
⇒ Ys0 ≥ x.

Then, Ys−0
∨Ys0 ≥ x. But this contradicts (3.32) because it implies that ∀s < t, Ys− ∨Ys < x.

Then Ω1 ∩ Ω2 = ∅.

Lemma 3.3.4 If {Yt} is of type B with R0 = 0 a.s or of type C, then:

∀x > 0,∀t ≥ 0,Q[Rx = t] = 0. (3.33)

Lemma 3.3.5 If {Yt} is of type B or C, then ∀x > 0, ∀t ≥ 0 :

Q[Rx ≤ t < Rx+ε]→ 0, (3.34)

Q[Rx−ε ≤ t < Rx]→ 0, (3.35)

when ε→ 0.If we have also R0 = 0 a.s, then (3.34) is satisfied for x = 0, t > 0.
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The next proposition shows that the up-and-out option is continuous. The sketched proof
of this proposition is shown in [Vol05] and a more detailed version is shown in the appendix.

Proposition 3.3.5 Let Yt be of type B or C with R0 = 0 a.s. Suppose that H : (0, U)→ [0,∞)
is Lipschitz:

∀S1, S2 ∈ (0, U), |H(S1)−H(S2)| ≤ k|S1 − S2|, (3.36)

for some k > 0 and let u = log( US0
). Then the function fU (τ, x) defined by

fU (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<Ru−x
]

if x < u,
0, if x ≥ u (3.37)

is continuous on (0, T ]× R.

The following proposition gives the continuity result for the case of a down-and-out option.
The proof of this proposition, similar to the previous one, can be found in [Vol05].

Proposition 3.3.6 Let Yt be of type B or C with R0− = 0 a.s. Suppose that H : (L,∞)→ [0,∞)
is Lipschitz:

∀S1, S2 ∈ (0, U), |H(S1)−H(S2)| ≤ k|S1 − S2|, (3.38)

with L < S0 and let l = log( LS0
). Then the function fL(τ, x) defined by

fL (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<R−x−l

]
if x > l,

0, if x ≤ l
(3.39)

is continuous on (0, T ]× R.

Finally the continuity result of a double-barrier option with payoffH(ST )1T<inf{t≥0,St∈(L,U)},

where L < S0 < U , u = log( US0
) and l = log( LS0

) is presented here without proof and can be
found in [Vol05].

Proposition 3.3.7 Let Yt be of type B or C with R0− = 0 and R0 = 0 a.s. Suppose that
H : (L,∞)→ [0,∞) is Lipschitz:

∀S1, S2 ∈ (0, U), |H(S1)−H(S2)| ≤ k|S1 − S2|, (3.40)

with k > 0.Then the function fD(τ, x) defined by

fD (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<R−x−l∩Ru−x

]
if x ∈ (l, u),

0, if x /∈ (l, u)
(3.41)

is continuous on (0, T ]× R.

The results for the continuity of a up-and-out option and a down-and-out option are proven here
when the Lévy process is of type A.

Proposition 3.3.8 Suppose {Yt} is a Lévy process of type A with γ 6= 0, R0 = 0 a.s and
Q[Rx = t] = 0,∀x ≥ 0, t ≥ 0, (t, x) 6= (0, 0). Suppose that H:(0, U) → (0,∞) is Lipschitz.Then
for every τ sufficiently small fu(τ, x) defined by

fu (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<Ru−x
]

if x < u,
0 if x ≥ u

is continuous.
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Proof. Considering τ > 0 and x = u, we have by definition,

|fu (τ, u− ε)− fu (τ, u)| = E
[
H
(
S0e

u−ε+Yτ ) 1τ<Rε
]
≤ME [1τ<Rε ] = MQ [τ < Rε]

Let {εn} → 0 and Ωn = {ω ∈ Ω : τ < Rεn} , then {Ωn} is a decreasing sequence: Ω1 ⊃ Ω2 ⊃
...Ωn ⊃ ..., because Rx is an increasing process. Then

lim
n→∞

Q [τ < Rεn ] = Q [∩∞n=1Ωn] = Q [τ < R0] = 0

because R0 = 0 a.s.
For τ > 0 and x < u:

|fu (τ, x+ ε)− fu (τ, x)| = |E
[
H
(
S0e

x+ε+Yτ
)

1τ<Ru−x−ε ]− E[H
(
S0e

x+Yτ
)

1τ<Ru−x
]
|

= |E[H(S0e
x+ε+Yτ )−H(S0e

x+Yτ ))1τ<Ru−x−ε

+H(S0e
x+Yτ )(1τ<Ru−x−ε − 1τ<Ru−x)]|

≤ cS0e
x+rτE[eYτ ]|eε − 1|+MQ[Ru−x−ε ≤ τ < Ru−x]

But, |eε − 1| → 0 as ε→ 0 and

Q[Ru−x−ε ≤ τ < Ru−x]→ Q[R(u−x)− ≤ τ < Ru−x] ≤ Q[R(u−x)− 6= Ru−x] = 0 (3.42)

because of lemma (3.3.3). In a similar way:

|fu (τ, x− ε)− fu (τ, x)| = |E
[
H
(
S0e

x−ε+Yτ ) 1τ<Ru−x+ε ]− E[H
(
S0e

x+Yτ
)

1τ<Ru−x
]
|

≤ cS0e
x+rτ |1− e−ε|+MQ[Ru−x ≤ τ < Ru−x+ε]→ 0,

because |1− e−ε| → 0 as ε→ 0, and

Q[Ru−x ≤ τ < Ru−x+ε]→ Q[Ru−x = τ ] = 0. (3.43)

The continuity in time is proven in the same way as in the proof of Proposition 3.3.5 (see the
Appendix). Finally, using the triangular inequality we can prove continuity for all (τ, x) ∈
[0, T ]× (−∞, u).

Proposition 3.3.9 Suppose {Yt} is a Lévy process of type A with γ 6= 0, R−0 = 0 a.s and
Q[R−x = t] = 0, ∀x ≥ 0, t ≥ 0, (t, x) 6= (0, 0).Suppose that H:(L,∞) → (0,∞) is Lipschitz. Then,
for every τ sufficiently small fl(τ, x) defined by

fl (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<R−x−l

]
if x > l,

0 if x ≤ l

is continuous.

Proof. Considering τ > 0 and by definition of the price of a down-and-out option,

|fl (τ, l + ε)− fl (τ, l)| = E
[
H
(
S0e

l+ε+Yτ
)

1τ<R−ε

]
≤ CE

[(
1 + S0e

l+ε+Yτ
)

1τ<R−ε

]
(3.44)

= CQ
[
τ < R−ε

]
+ CS0e

l+εE
[
eYτ 1τ<R−ε

]
. (3.45)

Let {εn} → 0 and Ωn =
{
ω ∈ Ω : τ < R−εn

}
, then {Ωn} is a decreasing sequence: Ω1 ⊃ Ω2 ⊃

...Ωn ⊃ ..., because R−x is an increasing process. Then,
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lim
n→∞

Q
[
τ < R−εn

]
= Q [∩∞n=1Ωn] = Q

[
τ < R−0

]
= 0

because R−0 = 0 a.s. Then, Q [τ < R−ε ]→ 0 as ε→ 0.
The quantity eYτ 1τ<R−ε is bounded by an integrable variable eYτ that is, eYτ 1τ<R−ε ≤ eYτ and
converges in probability to zero because, ∀ δ > 0,

Q
[
eYτ 1τ<R−ε > δ

]
≤ Q

[
τ < R−ε

]
.

Then, by dominated convergence theorem,

lim
ε→0

E
[
eYτ 1τ<R−ε

]
= lim

ε→0

∫
Ω
eYτ 1τ<R−ε dQ = 0. (3.46)

Then, E
[
eYτ 1τ<R−ε

]
→ 0 as ε → 0. This means that fl (τ, x) is continuous in x = l. The proof

for all (τ, x), follows the same steps of the proof of Proposition 3.5.9 in [Vol05].

The next example shows that if we do not impose any restriction on the Lévy process, then
the value of a knock-out option is discontinuous for every t:

Example 3.3.6 Let us consider the following Lévy process Xt = N1
t − N2

t where N1
t and N2

t

are independent Poisson processes with jump intensities λ1 and λ2. Assuming r = 0, we have
λ2 = eλ1 in order for St = S0e

Xt to be a martingale. Consider now a knock-out option with
a payoff function defined by HT = 1T<θ(S0), where θ (S) = inf

{
t ≥ 0 : S0e

Xt ≤ L
}

is the first
exit time if the process starts from S. We will show that the initial option value C (0, S) =
E
[
1T<θ(S0)|S0 = S

]
= E

[
1T<θ(S)

]
is not continuous at S∗ = Le. Let 0 < ε < S∗ − L, so that

L = L− S∗ + S∗ < S∗ − ε < S∗ < S∗ + ε.

|C (0, S∗ + ε)− C (0, S∗ − ε)| =
∣∣E [1θ(S∗−ε)≤T<θ(S∗+ε)]∣∣ = Q [θ (S∗ − ε) ≤ T < θ (S∗ + ε)] .

Consider the following event
{
N1
T = 0, N2

T = 1
}

of non-zero probability. Then, if St starts from
S∗−ε, then ST = (S∗ − ε) e−1 = (Le− ε) e−1 = L−εe−1 < L, which means that T ≥ θ (S∗ − ε) .
On the other hand, if St starts from S∗+ε, then ST = (S∗ + ε) e−1 = (Le+ ε) e−1 = L+εe−1 > L,
implying T < θ (S∗ + ε). Because

{
N1
T = 0, N2

T = 1
}

is a possible realization of the trajectory of
Xt,we have:{

ω ∈ Ω : N1
T = 0, N2

T = 1
}
⊂ {ω ∈ Ω : θ (S∗ − ε) ≤ T < θ (S∗ + ε)} . Then,

|C (0, S∗ + ε)− C (0, S∗ − ε)| = Q [θ (S∗ − ε) ≤ T < θ (S∗ + ε)]

≥ Q
[
N1
T = 0, N2

T = 1
]

= e−Tλ1Tλ2e
−Tλ2

= e−Tλ1(1+e)Tλ2 > 0.

Thus, C (0, S) is discontinuous at S = S∗.

3.3.3 Numerical procedure

This section is dedicated to present the finite difference scheme proposed by [Vol05], used to
solve numerically the PIDE whose solution allows to obtain the price of an European option
when the Lévy process is the Variance Gamma process. The problem that has to be solved is:
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∂f

∂τ
− Lf = 0, (τ, x) ∈ [0, T ]× R (3.47)

f(0, x) = h(x), x ∈ R, (3.48)

where

Lf = −
(
σ2

2
− r
)
∂f

∂x
+
σ2

2

∂2f

∂x2
+

∫ +∞

−∞

[
f (τ, x+ y)− f(τ, x)− (ey − 1)

∂f

∂x

]
ν ( dy) . (3.49)

In order to solve this equation numerically, the domain of integration of the integral term needs
to be truncated by a bounded interval and because the Variance Gamma process is a jump
process of infinite activity, the small jumps of the initial Lévy process need to be approximated
by a process of finite activity, namely the Brownian Motion. The Lévy process obtained has a
new characteristic triplet given by (γ(ε), σ2(ε), ν1|x|>ε),where σ2(ε) =

∫ ε
−ε y

2ν( dy) and the drift
is given by the associated martingale condition. The scheme proposed in [Vol05] is the explicit-
implicit finite difference scheme. The idea is to separate Lf into two parts, the differential part
Df and the integral part Jf . The operator then becomes in this case:

Lf(τ, x) = Df(τ, x) + Jf(τ, x), (3.50)

where

Df(τ, x) = −
(
σ2(ε)

2
− r + α

)
∂f

∂x
(τ, x) +

σ2(ε)

2

∂2f

∂x2
(τ, x)− λf(τ, x), (3.51)

Jf(τ, x) =

∫ Br

Bl

f (τ, x+ y) ν ( dy) 1|y|>ε, (3.52)

α =
∫ Br
Bl

(ey − 1)ν( dy)1|y|>ε and λ =
∫ Br
Bl

ν( dy)1|y|>ε. The localized problem becomes:

∂f

∂τ
− Lf = 0, (τ, x) ∈ [0, T ]× (−A,A) (3.53)

f(0, x) = h(x), x ∈ (−A,A), (3.54)

f(τ, x) = g(τ, x), x /∈ (−A,A). (3.55)

In [Vol05], it is shown that the best choice for g(τ, x) is h(x + rτ). Let {fni } be the numerical
solution of the scheme proposed and define a uniform grid:

Q∆t,∆x =
{

(τn, xi) : τn = n∆t, n = 0, 1, ...M, xi = −A+ i∆x, i ∈ Z,∆t = T
M ,∆x = 2A

N

}
and

choose Kl,Kr such that [Bl, Br] ⊂ [(Kl − 1/2)∆x, (Kr + 1/2)∆x].
Then,

α ≈ α̂ =

Kr∑
j=Kl

(eyj − 1)νj1|yj |>ε, λ ≈ λ̂ =

Kr∑
j=Kl

νj1|yj |>ε, (3.56)

∫ Br

Bl

f (τ, xi + y) ν ( dy) 1|y|>ε ≈
Kr∑
j=Kl

νjfi+j1|yj |>ε, (3.57)

where

νj ≈
∫ (j+1/2)∆x

(j−1/2)∆x
ν ( dy) ≈ 0.5∆x(ν((j − 1/2)∆x) + ν((j + 1/2)∆x)) (3.58)
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(
∂f

∂x
)i ≈

{
fi+1−fi

∆x if (σ
2(ε)
2 − r + α̂) < 0,

fi−fi−1

∆x if (σ
2(ε)
2 − r + α̂) ≥ 0

(3.59)

(
∂2f

∂x2

)
i

≈ fi+1 − 2fi + fi−1

(∆x)2
, (3.60)

(
∂f

∂τ

)
i

≈
fn+1
i − fni

∆t
. (3.61)

Then replacing all these quantities in the problem (3.53)-(3.55) the algorithm becomes:

Initialization:

f0
i = h(xi), i ∈ {0, 1..., N} , (3.62)

f0
i = g(0, xi), i /∈ {0, 1..., N} . (3.63)

For n=0,....M-1:

fn+1
i − fni

∆t
= (D∆f

n+1)i + (J∆f
n)i, i ∈ {0, 1..., N} , (3.64)

fn+1
i = g((n+ 1)∆t, xi), i /∈ {0, 1..., N} . (3.65)

where

(D∆f
n+1) = −

(
σ2(ε)

2
− r + α̂

)
fn+1
i+1 − f

n+1
i

∆x
+
σ2(ε)

2

fn+1
i+1 − 2fn+1

i + fn+1
i−1

(∆x)2
− λ̂fn+1

i , (3.66)

(J∆f
n)i =

Kr∑
j=Kl

νjf
n
i+j1|yj |>ε. (3.67)
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Figure 3.3: Left: The price of an European put option using Fast Fourier Transform. Right:
The price of an European put option using the finite difference scheme.
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Figure 3.4: Left: The error metric in % as a function of x ,when τ = T . Right: The error in %
as a function of τ , when x = 0.

3.3.3.1 Numerical Results

In this section we briefly present a numerical experiment using the finite difference scheme
described above and compare it with the widely known Fast Fourier transform method that
can be used in this case for option pricing because the characteristic function of the Variance
Gamma process is known analytically. The process considered was the Variance Gamma with
θ = −0.33, σ = 0.12, κ = 0.16, r = 0,∆x = 0.01,∆t = 0.005,K = 100, A = 1, ε = 0.6, T = 1
for the case of an European put option. The price as a function of the underlying for the two
methods is shown in Figure (3.3). We see that the function that represents the European put
option price using the finite difference scheme is very similar to the price of an European put
option using the Fast Fourier Transform. The error between the two methods for two cases is
displayed in Figure (3.4) and as we can see is relatively small. In order to compare the two
methods the error metric used (as in [CV05a]) was the difference in absolute value between the
implied volatilities under the two methods:

ε(τ, x) = |ΣPIDE(τ, x)− ΣFFT (τ, x)| in %. (3.68)



Chapter 4

Option prices as viscosity solutions
of PIDEs

In this chapter we introduce the notion of viscosity solution in the PIDEs frame, that was first
introduced by Crandall and Lions ([CL92]). We saw in Section 3.1 that if some conditions of
smoothness are satisfied, then the option price function is a classical solution of the associated
partial integro-differential equation. But, as we saw in the examples of pure jump processes in
Section 3.2, the option price functions were not smooth. This motivates us to consider the notion
of viscosity solution. As we will see in Section 4.2, if we consider more general conditions, we
can express option prices , such as barrier or European options, as viscosity solutions of certain
PIDEs. In this introduction we give an idea of such concept. Consider a regular solution f of
the equation:

∂f

∂τ
− Lf − r∂f

∂x
= 0 (4.1)

where Lf is given by (2.10).

Then, if ϕ is a regular function such that f − ϕ has a global maximum at (τ, x), we have:

∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
≤ 0 (4.2)

In fact, because (τ, x) is a global maximum, we have:

∂(f − ϕ)

∂τ
(τ, x) =

∂(f − ϕ)

∂x
(τ, x) = 0, (4.3)

∂2(f − ϕ)

∂x2
(τ, x) ≤ 0. (4.4)

and also ∀(τ, y),

f(τ, x)− ϕ(τ, x) ≥ f(τ, y)− ϕ(τ, y)⇔ f(τ, y)− f(τ, x) ≤ ϕ(τ, y)− ϕ(τ, x). (4.5)

26
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Then,

0 =
∂f

∂τ
− Lf − r∂f

∂x
(4.6)

=
∂f

∂τ
− σ2

2

∂2f

∂x2
+

(
σ2

2
− r
)
∂f

∂x
(τ, x)−

∫
R

[f(τ, x+ y)− f(τ, x)− (ey − 1)
∂f

∂x
]ν( dy)(4.7)

≥ ∂ϕ

∂τ
− σ2

2

∂2ϕ

∂x2
+

(
σ2

2
− r
)
∂ϕ

∂x
−
∫
R

[ϕ(τ, x+ y)− ϕ(τ, x)− (ey − 1)
∂ϕ

∂x
]ν( dy) (4.8)

=
∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
. (4.9)

On the other hand if ϕ is a regular function and (τ, x) is a globlal minimum of f − ϕ we have

∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
≥ 0. (4.10)

We are going to see that if f satisfies (4.9) and (4.10), then f is called a viscosity solution, which
is nothing but a generalization of solution. This way f doesn’t need to belong to C1,2. If f is a
viscosity solution and also a function of class C1,2, then f is also a solution in the classical sense.
In fact, we could set ϕ = f , then f − ϕ = 0 and all (τ, x) is a global minimum and maximum.
Then by (4.9) and (4.10) we have:

∂f

∂τ
− Lf − r∂f

∂x
=
∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
= 0. (4.11)

4.1 Definitions

Consider the following definitions that we will need to formalize the concept of viscosity solution.
Let

USC = {v : [0, T )× R→ R : v is an upper semicontinuous function } , (4.12)

and

LSC = {v : [0, T )× R→ R : v is a lower semicontinuous function } . (4.13)

Also,

M = {φ : φ is a measurable function }

C+
p ([0, T ]× R) = {φ : φ ∈M and ∃C > 0, |φ(t, x)| ≤ C(1 + |x|p1x>0)} .

This way, Lϕ can be defined for ϕ ∈ C+
p ([0, T ]× R) ∩ C2([0, T ]× R) :



28 Chapter 4. Option prices as viscosity solutions of PIDEs

Lϕ(x) = γ
∂f

∂x
+
σ2

2

∂2f

∂x2
+

∫
|y|≤1

ν( dy)[ϕ(x+ y)− ϕ(x)− y∂ϕ
∂x

(x)]

+

∫
|y|>1

ν( dy)[ϕ(x+ y)− ϕ(x)]. (4.14)

The terms in (4.14) are well defined because for ϕ ∈ C2([0, T ]× R):

|ϕ(τ, x+ y)− ϕ(τ, x)− y∂ϕ
∂x

(τ, x)| ≤ y2 sup
|x|≤1

|ϕ′′(τ, .)| for |y| ≤ 1. (4.15)

and for ϕ ∈ C+
p ([0, T ]× R) : ∫

y>1
ypν( dy) <∞. (4.16)

Let O = (a, b) ⊆ R be an open interval, ∂O = {a, b} the boundary of O. Consider the following
initial boundary value problem on [0, T ]× R :

∂f

∂τ
= Lf + r

∂f

∂x
, (0, T ]×O, (4.17)

f(0, x) = h(x), x ∈ O; (4.18)

f(τ, x) = g(τ, x), x /∈ O (4.19)

We now present the definition of viscosity solution:

Definition 4.1.1 A function v ∈ USC is a viscosity subsolution of (4.17)−(4.19) if ∀ϕ ∈
C2([0, T ]×R)∩C+

p ([0, T ]×R) and for all global maximum point (τ, x) ∈ [0, T ]×R of v−ϕ the
following properties are verified:

∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
≤ 0, if (τ, x) ∈ (0, T ]×O (4.20)

min

{
∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
, v(τ, x)− h(x)

}
≤ 0, if τ = 0, x ∈ O, (4.21)

min

{
∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
, v(τ, x)− g(τ, x)

}
≤ 0, if τ ∈ (0, T ], x ∈ ∂O, (4.22)

v(τ, x) ≤ g(τ, x), if x /∈ O (4.23)

A function v ∈ LSC is a viscosity supersolution of (4.17)−(4.19) if ∀ϕ ∈ C2([0, T ] × R) ∩
C+
p ([0, T ]×R) and for all global minimum point (τ, x) ∈ [0, T ]×R of v−ϕ the following properties

are verified:
∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
≥ 0, if (τ, x) ∈ (0, T ]×O (4.24)

max

{
∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
, v(τ, x)− h(x)

}
≥ 0, if τ = 0, x ∈ O, (4.25)

max

{
∂ϕ

∂τ
− Lϕ− r∂ϕ

∂x
, v(τ, x)− g(τ, x)

}
≥ 0, if τ ∈ (0, T ], x ∈ ∂O, (4.26)

v(τ, x) ≥ g(τ, x), if x /∈ O (4.27)

A function v ∈ C+
p ([0, T ]×R) is called a viscosity solution of (4.17)−(4.19) if it is simulta-

neously a subsolution and a supersolution. Then v is continuous on (0, T ]× R.

Note that the definition of viscosity solution requires that the test functions ϕ have second-order
derivatives and the viscosity solution only has to be continuous on [0, T ]× R.
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4.2 Option prices as viscosity solutions of PIDEs

The main tool for showing uniqueness of viscosity solutions is the comparison principle presented
in [Vol05].

Proposition 4.2.1 Let u ∈ USC and v ∈ LSC with polynomial growth. If u is a subsolution
and v is a supersolution of (4.17) − (4.19) with O = R and the function h is continuous, then
u ≤ v on [0, T ]× R.

The following proposition indicates that the values of European and barrier options in a
exponential Lévy model can be expressed as the viscosity solutions of (4.17)− (4.19).

Proposition 4.2.2 Let the payoff function H verify the lipschitz condition (3.17) and let h(x) =
H(S0e

x) verify the condition of polynomial growth at infinity:

|h(x)| ≤ C(1 + |x|p1x>0). (4.28)

Then:
1) The forward value fe(τ, x) of an European option defined by f(τ, x) = E[h(x+ rτ +Xτ )]

is a viscosity solution of the Cauchy problem (4.17)− (4.19) with O = R.
2) The forward value fb(τ, x) of a knockout barrier option defined by (3.37), (3.39) or (3.41)

is a viscosity solution of the Cauchy problem (4.17)− (4.19) with g = 0.

Notice that we do not make any kind of assumptions on the Lévy triplet of the Lévy process as
in Propositions 3.3.3 and 3.3.4. The conditions imposed on the payoff function imply that the
option price belongs to C+

p , which is a requirement in the definition of a viscosity solution. The
proof that this viscosity solution satisfies (4.17)− (4.19) can be found in [Vol05].
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Conclusions

In this dissertation we showed that if the payoff function and the Lévy process satisfy some con-
ditions, then we can obtain the option price as a solution of a certain partial integro-differential
equation. Also, if a solution of a certain PIDE is smooth enough and if the Lévy process sat-
isfies a exponential moment condition, then we can apply the Feynman-Kač formula for option
pricing in a Lévy market. In Chapter 3 we present this formula for the case of a pure jump
process. Two of the possible methods that can be used to compute the option price numerically
are the Fast Fourier technique and the finite difference method. In this dissertation we present
the latter in the form proposed by Cont and Voltchkova [CV05a]. The numerical results showed
that the finite difference scheme is a good approximation to compute the price of an European
option under the Variance Gamma process. Although the Fast Fourier transform method re-
quires less operations than the finite difference method, the latter can be applied to cases in
which the characteristic function is not known in closed form and can be used to compute the
price of barrier options. We could see that the price function of a binary option was not smooth
when we used the Generalized Hyperbolic process. So we can not apply the results of Chapter
3, instead we use the notion of viscosity solution that allows us to consider cases in which the
function that represents the option price is not a smooth function. To find such solutions, we
need to find test functions that bound the solution of the problem. A similar result for the case
of classical solutions is presented in Section 4.2, and shows that the only requirement is that the
payoff function has polynomial growth at infinity. In this dissertation we present also a proof
for the continuity of an up-and-out and down-and-out options when the Lévy process is of type
A, besides the cases of type B and C presented in [Vol05] and [CV05b].

It would be interesting to study, in a future research, the continuity of barrier options,
when the Lévy process is of type B with infinite activity, which is not contemplated in the
propositions 3.3.5,3.3.6 and 3.3.7. It would be also interesting to study alternative numerical
methods for PIDEs such as the Analytic method of lines, finite element methods and Wavelet-
Galerkin methods, because they allow to compute the price of American options, unlike the finite
difference methods. One of the reasons to use numerical methods for partial integro-differential
equations is that they are computationally efficient in the case of single-asset options. However,
in the case of three or more assets these methods become inefficient and the most used method
to price American or barrier options is the Monte carlo method. So it would be also interesting
to study the case when there are three or more underlying assets. The potential theory could
also be an interesting topic for future research because it explores the deep connection between
partial integro-differential operators and Markov processes with jumps. Another issue that could
be interesting to study in the future is the hedging in incomplete markets.
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Appendix A

Proofs of propositions and
Numerical Code

A.1 Proof of Proposition 3.3.1.

Proof. First, we need to prove the continuity with respect to x.

|f(τ, x+ ∆x)− f(τ, x)| = |E[H(S0e
x+∆x+rτ+Xτ )−H(S0e

x+rτ+Xτ )]|
≤ E[c|S0e

x+∆x+rτ+Xτ )− S0e
x+rτ+Xτ |] = cE[S0e

x+rτ+Xτ |e∆x − 1|]
= cS0e

x+rτE[eXτ ]|e∆x − 1| = cS0e
x+rτ |e∆x − 1|

because E[eXτ ] = 1 since eXτ is a martingale.
Then,

lim
∆x→0

f(τ, x+ ∆x)− f(τ, x) ≤ lim
∆x→0

cS0e
x+rτ |e∆x − 1| = 0,

which means that f (τ, x) is continuous in x.
Second,we need to prove the continuity in τ .

|f(τ + ∆τ, x)− f(τ, x)| = |E[H(S0e
x+r(τ+∆)τ+Xτ+∆τ )−H(S0e

x+rτ+Xτ )]|
≤ E[c|S0e

x+r(τ+∆)+Xτ+∆)− S0e
x+rτ+Xτ |]

= cS0e
x+rτE[eXτ ]E|er∆τ+X∆τ − 1|

But,

E|er∆τ+X∆τ − 1| =
{

E[er∆τ+X∆τ − 1] if er∆τ+X∆τ − 1 > 0,
E[1− er∆τ+X∆τ ] if er∆τ+X∆τ − 1 < 0

=

{
er∆τ − 1 if er∆τ+X∆τ − 1 > 0,
1− er∆τ if er∆τ+X∆τ − 1 < 0

= er∆τ − 1 + 2

{
E[1− er∆τ+X∆τ ] if 1− er∆τ+X∆τ > 0,

0 if 1− er∆τ+X∆τ < 0

= er∆τ − 1 + 2E[(1− er∆τ+X∆τ )+]

Then, because er∆τ − 1→ 0 when ∆τ → 0, we only have to prove that:

E[(1− er∆τ+X∆τ )+]→ 0, when ∆τ → 0.
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Let C0(R) = {h : h is continuous and vanishing at infinity}. The Feller property tells us
that,for any h ∈ C0(R) we have:

Pτh(0) = E[h(rτ +Xτ )]→ h(0) as τ → 0

But, in this case h(x) = (1− ex)+ does not belong to C0(R).

-20 -10 10 20

-2

-1

1

2

Then we try to approximate h with the function g(x) such that:

g(x) = h(x), if x ≥ −1, g(x) = 0, if x ≤ −2, 0 ≤ g(x) ≤ h(x)

and g(x) is continuously interpolated between -2 and -1, that is g(x) = h(−1)x + 2h(−1) for
−2 ≤ x ≤ −1. This way g ∈ C0(R)

-4 -2 2 4

-1.0

-0.5

0.5

1.0

E[(1− er∆τ+X∆τ )+] = |Pτh(0)| = |Pτh(0)− Pτg(0) + Pτg(0)| ≤ |Pτh(0)− Pτg(0)|+ |Pτg(0)|
= |E[(h(r∆τ +X∆τ )− g(r∆τ +X∆τ ))1r∆τ+X∆τ<−1]|+ |Pτg(0)|
≤ E[1r∆τ+X∆τ<−1] + |Pτg(0)| = Q[r∆τ +X∆τ < −1] + |Pτg(0)|
≤ Q[X∆τ ≤ −1] + |Pτg(0)|,

because g = h when r∆τ +X∆τ ≥ −1 and h(x) ≤ 1, g(x) ≥ 0 by construction.
Since |Pτg(0)| → g(0) = 0 as ∆τ → 0, we only have to prove that: Q[X∆τ ≤ −1] → 0 as

∆τ → 0.
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Defining M−τ = sup0≤s≤τ (−Xs) we have Q[X∆τ ≤ −1] = Q[(−X∆τ ) ≥ 1] ≤ Q[M−τ ≥ 1].

Consider τn ↓ 0 and define Ωn =
{
ω ∈ Ω : M−τn(ω) ≥ 1

}
. This way, the sequence Ωn is

decreasing. Therefore,

lim
n→∞

Q[Ωn] = lim
n→∞

Q[M−τn ≥ 1] = Q[
∞⋂
n=1

{
ω ∈ Ω : M−τn(ω) ≥ 1

}
]

= Q[M−0 (ω) ≥ 1] = 0,

since M−0 = −X0 and X0 = 0 a.s . Then Q[M−τ ≥ 1] → 0 since τn is arbitrary. Therefore
Q[X∆τ ≤ −1]→ 0.

In order to show continuity for any (τ, x) ∈ [0, T ]× R, we use the triangular inequality:

|f(τ + ∆τ, x+ ∆x)− f(τ, x)| ≤ |f(τ + ∆τ, x+ ∆x)− f(τ + ∆τ, x)|+ |f(τ + ∆τ, x)− f(τ, x)|
≤ cS0e

x+r(τ+∆τ)|e∆x − 1|+ cS0e
x+rτE[|er∆τ+X∆τ − 1|]→ 0,

Then f(τ, x) is continuous on [0, T ]× R.

A.2 Proof of Proposition 3.3.2.

First step: We prove that the density function of rτ +Xτ , pτ (x) ∈ C∞
The condition

lim
ε→0

inf ε−β
∫ ε

−ε
|x|2ν( dx) > 0

implies that

∃c1>0

∫ ε

−ε
|x|2ν( dx) ≥ c1ε

β

for small ε. Following the notation on [Vol05]: Let pτ (x), be the density function of the Lévy
process rτ +Xτ with characteristic function:

ψrτ+Xτ (z) = eτφr+X1
(z)

with

φr+X1(z) = −σ
2z2

2
+ iγz +

∫ +∞

−∞

(
eizx − 1− izx1|x|≤1

)
ν(dx).

Then,

|ψrτ+Xτ (z)| =
∣∣∣∣eτ(−σ2z2

2
+iγz+

∫+∞
−∞ (eizx−1−izx1|x|≤1)ν(dx)

)∣∣∣∣
=

∣∣∣∣eτ(i(γz+
∫+∞
−∞ (sin(zx)−zx1|x|≤1)ν(dx))e−

σ2z2

2
+
∫+∞
−∞ (cos(zx)−1)ν(dx))

∣∣∣∣ ≤ e∫+∞
−∞ (cos(zx)−1)ν(dx)).

Notice that, 1 − cos(u) = 1 − cos(u2 + u
2 ) = 1 − (cos2(u2 ) − sin2(u2 )) = 2 sin2(u2 ) ≥ 2(uπ )2 for

|u|
π ≤ 1. Then,

|ψrτ+Xτ (z)| ≤ e
∫+∞
−∞ (cos(zx)−1)ν(dx)) ≤ e

∫
|x|≤ π

|z|
−2( zx

π
)2ν(dx))

= e
− 2
π2 z

2
∫
|x|≤ π

|z|
x2ν(dx))

= e
−Kz2

∫
|x|≤ π

|z|
x2ν(dx)

.
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But
∫ ε
−ε |x|

2ν( dx) ≥ c1ε
β, so by choosing ε = π

|z| , we get −
∫
|x|≤ π

|z|
x2ν(dx) ≤ −C( π|z|)

β. Then,

|ψrτ+Xτ (z)| ≤ e−Kz
2C( π|z| )

β

= e−c|z|
2−β

= e−c|z|
α

with c = KCπβ and α = 2− β.

Also, ∫
R
|ψrτ+Xτ (z)|zn dz ≤

∫
R
e−c|z|

α
zn dz <∞ (A.1)

and by inversion formula of the Fourier transform,

pτ (x) =
1

2π

∫
R
e−ixzψrτ+Xτ (z) dz.

Then, the right hand-side is n times differentiable with respect to x and differentiation is possible
under the integral sign because of (A.1). In fact,

∂npτ (x)

∂xn
=

1

2π

∫
R

(−iz)ne−izxψrτ+Xτ (z) dz =
1

2π

∫
R
|z|ne( 3

2
nπ−zx)iψrτ+Xτ (z) dz

≤ 1

2π

∫
R
|z|nψrτ+Xτ (z) dz <∞.

Then, by proposition 28.1 of [Sat99], the process rτ + Xτ has density function pτ (x) of class
C∞.

Second step:Let us prove that f(τ, x) = E[h(x+ rτ +Xτ )] ∈ C∞((0, T )× R).
Defining,p̃τ (x) = pτ (−x), we have

f(τ, x) = E[h(x+ rτ +Xτ )] = h(x) ∗ p̃τ (x) =

∫
R
h(x− z)p̃τ (z) dz

=

∫
R
h(x− z)pτ (−z) dz =

∫
R
h(x+ w)pτ (w) dw,

by making the substitution w = −z.
So we have to show that h(x) ∗ p̃τ (x) belongs to C∞ and for that to happen, ∂np̃τ (x)

∂xn has to
decrease sufficiently fast at the infinity so that

∂nf(τ, x)

∂xn
= h(x) ∗ ∂

np̃τ (x)

∂xn
=

∫
R
h(x− y)

∂np̃τ (y)

∂xn
dy

makes sense.
We have

φ
′
r+X1

(z) = −σ2z + iγ +

∫
R
iy(eiyz − 1|y|≤1)ν( dy),

φ
′′
r+X1

(z) = −σ2 +

∫
R

(iy)2eiyzν( dy),

φ
(k)
r+X1

(z) =

∫
R

(iy)keiyzν( dy), ∀k ≥ 3.

Therefore,

|φ′r+X1
(z)| =

∣∣∣∣−σ2z + iγ +

∫
R
iy(eiyz − 1|y|≤1)ν( dy)

∣∣∣∣ ≤ σ2|z|+ |γ|+
∣∣∣∣∫

R
iy(eiyz − 1|y|≤1)ν( dy)

∣∣∣∣
≤ σ2|z|+ |γ|+

∫
R

∣∣iy(eiyz − 1|y|≤1)
∣∣ ν( dy) ≤ σ2|z|+ |γ|+

∫
R
|y||eiyz|ν( dy)

= σ2|z|+ |γ|+
∫
R
|y|ν( dy) = σ2|z|+ |γ|+

∫
|y|≤1

|y|ν( dy) +

∫
|y|>1

|y|ν( dy) <∞,
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because of (3.22).

|φ′′r+X1
(z)| =

∣∣∣∣−σ2 +

∫
R

(iy)2eiyzν( dy)

∣∣∣∣ ≤ σ2 +

∣∣∣∣∫
R

(iy)2eiyzν( dy)

∣∣∣∣
≤ σ2 +

∫
R
|(iy)2||eiyz|ν( dy) = σ2 +

∫
R
|y|2ν( dy) <∞,

also by (3.22) and (2.1).

|φ(k)
r+X1

(z)| =
∣∣∣∣∫

R
(iy)keiyzν( dy)

∣∣∣∣ ≤ ∫
R
|(iy)keiyz|ν( dy) =

∫
R
|y|k|eiyz|ν( dy)

=

∫
R
|y|kν( dy) =

∫
|y|≤1

|y|kν( dy) +

∫
|y|>1

|y|kν( dy) <∞,∀k ≥ 3.

Then φr+X1(z) ∈ C∞ which implies that ψrτ+Xτ (z) = eτφr+X1
(z) ∈ C∞.

Next,we conclude that,

|φ′r+X1
(z)| ≤ |σ2|z|+ |γ|+

∫
R
|y|ν( dy)| ≤ A1(1 + |z|)

|φ′′r+X1
(z)| ≤ |σ2 +

∫
R
|y|2ν( dy)| ≤ A2

|φ(k)
r+X1

(z)| ≤ |
∫
R
|y|kν( dy)| ≤ Ak,∀k ≥ 3

and also that

|∂ψrτ+Xτ (z)

∂z
| = τ |φ′r+X1

(z)|eτφr+X1
(z) ≤ K(1 + |z|)ψrτ+Xτ (z) ≤ K(1 + |z|)e−c|z|α

|∂
2ψrτ+Xτ (z)

∂z2
| =

∣∣∣τφ′′r+X1
(z)eτφr+X1

(z) + τ2(φ
′
r+X1

(z))2eτφr+X1
(z)
∣∣∣

≤ τA2e
τφr+X1

(z) + τ2A1(1 + |z|)2eτφr+X1
(z)

≤ τA2e
−c|z|α + τA1(1 + |z|)2e−c|z|

α

≤ K(1 + |z|2)e−c|z|
α
.

So, by recurrence, we get

|∂
kψrτ+Xτ (z)

∂zk
| ≤ K(1 + |z|k)ψrτ+Xτ (z) ≤ K(1 + |z|k)e−c|z|α , ∀k ≥ 0

Also,

• ∣∣∣∣ dkdzk
∫
R
eizx

∂

∂x
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk ([eizxp̃τ (x)]∞−∞ −
∫
R

(iz)eizxp̃τ (x) dx)

∣∣∣∣
=

∣∣∣∣ dkdzk (−iz)
∫
R
eizxp̃τ (x) dx

∣∣∣∣ ≤ K|z|1+ke−c|z|
α
.

• ∣∣∣∣ dkdzk
∫
R
eizx

∂2

∂x2
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk ([eizx
∂

∂x
p̃τ (x)]∞−∞ −

∫
R

(iz)eizx
∂

∂x
p̃τ (x) dx)

∣∣∣∣
= | d

k

dzk
([eizx

∂

∂x
p̃τ (x)]∞−∞ + [(−iz)eizxp̃τ (x)]∞−∞

−
∫
R

(iz)2eizxp̃τ (x) dx)| =
∣∣∣∣ dkdzk (−iz)2

∫
R
eizxp̃τ (x) dx

∣∣∣∣
≤ K|z|2+ke−c|z|

α
,∀k ≥ 0,
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because by proposition 28.1 of [Sat99] the partial derivatives of p̃τ of orders 0,..,n tend to
zero as |x| → ∞. Once again by recurrence,

• ∣∣∣∣ dkdzk
∫
R
eizx

∂n

∂xn
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk (−iz)n
∫
R
eizxp̃τ (x) dx

∣∣∣∣ ≤ K|z|n+ke−c|z|
α
,

for all n, k ≥ 0 .

Then,

∀k, n ≥ 0,

∫
R

(
dk

dzk

∫
R
eizx

∂n

∂xn
p̃τ (x) dx

)2

dz ≤
∫
R

(
K|z|n+ke−c|z|

α
)2

dz <∞,

which means that dk

dzk

∫
R e

izx ∂n

∂xn p̃τ (x) dx ∈ L2(R). But this implies that∫
R

(
|x|k ∂

n

∂xn
p̃τ (x)

)2

dx <∞

or that |x|k ∂n

∂xn p̃τ (x) ∈ L2(R), and this in turn implies that:∫
R
|∂
np̃τ (x)

∂xn
(1 + |x|k) dx| ≤ C

∫
R

1

1 + |x|
(1 + |x|k+1)

∂np̃τ (x)

∂xn
dx

≤ C

(∫
R

(
1

1 + |x|

)2

dx

)1/2(∫
R

(( 1 + |x|k+1

)
∂np̃τ (x)

∂xn

)2

dx

)1/2

= C

∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂np̃τ (x)

∂xn

∥∥∥∥
L2

<∞.

Then,∣∣∣∣∂nf∂xn
(τ, x)

∣∣∣∣ =

∣∣∣∣h(x) ∗ ∂
np̃τ (x)

∂xn

∣∣∣∣ =

∣∣∣∣∫
R
h(x− z)∂

np̃τ (z)

∂xn
dz

∣∣∣∣
≤ C

∫
R

(1 + |x− z|p)
∣∣∣∣∂np̃τ (z)

∂xn

∣∣∣∣ dz ≤ C(1 + |x|p)
∫
R

(1 + |z|p)
∣∣∣∣∂np̃τ (z)

∂xn

∣∣∣∣ dz

≤ C(1 + |x|p)K
∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂np̃τ (x)

∂xn

∥∥∥∥
L2

= D(1 + |x|p).

Then ∂nf
∂xn (τ, x) is continuous and finite, which means that f is regular with respect to x. To

prove the regularity in time we notice that:

|φr+X1(z)| =
∣∣∣∣−σ2z2

2
+ iγz +

∫ +∞

−∞
(eizx − 1− izx1|x|≤1)ν(dx)

∣∣∣∣ ≤ C(1 + |z|2)

and verify by recurrence that,∣∣∣∣ dkdzk
∫
R
eizx

∂m

∂τm
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk ∂m

∂τm

∫
R
eizxp̃τ (x) dx

∣∣∣∣
=

∣∣∣∣ dkdzk [φr+X1(z)]meτφr+X1
(z)

∣∣∣∣ ≤ C|z|2m+ke−c|z|
α
.
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Then, dk

dzk

∫
R e

izx ∂m

∂τm p̃τ (x) dx ∈ L2(R) ,which implies that ∂mp̃τ (x)
∂τm (1 + |x|k) ∈ L1(R).

Therefore,∣∣∣∣∂mf∂τm
(τ, x)

∣∣∣∣ =

∣∣∣∣h(x) ∗ ∂
mp̃τ (x)

∂τm

∣∣∣∣ =

∣∣∣∣∫
R
h(x− z)∂

mp̃τ (z)

∂τm
dz

∣∣∣∣ ≤ C ∫
R

(1 + |x− z|p)
∣∣∣∣∂mp̃τ (z)

∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)
∫
R

(1 + |z|p)
∣∣∣∣∂mp̃τ (z)

∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)K
∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂mp̃τ (x)

∂τm

∥∥∥∥
L2

= D(1 + |x|p),

which means that ∂nf
∂τm (τ, x) is continuous and finite.

In the same way we conclude that:∣∣∣∣ dkdzk
∫
R
eizx

∂n+m

∂xn∂τm
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk (−iz)n[φr+X1(z)]meτφr+X1
(z)

∫
R
eizxp̃τ (x) dx

∣∣∣∣
≤ C|z|2m+n+ke−c|z|

α
.∣∣∣∣ ∂n+mf

∂xn∂τm
(τ, x)

∣∣∣∣ =

∣∣∣∣h(x) ∗ ∂
n+mp̃τ (x)

∂xn∂τm

∣∣∣∣ =

∣∣∣∣∫
R
h(x− z)∂

n+mp̃τ (z)

∂xn∂τm
dz

∣∣∣∣
≤ C

∫
R

(1 + |x− z|p)
∣∣∣∣∂n+mp̃τ (z)

∂xn∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)
∫
R

(1 + |z|p)
∣∣∣∣∂n+mp̃τ (z)

∂xn∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)K
∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂n+mp̃τ (x)

∂xn∂τm

∥∥∥∥
L2

= D(1 + |x|p).

Then f(τ, x) ∈ C∞((0, T ],R).

A.3 Proof of Proposition 3.3.5.

Proof. Define M = supS∈(0,U)H(S). We can do this because H is bounded due to the fact
that it is Lipschitz. We will prove first the continuity in x and τ and finally prove the continuity
using the triangular inequality.

First step: Prove continuity in x for all τ > 0 and x < u.Choosing δ ∈ (0, u− x) we get:

|fU (τ, x+ δ)− fU (τ, x)| = |E[H(S0e
x+δ+Yτ )1τ<Ru−x−δ −H(S0e

x+Yτ )1τ<Ru−x ]|
≤ E[|H(S0e

x+δ+Yτ )1τ<Ru−x−δ −H(S0e
x+Yτ )1τ<Ru−x |]

= E[|(H(S0e
x+δ+Yτ )−H(S0e

x+Yτ ))1τ<Ru−x−δ

+H(S0e
x+Yτ )(1τ<Ru−x−δ − 1τ<Ru−x)|]

≤ E[k|(S0e
x+δ+Yτ − S0e

x+Yτ )|1τ<Ru−x−δ ] +ME[1Ru−x−δ<τ<Ru−x ]

≤ kex+rτE[S0e
Xτ ]|eδ − 1|+MQ[Ru−x−δ < τ < Ru−x]

≤ kS0e
x+rτ |eδ − 1|+MQ[Ru−x−δ < τ < Ru−x],

because by the martingale condition E[eXτ ] = E[eX0 ] = 1.
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Then,

lim
δ→0
|fU (τ, x+ δ)− fU ((τ, x))| ≤ lim

δ→0
kS0e

x+rτ |eδ − 1|+MQ[Ru−x−δ < τ < Ru−x] = 0.

because |eδ − 1| → 0 and Q[Ru−x−δ < τ < Ru−x]→ 0 when δ → 0 by Lemma 3.3.5.
Similarly we prove for x < u :

lim
δ→0
|fU (τ, x− δ)− fU ((τ, x))| ≤ lim

δ→0
kS0e

x+rτ |e−δ − 1|+MQ[Ru−x < τ < Ru−x+δ] = 0.

also by Lemma 3.3.5 and by the martingale condition.
As for x = u the right continuity of fU (τ, x) is proven easily so:

|fU (τ, u− δ)− fU ((τ, u))| = |E[H(S0e
u−δ+Yτ )1τ<Rδ ]| ≤MQ[τ < Rδ].

Considering δn → 0 we have:

Q[τ < Rδ]→ Q[∩∞n=1 {ω ∈ Ω|Rδn > τ}] = Q[τ ≤ R0] = 0,

because R0 = 0 a.s. Therefore, we proved the continuity of fU (τ, x) for all x ∈ R.
Second step: Let us prove continuity in time. For x < u and 0 ≤ s ≤ t :

|fU (t, x)− fU (s, x)| = |E[H(S0e
x+Yt)1t<Ru−x −H(S0e

x+Ys)1s<Ru−x ]|
≤ E[|H(S0e

x+Yt)−H(S0e
x+Ys)|1t<Ru−x + |H(S0e

x+Ys)|1s≤Ru−x < t]

≤ kS0e
x+rsE[|eYt−s − 1|] +MQ[s ≤ Ru−x < t]

lim
t→s
|fU (t, x)− fU (s, x)| ≤ lim

t→s
kS0e

x+rsE[|eYt−s − 1|] +MQ[s ≤ Ru−x < t] = 0

because we know that, by the proof of the Proposition 3.3.1, E[|eYt−s − 1|]→ 0 when t→ s and
considering a decreasing set Ωn = {ω ∈ Ω|s ≤ Ru−x(ω) < tn}, tn → s:

lim
n→∞

Q[s ≤ Ru−x(ω) < tn] = Q[∩∞n=1Ωn] = Q[∅] = 0.

Third step: Use the triangular inequality. Let (τ, x) ∈ [0, T ]× (−∞, u) and (∆τ,∆x) ∈ R2

|fU (τ + ∆τ, x+ ∆x)− fU (τ, x)| ≤ |fU (τ + ∆τ, x+ ∆x)− fU (τ, x+ ∆x)|
+ |fU (τ, x+ ∆x)− fU (τ, x)|.

• First term.

Defining y = x+ ∆x and t = τ + ∆τ with ∆τ > 0 we obtain:

|fU (t, y)− fU (τ, y)| = |E[H(S0e
y+Yt)1t<Ru−y −H(S0e

y+Yτ )1τ<Ru−y ]|
= |E[(H(S0e

y+Yt)−H(S0e
y+Yτ ))1t<Ru−y

+H(S0e
y+Yτ )(1t<Ru−y − 1τ<Ru−y)]|

≤ E[|H(S0e
y+Yt)−H(S0e

y+Yτ )|1t<Ru−y + |H(S0e
y+Yτ )|1τ<Ru−y<t]

≤ kE[|S0e
y+Yt − S0e

y+Yτ |1t<Ru−y ] +MQ[τ < Ru−y < t]

≤ kS0e
yE[|eYt − eYτ |] +MQ[τ < Ru−y < t] but Yt − Yτ

d
= Y∆τ

≤ kS0e
yE[|eYτ |eY∆τ − 1|] +MQ[τ < Ru−y < t]

= kS0e
yE[eYτ ]E[|eY∆τ − 1|] +MQ[τ < Ru−y < t]

= kS0e
y+rτE[|eY∆τ − 1|] +MQ[τ < Ru−y < t]
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Similarly for the case ∆τ < 0, we get:

|fU (t, y)− fU (τ, y)| = |fU (τ, y)− fU (t, y)|
= |E[H(S0e

y+Yτ )1τ<Ru−y −H(S0e
y+Yt)1t<Ru−y ]|

= |E[(H(S0e
y+Yτ )−H(S0e

y+Yt))1τ<Ru−y

+H(S0e
y+Yt)(1τ<Ru−y − 1t<Ru−y)]|

≤ E[|H(S0e
y+Yτ )−H(S0e

y+Yt)|1τ<Ru−y + |H(S0e
y+Yt)|1t<Ru−y<τ ]

≤ kE[|S0e
y+Yτ − S0e

y+Yt |1τ<Ru−y ] +MQ[t < Ru−y < τ ]

≤ kS0e
yE[|eYτ − eYt |] +MQ[t < Ru−y < τ ] but , Yτ

d
= Yτ+∆τ − Y∆τ

≤ kS0e
yE[|eYt |e−Y∆τ − 1|] +MQ[t < Ru−y < τ ]

= kS0e
yE[eYτ ]E[|eY−∆τ − 1|] +MQ[t < Ru−y < τ ]

= kS0e
y+rτ+∆τE[|eY−∆τ − 1|] +MQ[t < Ru−y < τ ]

So for ∆x ∈ R,

|fU (t, y)− fU (τ, y)|
≤ kS0e

y(erτ1∆τ≥0 + ert1∆τ<0)E[|eY|∆τ | − 1|] +M(Q[τ < Ru−y ≤ t]1∆τ≥0

+ Q[t < Ru−y ≤ τ ]1∆τ<0)

= kS0e
y+rτ (1∆τ≥0 + er∆τ1∆τ<0)E[|eY|∆τ | − 1|] +M(Q[t < Ru−y ≤ τ ]1∆τ<0

+ Q[τ < Ru−y ≤ t]1∆τ≥0)

≤ kS0e
y+rτE[|eY|∆τ | − 1|] +M(Q[t < Ru−y ≤ τ ]1∆τ<0

+ Q[τ < Ru−y ≤ t]1∆τ≥0)

= kS0e
y+rτE[|eY|∆τ | − 1|] +M(Q[∆τ < Ru−y − τ ≤ 0]1∆τ<0

+ Q[0 < Ru−y − τ ≤ ∆τ ]1∆τ≥0)]

= kS0e
y+rτE[|eY|∆τ | − 1|] +M(Q[−∆τ < Ru−y − τ ≤ 0]

+ Q[0 < Ru−y − τ ≤ ∆τ ])1∆τ≥0

≤ kS0e
y+rτE[|eY|∆τ | − 1|] +MQ[|Ru−y − τ | ≤ ∆τ ].

We would like to apply Lemma 3.3.5, but we can’t, because we still have a bound that
depends on ∆τ and ∆x. However, note that ∀ε>0, ∀∆x−ε ≤ ∆x ≤ ε, Ru−x−ε ≤ Ru−x−∆x ≤
Ru−x+ε.

Then,

lim
∆τ,∆x)→0

Q[|Ru−y − τ | ≤ ∆τ ] ≤ lim
(∆τ,∆x)→0

(Q[|Ru−x−ε − τ | ≤ ∆τ ] + Q[|Ru−x+ε − τ | ≤ ∆τ ]

+Q[Ru−x−ε ≤ τ ≤ Ru−x+ε])

= Q[Ru−x−ε = τ ] + Q[Ru−x+ε = τ ]

+ Q[Ru−x−ε ≤ τ ≤ Ru−x+ε]

= Q[Ru−x−ε ≤ τ ≤ Ru−x+ε]

after Lemma 3.3.4.

• Second term
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|fU (τ, y)− fU (τ, x)| = |E[H(S0e
y+Yτ )1τ<Ru−y −H(S0e

x+Yτ )1τ<Ru−x ]|
≤ kS0e

x+rτ |e∆x − 1|+M(Q[Ru−y ≤ τ < Ru−x]1∆x≥0

+ Q[Ru−x ≤ τ < Ru−y]1∆x<0)

As already demonstrated this expression tends to zero when ∆x→ 0.

Then,

lim
(∆τ,∆x)→0

|fU (τ + ∆τ, x+ ∆x)− fU (τ, x)| ≤ lim
(∆τ,∆x)→0

(MQ[Ru−x−ε ≤ τ ≤ Ru−x+ε]

+ kS0e
x+rτ |e∆x − 1|

+M(Q[Ru−y ≤ τ < Ru−x]1∆x≥0

+ Q[Ru−x ≤ τ < Ru−y]1∆x<0))

= MQ[Ru−y−ε ≤ τ ≤ Ru−y+ε].

So it remains to prove that when ε→ 0, which implies ∆x→ 0, that

Q[Ru−x−ε ≤ τ ≤ Ru−x+ε]→ 0.

But once again taking εn → 0 and if

An = {ω ∈ Ω|Ru−x−εn ≤ τ ≤ Ru−x+εn} ,

then
lim
n=∞

Q[Ru−x−εn ≤ τ ≤ Ru−x+εn ] = Q[∩∞n=1An] = Q[Ru−x = τ ] = 0,

after Lemma 3.3.4.
Fourth Step:Let us show continuity in x = u.

|fU (τ + ∆τ, u+ ∆x)− fU (τ, u)| = |fU (τ + ∆τ, u+ ∆x)1∆x<0|
= |E[H(S0e

u+∆x+Yτ+∆τ )1τ+∆τ<R−∆x
1∆x<0|

≤MQ[τ + ∆τ < R−∆x]1∆x<0 = MQ[τ + ∆τ < R|∆x|].

But, for all ξ > 0 such that |∆τ | ≤ ξ, implies:{
ω ∈ Ω|τ + ∆τ < R|∆x|

}
⊂
{
ω ∈ Ω|τ − ξ < R|∆x|

}
.

which in turn implies:

Q[τ + ∆τ < R|∆x|] ≤ Q[τ − ξ < R|∆x|]→ 0,

when ∆x→ 0 , because it only depends on ∆x.



VGDensity@k_, sigma_, theta_, x_D := Module@8A, B, v<,

A = theta � sigma^2;

B = Sqrt@theta^2 + H2 � kL * sigma^2D � sigma^2;

v = H1 � Hk * Abs@xDLL * Exp@A * x - B * Abs@xDD
D

PutOptVGFFFinal@S_, K_, vgdensity_, r_, k_, sigma_, theta_,

x_, W_, A_, Al_, Ar_, T_, N_, M_, epsilon_, Kl_, payoff_, xx_D :=

Module@8B, F, E, G, P, w, q, t, h, Ν, aux1, aux2, Μ, Μfourier, Υ, Υfourier, d,

vg, g, deltax, deltat, deltaep, y, alpha, alphae, lambdae, alpha1, alpha2,

alpha3, lambda, u, sigmaepsilon, sigmaepsilone, L, R, dtdx2, dtdx, zeros<,

g@u_, v_, y_, z_D := vgdensity �. 8k ® u, sigma ® v, theta ® y, x ® z<;

h@w_D := payoff �. 8xx ® w<;

Ν@c_D := 0.5 * deltax * Hg@k, sigma, theta, Hc - 0.5L * deltaxD +

g@k, sigma, theta, Hc + 0.5L * deltaxDL * If@Abs@c * deltaxD >= epsilon, 1, 0D;

deltax = HA - WL � HNL; deltat = T � M; deltaep = 2 * epsilon � Kl;

dtdx2 = deltat � Hdeltax^2L; dtdx = deltat � deltax; R = N � 2; L = -R;

alphae = Sum@HExp @j * deltaxD - 1L * Ν@jD, 8j, L, R<D;

lambdae = Sum@Ν@jD, 8j, L, R<D;

sigmaepsilone = Sum@Ν@jD * Hj * deltaxL^2, 8j, L, R<D;

alpha = NIntegrate@HExp @yD - 1L * g@k, sigma, theta, yD,

8y, -Kl, -epsilon<, Method ® 8Automatic, "SymbolicProcessing" ® 0<D +

NIntegrate@HExp @yD - 1L * g@k, sigma, theta, yD, 8y, epsilon, Kl<,

Method ® 8Automatic, "SymbolicProcessing" ® 0<D;

lambda = NIntegrate@g@k, sigma, theta, yD, 8y, -Kl, -epsilon<D +

NIntegrate@g@k, sigma, theta, yD, 8y, epsilon, Kl<D;

sigmaepsilon = NIntegrate@g@k, sigma, theta, yD * y^2, 8y, -epsilon, -0.00001<D +

NIntegrate@g@k, sigma, theta, yD * y^2, 8y, 0.00001, epsilon<D;

y = Table@h@Al + HiL * deltax + r * j * deltatD, 8j, 0, M<, 8i, 0, N - L + R<D;

zeros = Table@0, 8i, 0, N - 1<D;

Μ = Join@Reverse@Table@Ν@iD, 8i, L, R<DD, zerosD; Μfourier = Fourier@ΜD;

Υ = Table@0, 8j, 0, M<, 8i, 0, N + R - L<D; u = Table@0, 8j, 0, M<, 8i, 0, N - L + R<D;

aux1 = Table@0, 8j, 0, M<, 8i, 0, N + R - L<D;

aux2 = Table@0, 8j, 0, M<, 8i, 0, N + R - L<D;

alpha1 = -HsigmaepsilonL * 0.5 * Hdtdx2L +

0.5 * H0.5 * HsigmaepsilonL - r + alphaL * HdtdxL;

alpha2 = 1 + Hdtdx2L * HsigmaepsilonL -

0.5 * H0.5 * HsigmaepsilonL - r + alphaL * HdtdxL + lambda * deltat;

alpha3 = -0.5 * HsigmaepsilonL * Hdtdx2L;

F = DiagonalMatrix@Table@alpha2, 8i, 0, N<DD;

E = DiagonalMatrix@Table@alpha1, 8i, 0, N - 1<D, 1D;

G = DiagonalMatrix@Table@alpha3, 8i, 0, N - 1<D, -1D;

B = F + E + G; P = Inverse@BD;

For@i = 1, i £ N + 1 - L + R, i++,

u@@1, iDD = y@@1, iDD;

D;

Do@
For@i = L, i £ R, i++,

aux1@@n - 1, i - L + 1DD = u@@n - 1, i - L + 1DD;

D;

For@i = R + 1, i £ N + R, i++,

aux2@@n - 1, i - RDD = u@@n - 1, i - L + 1DD;

D;

A.4. Numerical Solution of PIDE 41

A.4 Numerical Solution of PIDE



D;

For@i = 1, i £ N, i++,

Υ@@n - 1, iDD = aux2@@n - 1, iDD;

D;

For@i = N + 1, i £ N + R - L + 1, i++,

Υ@@n - 1, iDD = aux1@@n - 1, i - NDD;

D;

Υfourier = Fourier@Table@Υ@@n - 1, iDD, 8i, 1, N + R - L + 1<DD;

d = InverseFourier@Table@Μfourier@@iDD * Υfourier@@iDD, 8i, 1, N + R - L + 1<DD;

Do@u@@n, iDD = y@@n - 1, iDD, 8i, 1, -L<D;

Do@u@@n, iDD = y@@n - 1, iDD, 8i, N - L + 2, N + 1 - L + R<D;

Do@
u@@n, iDD = P@@i + L, 1DD *

Hu@@n - 1, -L + 1DD + deltat * d@@N + R - L + 1DD - alpha3 * u@@n, -LDDL +

Sum@P@@i + L, m + LDD * Hu@@n - 1, mDD + deltat * d@@m + L - 1DDL,

8m, -L + 2, N - L<D + P@@i + L, N + 1DD *

Hu@@n - 1, N - L + 1DD + deltat * d@@NDD - alpha1 * u@@n, N - L + 2DDL;

, 8i, -L + 1, N - L + 1<D;

, 8n, 2, M + 1<D;

Table@8S * Exp@Al + Hi - 1L * deltaxD, Exp@-r Hj - 1L * deltatD * u@@j, iDD<,

8j, 1, M + 1<, 8i, -L + 1, N - L + 1<D
D

PriceputVGPIDE =

N@PutOptVGFFFinal@100, 100, VGDensity@0.16, 0.12, -0.33, xD, 0, 0.16,

0.12, -0.33, x, -0.5, 0.5, -1, 1, 1, 100, 200,

0.3, 200, Max@100 - 100 * Exp@xxD, 0D, xxDD@@201DD
ListLinePlot@8PriceputVGPIDE, FPut<, PlotRange ® All, AxesLabel ® 8S, Price<D

Computation of the price of an
european option using Fast Fourier Transform.

VGCF@u_, s_, Σ_, r_, q_, Θ_, Ν_, t_D :=

WithB:w = H1 � ΝL LogB-Θ Ν -
Ν Σ2

2
+ 1F>,

1

2
Ν u2 Σ2 - ä Ν u Θ + 1

-
t

Ν

ãI u Ht Hr+wL+Log@sDLF;

VGEuropeanCall@K_, s_, Σ_, r_, q_, Θ_, Ν_, t_D :=

WithB8k = Log@KD, a = 1<,
Exp@- a kD

2 Pi

ReBNIntegrateBExp@- I v kD Exp@-r tD
VGCF@v - Ha + 1L I, s, Σ, r, q, Θ, Ν, tD

a^2 + a - v^2 + I H2 a + 1L v
,

8v, -10, 10<, Method ® 8Automatic, "SymbolicProcessing" ® 0<FFF;

VGEuropeanPut@k_, s_, Σ_, r_, q_, Θ_, Ν_, t_D :=

VGEuropeanCall@k, s, Σ, r, q, Θ, Ν, tD + k Exp@-r tD - s;

PutOptionVGFFTx@N_, A_, S_D := Module@8deltax<,

deltax = 2 * A � N;

Table@8S * Exp@- A + Hi - 1L * deltaxD, VGEuropeanPut@100,

S * Exp@- A + Hi - 1L * deltaxD, 0.12, 0, 0, -0.33, 0.16, 1D<, 8i, 1, N + 1<D
D;

Code to compute the errors.
PutOptionVGFFTt@M_, T_D := Module@8deltat<,

deltat = T � M;

Table@8Hj - 1L * deltat, VGEuropeanPut@100,

100, 0.12, 0, 0, , 0.16, D<, D

2   CodeImpExp.nb
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100, 0.12, 0, 0, -0.33, 0.16, Hj - 1L * deltatD<, 8j, 1, M + 1<D
D;

FPut = PutOptionVGFFTx@200, 0.5, 100D
ImpliedVolatilityx@price_, x_, K_, T_, r_, S_D := Module@8p, Ix, It, o<,

p@o_D := price �. 8o ® x<;

Ix = Table@8p@Length@priceDD@@j, 1DD,

FinancialDerivative@8"European", "Put"<, 8"StrikePrice" ® K,

"Expiration" ® T, "Value" ® p@Length@priceDD@@j, 2DD<,

8"InterestRate" ® r, "CurrentPrice" ® S, "Dividend" ® 0<,

"ImpliedVolatility"D<, 8j, 1, Length@priceD<D
D;

ImpliedFFTx =

ImpliedVolatilityx@PutOptionVGFFTx@200, 0.5, 100D, x, 100, 1, 0, 100D;

ImpliedPIDEx = ImpliedVolatilityx@PriceputVGPIDE, x, 100, 1, 0, 100D;

Err@W_, A_, U_D := Module@8deltax, error<,

deltax = HA - WL � U;

error =

Table@Abs@ImpliedFFTx@@j, 2DD - ImpliedPIDEx@@j, 2DDD * 100, 8j, 1, U<D;

ListLinePlot@Table@8- A + i * deltax, error@@iDD<, 8i, 1, U<D,

PlotRange ® 80, 50<D
D;

Err@-0.5, 0.5, 100D
PutOptionVGFFTt@200, 1D;

priceputVGFFFinalt =

Transpose@N@PutOptVGFFFinal@100, 100, VGDensity@0.16, 0.12, -0.33, xD,

0, 0.16, 0.12, -0.33, x, -0.5, 0.5, -1, 1, 1, 100, 200,

0.6, 200, Max@100 - 100 * Exp@xxD, 0D, xxDDD@@100 � 2 + 1DD;

ImpliedVolatilityt@price_, x_, M_, K_, T_, r_, S_D :=

Module@8p, Ix, It, o, m, deltat<,

p@o_D := price �. 8o ® x<;

deltat = T � M;

Ix = Table@8Hj - 1L * deltat,

FinancialDerivative@8"European", "Put"<, 8"StrikePrice" ® K,

"Expiration" ® Hj - 1L * deltat, "Value" ® p@Length@priceDD@@j, 2DD<,

8"InterestRate" ® r, "CurrentPrice" ® S, "Dividend" ® 0<,

"ImpliedVolatility"D<, 8j, 1, Length@priceD<D
D;

ImpliedFFTt = ImpliedVolatilityt@PutOptionVGFFTt@200, 1D, x, 100, 100, 1, 0, 100D
ImpliedPIDEt =

Reverse@ImpliedVolatilityt@priceputVGFFFinalt, x, 200, 100, 1, 0, 100DD
Err@T_, M_D := Module@8deltat, error<,

deltat = T � M;

error =

Table@HAbs@ImpliedFFTt@@j, 2DD - ImpliedPIDEt@@j, 2DDDL, 8j, 1, M + 1<D;

ListLinePlot@Table@8Hi - 1L * deltat, error@@iDD<, 8i, 1, M<D,

PlotRange ® 80, 1<D
D;

Err@1, 100D

CodeImpExp.nb  3
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Simulation of prices under the Variance Gamma Process.
path@s_, r_, sigma_, k_, theta_, n_, T_D :=

Module@8deltat, deltax, normal, gama, sum, m, g, prices, distGama, distND<,

deltat = T � n;

g = H1 � kL * Log@1 - theta * k - 0.5 * k * sigma^2D;

m = Table@r * i * deltat + i * deltat * g, 8i, 1, n<D;

distND = NormalDistribution

@0, 1D;

distGama = GammaDistribution@deltat � k, 1D;

normal = Table@RandomReal@distNDD, 8i, 1, n<D;

gama = Table@k * RandomReal@distGamaD, 8i, 1, n<D;

deltax = Table@0, 8i, 1, n<D;

For@i = 1, i £ n, i++,

deltax@@iDD = sigma * normal@@iDD * Sqrt@gama@@iDDD + theta * gama@@iDD;

D;

sum = Table@0, 8i, 1, n<D;

sum@@1DD = deltax@@1DD;

For@j = 2, j £ n, j++,

sum@@jDD = sum@@j - 1DD + deltax@@jDD;

D;

prices = Table@0, 8i, 1, n<D;

For@i = 1, i £ n, i++,

prices@@iDD = s * Exp@sum@@iDD + m@@iDDD;

D;

Last@pricesD
D;

Computation of a binary option using Monte Carlo.
mcprice@n_, nt_, s_, K_, T_, r_, sigma_, k_, theta_D :=

Module@8simul, soma, preço, y, S, mat<,

simul = n; S = s; mat = T; soma = 0;

y = Table@path@S, r, sigma, k, theta, nt, matD, 8j, 1, simul<D;

For@i = 1, i £ simul, i++,

If@y@@iDD ³ K, soma = soma + 1, soma = somaD;

D;

preço = Exp@-r * TD * H1 � simulL * soma

D;

knockout@sim_, n_, nt_, s_, K_, T_, r_, sigma_, k_, theta_D := Module@8kprice<,

kprice = HSum@mcprice@n, nt, s, K, T, r, sigma, k, thetaD, 8j, 1, sim<DL � sim

D;

kp = Table@80.25 + H2 - 0.25L � H50L * Hj - 1L, knockout@25, 100, 100,

0.25 + H2 - 0.25L � H50L * Hj - 1L, 1, 0.1, 0, 0.25, 2, -0.1D<, 8j, 1, 50<D
kp01 = Table@80.25 + H2 - 0.25L � H50L * Hj - 1L, knockout@25, 100, 100,

0.25 + H2 - 0.25L � H50L * Hj - 1L, 1, 0.5, 0, 0.25, 2, -0.1D<, 8j, 1, 50<D;

kp05 = Table@80.25 + H2 - 0.25L � H50L * Hj - 1L, knockout@25, 100, 100,

0.25 + H2 - 0.25L � H50L * Hj - 1L, 1, 1, 0, 0.25, 2, -0.1D<, 8j, 1, 50<D;

ListLinePlot@8kp, kp05, kp01<, DataRange ® 80, 2<, AxesLabel ® 8S, Price<D
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