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“You know that I write slowly. This is chiefly because I am never satisfied until I have said
as much as possible in a few words, and writing briefly takes far more time than writing at
length.”

Carl Friedrich Gauss
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Central Limit Theorem Variations

by Daniel VITAL DE ALCÂNTARA

One of the most important theorems of Probability Theory is the Central Limit
Theorem. It states that if Xn is a sequence of random variables then the normal-
ized partial sums converge to a normal distribution. This result omits any rate of
convergence. Furthermore the lack of assumptions makes us wonder if some gener-
alizations are possible.

Particularly in this essay we will focus on two questions: Does it exist a (uni-
versal) rate of convergence for the Central Limit Theorem? Furthermore in which
circumstances can we apply the Central Limit Theorem?

The Lévy Continuity Theorem states that convergence on distribution functions
is equivalent to convergence on characteristic functions. Furthermore when we ap-
ply Taylor expansions to characteristic functions we get a polynomial with the mo-
ments as coefficients. For these reasons, on our case computing with characteristic
functions is preferable.

By the Berry Essen Theorem we can in fact find the rate of convergence we are
looking for. And by the Lindeberg Theorem and Lyapunov Condition we find that
the Central Limit Theorem applies to sequences that are not identically distributed.
Finally, using the Ergodic Theorem we will explain how stochastic processes are
related to Ergodic Theory. With this we will show how this theorem can be used to
find a result when the sequence is not independent.

Knowing the distribution of the sum of a sequence of random variables is very
useful in applications. However we rarely have infinite random variables to sum.
Therefore knowing the rate of convergence allows us to decide when it is acceptable
to assume the variable is normally distributed. Furthermore knowing that the Cen-
tral Limit Theorem holds even when some assumptions on the variables are relaxed
may help us in many applications where we do not have i.i.d sequences.
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Introduction

The Central Limit Theorem is one of the major results of Probability Theory.
Many of the concepts in Probability theory drew inspiration from casinos, card games,
dices and coin tosses. The Bernoulli distribution is a mathematical model for a coin
toss, while the (discrete) Uniform distribution is a generalization of a roll of a dice.
We will also begin our study of the Central Limit Theorem by drawing inspiration
from simple examples.

Let us start by the following example: Most board games require two - fair six
sided - dice to be played. A reasonable question is: why not build a twelve sided
dice instead? A fair twelve sided dice is easy to understand. We are as likely to get a
four as a seven or a one - or any other number for that matter. However with two six
sided dice this process is different. You sum the observed values. On each dice you
can observe one through six. Hence you have thirty six (6× 6) possible outcomes.
Since the dice are fair all these outcomes are equally likely. They are divided into
eleven events - two through twelve. Each corresponding to a possible sum of both
dices. Let us call one dice dice A and another dice B. A possible outcome is dice A
yielding one and dice B yielding three. In this case we got the event four (1+ 3). An-
other possible outcome is if both dice yielded two. We would also get the event four
(2 + 2). However if we got the event two, we would know the outcome i.e. what
each dice yielded. Contrary to four - for which there are a few possibilities for each
dice - if we get a two the only option is if both dice yielded one. This means that
there is an higher probability to get a four than to get a two. Since there are more
outcomes for which we observe a four. If this is not convincing enough: see example
(1.2). Or - with a lot of determination - throw two six sided dice one hundred times
and write down the sum of the faces observed.
Therefore if you throw a twelve sided dice the result is completely random. All num-
bers are equally likely to be observed. However if you throw two six sided dice you
have some insight on the result. In some sense it is less random to have two six sided
dice than one twelve sided dice. Given this a reasonable question is: what about an
eighteen sided dice and three six sided dice? Are the three six sided dice even less
random than the eighteen sided dice? We could go even further and wonder about
one million six sided dice and a six million sided dice. How would they compare?
Would the six sided dice be much less random than the six million sided dice? That is
exactly the question answered by the Central Limit Theorem and we will explore it
in this essay. This gives us the first intuition of what Central Limit Theorem is.

Let us try another example: Consider your favorite team based sport. In most of
these sports it is quite hard to predict - with high certainty - which team is going to
win a given match. This is one of the reasons why there are websites that allow peo-
ple to bet on which team they think is going to win. This shows the unpredictability
of such matches. This unpredictability is one of the reasons sports are appealing to
so many people. We are never sure who is going to win. We try to analyze every
decision in an attempt to predict the result. This contrasts with the predictability of
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seasons. It is much easier to predict with high certainty which team is going to win
a given season. Consider one of the most popular sports in the world: football. It
would not come as a shock if I predicted that F.C. Barcelona or Real de Madrid will
win the next Spanish football season. This is even true for very balanced leagues
like the Premier League in England. From the twenty teams competing if I claim the
next champion will be among the teams: Arsenal, Chelsea, Liverpool, Manchester
United and Manchester City, no one would be surprised.
In the season of 1995/1996 of the Premier League the number of teams competing
was reduced from twenty two to twenty and has been twenty ever since. That is
twenty three years of twenty teams competing against each other. Each team plays
with all other nineteen teams twice. Therefore there are thirty eight games to be
played by each team.
Let me propose a game: Consider a team, for our example we will use Manchester
United. Then you pick a season from the 1995/1996 to 2017/2018 and I have three
chances to guess how many of the thirty eight games played the team did not lose
(i.e. it won or drawn). How hard is it for me to guess it correctly? One would expect
for me to fail quite often. If the number of games a team did not lose was (uniformly)
random then one would expect for me to be right about 1 in each 38 times (approx-
imately 2.6%) since I had three guesses - and assuming I was smart enough not to
guess the same number twice - one would expect me to win about 3 in each 38 times
(approximately 7.8%). Even if we said that we are sure that Manchester United is
a decent team that loses less than half the games we would still be looking at me
winning 3 in 19 times (approximately 16%).
Then you pick the season and whichever season you pick my guess would be that
Manchester United did not lose 33, 32 or 31 games i.e Manchester United lost either
5, 6 or 7 games in that particular season. Would you care to guess how often I will
be right? If we played enough times you would find that of all the seasons I would
be correct in 14 of those 23 seasons (an astonishing 61%).

These examples suggest a certain type of long term predictability. Even if we do
not know the result of a given experience if we repeat it enough times we get a good
insight about the sum of all results. Nowadays the knowledge of the long term pre-
dictability of systems like these is known as the Central Limit Theorem, which is the
main focus of this essay. We will explore when and how can we apply the Central
Limit Theorem. The main questions I aim to answer in this thesis are: Is there a (uni-
versal) rate of convergence for the Central Limit Theorem? Furthermore in which
circumstances can we apply the Central Limit Theorem?

In the first chapter the reader may find an introduction to Central Limit Theorem:
the main definitions, some examples and a proof of the Theorem. A reader that has
studied the Central Limit Theorem before may wish to skip this chapter. Chapters 2,
3 and 4 are independent and may be read in whichever order is preferred. Chapter
2 studies rates of convergence for the Central Limit Theorem. Chapter 3 studies if it
is possible to prove a Central Limit Theorem when the sequence of variables is not
identical. Finally Chapter 2 studies a proof of the Central Limit Theorem for non
independent sequences (under some special circumstances).
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Chapter 1

Classic Central Limit Theorem

On the first section of this chapter we will review some concepts that are impor-
tant to understand the rest of this essay. Most of these concepts are basic measure
theory properties and most readers may already be familiar with them. We will go
through the properties in order to recall them, as such most proofs of this section
are omitted, and references for the proofs will be provided when possible. On the
second section we will state and prove the Central Limit theorem. Even though the
proof is quite simple, it is included because this theorem is the motivation for all the
questions we will answer throughout this essay.

1.1 Characteristic Function

Proposition 1.1.1. Let X be a random variable. Then for every t ∈ R we have

|EeitX| ≤ 1.

Proof. |EeitX| ≤ E|eitX| = E1 = 1.

Remark 1.1. By the above proposition (1.1.1) we can conclude that EeitX always ex-
ists.

Definition. Let X be a random variable. Define the function φX : R 7→ R by

φX(t) = EeitX

and call it Characteristic function of X. When there is no ambiguity we denote φX
simply by φ.

Proposition 1.1.2. Let X be a random variable. Then for every t, b ∈ R we have

φbX(t) = φX(bt).

Proof. φbX(t) = Eeit(bX) = Eei(bt)X = φX(bt).

Proposition 1.1.3. Let X and Y be two independent random variables. Then for every t ∈ R

we have
φX+Y(t) = φX(t)φY(t),

i.e. the characteristic function of the sum is the product of the characteristic functions.

Proof. φX+Y(t) = Eeit(X+Y) = EeitXEeitY = φX(t)φY(t)
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Definition. Let X = {Xn}∀n∈N be an i.i.d. sequence of random variables. Then we
denote by SX

n the random variable

SX
n =

n

∑
i=1

Xi

and call it the partial sum of order n of X. When there is no ambiguity we denote SX
n

simply by Sn.

Remark 1.2. Two random variables with the same distribution have the same charac-
teristic function1.

Proposition 1.1.4. Let X = {Xn}∀n∈N be an i.i.d. sequence of random variables. Then

φSn(t) = (φX1(t))
n .

Proof. The result follows from applying proposition (1.1.3) n times.

Example 1.1. The characteristic function of a random variable X with normal distri-
bution (with µ = 0 and σ2 as its variance) is

φX(t) = e−
σ2t2

2 .

Solution.

φX(t) = EeitX =
∫

Ω
eitXdP =

∫
R

eitx fX(x)dx =
1√

2πσ2

∫
R

eitxe−
x2

2σ2 dx

=
1√

2πσ2

∫
R

exp
(
− x2 − 2itxσ2

2σ2

)
dx =

1√
2πσ2

∫
R

exp
(
−x

x− 2itσ2

2σ2

)
dx

Consider a new variable y such that x = y + itσ2 then

φX(t) =
1√

2πσ2

∫
R

exp
(
− (y + itσ2)(y− itσ2)

2σ2

)
dy =

1√
2πσ2

∫
R

exp
(
−y2 − (itσ2)2

2σ2

)
dy

Now we can separate the constant part. Notice that the remaining integral is equal
to one since it is the integral of the function of probability density of a (centered)
normal distribution over its support.

φX(t) =
1√

2πσ2

∫
R

exp
(
− y2

2σ2

)
dy︸ ︷︷ ︸

=1

e−
σ2t2

2 = e−
σ2t2

2 .

We will from now on use this result in many proofs.

1.2 Central limit theorem

Remark 1.3. The Central Limit theorem states that the sum of any i.i.d. sequence
of random variables converges (in distribution) to the normal distribution, so one
may be wondering why are we studying characteristic functions instead of conver-
gence (in distribution) of random variables. The reason for this is the following Lévy

1This stems from the fact that the Fourier Transform is a bijection, for more on Fourier Transforms
see the Appendices.
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Continuity Theorem which states that convergence in distribution is equivalent to
pointwise convergence of characteristic functions.

Definition. Let (Ω, F , µ) be a probability space. Let X = {Xn}∀n∈N be a sequence
such that Xi is a random variable with distribution function Fi. Let Y be a random
variable with distribution function FY. If for every x ∈ R where FY is continuous,

lim
n→∞

Fn(x) = FY(x),

we say that Xn converges in distribution to Y and denote it by X d−→ Y.

Theorem (Lévy Continuity Theorem). Let (Ω, F , µ) be a probability space. Let X =
{Xn}∀n∈N be a sequence such that Xn is a random variable with distribution function Fn
and characteristic function φn. Let Y be a random variable with distribution function FY and
characteristic function φY. Then for every x ∈ R

X d−→ Y ⇐⇒ lim
n→∞

φn(x) = φY(x).

Proof. see Varadhan, 2001 in the pages 39 and 40.

Theorem (Central Limit Theorem). Let Xi be a sequence of i.i.d. random variables with
mean 0 and variance 1. Then,

lim
n→∞

P

(
1√
n

n

∑
i=1

Xi ≤ a

)
=
∫ a

−∞

1√
2π

exp
(
− x2

2

)
dx,

i.e.
1√
n

n

∑
i=1

Xi
d−→ Y where Y ∼ N(0, 1).

Proof. Consider the Taylor expansion of order 2 of the characteristic function of Xn

φ(t) = φ(0) + φ′(0)t +
φ′′(0)

2
t2 + O(t3)

= 1 + iE(X)t + i2 E(X2)

2
t2 + O(t3)

= 1 + i0t− σ2

2
t2 + O(t3). (1.2.1)

Then by proposition (1.1.2) we have

φ Xn√
n
(t) = 1− σ2

2n
t2 + O

(
t3

n3/2

)
,

hence by proposition (1.1.4)

φ Sn√
n
(t) =

(
1− σ2

2n
t2 + O

(
t3

n3/2

))n

.

Applying the limit on both sides2

lim
n→∞

φ Sn√
n
(t) = e−

σ2t2
2 = φY(t).

2For more details review proposition (A.5.1.) with α = 1/2
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The result follows from the Lévy Continuity Theorem.

Definition. Let X be a random variable such that EX = µ ∈ R and E(X − µ)2 =
σ2 ∈ R+

0 . We denote by X̃ the random variable

X̃ =
X− µ

σ

and call it the normalization of X.

Remark 1.4. From the definition above it is easy to check3 that for any random vari-
able X, if X̃ exists then EX̃ = 0 and Var(X̃) = EX̃2 = 1.

Definition. Let X = {Xn}∀n∈N be a sequence of random variables and Y ∼ N(0, 1).
If for all n ∈N exists S̃n and

S̃n√
n

d−→ Y,

we say that the Central Limit Theorem holds on X.

Remark 1.5. Let X = {Xn}∀n∈N be a sequence of random variables with mean µ and
finite variance σ2 < ∞. Let Y ∼ N(0, 1) be a random variable with standard normal
distribution. Note that,

√
n

(
1

nσ

n

∑
i=1

Xi − µ

)
d−→ Y ⇐⇒ S̃n√

n
d−→ Y.

Example 1.2. Consider Ω = {1, 2, 3, 4, 5, 6} and a random variable X : Ω 7→ R such
that X is the identity function. Consider a probability measure on Ω such that for all
x ∈ {1, 2, 3, 4, 5, 6} we have

P({ω ∈ Ω : X(ω) = x}) = 1/6,

i.e we have a mathematical model for a fair 6 sided dice. Here we have µX = 3.5
and σ2

X ≈ 1.458.
[ n = 1 ] We rolled this (imaginary) dice 1 000 000 times and observed which face

we got each time, and with this information we made the top left graph of figure 1.1.
As expected we got each face approximately 1

6 ≈ 0.166667
[ n = 2 ] Then we rolled this (imaginary) dice 2 times and observed the sum of

the faces we got each time (S2), then we repeated this process one million times and
with this information we made the top right graph of figure 1.1. Here the results
are more interesting. We get more often the "middle numbers" (6, 7 and 8) then the
"extreme numbers" (2,3,11 and 12). This makes sense since to get 2 there is only one
way (dice1 =⇒ 1 and dice2 =⇒ 1) while there are several ways of getting 7
(dice1 =⇒ 3 and dice2 =⇒ 4; dice1 =⇒ 4 and dice2 =⇒ 3; dice1 =⇒ 5 and
dice2 =⇒ 2; etc...).

[ n = 10 ] Then we rolled this (imaginary) dice 10 times and observed the sum of
the faces we got each time (S10), then we repeated this process one million times and
with this information we made the bottom left graph of figure 1.1.

[ n = 30 ] Then we rolled this (imaginary) dice 30 times and observed the sum of
the faces we got each time (S30), then we repeated this process one million times and
with this information we made the bottom right graph of figure 1.1. Here we can see

3EX̃ = 1
σ (EX− µ) = 0 and Var(X̃) = EX̃2 − (EX̃)2 = EX̃2 = 1

σ2 (E(X− µ)2) = Var(X)
σ2 = 1.
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FIGURE 1.1: Central Limit Theorem example using uniform distribu-
tion

that the distribution is already quite similar to the normal. What the Central Limit
Theorem tells us is that the further we go the closer we get to the normal distribution.

We have that ESn = nµX which can be easily seen in the figure. We also have
that Var(Sn) = nσ2

X

1.3 Centered Variables

Proposition 1.3.1. Let X = {Xn}∀n∈N be i.i.d. random variables. Then the Central Limit
Theorem holds on X if and only if it holds on X̃ i.e. let X = {Xn}∀n∈N be i.i.d. random
variables such that for all natural n EXn = 0 and µ = {µn}∀n∈N be a sequence of real
numbers, define for all natural n and Yn = Xn + µn. Then the central limit theorem holds
on Y if and only if it holds on X.

Proof. Let Z ∼ N(0, 1). Notice that ESY
n = ∑n

i=1 µi and Var(SY
n ) =

1
nσ2 . Then

S̃X
n

d−→ Z ⇐⇒ 1√
nσ

(
n

∑
i=1

(Yi − µi)

)
d−→ Z.

To get the second equivalence above sum and subtract µi to Xi and substitute Yi
using its definition.

1√
nσ

(
n

∑
i=1

Yi −
n

∑
i=1

µi

)
d−→ Z ⇐⇒ 1√

nσ

(
SY

n −
n

∑
i=1

µi

)
d−→ Z,

which is equivalent to S̃Y
n

d−→ Z.

Remark 1.6. From the proposition above it becomes clear that considering sequences
of random variables with any means or means equal to zero is equivalent when
studying central limit convergence. Therefore in the name of simplicity and without
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any loss of generality all random variables considered in this essay will be assumed
to have mean zero. Then, for all X : Ω 7→ R we assume that EX = 0.
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Chapter 2

Rates of Convergence

If we are working with a sum of i.i.d. random variables, the Central Limit Theo-
rem tells us that the bigger the number of variables the smaller the error, and that the
error tends to zero. However, in applications we are often summing a finite number
of random variables and would like to know how big is the error we incur by as-
suming that the sum has normal distribution. This Chapter aims at answering this
question. For this chapter the reader should be familiar with the Fourier Inversion
Formula (section A.3), Fubini Theorem (section A.3), Riemann-Lebesgue Lemma (section
A.2) and Holder’s inequality (section A.4). All the claims of the theorems are provided
in the appendices. References to the proofs are also provided. The main theorem for
this chapter is called the Berry-Esseen Theorem.

2.1 The Integrability Problem

Remark 2.1. Given a sequence of i.i.d. random variables we would like to find a good
upper bound for the error between the density function of S̃X

n and the density of a
standard normal distribution. An upper bound is an approximation and therefore
a Taylor expansion may be an appropriate place to start. Since we want to put our
constrains in the moments a good idea may be to study the characteristic function of
S̃X

n . This can be derived from the characteristic functions of Xn. The Taylor expan-
sions have as coefficients exactly the moments of X. We will start by trying to find
a good bound for the difference between the characteristic functions to check if this
idea has any chance of working.

Remark 2.2. Let X be a random variable such that µ = EX, σ2 = EX2 and ρ = EX3

all exist (i.e. are finite). Then1 ρ ≥ σ3.

Proposition 2.1.1. Let a, b and C be real numbers such that |a| and |b| are less or equal to
C. Then for any natural number n we have the inequality |an − bn| ≤ n|a− b|Cn−1.

Proof. see proposition (A.4.3).

Lemma 2.1. Let {Xi}i∈N be a sequence of normalized random variables such that EX3
i =

ρ < ∞. Let φn be the characteristic function of S̃n and Y ∼ N(0, 1) . Then exists a natural
number N such that for all 0 < k <

√
2, t in ]− k

√
n/ρ, k

√
n/ρ[ and n > N we have

|φn(t)− φY(t)| ≤
ρ√
n

exp
(
− t2

4

)(
t3

6
+
|t|4
24

)
.

Proof. Let T = k
√

n
ρ . We will start by tying to apply the above proposition to φ(t/√n)

and exp (−t2/2n). Hence we must find an upper bound for both. By Taylor expansion

1see Holder’s inequality and corollary (A.4).
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of order 3, exists c in the interval ]0, t[ such that

φX(t) = 1 + iEXt−EX2 t2

2
− iEX3φ(c)

t3

6
.

Taking the absolute value on both sides and noting that the characteristic function is
always bounded (1.1.1) and that X has expected value 0 and variance 1 we have

|φ(t)| ≤
∣∣∣∣1− t2

2

∣∣∣∣+ ρ
|t|3
6

and
∣∣∣∣φ(t)− 1 +

t2

2

∣∣∣∣ ≤ ρ
|t|3
6

. (2.1.1)

Then, if we replace t by t/√n on the inequality on the right (the left one will be used
later) ∣∣∣∣φ( t√

n

)∣∣∣∣ ≤ ∣∣∣∣1− t2

2n

∣∣∣∣+ ρ
|t|3

6n
3
2
=

∣∣∣∣1− t2

2n

∣∣∣∣+ t2

2n
ρ|t|
3
√

n
.

By remark (2.2) we have ρ ≥ σ3 = 1. Hence2 we have T2 ≤ 2n which implies
t2 ≤ 2n. Therefore we may remove the absolute value on the right hand side. Then∣∣∣∣φ( t√

n

)∣∣∣∣ ≤ 1− t2

2n
+

t2

2n
1
3

ρ|t|√
n
≤ 1− t2

2n
+

t2

2n
1
3

ρT√
n

.

Replacing T by its definition for the first step and knowing3 that 1− x < e−x for the
third step we get∣∣∣∣φ( t√

n

)∣∣∣∣ ≤ 1− t2

2n

(
1− k

3

)
= 1− (3− k)t2

6n
≤ exp

(
− (3− k)t2

6n

)
.

Hence we found an upper bound for φ(t/√n). Now we need to check if the upper
bound is valid for exp (−t2/2n). Since k is positive we have that −1/2 < −(3− k)/6,
thus

φn
Y(t) = exp

(
− t2

2n

)
≤ exp

(
− (3− k)t2

6n

)
.

Now we have a good candidate for our upper bound. Then by the above proposition

|φn(t)− φY(t)| ≤ n
∣∣∣∣φ( t√

n
)− exp

(
− t2

2n

)∣∣∣∣ exp
(
− (3− k)(n− 1)t2

6n

)
.

For sufficiently large n we have 0 < k <
√

2 =⇒ − (3−k)(n−1)
6n < − 1

4 . Hence

|φn(t)− φY(t)| ≤ n
∣∣∣∣φ( t√

n

)
− exp

(
− t2

2n

)∣∣∣∣ exp
(
− t2

4

)
. (2.1.2)

Now sum and subtract 1 + t2

2n and use the triangular inequality

n
∣∣∣∣φ( t√

n

)
− exp(− t2

2n
)

∣∣∣∣ ≤ n
∣∣∣∣φ( t√

n

)
− 1 +

t2

2n

∣∣∣∣+ n
∣∣∣∣1− t2

2n
− exp

(
− t2

2n

)∣∣∣∣ .

Use inequality (2.1.1) on the first term and for the second term recall that t2

2n < 1 and
the fact that |e−x − 1 + x| ≤ x2

2 for all x in the interval ]0, 1[ (by proposition (A.4.1).

2T2 = k2n
ρ2 ≤ k2n ≤ 2n since k ≤

√
2.

3for a proof see proposition (A.4).
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Then

n
∣∣∣∣φ( t√

n
)− exp

(
− t2

2n

)∣∣∣∣ ≤ ρ
|t|3

6
√

n
+

t4

8n
,

by substituting this last equation on (2.1.2)

|φn(t)− φY(t)| ≤ exp
(
− t2

4

)(
ρ√
n
|t|3
6

+
t4

8
1√
n

1√
n

)
.

By construction4 of T we have

|φn(t)− φY(t)| ≤ exp
(
− t2

4

)(
k|t|3
6T

+
kt4

24T

)
.

The result follows from noting that k/T = ρ/√n.

Lemma 2.2. Let X and Y be centered random variables such that their characteristic func-
tions are integrable. Then

FX(x)− FY(x) =
1

2π

∫
−e−ity φX(t)− φY(t)

it
dt

Proof. Since φX and φY are integrable, we can use the Fourier Inversion Formula.
Then

fX(x) =
1

2π

∫
e−itxφX(t)dt and fY(x) =

1
2π

∫
e−itxφY(t)dt.

Subtracting the above equations one by the other an integrating from a to x we get∫ x

a
fX(x)− fY(x)dx =

1
2π

∫ x

a

∫
e−ity(φX(t)− φY(t))dtdy.

Note that FX and FY are respectively the indefinite integrals of fX and fY. Hence we
can compute the integral on the left hand side. On the right hand side we have a
bounded domain on y and everything is integrable on t thus we can apply Fubini
Theorem to get

(FX(x)− FY(x))− (FX(a)− FY(a)) =
1

2π

∫
(e−itx − e−ita)

(φX(t)− φY(t))
it

dt.

The above integral exists because limt→0
(φX(t)−φY(t))

it ≤
∣∣∣limt→0

1−φY(t)
t

∣∣∣ = |φ′Y(0)| ≤
E|Y| < ∞. To complete the proof apply the limit as a tends to −∞ to get the result
from Riemann-Lebesgue Lemma.

Remark 2.3. This lemma has a limitation: the characteristic functions must be inte-
grable. Our aim is to compare the normal distribution - which has integrable char-
acteristic function - to the normalized sum of other random variables. This random
variables may not have integrable characteristic function. However all characteristic
functions are bounded5. Therefore if we multiply our characteristic function - which
we do not know if it is integrable - by one that is zero outside a closed interval this

4Since T = k
√

n/ρ we have ρ/√n = k/T (first term) and if n ≥ 10 =⇒ 1/√n < 1/3 then 1/√n× 1/√n <
ρk/T× 1/3 ≤ k/T× 1/3 (second term).

5see proposition 1.1.1.
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multiplication will be integrable. Since the integral will be less or equal to 1 × L
where L is the lengh of the interval and 1 is the maximum value a characteristic
function may have. Therefore we only need to find a characteristic function that is
zero outside a closed interval.

2.2 Polya Distribution

Proposition 2.2.1. Let θ be a strictly positive real. Then (1− cos θx)/πθx2 ≥ 0.

Proof. For the inequality just note that πθx2 ≥ 0 and the cosine is always smaller
than one.

Proposition 2.2.2. Let θ be a strictly positive real. Then∫ 1− cos θy
πθy2 dy = 1.

Proof. Consider a random variable X with triangular density6 fX(y) = (1− |y|)+.
Then φX(u) = 2 1−cos u

u2 . Therefore by the Fourier Inversion Formula we have that

1
2π

∫
2

1− cos u
u2 e−iuydu = (1− |y|)+ .

Replace u = θx and t = θy

∫
θ

1− cos θx
πθ2x2 e−ixtdx =

(
1−

∣∣∣∣ t
θ

∣∣∣∣)+

.

Note that the above formula is valid for every t. Simplify θ and set t = 0 to get the
result.

Remark 2.4. By the previous proposition we have that µ(A) =
∫

A
1−cos θx

πθx2 dx is a prob-
ability measure that has f (x) = 1−cos θx

πθx2 as its probability density function.

Definition. Let X be a random variable with law

µ(A) =
∫

A

1− cos θx
πθx2 dx.

We call X a random variable with Polya distribution of parameter θ and write it by
X ∼ Polya(θ).

Remark 2.5. Let X ∼ Polya(θ). From the proof of the above proposition (2.2.2) fol-
lows that the characteristic function of X is φX(t) = (1− |t/θ|)+. Furthermore the
characteristic function is zero outside the interval ]− θ, θ[.

Remark 2.6. Let X ∼ Polya(θ). Then fX(x) = 1−cos θx
πθx2 . We have that that fX is

symmetric.

2.3 Berry-Esseen Theorem

Remark 2.7. Let X be any random variable and P ∼ Polya(T) a random variable
with Polya distribution of parameter T. Since - just like φP(t) - is zero outside of the
interval [−T, T], we have that φX(t)φP(t) is integrable.

6For more on the triangular distribution see Durrett, 2010, page 93, example 3.3.5.



Chapter 2. Rates of Convergence 13

Remark 2.8. We have that φX(t)φP(t) is the characteristic function of X + P. There-
fore we will work with the distribution function of X + P which is computed as the
convolution between FX and FP and denoted by FX ∗ FP.

Remark 2.9. Therefore we will apply lemma (2.2) to the convoluted random variables.
Hence we need to compare the difference between the convoluted densities and the
original ones. That is the aim of the next lemma.

Lemma 2.3. Let X and Y be random variables such that FY is continuous and differentiable
and let FP be the distribution of a Polya random variable with parameter T. Then

|FX(x)− FY(x)| ≤ 2|FX∗P(x)− FY∗P(x)|+
24 supx F′Y(x)

πT
.

Remark 2.10. Let λ = sup F′Y(x), ∆(x) = FX(x)− FY(x) and ∆∗ = ∆ ∗ FP. Further-
more let λ̂, ∆̂ and ∆̂∗ have analogous definitions but using−X and−Y. Considering
the formula7 for the distribution function of the symmetric variable, we have for all
x ∈ R

λ = λ̂, ∆(x−) = −∆̂(−x), ∆∗(x−) = −∆̂∗(−x)

since it is valid for all x we can just substitute y = x− and z = −x to conclude that
the lemma is valid for X and Y if and only if it is valid for −X and −Y.

Proof. If supx F′Y(x) = ∞ the proposition is trivially true. Otherwise consider the
notation of the above remark (2.10) and let

η = sup |∆(x)|, η∗ = sup |∆∗(x)|.

Since ∆ is a difference of distribution functions, it decays to zero as x tends to ±∞.
Therefore exists a closed neighborhood8 of zero, A, such that the supremum on A
is equal to η. Thus exists a x0 ∈ A such that η = |∆(x−0 )|. If ∆(x−0 ) > 0 then
FX(x−0 ) > FY(x−0 ). Since FX is right continuous and FY is continuous we have

FX(x0) ≥ FX(x−0 ) > FY(x−0 ) = FY(x0).

Hence ∆(x0) = η. If ∆(x−0 ) < 0, by the above remark (2.10) we consider ∆̂ and we
have ∆̂(x0) = η. Therefore without loss of generality exists x0 such that ∆(x0) = η.
Consider s > 0. Since FX is increasing and by first order Taylor expansion9 on FY we
have

∆(x0 + s) = FX(x0 + s)− FY(x0 + s) ≥ FX(x0)− (FY(x0) + λs) = η − λs

Let δ = η
2λ .

∆(x0 + δ− x) ≥


η

2
+ λx if |x| ≤ δ

− η if otherwise
(2.3.1)

7F−X(−x) = P(−X ≤ −x) = P(X ≥ x) = 1−P(X < x) = 1− FX(x−).
8A closed neighborhood of zero is such that A = [a, b] for some a < 0 and b > 0.
9FY(x0 + s) = FY(x0) + sF′Y(ξ) ≤ FY(x0) + sλ where ξ ∈]x0, x0 + s[.
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Hence by definition of η∗ (first step) and ∆∗ (second step),

η∗ ≥ ∆∗ (x0 + δ) =
∫

∆ (x0 + δ− x) fP(x)dx

=
∫ δ

−δ
∆ (x0 + δ− x) fP(x)dx +

∫
R/[−δ,δ]

∆ (x0 + δ− x) fP(x)dx.

Separate the second integral into two, corresponding to the two intervals. Then by
inequality (2.3.1), we have that

η∗ ≥
∫ δ

−δ

(η

2
+ λx

)
fP(x)dx +

∫ ∞

δ
−η fP(x)dx +

∫ −∞

−δ
−η fP(x)dx.

By symmetry of fP we have that

η∗ ≥
∫ δ

−δ
λx fP(x)dx︸ ︷︷ ︸

=0

+
η

2

(
1− 2

∫ ∞

δ
fP(x)dx

)
− 2

∫ ∞

δ
η fP(x)dx. (2.3.2)

Now note that∫ ∞

δ
fP(x)dx =

∫ ∞

δ

1− cos Tx
Tπx2 dx ≤

∫ ∞

δ

2
Tπx2 dx =

2
Tπδ

.

Then replace the above equation in the inequality (2.3.2) to get

η∗ ≥ η

2

(
1− 4

Tπδ

)
− 2η

2
Tπδ

.

Recall that δ = η
2λ

η∗ ≥ η

2

(
1− 8λ

Tπη

)
− 2η

4λ

Tπη
=

η

2
− 4λ

Tπ
− 8λ

Tπ
=

η

2
− 12λ

Tπ
.

Now just note that η∗ ≥ η/2− 12λ/πT ⇐⇒ η ≤ 2η∗ + 24λ/πT.

Now we are ready to prove the theorem.

Theorem (Berry-Esseen). Let {Xi}i∈N be a sequence of centered random variables such
that EX2

i = σ2 and EX3
i = ρ < ∞. Let Fn be the distribution function of S̃n. Then

|Fn(x)− F(x)| ≤ 3
ρ

σ3
√

n
.

Remark 2.11. If all other conditions are met and the above theorem is valid for all
random sequences such that σ = 1 then it is valid for all sequences. To see this
let {Xi}i∈N be a sequence in the conditions of the above theorem and consider the
sequence of random variables {Yi}i∈N such that for all natural number i we have

Yi =
Xi
σ then EY2

i =
EX2

i
σ2 = 1 therefore we have the above theorem holds for Y, i.e.

|Fn(x)− F(x)| ≤ 3
ρY√

n

Notice that Fn is the distribution of S̃Y
n which is equal to S̃X

n since it is a normalized

random variable. We also have that ρY = EY3
i = E

X3
i

σ3 = ρ
σ3 hence the result is valid

for X.
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Proof. By the remark above assume without loss of generality that σ2 = 1. Let φn be
the respective characteristic functions of Xn. Let P be a random variable with Polya’s
distribution of parameter T. We are in the conditions of lemma (2.3) and therefore

|FX(x)− FY(x)| ≤ 2|FX∗P(x)− FY∗P(x)|+
24 supx F′Y(x)

πT
.

To find an upper bound for the second term just note that fY(x) = 1√
2π

exp(− x2

2 ) is
the probability density function of Y (which has standard normal distribution) hence

24λ

πT
≤

24 supx F′Y(x)
πT

=
24 supx fY(x)

πT
=

24 fY(0)
πT

=
24√

2ππT
≤ 9.6

πT
.

Considering the above for the second term and applying lemma (2.2) to the first term
we get

|FX(x)− FY(x)| ≤ 2
∣∣∣∣ 1
2π

∫
−e−ity φn(t)φP(t)− φY(t)φP(t)

it
dt
∣∣∣∣+ 9.6

πT
.

Now just recall that φP is zero outside the interval ]− T, T[ and triangular inequality
to get

|FX(x)− FY(x)| ≤ 1
2π

∫ T

−T

|φX(t)− φY(t)|
|t| dt +

9.6
πT

.

Apply lemma (2.1) to the term inside the integral (from now on T = k
√

n/ρ with
0 < k ≤

√
2) to get

|FX(x)− FY(x)| ≤
∫ T

−T

ρ√
nπ

exp
(
− t2

4

)(
t2

6
+
|t|3
24

)
dt +

9.6ρ

kπ
√

n
.

Using the distributive property and noting that the integral on the whole set is larger
than the integral on ]− T, T[ we get
√

n
ρ
|FX(x)− FY(x)| ≤ 1

3
√

π

∫ 1√
4π

t2 exp
(
− t2

4

)
dt+

1
24π

∫
|t|3 exp

(
− t2

4

)
dt+

9.6
kπ

.

Then compute the integrals10. The first yields 2 and the second 16.

|FX(x)− FY(x)| ≤ ρ√
nπ

(
2
√

π

3
+

16
24

+
9.6
k

)
.

Now just pick the highest value of k to get the smallest bound (k =
√

2). Note that
1/π (2

√
π/3 + 16/24 + 9.6/

√
2) ≈ 2.492690498 < 3 then the result follows.

Example 2.1. Consider a sequence of independent random variables X = {Xn}∀n∈N

with exponential distribution of parameter λ = 3. Take several observations from X
and draw an histogram of them. We will get something similar to the top left graph
of figure (2.1).

Now we can normalize X and draw a cumulative graph of the histogram. This is
what we have done and drew it in top middle graph of figure (2.1). For comparison
we also drew on the same graph the cumulative probability distribution of a stan-
dard normal random variable Y. |FX(a)− FY(a)| is drawn on the top right graph of

10For more details see proposition (A.3.2) and proposition (A.3)
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the figure of the (2.1). Now we need to compare the supremum of the function on

FIGURE 2.1: The Central Limit Theorem. The first row refers to n = 1,
the second to n = 3, the third to n = 30 and the last to n = 90.

the right for different values of n, i.e instead of taking a sample of X (which is SX
n

for n = 1) we took a sample from SX
n with growing values of n. This what we have

done and drew the graphs in the subsequent rows of figure (2.1). Each row corre-
sponds respectively to n equal to one, three, thirty and ninety. To see the behavior

FIGURE 2.2: The error of the Central Limit Theorem as n becomes
larger. The function err(n) = 3ρ/σ3√n

of the error clearer: we plotted the errors for many values n. On figure (2.2) each
error corresponds to the maximum of the function on the right of figure (2.1). For
comparison we also drew on the same graph a multiple of the error predicted by the
theorem, in this case the error is much smaller.
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Chapter 3

Generalizations for nonidentical
sequences

We proved the Central Limit Theorem and explored the rates of convergence.
Now we will search for possible generalizations of the Central Limit Theorem. Con-
sider a family of random variables that are not i.i.d., can we still apply the Central
Limit Theorem? In which circumstances can we do so? These are the questions we
aim at answering with this chapter.

3.1 Lindeberg’s Theorem

Notation. Consider a sequence X = {Xn}∀n∈N of random variables. In this chapter
we are not assuming that the variables are identically distributed. Therefore the
standard deviation of Sn is not equal to the standard deviation of any Xn. Hence for

the rest of this chapter given any n ∈N we will use the notation sn =
√

∑n
i=0 σ2

i .

Remark 3.1. It is simple1 to see that s2
n represents the variance of Sn.

Remark 3.2. We will start by taking another look into what it means for the Central
Limit Theorem to hold. We hope this will give us some insight into how to prove it.
Consider any t ∈ R. Then

lim
n→∞

∣∣∣∣log φS̃n
(t) +

t2

2

∣∣∣∣ = 0 ⇐⇒ lim
n→∞

φS̃n
(t) = exp

(
− t2

2

)
.

To see this apply the exponential function and the logarithm to t2/2. Then use the
rules of the logarithmitic function to get a single logarithm on the left hand side.
Finally apply the exponential function to both sides and move the appropriate term
to the right hand side.

Remark 3.3. Since we have a new expression to prove the Central Limit Theorem
using the logarithm of φS̃n

we may want to take a closer look at it. Consider any
t ∈ R, then it is easily seen 2 that

log φS̃n
(t) = log φ

∑n
j=1

Xj
sn

(t) = log
n

∏
j=1

φ Xj
sn

(t) =
n

∑
j=0

log φ Xj
sn

(t).

1Var(Sn) = Var(∑n
i=0 Xi) = ∑n

i=0 Var(Xi) = ∑n
i=0 σ2

i .
2To get the second equality one may wish to review proposition (1.1.3).
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Remark 3.4. It may also be useful for us to note that - by the Taylor expansion of the
logarithm - we have

log x =
∞

∑
n=1

(−1)n+1 1
n
(x− 1)n = (x− 1) + O(x− 1)2.

Remark 3.5. We have that the previous two remarks (3.3 and 3.4) suggest that

log φS̃n
=

n

∑
j=0

log φ Xj
sn

≈
n

∑
j=0

(
φ Xj

sn

− 1
)

.

Remark 3.6. In the other hand recall that the characteristic function is an expected
value of a exponential function3. Furthermore by third order Taylor expansion of
the exponential function we have for all j ≤ n

φ Xj
sn

(t) = 1 +
it
sn

EXj −
t2

2sn
EX2

j + O(t3)

Subtract 1 to both sides and consider the sum of the above expression from X1 to Xn.
Recall that we are always considering EX = 0. This suggests that

n

∑
j=0

φ Xj
sn

(t)− 1 ≈ 1
sn

n

∑
j=0

EX2
j

t2

2
= − t2

2
.

Remark 3.7. Therefore our strategy will be to show that

log φS̃n
(t) ≈

n

∑
j=0

(
φ Xj

sn

(t)− 1
)
≈ − t2

2
,

in the hopes that our "close enough (≈)" will allow us to use remark (3.2) to finish
the proof. We will show the first "close enough" in lemma (3.1), the second "close
enough" in lemma (3.2) and finally in the proof of the theorem we will show that
two "close enough’s" is still "close enough".

Notation. For the rest of this chapter given a sequence X = {Xn}∀n∈N of random
variables and for any n ∈N we will use the notation

ψn(t) =
n

∑
j=0

(
φ Xj

sn

(t)− 1
)

.

Remark 3.8. Since we will be using ψn for our prove, it may be useful to take a closer
look at it. For the last step recall4 that we are considering

∫
xdαXn = EX = 0.

φ Xj
sn

(t)− 1 = φXj

(
t

sn

)
− 1 =

∫
eit x

sn − 1dαXj ≤
∫ ∣∣∣∣eit x

sn − 1− it
x
sn

∣∣∣∣ dαXj .

We know5 that for every x ∈ R exists C such that |eix − 1− ix| ≤ Cx2. Hence

φ Xj
sn

(t)− 1 ≤ Ct2
∫ x2

s2
n

dαXj = Ct2
σ2

j

s2
n

3see definition (1.1).
4see remark (1.6).
5see proposition (A.4.1).
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In the previous equation consider the sum on j from 0 to n to get a bound on ψn.
Then by definition of sn

ψn(t) ≤
n

∑
j=0
|φ Xj

sn

(t)− 1| ≤ Ct2

s2
n

n

∑
j=0

σ2
j = Ct2.

Consider the limit as n grows arbitrarily.

lim
n→∞

ψn(t) ≤
∞

∑
j=0
|φ Xj

sn

(t)− 1| ≤ Ct2.

Remark 3.9. In the above series the general term |φXj/sn
(t) − 1| depends on j and n.

Then if we make both j and n diverge to infinity, we know that the general term will
converge to zero - otherwise the series would not converge. However we have j ≤ n.
Hence it is possible to let n diverge to infinity while having fixed j. Even though at
this point may not be completely clear why; we will compute the supremum of the
term with fixed j and then let n diverge to infinity.

Remark 3.10. Consider the supremum in j of the general term considered in the above
remark (3.9)

sup
1≤j≤n

φ Xj
sn

(t)− 1 ≤ sup
1≤j≤n

Ct2
∫ x2

s2
n

dαXj .

For all positive real ε > 0

sup
1≤j≤n

φ Xj
sn

(t)− 1 ≤ Ct2 sup
1≤j≤n

(
1
s2

n

∫
|x|≤εsn

x2dαXj +
1
s2

n

∫
|x|≥εsn

x2dαXj

)
.

Given the set on which we are integrating the first integral, if we replace x by εsn
we obtain a bigger term. This term does not depend on j, hence it can be removed
from the supremum. For the second integral notice that since all terms are positive
the supremum over a finite set is smaller than the sum over the same set.

sup
1≤j≤n

φ Xj
sn

(t)− 1 ≤ Ct2

(
1
s2

n
ε2s2

n +
1
s2

n

n

∑
j=0

∫
|x|≥εsn

x2dαXj

)
.

Simplifying sn and taking the limit as n increases in both sides, we get

lim
n→∞

sup
1≤j≤n

φ Xj
sn

(t)− 1 ≤ Ct2ε2 + Ct2 lim
n→∞

1
s2

n

n

∑
j=0

∫
|x|≥εsn

x2dαXj .

Since ε is arbitrary take the limit as ε decreases to zero to get a curious limit

lim
n→∞

sup
1≤j≤n

φ Xj
sn

(t)− 1 ≤ Ct2 lim
ε→0

lim
n→∞

1
s2

n

n

∑
j=0

∫
|x|≥εsn

x2dαXj .

Remark 3.11. We can not explicitly compute the above limit for all sequences of ran-
dom variables. However we can argue that for many sequences the above limit is
zero. For a simple example consider a sequence Xn of i.i.d. random variables. The
variance of Xn is constant. We have that sn is diverging to infinity and ε is fixed.
Then we have that the sequence of sets {ω : |Xn(ω)| ≥ εsn} are converging to the
empty set. In this case the limit of the sum of the integrals is convergent while sn
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diverges. Therefore the above limit is zero. We will use the definition below to dif-
ferentiate the sequences for which this limit is zero.

Definition. Let X = {Xn}∀n∈N be a sequence of independent random variables and
{αn}n∈N their respective laws. If for any ε > 0 we have

lim
n→∞

1
s2

n

n

∑
i=0

∫
|x|≥εsn

x2dαi(x) = 0,

we say the X satisfies the Lindeberg’s condition, or is a Lindeberg’s family.

Lemma 3.1. Let X = {Xn}∀n∈N be a Lindeberg’s family then for every t ∈ R

lim
n→∞

∣∣∣log φS̃n
(t)− ψn(t)

∣∣∣ = 0.

Proof. Let us start by evaluating the absolute value. Consider t as above, then by
manipulation of the characteristic function (see remark 3.3) and by the definition of
ψn we have

∣∣∣log φS̃n
− ψn

∣∣∣ = ∣∣∣∣∣ n

∑
j=0

log φ Xj
sn

−
n

∑
j=0

(
φ Xj

sn

(t)− 1
)∣∣∣∣∣ ≤ n

∑
j=0

∣∣∣∣log φ Xj
sn

−
(

φ Xj
sn

(t)− 1
)∣∣∣∣ .

By Taylor expansion of the logarithmic function (see remark 3.4) and the definition
of order6 we have that exists a positive M ∈ R such that

∣∣∣log φS̃n
− ψn

∣∣∣ ≤ M
n

∑
j=0

∣∣∣∣φ Xj
sn

(t)− 1
∣∣∣∣2 ≤ M

(
sup

1≤j≤n

∣∣∣∣φ Xj
sn

(t)− 1
∣∣∣∣
)

n

∑
j=0

∣∣∣∣φ Xj
sn

(t)− 1
∣∣∣∣ .

Notice that the sum above is bounded when n converges to infinity (see remark 3.8).
On the other hand the supremum becomes zero since X is a Lindeberg’s family (see
remark 3.10). The claim follows.

Lemma 3.2. Let X = {Xn}∀n∈N be a Lindeberg’s family and {αn}n∈N their respective
laws.Then for every t ∈ R

lim
n→∞

∣∣∣∣ψn(t) +
t2

2

∣∣∣∣ = 0.

Proof. Multiply and divide t2/2 by s2
n. Recall the definition of ψ and the definition of

s2
n for the numerator.∣∣∣∣ψn +

t2

2

∣∣∣∣ =
∣∣∣∣∣ n

∑
j=0

(
φ Xj

sn

(t)− 1
)
+

t2

2

n

∑
j=0

σ2
j

s2
n

∣∣∣∣∣ ≤ n

∑
j=0

∣∣∣∣∣φ Xj
sn

(t)− 1 +
t2σ2

j

2s2
n

∣∣∣∣∣
Recall7 the definition of characteristic function, that we are considering

∫
xdαXn =

EX = 0 and
∫

x2dαXn = EX2 = σ2
j , to get∣∣∣∣ψn +

t2

2

∣∣∣∣ ≤ n

∑
j=0

∫ ∣∣∣∣exp
(

it
x
sn

)
− 1− it

x
sn

+
t2x2

2s2
n

∣∣∣∣ dαj.

6For more details on order see section A.5.
7see definition (1.1) and remark (1.6).
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For all ε > 0∣∣∣∣ψn +
t2

2

∣∣∣∣ ≤ n

∑
j=0

∫
|x|≥εsn

∣∣∣∣exp
(

it
x
sn

)
− 1− it

x
sn

∣∣∣∣+ ∣∣∣∣ t2x2

2s2
n

∣∣∣∣ dαj+

+
n

∑
j=0

∫
|x|<εsn

∣∣∣∣exp
(

it
x
sn

)
− 1− it

x
sn

+
t2x2

2s2
n

∣∣∣∣ dαj.

We know8 that exists C ∈ R such that for all y ∈ R we have |eiy − 1− iy| ≤ Cy2 and
|eiy − 1− iy + y2

2 | ≤ Cy3. Use this on the first and second term respectively to get∣∣∣∣ψn +
t2

2

∣∣∣∣ ≤ n

∑
j=0

∫
|x|≥εsn

C
t2x2

s2
n

+
t2x2

2s2
n

dαj +
n

∑
j=0

∫
|x|<εsn

C
t3x3

s3
n

dαj.

On the first term use the distributive property. On the second term, since we are
integrating for |x| < εsn we have |x|3 < εsnx2. Hence∣∣∣∣ψn +

t2

2

∣∣∣∣ ≤ (C + 1/2)t2

s2
n

n

∑
j=0

∫
|x|≥εsn

x2dαj +
Ct3

s3
n

n

∑
j=0

∫
|x|<εsn

x2εsndαj.

On the second term simplify sn. Then notice that integrating over Ω yields a greater
integral than integrating for |x| < εsn. Finally notice that the integral over Ω is - by
definition - σ2. Thus∣∣∣∣ψn +

t2

2

∣∣∣∣ ≤ (C + 1/2)t2

s2
n

n

∑
j=0

∫
|x|≥εsn

x2dαj + Ct3ε
1
s2

n

n

∑
j=0

σ2
j .

The sum on the second term is equal to s2
n. Then simplify s2

n. If we take the limit as
n increases arbitrarily on both sides we get

lim
n→∞

∣∣∣∣ψn +
t2

2

∣∣∣∣ ≤ (C + 1/2)t2 lim
n→∞

1
s2

n

n

∑
j=0

∫
|x|≥εsn

x2dαXj + Ct3ε.

Since X is a Lindeberg’s Family, the limit on the first term is zero. Since ε is arbitrary,
take the limit as ε decreases to zero to get the result.

Theorem (Lindeberg’s theorem). Let X = {Xn}∀n∈N be a Lindeberg’s family. Then the
Central Limit Theorem holds on X.

Proof. Just notice that by triangular inequality∣∣∣∣log φS̃n
(t) +

t2

2

∣∣∣∣ ≤ ∣∣∣log φS̃n
(t) + ψn(t)

∣∣∣+ ∣∣∣∣ψn(t) +
t2

2

∣∣∣∣ .

Take the limit as n increases arbitrarily on both sides. Both terms on the right hand
side become zero as a direct consequence of lemmas (3.1) and (3.2) respectively. Then

lim
n→∞

∣∣∣∣log φS̃n
(t) +

t2

2

∣∣∣∣ = 0.

By remark (3.2) this implies that the Central Limit Theorem holds on X.
8see propositions (A.4.1) and (A.4.2).
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Example 3.1. Let A ∈ Ω such that P(A) = 1/2. For all n ∈N let

Xn =

{
an if ω ∈ A
−an if ω ∈ Ω\A

.

Show that the Central Limit Theorem holds on X if

a) an = 1/√n b) an = n

Solution (a). Compute σ2
n

σ2
n =

(
1√
n

)2

×P(A) +

(
− 1√

n

)2

×P(Ω\A) =
1
n
× 1

2
+

1
n
× 1

2
=

1
n

.

Therefore

sn =

√√√√ n

∑
j=0

σ2
j =

√√√√ n

∑
j=0

1
j

On the other hand, for all ε > 0 we have

∫
|x|≥εsn

x2dαj = 1(|aj|≥εsn)

( 1√
j

)2

×P(A) +

(
− 1√

j

)2

×P(Ω\A)

 = 1(|aj|≥εsn)

(
1
j

)
.

Therefore

lim
n→∞

1
s2

n

n

∑
j=0

∫
|x|≥εsn

x2dαj = lim
n→∞

∑n
j=0 1(|aj|≥εsn) (1/j)(

∑n
j=0 1/j

)2 .

In the above limit the denominator diverges to infinity. If we show that the numera-
tor is bounded we have that the limit is zero. This will imply that the Central Limit
Theorem holds on X. Note that

lim
n→∞

|an|
sn

= lim
n→∞

1√
n

∑n
j=0

1
j

= lim
n→∞

1√
n ∑n

j=0 1/j
= 0.

Hence, by definition of limit, for all ε > 0 exists N ∈N such that n > N implies∣∣∣∣ |an|
sn
− 0
∣∣∣∣ < ε ⇐⇒ |an| < εsn.

Thus ∑n
j=0 1(|aj|≥εsn)

(
1
j

)
has a finite number of terms and as a consequence is finite.

Solution (b). By analogous computations we have

σ2
n = n2, sn =

√√√√ n

∑
j=0

j2,
∫
|x|≥εsn

x2dαj = 1(|aj|≥εsn)

(
j2
)

.

Therefore

lim
n→∞

1
s2

n

n

∑
j=0

∫
|x|≥εsn

x2dαj = lim
n→∞

∑n
j=0 1(|aj|≥εsn)

(
j2
)(

∑n
j=0 j2

)2 .
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In the above limit the denominator diverges to infinity. If we show that the numera-
tor is bounded we have that the limit is zero. This will imply that the Central Limit
Theorem holds on X. Note that

lim
n→∞

|an|
sn

= lim
n→∞

n
∑n

j=0 j2
< lim

n→∞

n
n2 = 0.

Hence, by definition of limit, for all ε > 0 exists N ∈N such that n > N implies∣∣∣∣ |an|
sn
− 0
∣∣∣∣ < ε ⇐⇒ |an| < εsn.

Thus ∑n
j=0 1(|aj|≥εsn)

(
j2
)

has a finite number of terms and as a consequence is finite.

3.2 Lyapunov’s Condition

Definition. Let X = {Xn}∀n∈N be a sequence of independent random variables,
{αn}n∈N their respective laws. If exists a positive real δ such that

lim
n→∞

1
s2+δ

n

n

∑
i=0

∫
|x|2+δdαi = 0,

we say the X satisfies the Lyapunov’s condition, or is a Lyapunov’s family.

Proposition 3.2.1 (Lyapunov’s Condition). All Lyapunov’s families are Lindeberg’s fam-
ilies. Let X = {Xn}∀n∈N satisfy the Lyapunov’s condition. Then X is a Lindeberg’s family.

Proof. Let X = {Xn}∀n∈N be a Lyapunov’s family. Then exists δ > 0 such that the
Lyapunov’s condition holds. Consider that δ. Let ε be any positive real. Recall that
integrating over Ω yields a greater integral than integrating for |x| ≥ εsn. Then
notice that for |x| ≥ εsn we have |x|2|x|δ ≥ |x|2(εsn)δ to get∫

|x|2+δdαi ≥
∫
|x|≥εsn

|x|2|x|δdαi ≥ (εsn)
δ
∫
|x|≥εsn

|x|2dαi.

Sum both sides from α0 to αn, divide by s2+δ
n and take the limit as n increases arbi-

trarily. Notice that on the right hand side sδ
n simplifies.

lim
n→∞

1
s2+δ

n

n

∑
i=0

∫
|x|2+δdαi ≥ εδ lim

n→∞

1
s2

n

n

∑
i=0

∫
|x|≥εsn

|x|2dαi.

Recall that ε and δ are positive. Then εδ is positive. Furthermore the integrals on the
right hand side are always positive, as is sn. Hence the entire term on the right hand
side is positive. On the other hand, since X is a Lyapunov’s family the left hand side
is zero. Therefore

εδ lim
n→∞

1
s2

n

n

∑
i=0

∫
|x|≥εsn

|x|2dαi = 0.

Since εδ is strictly positive we must have that the limit is zero. Since ε is arbitrary
the result follows.
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Remark 3.12. As a consequence of the previous proposition and the Lindeberg’s the-
orem, we have that if X = {Xn}∀n∈N is a Lypunov’s family then the Central Limit
Theorem holds on X.

Example 3.2. Let A ∈ Ω such that P(A) = 1/2. For all n ∈N let

Xn =

{
an if ω ∈ A
−an if ω ∈ Ω\A

.

Show that the Central Limit Theorem holds on X if an = n.
Solution. By the example above, we have

σ2
n = n2, sn =

√√√√ n

∑
j=0

j2.

Furthermore∫
|x|2+δdαj = |j|2+δ ×P(A) + |−j|2+δ ×P(Ω\A) = j2+δ × 1

2
+ j2+δ × 1

2
= j2+δ.

Therefore

lim
n→∞

1
s2+δ

n

n

∑
i=0

∫
|x|2+δdαj = lim

n→∞

∑n
j=0 j2+δ(√

∑n
j=0 j2

)2+δ
< lim

n→∞

∑n
j=0 j2+δ(

∑n
j=0 j

)2+δ
.

Consider δ = 3. On the denominator separate the cross terms(
n

∑
j=0

j

)3

=
n

∑
j=0

j3 +
n

∑
0≤j1,j2,j3≤n

j1 6=j2 6=j3

j1 j2 j3.

The sum on the left simplifies with the numerator while the sum on the right di-
verges. Therefore the limit is zero.

Proposition 3.2.2. There are Lindeberg’s families that are not Lyapunov’s families.

Proof. Let an be a sequence of positive reals such that the sum of its squares is con-
vergent i.e. exists a strictly positive real k such that ∑∞

n=0 a2
n = k. This implies that

an is an infinitesimal, i.e. limn→∞ an = 0. Let A ∈ Ω such that P(A) = 1/2. For all
n ∈N let

Xn =

{
an if ω ∈ A
−an if ω ∈ Ω\A

Let us show that X is a Lindeberg’s family. Consider ε any positive real. Then

s2
n =

n

∑
i=0

σ2
i =

n

∑
i=0

(
1
2

a2
n +

1
2
(−an)

2
)
=

n

∑
i=0

a2
n.

Also ∫
|x|≥εsn

x2dαi =

{
1
2 a2

n +
1
2 (−an)2 = a2

n if an ≥ εs2
n

0 if an < εs2
n

.

Note that limn→∞ s2
n = k and limn→∞ an = 0 hence we have that exists a natural

number N such that for every natural n bigger or equal than N the above integral
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is zero and for every n smaller than N the above integral is k2 and N is the smallest
natural with this property.

lim
n→∞

1
s2

n

n

∑
i=0

∫
|x|≥εsn

x2dαi = lim
n→∞

1
s2

n

N

∑
i=0

∫
|x|≥εsn

x2dαi = lim
n→∞

1
nk2 Na2

n = 0,

and then X is a Lindeberg’s family. Now let us show that X is not a Lyapunov’s
family, let δ be any real positive. Note that∫

|x|2+δdαi =
1
2
|an|2+δ +

1
2
| − an|2+δ = a2+δ

n .

Now let us evaluate the definition of Lyapunov’s family. Just note that limn→∞ s2
n = k

and then

lim
n→∞

1
s2+δ

n

n

∑
i=0

∫
|x|2+δdαi = lim

n→∞

1

(s2
n)

2+δ
2

n

∑
i=0

a2+δ
n = k−

2+δ
2 lim

n→∞

n

∑
i=0

a2+δ
n > 0.

The last limit is a sum of strictly positive terms and therefore it it larger than zero.
Remark 3.13. To complete the proof we just have to provide at least one sequence that

satisfies the conditions to be used as an. Many exist, one such sequence is an =
√

1
2n

and we have k = ∑∞
n=0 a2

n = ∑∞
n=0

1
2n = 2.

Remark 3.14. From the the proposition above and the proof we can conclude that in
general a Lyapunov’s family is not a Lindeberg’s family.
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Chapter 4

Dependence of Variables

4.1 Ergodic Introduction

Remark 4.1. In this chapter the proof of the Kolmogorov Extension and Ergodic The-
orems were omitted since the proofs are long and fall outside the scope of this essay.
If the reader is interested in reading the proofs, references to them are provided.

Remark 4.2. In previous chapters we were considering sequences of independent
random variables, sometimes identically distributed. In this chapter, unless specifi-
cally stated, no sequence of random variables is assumed to be independent.

Remark 4.3. Our aim is to prove the Central Limit Theorem for sequences of random
variables that are not necessarily independent. To do this we will use Ergodic The-
ory. We will not digress too much into these topics but will start by presenting the
relation between Ergodic Theory and stochastic processes. In this first part we will
explain how the Ergodic theorem relates to stochastic processes.

Definition. Let F n be the σ-algebra generated by the finite dimensional rectangles,
i.e. sets of the form {(r1, r2, ..., rn) : ri ∈ (ai, bi], i = 1, ..., n}. Let {µn}n∈N be measures
on the space of n-tuples of real numbers (Rn, F n). If for every n ∈ N and ai, bi ∈ R

we have

µn+1((a1, b1]× ...× (an, bn], R) = µn((a1, b1]× ...× (an, bn])

We say that {µn}n∈N are consistent.

Remark 4.4. Let X = {Xn}n∈N be a stochastic process and {αn}n∈N their respective
laws. Consider the product measures1 µn = α1 × ...× αn then

µn+1((a1, b1]× ...× (an, bn], R) = α1((a1, b1])× ...× αn((an, bn])× αn+1(R)

Since αn+1 is a law, is in particular a probability measure. Therefore we have that
αn+1(R) is one. This implies that these laws are consistent .

Theorem (Kolmogorov Extension Theorem). If {µn}n∈N are consistent measures on the
space of n-tuples of real numbers (Rn, F n) then exists a unique probability measure P on
the set of real sequences (RN, F N) such that

P({sn}n∈N : 1 ≤ i ≤ n si ∈ (ai, bi]) = µn((a1, b1]× ...× (an, bn])

Proof. see Durrett, 2010 Theorem A.3.1. page 366.

1For more details on product measures see Capinski and Kopp, 2013 Chapter 6 page 159.
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Remark 4.5. Let X = {Xn}n∈N be a stochastic process and {αn}n∈N be their respec-
tive laws. Consider the family of functions Y = {Yn}n∈N such that for any natural n
and for any real sequence s = {sn}n∈N, we have

Yn : RN 7→ R such that Yn(s) = sn.

The laws {αn}n∈N are consistent by remark (4.4). Hence we can apply the Kol-
mogorov Extension Theorem to argue that exists a unique probability measure Q

on the set of all real sequences such that

Q({sn}n∈N : 1 ≤ i ≤ n si ∈ (ai, bi]) = µn((a1, b1]× ...× (an, bn]).

Notice that the fact that Q is a probability measure implies that Y is a sequence of
random variables. Furthermore by the above equation we have that X and Y have
the same distribution (i.e. the same laws) - even though they have different domains.
This means that - for the purpose of proving the Central Limit Theorem - working
with X or working with Y is equivalent.

Remark 4.6. Given any real sequence we can define a shift operator T that drops the
first term in any sequence of real numbers i.e.T(a1, a2, ...) = (a2, a3, ...) . Then it is
easy2 to see that

Yn(s) = Y1(Tn−1s).

Hence there exists a T̂ that gives us a similar expression for X. To check this, first
note note that given any ω in Ω we can consider the sequence (X1(ω), X2(ω), ...)
which we will denote simply by X̂(ω). Hence we have that X̂ : Ω 7→ RN is a well
defined function. Furthermore for any real sequence s such that Q(s) is not zero we
have that X̂−1(s) is a non empty set3. Then define T̂ : Ω 7→ Ω such that T̂(ω) is any
value in the set X̂−1 ◦ T ◦ X̂(ω).

Remark 4.7. Hence for any process {Xn}n∈N0 exists T : Ω 7→ Ω such that Xn(s) =
X0(Tns). More importantly given a random variable X : Ω 7→ R and a function
T : Ω 7→ Ω, the stochastic process

Xn(ω) = X(Tnω)

is well defined.

Definition. Let {Xn}n∈Z be a sequence of random variables. Then by remark (4.7.)
exists a function T : Ω 7→ Ω and a random variable X such that Xn(s) = X(Tns).
We will call (X, T) a Ergodic representation of X.

Definition. Let X = {Xn}n∈Z be a sequence of random variables. For all a, k ∈ Z

and for all n ∈N, if the random vectors (Xa, Xa+1, ..., Xa+b) and (Xa+n, Xa+1+n, ..., Xa+b+n)
have the same distribution (i.e. the same law), we call X a stationary stochastic process.

Definition. Let (Ω, F , P) be a probability space and T : Ω 7→ Ω a function. If
for every element A of F we have P(T−1(A)) = P(A), then we call T measure-
preserving.

2Note that Y2(s) = s2 = (Ts)1 = Y1(Ts) and then apply an induction argument to conclude for all
naturals

3since P(∅) = 0 and P(X̂−1(s)) = PX̂(s) = Q(s) which is not is not zero.
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Proposition 4.1.1. Let {Xn}n∈N be a sequence of random variables, (X, T) its Ergodic rep-
resentation and σ(X1, X2, ...) the sigma algebra generated4 by the random variables {Xn}n∈N.
Then {Xn}n∈N is a stationary process if and only if T is measure preserving on σ(X).

Proof. Let A be any set in σ(X1, X2, ...). Then by definition5, exists a natural n and
Borel set B such that X−1

n (B) = A.
[ =⇒ ]

P(T−1A) = P(T−1X−1
n (B)) = P({ω : Xn(Tω) ∈ B})

Using that (X, T) is a Ergodic representation of the process, we get the expression
below. Then use the fact that X is stationary and finally use the definition of B to get

P({ω : Xn+1(ω) ∈ B}) = P({ω : Xn(ω) ∈ B}) = P(A).

[⇐= ]
P(X−1

n B) = P({ω : Xn(ω) ∈ B}) = P({ω : X(Tnω) ∈ B}).

Solving the composition of inverse functions and noting that T is measure preserv-
ing we get

P((X ◦ Tn)−1B) = P(T−n(X−1B)) = P(X−1B).

Hence for all n we have that Xn and X have the same distribution, then by definition
the process is stationary.

Theorem (Ergodic Theorem). Let f ∈ L1(R) be a measurable integrable function, T :
Ω 7→ Ω be measure preserving and I = σ({A : TA = A}). Then

lim
n→∞

∑n−1
k=0 f (Tkω)

n
= E( f |I) a. s.

Proof. see Varadhan, 2001, Theorem 6.1., page 180.

Corollary. Let {Xn}n∈N be a stationary stochastic process, (X, T) one of its stochastic
representations and I = σ(X1, X2, ...). Then

lim
n→∞

∑n−1
k=0 Xk(ω)

n
= E( f |I) a. s.

Proof. direct consequence of the Ergodic Theorem, proposition (4.1.1) and remark
(4.7)

4.2 Central Limit Theorem

Remark 4.8. Given a Stochastic process X = {Xn}n∈N we defined

σ2 = lim
n→∞

1
n

E
[
(X1 + ... + Xn)

2]
If the random variables Xn are independent and identically distributed, the above
formula simplifies to be just the variance of X1. If the variables are not identically
distributed but are independent, we can simplify the above formula to get what we
called sn in Chapter 3. If the variables are independent then the covariances are

4For more details on generated sigma algebras, see Capinski and Kopp, 2013, Subsection 3.5.2., page
67.

5Since σ(Y) = {Y−1(A) : A ∈ β}, where β is the Borel sigma algebra.
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zero, but the converse is not true. Therefore there are dependent variables with zero
covariance. This seems a great place to start since it may give us a easier challenge
while still improving our result.

Remark 4.9. Let Y = {Yn}n∈N be a martingale6. For every n ∈ N define Xn =
Yn+1 −Yn. Then for any t, s ∈N such that t > s we have that

E[XtXs] = E[Yt+1Ys+1]−E[Yt+1Ys]−E[YtYs+1] + E[YtYs].

Since the expected value of the conditional expectation is just the expected value 7

we have that the above expression is equal to

E[E[Yt+1Ys+1|Fs+1]]−E[E[Yt+1Ys|Fs]]−E[E[YtYs+1|Fs+1]] + E[E[YtYs|Fs]].

In each term take the measurable variable with respect to the sigma algebra outside
the conditional expectation. Then use the martingale property to simplify the condi-
tional expectations. Notice that the first term becomes E[Y2

s+1] and the fourth term
its symmetric. A similar thing happens to the second and fourth term with E[Y2

s ].
Then we have that the covariances are zero. It is also simple to verify8 that - for any
n - the expected value of Xn is zero.

Remark 4.10. By the above remark (4.9), if we consider martingale differences not
only does the expected become zero but we get

σ2 = lim
n→∞

1
n

E
[
X2

1 + ... + X2
n
]

.

Remark 4.11. Let X = {Xn}n∈N be a sequence of martingale differences with finite
variance σ2. We say that the Central Limit Theorem holds9 on X if for any t ∈ R

after some algebraic manipulation we have

lim
n→∞

φ Sn√
n
(t) = exp

(
−σ2t2

2

)
⇐⇒ lim

n→∞
exp

(
σ2t2

2

)
E

(
exp

(
it

Sn√
n

))
− 1 = 0.

Notation. For the rest of this chapter we will use the notation

ϕ(n, j, t) = exp
(

σ2t2 j
2n

)
E

(
exp

(
it

Sj√
n

))
.

When there is no ambiguity in which n and t are being considered we will denote
ϕ(n, j, t) simply by ϕj.

Remark 4.12. Hence by the above remark (4.11) we have that if limn→∞ ϕ(n, n, t)−
1 = 0 the Central Limit Theorem holds on X.

Remark 4.13. For the second step below sum and subtract ϕ(n, j, t) for each j (such
that 1 ≤ j ≤ n)

ϕ(n, n, t)− 1 = ϕ(n, n, t)− ϕ(n, 0, t) =
n

∑
j=1

(ϕ(n, j, t)− ϕ(n, j− 1, t)).

6For more details on martingales see Varadhan, 2001 Chapter 5 page 149. For our purposes knowing
the definition will be enough.

7i.e. E[X] = E[E[X|F ]]
8EXn = EYn+1 −EYn = 0 since martingales have constant expected value. See proposition A.3.3.
9Using the characteristic function definition for the Central Limit Theorem.
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Then if

lim
n→∞

∣∣∣∣∣ n

∑
j=1

(ϕ(n, j, t)− ϕ(n, j− 1, t))

∣∣∣∣∣ = 0,

the Central Limit Theorem holds on X.

Remark 4.14. Hence it may prove helpful to us to analyze the expressions ϕj − ϕj−1
for each j. By definition we have

ϕj− ϕj−1 = exp
(

σ2t2 j
2n

)
E

(
exp

(
it

Sj−1 + Xj√
n

))
− exp

(
σ2t2 j

2n
− σ2t2

2n

)
E

(
exp

(
it

Sj−1√
n

))
.

Use the distributive property on the exponential function of the first term. The rest
of the expression can be placed inside the expected value. Then use again the dis-
tributive property, this time on the term with Sj−1 inside the expected value to get

ϕj − ϕj−1 = exp
(

σ2t2 j
2n

)
E

[
exp

(
it

Sj−1√
n

)(
exp

(
it

Xj√
n

)
− exp

(
−σ2t2

2n

))]
.

Remark 4.15. Let us look closer to the term that we could not use the distributive
property on. By Taylor expansion of the variable Xt and t in the first and second
terms respectively, exists - for each t - a Ct ∈ R such that

exp
(

it
Xj√

n

)
− exp

(
−σ2t2

2n

)
=

(
1 + it

Xj√
n
−

X2
j t2

2n
+ t3

X3
j

n
3
2

Ct

)
−
(

1− σ2t2

2n
+

σ4t3

n2 Ct

)
.

The terms of order n−1 we will pass to the left. The terms of higher order we will
leave on the right. The term with Xj we will also leave on the right since it has zero
expected value. We get

exp
(

it
Xj√

n

)
− exp

(
−σ2t2

2n

)
−

(σ2 − ξ2
j )t

2

2n
= it

Xj√
n
+ t3

X3
j

n
3
2

Ct +
σ4t3

n2 Ct.

Remark 4.16. The above remark (4.15) gives us an idea of can we prove the Central
Limit Theorem in this case. The expression computed in the above remark was taken
from inside an expected value so if we apply the expected value to both sides and
assume that orders higher than n−1 will converge to zero fast enough we get

exp
(

it
Xj√

n

)
− exp

(
−σ2t2

2n

)
≈

(σ2 − X2
j )t

2

2n
,

hence if we look at the sum we wish to show is zero we have

n

∑
j=1

ϕj − ϕj−1 ≈
n

∑
j=1

exp
(

σ2t2 j
2n

)
E

[
exp

(
it

Sj−1√
n

)( (σ2 − X2
j )t

2

2n

)]
. (4.2.1)

Now if we consider a variable u close enough to j such that we pass the sum inside
we would get

n

∑
j=1

ϕj − ϕj−1 ≈ exp
(

σ2t2u
2n

)
E

[
exp

(
it

Su−1√
n

)( n

∑
j=1

(σ2 − X2
j )t

2

2n

)]
.

The limit of the above sum is shown to be zero by the Ergodic Theorem. Hence
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the entire sum is zero. Let us now reformulate this idea in mathematical language.
Equation 4.2.1 will be shown by lemma 4.1, the choice of the appropriate variable u
will be explored in lemma 4.2 and the use of the Ergodic Theorem will be used in
the proof of the Central Limit Theorem.

Notation. For the rest of this chapter we will use the notation

θ(n, j, t) = exp
(

σ2t2 j
2n

)
E

[
exp

(
it

Sj−1√
n

)( (σ2 − X2
j )t

2

2n

)]

When there is no ambiguity in which n and t are being used we will denote θ(n, j, t)
simply by θj.

Lemma 4.1. Let X = {Xn}n∈N be a sequence of martingale differences with finite variance
σ2 and supn∈N E|Xn|3 finite. Then

lim
n→∞

n

∑
j=1
|(ϕj − ϕj−1)− θj| = 0

Proof. By the considerations made in remark (4.14) and the definition of θ, we have
that (ϕj − ϕj−1)− θj is equal to

exp
(

σ2t2 j
2n

)
E

[
exp

(
it

Sj−1√
n

)(
exp

(
it

Xj√
n

)
− exp

(
−σ2t2

2n

)
−

(σ2 − X2
j )t

2

2n

)]
.

By the Taylor expansion computed in remark (4.15) the expression becomes

(ϕj − ϕj−1)− θj = exp
(

σ2t2 j
2n

)
E

[
exp

(
it

Sj−1√
n

)(
it

Xj√
n
+ t3

X3
j

n
3
2

Ct +
σ4t3

n2 Ct

)]
.

Apply the absolute value to both sides and use the properties of the expected value
to get

|(ϕj − ϕj−1)− θj| ≤ exp
(

σ2t2 j
2n

)
E

∣∣∣∣∣it Xj√
n
+ t3

X3
j

n
3
2

Ct +
σ4t3

n2 Ct

∣∣∣∣∣ .

Note that the expected value of X is zero and that j < n and you get the expression

|(ϕj − ϕj−1)− θj| ≤ exp
(

σ2t2

2

)(
|t|3

E|X3
j |

n
3
2
|Ct|+

σ4|t|3
n2 |Ct|

)
.

The result follows from summing both sides in j between 1 and n and apply the limit
as n goes to infinity.

Remark 4.17. For any m ∈ N such that m < n we have that exists q, r ∈ N such
that n = qm + r. Therefore for any m ∈ N we may divide the interval [0, n] into q
intervals of size m and final interval of size r. We will denote each of the q intervals
by Bn

m(0), ... , Bn
m(q− 1) and the final interval10 by Bn

m(q).

Notation. Consider n, m ∈ N fixed such that m < n and the blocks Bn
m(0), ... ,

Bn
m(q− 1). For any j ∈ N in the interval [0, n] we have that exists a unique k ∈ N

such that j ∈ Bn
m(k). We will denote by bj the smallest integer in Bn

m(k).
10note that this final interval may be empty.
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Notation. For any k from zero to q we can define a step function - block by block -
such that for j in the block Bn

m(k) we have

θ̂(m)(n, j, t) = exp

(
σ2t2bj

2n

)
E

[
exp

(
it

Sbj√
n

)( (σ2 − X2
j )t

2

2n

)]
.

When there is no ambiguity in which n, t and m are being considered we will denote
θ̂(n, j, t) simply by θ̂j.

Remark 4.18. Notice that we still have the same problem with passing the sum inside
when considering the interval [0, n] since bj depends of j. However within each
block we have that bj is constant. Therefore we can circumvent the problem. We
hope that this transformation allows for θ̂ close enough to θ.

Lemma 4.2. Let X = {Xn}n∈N be a sequence of martingale differences with zero mean and
finite variance σ2. Then

lim
n→∞

n

∑
j=1
|θ̂j − θj| = 0.

Proof. We start by taking a closer look at |θ̂j − θj|. Notice that using the distribution
law and a simple algebraic manipulation we get

|θ̂j− θj| ≤ E

∣∣∣∣∣ (σ
2 − X2

j )t
2

2n

(
exp

(
σ2t2bj

2n

)
exp

(
it

Sbj√
n

)
− exp

(
σ2t2 j

2n

)
exp

(
it

Sj√
n

))∣∣∣∣∣ .

We have an inequality above because we passed the absolute value inside expected
value. Using the distributive law11 again we get that the above expected value is
equal to

E

∣∣∣∣∣exp

(
σ2t2bj

2n

)
exp

(
it

Sbj√
n

) (σ2 − X2
j )t

2

2n

(
1− exp

(
σ2t2(j− bj)

2n

)
exp

(
it

Sj − Sbj√
n

))∣∣∣∣∣ .

The second exponential in the expected value - by definition of (imaginary) exponen-
tial function - has absolute value equal to one. On the other hand by construction
bk < n. Then the first exponential in the expected value has absolute value that does
not depend on n, i.e. for each t exists Ct such that

|θ̂j − θj| ≤ E

∣∣∣∣∣Ct
(σ2 − X2

j )t
2

2n

(
1− exp

(
σ2t2(j− bj)

2n

)
exp

(
it

Sj − Sbj√
n

))∣∣∣∣∣ .

Sum both sides on j from 1 to n. For the right side notice that the sum of a finite
number of terms is smaller than the maximum of those terms multiplied by the
number of times we are summing, to get

n

∑
j=1
|θ̂k− θj| ≤ n sup

1≤j≤n
E

∣∣∣∣∣Ct
(σ2 − X2

j )t
2

2n

(
1− exp

(
σ2t2(j− bj)

2n

)
exp

(
it

Sj − Sbj√
n

))∣∣∣∣∣ .

Simplify n. By an argument of stationarity conclude that Sj − Sbj is equal in dis-
tribution to Sj−bj and Xj is equal in distribution to Xj−bj . Furthermore j − bj with

11We have two terms - each with two exponentials - multiply and divide the second term by the first
and then use the distribuitive property on the first term.
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0 ≤ j ≤ n is equivalent - by construction of bj - to have j just in the first block. Hence

n

∑
j=1
|θ̂k − θj| ≤

t2

2
sup

1≤j≤m
E

[
Ct|σ2 − X2

j |
∣∣∣∣1− exp

(
σ2t2 j

2n

)
exp

(
it

Sj√
n

)∣∣∣∣] .

Now take the limit as n grows to infinity on both sides. Using the Lebesgue Conver-
gence Theorem on the right side to place the limit inside the expected value, get us
the result. The use of the theorem is justified since

Ct|σ2 − X2
j |
(

1 +
∣∣∣∣exp

(
σ2t2(j− bk)

2n

)
exp

(
it

Sj − Sbk√
n

)∣∣∣∣) ≤ (1 + Ct)Ct|σ2 − X2
j |,

which is integrable (i.e. has finite expected value), does not depend on n and is
larger than what is inside the expected value for all natural n.

Theorem (Central Limit Theorem). Let X = {Xn}n∈N be a martingale difference with
zero mean and finite variance σ2 and E|Xn|3 finite. Then the Central Limit Theorem holds
on X.

Proof. Sum and subtract θ and θ̂. Now use triangular inequality twice to get

lim
n→∞

∣∣∣∣∣ n

∑
j=1

ϕj − ϕj−1

∣∣∣∣∣ ≤ lim
n→∞

∣∣∣∣∣ n

∑
j=1

ϕj − ϕj−1 − θj

∣∣∣∣∣+ lim
n→∞

n

∑
j=1

∣∣∣θj − θ̂j

∣∣∣+ lim
n→∞

∣∣∣∣∣ n

∑
j=1

θ̂j

∣∣∣∣∣ .

The first and second term are zero as direct conclusions of lemma (4.1) and lemma
(4.2) respectively. Hence if we show that the last term is zero we complete the proof.
To do this notice that θ̂j is defined in blocks. Therefore we may arrange the sum to
reflect that (we are only using the commutative law of the sum). Recall that there are
q blocks of size m and final block of size r.∣∣∣∣∣∑j∈Bs

θ̂j

∣∣∣∣∣ =
∣∣∣∣∣∣

q

∑
k=0

∑
j∈Bn

m(k)
exp

(
σ2t2bk

2n

)
E

[
exp

(
it

Sbk√
n

)( (σ2 − X2
bk+j)t

2

2n

)]∣∣∣∣∣∣ .

Everything that does not depend directly on j may be put outside the inner sum12∣∣∣∣∣∣ 1n
q

∑
k=0

t2

2
exp

(
σ2t2bk

2n

)
E

exp
(

it
Sbk√

n

)
∑

j∈Bn
m(k)

σ2 − X2
bk+j

∣∣∣∣∣∣ .

Notice that by construction bk < n so the first exponential that appears has absolute
value smaller than a constant Ct that only depends on t. Furthermore when passing
the absolute value inside the expected value we get a bigger expression and the
exponential inside the expected value has absolute value equal to one. Hence the
above expression is less or equal than∣∣∣∣∣∑j∈Bs

θ̂j

∣∣∣∣∣ ≤ q

∑
k=0

Ct

n
E

∣∣∣∣∣∣ ∑
j∈Bn

m(k)
σ2 − X2

bk+j

∣∣∣∣∣∣ .

12Notice that this step would not be possible if we were working with θ instead of θ̂ and is the reason
for the change.
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Recall that the last block is slightly different from the others. To address this we will
separate the last block. Notice that we are working with stationary sequences hence
starting the sum at bk or at 1 shall make no difference in terms of expected value,
therefore we will start at one.∣∣∣∣∣∑j∈Bs

θ̂j

∣∣∣∣∣ ≤ q−1

∑
k=0

Ct

n
E

∣∣∣∣∣ m

∑
j=1

σ2 − X2
j

∣∣∣∣∣+ Ct

n
E

∣∣∣∣∣ r

∑
j=1

σ2 − X2
j

∣∣∣∣∣ .

Notice that nothing depends on k anymore, hence we can express that sum as a
simple multiplication. Furthermore we may multiply and divide by m and r in the
normal block and last block respectively.∣∣∣∣∣∑j∈Bs

θ̂j

∣∣∣∣∣ ≤ Ct
qm
n

E

∣∣∣∣∣ m

∑
j=1

σ2 − X2
j

m

∣∣∣∣∣+ Ct
r
n

E

∣∣∣∣∣ r

∑
j=1

σ2 − X2
j

r

∣∣∣∣∣ .

In the above expression take the limit when n grows arbitrary.
Remark 4.19. Let n be any natural number, m be the smallest natural number bigger
(not equal) than n/2. Then let r be such that n = m × 1 + r. This means that r is
greatest natural smaller or equal to n/2. In this case as n increases arbitrarily both m
and r increase arbitrarily.

By the above remark we can conclude that we may consider m and r also growing
arbitrarily, hence we have

lim
n→∞

∣∣∣∣∣∑j∈Bs

θ̂j

∣∣∣∣∣ ≤ lim
n→∞

lim
m→∞

Ct
qm
n

E

∣∣∣∣∣ m

∑
j=1

σ2 − X2
j

m

∣∣∣∣∣+ lim
n→∞

lim
r→∞

Ct
r
n

E

∣∣∣∣∣ r

∑
j=1

σ2 − X2
j

r

∣∣∣∣∣
Notice that the random variables σ2 − X2

j are in the conditions of the Ergodic Theo-
rem13. Hence we apply the Ergodic theorem to both sums inside the expected values
and conclude that those sums converge to E[σ−X2|I], where I is determined by the
theorem14. Therefore we will represent the first sum as δ(m) and the second sum as
δ(r). Finally let δ∗(m, r) = max{δ(m), δ(r)}. Since we are only looking for an upper
bond we get

lim
n→∞

∣∣∣∣∣∑j∈Bs

θ̂j

∣∣∣∣∣ ≤ lim
n→∞

lim
m→∞

lim
r→∞

(
Ct

qm
n

E |δ∗(m, r)|+ Ct
r
n

E |δ∗(m, r)|
)

.

Now use the distributive law and recall that n = mq+ r to conclude that the fractions
simplify to one. Therefore our expression no longer depends on n and as such the
limit on n is dropped. Furthermore, by definition, the limit of δ∗ when both variables
are increasing arbitrarily is equal to the limit of δ(k) as k grows arbitrarily. Hence we
have

lim
n→∞

∣∣∣∣∣∑j∈Bs

θ̂j

∣∣∣∣∣ ≤ Ct lim
k→∞

E |δ(k)| = CtE
∣∣E[σ− X2|I]

∣∣ = CtE
∣∣σ− X2∣∣ = 0

and the result follows.

13They are stationary and integrable.
14The definition of I will not be relevant, so we will not worry to much about it. Just keep in mind

that it is a well defined sigma algebra.
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Appendix A

General results

A.1 Convolutions

Notation. Let X be random variable, µX be the the law of X, FX its distribution func-
tion and f be a measurable function. Then we denote

∫
f (x)µ(dx) by

∫
f (x)dFX(x).

Definition. Let F be a function, Y be random variable and µY be the law of Y. We
call ∫

F(y− x)dµY

the convolution between F and FY and denote it by F ∗ FY.

Proposition A.1.1. Let F : R 7→ [0, 1] be a function such that

• is increasing (i.e. ∀x ≤ y F(x) ≤ F(y))

• is continuous from the right at every point (i.e. ∀a ∈ R limx→a+ F(x) = F(a))

• the limit of F(x) as x increases is 1 and as decreases is zero (i.e. limx→∞ F(x) = 1
and limx→−∞ F(x) = 0).

Then exists a random variable X such that FX = F.

Proof. See Theorem 1.2.2., page 9 of Durrett, 2010.

Proposition A.1.2. If F and G are distributions then F ∗ G is a distribution, i.e. exists a
random variable X such that FX = F ∗ G.

Proof. Note that ∀x ≤ y F(x) ≤ F(y) =⇒ F ∗ G(x) =
∫

F(x− z)dG(z) ≤
∫

F(y−
z)dG(z) =

∫
F(y− z)dG(z) = F ∗ G(y).

On the other hand, by the monotonic convergence theorem, ∀a ∈ R, limx→a+ F ∗
G(x) = limx→a

∫
F(x − z)dG(z) = 1 − limx→a+

∫
1 − F(x − z)dG(z) = 1 −

∫
1 −

F(a+ − z)dG(z) = F ∗ G(a).
Finally, by the monotonic convergence theorem limx→∞ F ∗G(x) = limn→∞

∫
F(x−

z)dG(z) =
∫

limx→∞ F(x − z)dG(z) =
∫

1dG(z) = 1. Analogously one can prove
limx→−∞ F(x) = 0

Therefore by proposition (A.1.1) the result follows.

Notation. Given two random variables X and Y, we will denote by X ∗Y the random
variable which has distribution FX ∗ FY.

Proposition A.1.3. Let X and Y be random variables, FX and FY their respective distribu-
tions. The random variable with distribution F ∗ G is Z = X + Y.

Proof. See Theorem 2.1.10., page 42 of Durrett, 2010.
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A.2 Fourier Transform

This section serves as an introduction to this chapter, many of the concepts dis-
cussed here are elemental and reader that are familiar with Fourier transforms can
skip it. For those that find this chapther too sumarized in the book of Rudin, 1987
starting on page 178, one may find a more detailed introduction to Fourier trans-
forms.

Definition. Let f be an integrable function. Then we define the Fourier transform of
f as

f̂ (t) =
∫

f (x)e−itxdx.

Remark A.1. Recall that for any non zero reals k, a and b we have∫
eikxdx =

∫
(cos(kx) + isin(kx))dx

Computing the integral

1
k

sin(kx)− i
k

cos(kx) =
1
ik
(isin(kx) + cos(kx)) =

1
ik

eikx

, then∫
(ax + b)eikxdx = (ax + b)

1
ik

eikx −
∫

a
1
ik

eikxdx = (ax + b)
1
ik

eikx + a
1
ik

1
ik

eikx

(A.2.1)

= (ax + b)
1
ik

eikx − a
k2 eikx, (A.2.2)

and,

sin(z) =
eiz − e−iz

2i
. This will be necessary for the computations in the next example.

Example A.1. Let a and b be real numbers such that a < b, let h be a positive real
such that h < b−a

2 and consider the function

fa,b,h(x) =



0 if x ≤ a− h
x− a + h

2h
if a− h ≤ x ≤ a + h

1 if a + h ≤ x ≤ b− h

1− x− b + h
2h

if b− h ≤ x ≤ b + h

0 if b + h ≤ x.

(A.2.3)

Show that

f̂a,b,h(t) =
1√
2π

e−iat − e−ibt

it
sin ht

ht
(A.2.4)
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Solution:
√

2π f̂a,b,h(t) =
∫

R
fa,b,h(x)e−itxdx

=
∫ a+h

a−h

x− a + h
2h

e−itxdx +
∫ b−h

a+h
e−itxdx +

∫ b+h

b−h

(
1− x− b + h

2h

)
e−itxdx

=

[
x− a + h

2h
1
it

e−itx − 1
2h(−it)2 e−itx

]a+h

a−h
+

[
1
it

e−itx
]b−h

a+h
+

+

[(
1− x− b + h

2h

)
1
it

e−itx − 1
−2h(−it)2 eitx

]b+h

b−h

=

[
1
it

e−it(a+h) − 1
2hi2t2 e−it(a+h) +

1
2hi2t2 e−it(a−h)

]
+

[
1
it

e−it(b−h) − 1
it

e−it(a+h)
]
+

+

[
− 1
−2hi2t2 e−it(b+h) − 1

it
e−it(b−h) +

1
−2hi2t2 e−it(b−h)

]
=

[
− 1

2hi2t2 e−it(a+h) +
1

2hi2t2 e−it(a−h)
]
+

[
1

2hi2t2 e−it(b+h) − 1
2hi2t2 e−it(b−h)

]
=

1
2hi2t2

(
−e−it(a+h) + e−it(a−h) + e−it(b+h) − e−it(b−h)

)
=

1
2hi2t2

((
e−ita − e−itb

)
eith −

(
e−ita − e−itb

)
e−ith

)
=

1
hit2

(
e−ita − e−itb

) (eith − e−ith)
2i

=
e−iat − e−ibt

it
sin ht

ht
.

Then we have f̂a,b,h(t) = 1√
2π

e−iat−e−ibt

it
sin ht

ht

Proposition A.2.1. Let f be an L1(R) function. Then the Fourier transform f̂ of f is
bounded by a real constant C.

Proof. Since f is in L1(R) we have that
∫

R
| f (x)| dx < ∞.

| f̂ (t)| =
∣∣∣∣ 1√

2π

∫
R

f (x)e−itxdx
∣∣∣∣

≤ 1√
2π

∫
R
| f (x)|

∣∣∣e−itx
∣∣∣ dx

=
1√
2π

∫
R
| f (x)| dx < ∞.

Theorem (Riemann-Lebesgue). Let f be an L1 function. Then

lim
|t|→∞

∫
R

f (x)eitxdx = 0

.
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Example A.2. Let X and Y be random variables, µ and λ their respective probability
measures and φµ and φλ their respective characteristic functions. Then we have

lim
b→∞

1
2π

∫
R
(φµ(y)− φλ(y))

e−iby

iy
sin hy

hy
dy (A.2.5)

Solution: We will compute the limit using the Riemann Lebesgue theorem (A.2), in
order to justify its use we must ensure that g(y) = (φµ(y)−φλ(y)) sin hy

ihy2 is integrable.

∫
R

∣∣∣∣ (φµ(y)− φλ(y)) sin hy
ihy2

∣∣∣∣ dy =
∫

R

|(φµ(y)− φλ(y))|| sin hy|
|h|y2 dy

≤
∫

R

2| sin hy|
|h|y2 dy

= 2
∫ +∞

0

| sin hy|
|h|y2 dy

= 2
∫ 1

0

| sin hy|
|h|y2 dy + 2

∫ +∞

1

| sin hy|
|h|y2 dy

We have that ∫ +∞

1

| sin hy|
|h|y2 dy ≤

∫ +∞

1

1
|h|y2 dy < ∞

To show that g is integrable on the closed compact set [0, 1] we must only show
that it is continuous on the same set. It is obviously continuous on ]0, 1] so we just
have to check that it is continuous on zero. To achieve that we must only check that
limy→0 |g(y)| < ∞. First notice that by (A.4.1)

|φµ(t)− φλ(t)| = |E(eitX)−E(eitY)|
= |E(eitX − 1− itX)−E(eitY − 1− itY) + E(it(X−Y))|
≤ E|eitX − 1− itX|+ E|eitY − 1− itY|+ E|it(X−Y)|
≤ E(Ct2) + E(Ct2) + tE|(X−Y)| ≤ Ct2 + Ct = Ct(t + 1).

Then

lim
y→0
|g(y)| = lim

y→0

|φµ(y)− φλ(y)|
y

sin hy
hy

≤ lim
y→0

Cy(y + 1)
y

lim
y→0

sin hy
hy

= C× 1 ≤ ∞.

Then

lim
b→∞

1
2π

∫
R

φ(y)
e−iby

iy
sin hy

hy
dy = lim

b→∞

1
2π

∫
R

φ(y) sin hy
ihy2 ei(−b)ydy = 0.

A.3 measure theory

Proposition A.3.1. Let (Ω, F , P) a probability space. Then if X is a random variable,

P ◦ X−1

is a probability measure.
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Definition. For all X random variable we call the law of X to the measure P◦X−1. We
represent the law of X by αX, where the subscript might get dropped (or changed)
when there is no ambiguity.

Remark A.2. The normal distribution has bounded density.

Proposition A.3.2. Let a be any non zero real number. Then∫ 1√
2πa

x2 exp
(
− x2

2a

)
dx = a.

Proof. Let X be a random variable with normal distribution (with µ = 0 and σ2 = a)
then ∫ 1√

2πa
x2 exp

(
− x2

2a

)
dx =

∫
x2 fX(x)dx = EX2 = σ2 = a.

Remark A.3. ∫ ∞

0
x3 exp

(
− x2

4

)
dx = −

∫ ∞

0
2x2 x

2
exp

(
− x2

4

)
dx

Integrating by parts,

= −0 +
∫ ∞

0
4x exp

(
− x2

4

)
dx = −8 exp

(
− x2

4

)∣∣∣∣∞
0
= 0− (−8) = 8.

Theorem (Inversion Formula). Let f ∈ L1, f̂ ∈ L1 and

g(x) =
∫

R
f̂ (t)eitxdm(t).

Then g is continuous and f (x) = g(x) a.e.

Proof. see Rudin, 1987, Theorem 9.11., page 185.

Theorem (Fatou). Let { fn}n∈N be a sequence of non-negative measurable functions. Then

lim inf
n→∞

∫
fn(x)dµ ≤

∫
lim inf

n→∞
fn(x)dµ.

Proof. See Capinski and Kopp, 2013, Theorem 4.7., page 82.

Theorem (Monotonic Convergence Theorem). Let { fn}n∈N be a point wise increasing
sequence of non-negative measurable functions. If limn→∞ fn(x) : R 7→ R is measurable
then

lim
n→∞

∫
fn(x)dµ =

∫
lim
n→∞

fn(x)dµ

Proof. By Fatou (A.3) (first inequality), by definition of lim inf (second inequality),
lim sup (third inequality) and by the fact that fn is increasing hence for any n we
have fn ≤ limn→∞ fn(x) (fourth inequality),∫

lim
n→∞

fn(x)dµ ≤ lim inf
n→∞

∫
fn(x)dµ ≤ lim

n→∞

∫
fn(x)dµ ≤ lim sup

n→∞

∫
fn(x)dµ ≤

∫
lim
n→∞

fn(x)dµ

the Theorem follows.
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Theorem (Fubini Theorem). Let f ∈ L1(Ω1, Ω2). Then the sections are integrable in
appropriate spaces, the functions

ω1 7→
∫

Ω1

f (ω1, ω2)dP2(ω2), ω2 7→
∫

Ω2

f (ω1, ω2)dP1(ω1)

are in L1(Ω1), L1(Ω2), respectively, and∫
Ω1×Ω2

f d(P1 × P2) =
∫

Ω1

∫
Ω2

f dP2dP1 =
∫

Ω2

∫
Ω1

f dP1dP2.

Proof. See Capinski and Kopp, 2013, Theorem 6.10., page 171.

Proposition A.3.3. Martingales have constant expected value.

Proof. Let Xn be a martingale then

EXn = EE[Xn|F0] = EX0.

A.4 Bounds

Remark A.4. Just note that by Taylor expansion of order 2 we have that exists c in the
interval ]0, x[ such that

e−x = 1− x +
c2

2︸︷︷︸
≥0

.

Hence

1− x ≤ e−x.

Proposition A.4.1. Let x be a real number in the interval ]0, 1[. Then |e−x − 1 + x| ≤ x2

2

Proof. We have that e−x = ∑∞
n=0

(−x)n

n! . Then

|e−x − 1 + x| ≤
∣∣∣∣ x2

2
− x3

3!
+

x4

4!
− ...

∣∣∣∣ ≤ x2

2

The last step is because we have a series of decreasing alternating terms (they are
decreasing because the series is convergent).

Proposition A.4.2. Given a positive integer n, exists a real number C such that for every
real number x ∣∣∣∣∣eix −

n

∑
j=0

(ix)j

j!

∣∣∣∣∣ ≤ C|x|n+1.

Proof. Consider the Taylor expansion of order n + 1 of the exponencial function ex =

∑n
j=0

xn+1

j! + xj

(n+1)! e
θ , where θ is a specific real number in the interval ]0, x[.
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∣∣∣∣∣eix −
n

∑
j=0

(ix)j

j!

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
j=0

(ix)j

j!
+

(ix)n+1

(n + 1)!
eiθ −

n

∑
j=0

(ix)j

j!

∣∣∣∣∣
=

∣∣∣∣ (ix)n+1

(n + 1)!
eiθ
∣∣∣∣

≤
∣∣∣∣ (i)n+1

(n + 1)!

∣∣∣∣︸ ︷︷ ︸
C

|x|n+1 sup
a∈R

∣∣∣eia
∣∣∣︸ ︷︷ ︸

≤1

.

Corollary. Exists a real number C such that for every real number x

|eix − 1− ix| ≤ Cx2. (A.4.1)

Corollary. Exists a real number C such that for every real number x∣∣∣∣eix − 1− ix +
x2

2

∣∣∣∣ ≤ Cx3. (A.4.2)

Proposition A.4.3. Let a, b and C be real numbers such that |a| and |b| are less or equal to
C. Then for any natural number n we have the inequality

|an − bn| ≤ n|a− b|Cn−1.

Proof. For every natural m let αm = an−mbm. Then we have that for any natural n

α0 − αn = α0 − α1 + α1 − α2 + ... + αn−2 − αn−1 + αn−1 − αn

=
n−1

∑
m=0

αn−m − αm.

Now note that for every natural m we have

αn−m − αm = an−mbm − an−m−1bm+1 = an−m−1bm(a− b) ≤ Cn−m−1Cm(a− b) = Cn−1(a− b)

Then

|an − bn| =
∣∣∣∣∣n−1

∑
m=0

an−mbm − an−m−1bm+1

∣∣∣∣∣ ≤ n−1

∑
m=0

∣∣∣Cn−1(a− b)
∣∣∣ = n|a− b|Cn−1

Theorem (Holder). Let X, Y be random variables and p and q be positive real numbers
such that E|X|p < ∞, E|Y|q < ∞ and 1

p +
1
q = 1. Then

E|XY| ≤ (E|X|p)
1
p (E|X|q)

1
q .
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Corollary. Let a and b be real numbers such that a < b, and X be a random variable such
that E|X|b < ∞. Then E|X|a exists and

E|X|a ≤ (E|X|b) a
b .

Proof. Just apply the Holder’s Theorem (A.4) to X and 1Ω.

A.5 Order

Definition. Let A and B be any sets. Then denote

AB = { f : B 7→ A}.

Let f , g ∈ RR. If

∃x0 ∈ R ∃M ∈ R+ : x > x0 =⇒ | f (x)| ≤ Mg(x)

we say that f has order g and we denote

O( f ) = {g ∈ RR : g has order f }

Remark A.5. Many times, when we are interested that ∃g ∈ O( f ), this is the only
property we are interested about of g. Therefore it is very common, and we shall do
it too, to abuse the above notation O( f ) and identify O(f) as some particular function
that belongs to O(f). The example below clarifies the notation.

Example A.3. Correct Notation:

∃g ∈ O(x− 1)2 log x =
∞

∑
n=1

(−1)n+1 1
n
(x− 1)n.

Separating the first term

(x− 1) +
∞

∑
n=2

(−1)n+1 1
n
(x− 1)n = (x− 1) + g(x).

By abuse we will use

log x =
∞

∑
n=1

(−1)n+1 1
n
(x− 1)n = (x− 1) +

∞

∑
n=2

(−1)n+1 1
n
(x− 1)n = (x− 1) + O(x− 1)2.

(A.5.1)

Proposition A.5.1. Let a ∈ R, α > 0 and f (n) = O
( 1

n1+α

)
. Then

lim
n→∞

(
1 +

a
n
+ f (n)

)n
= ea.

Proof. By the Newton Binomial (also known as Binomial Theorem), we have that(
1 +

a
n
+ f (n)

)n
=

n

∑
k=0

Cn
k

( a
n
+ f (n)

)k
1n−k =

n

∑
k=0

Cn
k

( a
n
+ f (n)

)k
.
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Let 0 ≤ k ≤ n be a natural number. Then

Cn
k

( a
n
+ f (n)

)k
=

n!
k!(n− k)!

( a
n
+ f (n)

)k
.

Now notice that n!
(n−k)! = n(n− 1)...(n− k + 1) is a polynomial on n of degree k, and

we will denote it by pk. Then

Cn
k

( a
n
+ f (n)

)k
=

pk(n)
k!

1
nk (a + n f (n))k ,

Now we are ready to compute limn→∞
(
1 + a

n + f (n)
)n. Note that

lim
n→∞

pk(n)
nk = 1

since both polynomials have the same degree and have maximum order coefficient
equal to one and

lim
n→∞

(a + n f (n))k = ak,

because f (n) = O
( 1

n1+α

)
and by definition of order limn→∞ f (n)n = 0. Since by

Taylor expansion ∑∞
k=0

xk

k! = ex, we have

lim
n→∞

(
1 +

a
n
+ f (n)

)n
= lim

n→∞

n

∑
k=0

Cn
k

( a
n
+ f (n)

)k

= lim
n→∞

n

∑
k=0

pk(n)
nk

(a + n f (n))k

k!
=

∞

∑
k=0

ak

k!
= ea.

Corollary. We have that

lim
n→∞

(
1 +

a
n

)n
= ea

Proof. Notice f (n) = 0 satisfies the order constraint of the above theorem for every
α.
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