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Abstract

This dissertation will compare three ways of computing the Value-
at-Risk of a fixed income portfolio. The first being the Cash Flow
Mapping [15], the second one being the Pull Price method [17] and
the last one being the Duration Method [10]. To compare the results
this study computes the VaR through the different methods for past
days and then uses a backtesting tool to measure each method’s consis-
tency. This study will show that the results from the Duration Method
were vastly overestimated and that the Pull Price Method got a good
approval rate of the backtesting techinique when applied for a portfo-
lio. The results from the Cash Flow Mapping are subjected to a more
careful analysis since the underlying risk factor used was the European
Central Bank yield curve for our portfolio of corporate bonds. Even
so, the method failed to meet expectations since there are numerous
bonds whose rating is eligible to be used under this yield curve.
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1 INTRODUCTION

1.1 Introduction to VaR

One way to help a manager assess his portfolio’s risk is the Value-At-Risk
(VaR). The VaR answers the manager’s problem the following way:

"We are X percent certain that we will not lose more than V dollars in
the next N days." [§]

This is, in fact, one of the biggest advantages of the Value at risk as
described by Pearson [12] which is its simplicity and ability to focus all
the decision making into one number. But there’s also criticism in all this
simplicity. Taleb is an active critic of the VaR risk tool since "it tries to
estimate something that is mot scientifically possible to estimate, namely
the risks of rare events"[18]. Other critics like Heihorn render the VaR
useless because it neglects what happens at the extreme tails. So if, for
instance, a VaR is computed at an o = 1%, then the VaR doesn’t give us
any information beyond the 1%’s quantile [6].

Despite all this, it still is a widely used tool to compute the holding’s
risk [9]. For this reason, VaR computations influence capital requirements
for the institutions in compliance to the Basel III guidelines. In the case
that the number of exceedances of the actual returns is abnormally high,
compared to the VaR estimates, a penalty will be charged to the VaR es-
timates that can go as high as 3 times the VaR estimated [2]. Researchers
found evidence that this penalty leads the way to intentionally flawed VaR
estimates suggesting that companies have incentive to underestimate their
VaR estimations to incur smaller penalties [14]. However studies like [16]
point on the opposite direction finding evidence that banks overestimated
their Value at Risk showing an high degree of conservatism. The two main
causes are the institution’s reputation and to minimize the chance of having
to disclose information about the excessive number of exceedances. Next we
will see the relationship between VaR and fixed income products.

1.2 VaR and Bonds

To reach the VaR we need to know what is the nature of the underlying
asset or assets we are computing the VaR on. This is relatively simple for
a stock or stock portfolio as historical data can be directly applied to the
historical simulation [12] where one can use the historical prices to compute
historical returns and, finally, the standard deviation of these returns. This
is not as linear for a bond or a bond portfolio.



For a bond or bond Portfolio additional factors must be taken into con-
sideration. Three aspects are to note:

e the characteristics of a bond change everyday since the maturity changes
everyday

e there are cash flows in the future

e there is a pull to par effect

Bonds are more sensitive to interest rate risk factors than stocks. It is
impossible to introduce interest rate risk without mentioning the yield curve.
The yield curve represents, among other important things, the expectations
of investors towards future economic health of the issuer. An issuer with
negative future prospectives will raise the probability of default which will
inflate the return asked by the investor. This also means that different
maturities have different risks which is the fundamental problem of applying
a bond’s historical prices directly to the VaR. Despite all this, some authors
still apply historical simulation to calculate VaR of bonds [19]. However
there are ways of going around this. One way is the Cash Flow Mapping
which stretches in a time line all the cash flows in bond portfolio either being
principal payments or coupon payments and treats them like zero coupon
bonds. Later, it maps these cash flows into standard maturities which have
available historical yields which will be used to compute the VaR.

The Pull Price method simplifies this problem since it does not need
historical yields to compute the VaR because it uses the adjusted returns
based on the pulled prices.

At last, the Duration method uses the Duration of a bond to reach the
VaR. Since Duration is a measure of a bond’s price sensitivity to changes in
the interest rates, the VaR will be the change in price correspondent to the
worst, relevant quantile, change in yield. All these methods will be further
developed ahead in this dissertation.

This dissertation aims to verify each method’s credibility to measure
VaR for bonds. To do this we will use a simple backtesting tool that will
be developed next. For all the methods, the VaR was computed at an
a = 5% and a = 1% with a time horizon of 10 days following the Bank of
International Settlement’s regulations. [2]



Table 1: Portfolio composition

ISSUER ISSUE DATE COUNTRY RATING MATURITY| CPM

AlB MORTGAGE BANEK 26-06-2007 IE A- 29-06-2017 | 4,875
AXT CEDULAS CAJAS GLOBAL  (13-03-2007 ES BBB 21-03-2017 4
AYT CEDULAS CAJAS GLOBAL  |12-12-2006 ES EBB+ 20-12-2016 4
SMNS BANK NV 03-03-2010 ML Ab- 10-03-2017 | 3,625
BAMNCO POPOLARE S5C 24-02-2010 IT EEB+ 31-03-2017 | 3,625
BAMNCO DE SABADELL SA 09-01-2007 ES A- 24-01-2017 4,25
BAMCO BILBAOC VIZCAYA ARG |05-01-2010 ES A 18-01-2017 | 3,625
BANCA MONTE DEI PASCHI S  (09-03-2011 IT BBB 15-09-2016 | 4,875
CAIXABANMNK 08-02-2012 ES A+ 16-02-2017 4
BAMCO SANTAMNDER 5A 18-03-2010 ES A 06-04-2017 | 3,625
INTESA SANPACLO SPA 13-07-2012 IT NR* 28-04-2017 | 3,25
BAMNKIA 5A 24-09-2009 ES NR 05-10-2016 | 3,625
BAMNCA POPOLARE DI MILANO |01-10-2009 IT EEB 17-10-2016 2,5
BANK OF SCOTLAND PLC 31-05-2007 GB ALA 08-06-2017 | 4,625
BAMNCO ESPANCL DE CREDITC  |10-09-2012 ES A 24-01-2017 | 4,75
BAMCO SANTAMNDER 5A 31-08-2006 ES A 09-01-2017 | 4,125
CRED MUTUEL- CICHOME LO  (11-02-2010 FR ALA 25-04-2017 3.5
DEXIA KOMMUNALBANK AG  |05-01-2010 DE MR 12-01-2017 | 3,375

MR = No Rating

2 Methodology

2.1 The Portfolio

The portfolio used in this dissertation is composed by eighteen European
live ! coupon bearing bonds with different issuers, maturities, countries and
credit ratings. Since it is completely composed of European bonds, the
application of the Cash Flow Mapping is done with the Euro area yield
curve. The portfolio composition, and respective characteristics can be seen

in Table 1.

To achieve its conclusions, this study computed the VaR of all days
between the 1st of April of 2010 until the 3rd of March of 2014. The criteria
for the choice of these dates were (i) wide enough to provide a good historical

Hive to 03-03-2014




background and (ii) recent data so it’s easily accessible.

2.2 Backtesting

To test if the VaR results were acceptable a simple backtesting tool was
used. Backtesting is a tool that assess the accuracy of the VaR estimates
[10]. The backtesting tool used in this study is the Kupiec’s Unconditional
Coverage test [3, 5, 11, 16]. The method consists of counting the amount
of samples of historical returns that actually exceeded the estimated VaR
for each method. In other words, if the VaR at o = 1% is X then the
method is considered adequate if the amount of exceedances is around 1%.
A good method will, then, offer a number of exceedances closest to 1% in
this scenario. This is measured using significance test of the exceedances at
95% and 99% with a null hypothesis of

HOQ : Correct number of exceedances

and an alternative hypotheses of
H1 : Incorrect number of exceedances

Despite its simplicity, this backtesting tool has been known to under
report the VaR estimates. In other words, if the a = 1% then this test has
a chance to report results for an "actual" o = 2% or higher [5]. Additionally
[11] also concluded that the method is prone to misconclusions for limited
sized samples which is not the case of the sample used in this study.

2.3 Cash Flow Mapping

In an effort to create a homogeneous market practice, J.P. Morgan released
a document called RiskMetrics with guidelines on how to compute risks
of a set of financial instruments like equities, FOREX, commodities, fixed
income products and their derivatives. Among the instruments to compute
fixed income risk there is the Cash Flow Mapping method(CFM). As said
before, the CFM stretches on a time line all of the portfolio’s cash flows
either being coupon payments or principal payments and considers them to
be separate zero coupon bonds. Later they split these zero coupon bonds
into standard maturities which are maturities that have historical yields
available. JP Morgan’s Risk Metrics sets the following conditions for these
split zero coupon bonds [15]



e Market value is preserved. The total market value of the two split
zero coupon bonds’ cash flows must be equal to the market value of
the original cash flow.

e Market risk is preserved. The market risk of the portfolio of the split
zero coupon bonds must also equal the market risk of the original cash
flows.

e Sign is preserved. The split zero coupon bonds have the same sign as
the original cash flows.

The standard maturities were defined according to the available histori-
cal rates at the European Central Bank’s database which has more detailed
information. Those maturities are 1, 5, 10, 20 and 30 years for the long
term and 3, 6 and 9 months for the short term maturities. Mark Henrard
argues that one could indeed add more standard maturities to the mapping
procedure. However some specific maturities might not be liquid enough
to extract data necessary for the method. Additionally, by adding more
standard maturities into the mapping can lead to problems when creating
a covariance matrix of all standard maturities since there’s a risk that the
matrix is singular or, in other words, some combinations of positions are
riskless [7]. Henrard also argues that adding too many maturities it be-
comes increasingly harder to extract results as the covariance-matrix grows
with the square of the standard maturities.

The main struggle of the method is data. This method is relatively easy
to use if we are analysing government issues that have broad historical data
we can use to compute the yield volatility. Corporate bonds on the other
hand require some extra effort to extract yield volatilities since individual
corporations issue less debt than governments. Few literature exists where
the method is applied and tested for corporate debt due to the fact that
historical rates for the defined standard maturities are either scarce or non-
existent. A few exceptions that mention this method are [4] which applies
the CFM using the no longer available RiskMetrics data set and [20] which
applies the CFM to riskless derivative products. At the time of the issue
of the RiskMetrics document, JP Morgan additionally released a data set
containing volatilities and correlations between instruments in 33 countries
[15]. Later it was named DataMetrics and, unlike in the past, it is no longer
disclosed information to the public but rather limited to users of a prepaid
software. For this reason, the yield curve considered for this method was
the Euro area yield curve from the European Central bank.



The CFM has the following assumptions [15]:

e there’s a linear path between standard maturities

e there’s a linear path between standard deviation of standard maturities
e assumes normality of returns

There are four methods to allocate each individual cash flow to the cor-
responding bucket[1]

e Present Value Invariant and Duration Invariant Maps
e Dollar Present Value Invariant Cash Flow Maps

e Volatility Invariant Maps

The Dollar Present Value Invariant Cash Flow Map allocation method
uses rates to compound 13 into the next standard maturities. This allocation
method differs if the rates are continuously compounded (r) or discretely
compounded(R). The Volatility Invariant Map allocation method requires
that combination of the volatilities of the adjacent vertices of the cash flow
o1 and o9 must be equal to the volatility of the original cash flow o.

In this study, the allocation of cash flows will be done with the first
method where, for a cash flow at time t (cf;), where t1 < t < tg, the
combination of positions in the adjacent buckets ¢; and t5 will have a Present
Value and Modified Duration equal to that of the original cash flow cf;
following the guidelines of JP Morgan. For the Present Value to remain
invariant the following formula is applied

r1+ T = PVCft (1)

Where x1 and x5 are the weights of the positions in the standard maturities
t1 and to respectively in present value terms. Because this condition alone
is ambiguous since there are infinite ways it can be satisfied we need to add
the Duration constraint

1Ty + x2To = (x1 + 22)T (2)

where 17 and T are the Durations of the standard maturities ¢; and ¢
respectively. To successfully map cf; we need to compute a system of equa-
tions with (1) and (2). For computing the present value of cf;, the rates
were extracted from the Euro area yield curve. Next comes the computation
of the VaR once cf; has been mapped. This can be done in 4 steps [8]



e Extract volatilities of the yields of the reference maturities 1, to

e compute the correlation matrix of the returns of the reference matu-
rities’ prices

e compute the variance of the theoretical portfolio composed of positions
in t; and to using the multi-asset portfolio variance formula

n n
012, = ZQ%JE -+ QZZpijaiOéjUin (3)
=1

i=1 j<i

e compute the VaR with confidence interval X, where 0 < X < 1, and
time horizon N with the following formula

VaRzapszX\/N (4)

London Stock Exchange Group proposes a multiple between 2 and 4 of
the riskless VaR for corporate bond VaR depending on the credit risk of the
issuer [13]. Unfortunately the exact multiplier for each credit rating isn’t
specified. Because we are using the yield curve of the Euro area, this implies
that we are calculating the CFM VaR of a bond if it were without risk.

2.4 Pull Price Method

CFM has a lot of assumptions that ruin its objectivity. Not only that but
also the lack of historical yields in some cases pose some problems for the
model. This method simplifies the VaR computation by using the historical
prices directly. It has the following assumptions:

e yield to maturity is enough to measure return as it takes into account
credit, interest rate, and liquidity risk among other.

e assumes flat forward rates for the computation of the pulled prices

The method can be described as the following: If the N-day return is
defined by

p(n)
HR(n,N) = ———— 5
and considering that P is the principal amount, r(n) the yield at time
n and 7' is the maturity. The method argues that, if the implied yield r(n)
formula is



1
P >T—n
— —1 6
<p(n) ©)

and the pulled price at time m (ny,r < m < T) of a bond bought at
time n (1< n < nyer) is v(m,n) then the formula for this pulled price for
an asset purchased at time n at time m is

P
(1 + r(n))T—nVaR+N (7)

v(nyer + N,n) =

but because this implies that the rate r(n) should have a maturity m makes
no sense in the context of a manager wanting to compute the VaR today.
Some further adjustments are in order. If ny,r represents the most recent
day with historical data and a time horizon N is defined for VaR purposes,
the paper adjusts the historical prices the following way:

e for each historical price p(n), in (5), we compute the corresponding
pulled price v(ny,r +N,n), at time nVaR+N, matching the VaR rel-
evant maturity 7-(ny.gr + N);

e for each historical price p(n - N), in (5), we compute the corresponding
pulled price v(nyqgr,n-N), at time ny,g, matching the VaR relevant
maturity T-nyqg;

e adjust each historical return, of the HR equation, for the VaR relevant
maturities by replacing p(n) by v(ny.r + N, n) and p(n - N) by
v(nvaR, n—N).

This implies that the historical return, now adjusted (AHR), should be
computed the following way:

v(nyer + N,n)
v(nygr,n — N)

AHR = (8)

By computing this AHR for all available n we can plot a distribution
from which we can, finally, find the convenient quantile for the VaR. In figure
1 we can see the relevant maturities defined by the method for a more clear
idea.



Figure 1: Relevant Maturities of the Pulled Price Method
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2.5 Duration method

The Duration Method is a tool that computes the Value at Risk of a bond
based on its duration. It has the following assumptions[Jorion P, 2007]:

e bond’s daily returns follow a normal distribution
e bond’s daily reurns are independent, indentically distributed

To get the VaR it starts by computing the Dollar Duration ($Dur) of a
bond

-1 1CF;
$D““<1+yz(1+y)i> ®)
where CF represents the coupon and principal cash flows and 7 the time
discounting factor. It then extracts the annualized yield-return volatility
o(dy) from historical data based on a minimum amount of observations.
This study set these minimum observations to 250, the number of working
days in a year.
It then sets the confidence interval of the VaR and deduce the corre-
sponding Zzgatistic- Lhe quantile-specific worst daily movement in yield-
return, worst(dy) , is then

N
worst(dy) = o(dy) x 1/ 250 X Zstatistic (10)

The VaR, in money terms, of the bond will be

VaR; = worst(dy) x $Duration (11)



There is a drawback for this method as it requires a reasonable amount
of historical data. The more observations, the better the distribution which
implies that the less observations, the less representative the distribution
becomes.

3 VaR and its application to Portfolios

In this study, the portfolio considered has equal weights among the different
bonds. There are two methods of applying the individual VaRs to a port-
folio of bonds, the Diversified and Undiversified VaR [Jorion, 2009]. Both
methods deliver the VaR but with different assumptions:

e the diversified VaR accounts for diversification benefits while
e the undiversified VaR doesn’t account for diversification.

To compute the Diversified VaR of a portfolio the follow equation must
be computed

VaR = /(zV)R(zV) (12)

where zV are the individual VaRs of each bond, R is the correlation
matrix and R(xV) is the product of each individual VaR (zV'); by the cor-
responding correlation vector R;.

For the Undiversified VaR, the portfolio VaR is simply the sum of the
individual VaRs. Because in this dissertation considers equal weights, the
following formula applies

Z VaRi
n

VaR = (13)

where VaR; are the individual VaRs and n are the number of bonds in
the portfolio. In this study the method considered was the Undiversified
VaR.

4 The individual results

In this Section, this dissertation will analyse the results obtained following
the Methodology Section. The VaR was applied for three different methods
with three different outcomes. As earlier explained, the accuracy of the VaR
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was tested using a backtesting technique that involves comparing the actual
historical N-day returns to the VaR estimates with a significance test where

HO : "Correct number of exceedances”
and an alternative hypotheses of
H1 : ”Incorrect number of exceedances”

The significance test was run at a confidence level of 95% and 99% for a
10-day VaR of a = 0.01 and a = 0.05.

4.1 Cash Flow Mapping

For the cash flow mapping procedure the results were, as expected, negative.
For the 18 bonds in our portfolio, all HO were rejected due to the fact that
all VaR’s were underestimated and the the number of exceedances was too
great. This is no surprise since the risk factor considered in this study is
the European yield curve and not an appropriate yield curve. Some authors
like Watanabe [20] retrieved positive results from the Cash Flow Mapping.
However, the underlying risk factor in this case was the forward curve unlike
in our case where the underlying risk factor are interest rates.

As said before, it is of no surprise that the results were so negative since
the underlying risk factor considered was the European Central Bank yield
curve but what catches our attention is that, in our portfolio, some bonds
actually had a credit rating worthy of rendering this curve appropriate.
Bonds like the Bank of Scotland and Credit Mutuel have a credit rating of
AAA, a credit rating that is considered to be of the highest quality according
to Standard & Poors. S&P differentiates this rating from the other ratings
for the issuer’s ability to meet their financial obligations. Even so, it appears
that the method failed to meet the expectations. This data led us to believe
that this method might not be the appropriate way to compute the VaR
of a bond. For illustration purposes, in Figure 2 we can see how small the
VaR estimates were. All these estimates were easily exceeded by the actual
historical returns leading to the rejection of HO for all cases as we can see
in Tables 2, 3, 4 and 5.

4.2 Duration Method

For the Duration method, this study’s results were highly negative as we
can see in Tables 10, 11, 12 and 13. For all eighteen bonds in our port-
folio, the VaR estimates were overestimated for eighteen bonds. In other

11
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Figure 2: CFM VaR for Bond 1
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words, the realized exceedances were, eighteen out of the eighteen times,
zero most of the times. For illustration purposes, at Figure 3, we can find
the VaR estimates for the first bond. Take note that all the remaining bonds
followed this overestimating tendency. This makes us believe that some fur-
ther refinement of the method is in order since the Duration method failed
to perform due to its extremely "pessimistic' forecasts. One aspect that
might have contributed to these results is the fact that historical volatilities
of the yield-returns are used. This can partially explain the problem since
the conditions of a bond change everyday due to the pull-to-par effect. In
other words, the yield returns calculated in the beginning of the time series
will have different dimensions from yield returns calculated close to the ma-
turity. This will have consequences in the volatility of these yield returns
which will have an impact on the overall model’s returns. A good counter-
argument would be the fact that this dissertation defined an horizon of 250
observations so this effect wouldn’t be felt so harshly. This is, in fact, the
reason why we believe that this only explains the negative results partially.

A good approach would be to make a distribution out of the yield-returns
and compute the quantile-specific best yield return registered and follow the
method’s steps from there. This way the model would receive the quantile-
specific best shift in the yield and compute the VaR from there on. Here
follows a simple example. What the original method does is to compute the
yield-returns and then its corresponding standard deviation o(dy). What we
propose is that instead of computing this standard deviation, we build a dis-
tribution of all the yield-returns and compute the quantile-specific biggest
yield returns which will be used for the rest of the computations. Note
that the biggest quantile-specific yield return represents the quantile-specific
worst movement in price due to the inverse relationship between yields and
prices. This study did not include this approach in its calculations.

4.3 Pull Price Method

For the Pull Price Method, the VaR throughout the historical data appears
to have a unique behaviour when it’s applied for days closer to the coupon
dates. This behaviour can be observed in Figure 6. Upon closer inspection,
it is believed that this behaviour happens due to VaR computations around
coupon dates where nVaR and nVaR+N are around a coupon delivery date.
The problem resides in the fact that, when "pulling" the future cash flows,
at nVaR the accrued coupon rate is very high since it’s delivery is imminent
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and on the other hand, at nVaR+N, the accrued coupon rate is very low
since it’s shortly after the delivery of the said coupon. The gap between
accrued rates led to an abnormally high loss in return since the day nVaR
registered a high accrued and, therefore, a higher "gross pulled price" and
nVaR+N a low accrued and, there fore, a lower "gross pulled price" and
computing the return between these two, the results tended to be negative.
In Figure 4 we can see that the gross returns of the pulled prices at a
nVaR before a coupon payment date are consistently negative. This led to
a VaR estimation abnormally low that stands out when we compute VaR’s
everyday as we can see in Figure 6. To test this behaviour, this study used
the corresponding clean prices, the results were favourable as we can see in
Figure 4 and 5. The returns shifted from a consistently negative return to
a return with average closer to zero. To reach these clean prices, this study
deduced, from the gross prices, the corresponding accrued coupon rates at
time nVaR and nVaR+N.

Clean Pull Price = v(nyq.r + N,n) — Accrued,,, , ,+N

Here follows an example. Assume N = 10 days and take the first bond
for example, a 10-year coupon bond with yearly coupon payments at the 29th
of June every year between 2007 and 2017. The ny,r relevant maturity is
the 25th of June of 2011 and ny,p+n is the 5th of July of the same year.
At the 6th of April of 2011 the yield-to-maturity of the bond is 9.2% and
the time to maturity from ny,p and ny,p+n is 6.02 and 5.99 years. When
pulling all the future cash flows post the ny,r and ny,r+n we have

onyamn) = A8TS . A8TS L ASTS 104875
Vel (1740.092)002 7 (14 0.092)102 (1 4+ 0.092)502 " (14 0.092)602 — °

and

4.875 4.875 4.875 104.875

= = 80.78
1+ 0.092099 + 1+ 0.0921-99 et 1+ 0.092499 + 14 0.092599

V(NVaR+N, M)

We can see immediately that there is a great loss in this random date’s
pulled price. A loss of roughly 5.4% in just 10 days which is very unlikely.
This behaviour is repeated for every other random day prior do ny .z which
will tilt down the VaR for dates around the coupon payment date when
finding the desired quantile. Our proposal corrects this issue by deducing
the corresponding accrued rate of ny,r and ny,ryn from the pull price,
smoothing the return between these prices.

14



Figure 4: 10-day Gross returns and Clean returns

Gross returns and Clean returns
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Vs (nvarsN,n) = 80.78 — accruedy,,, . y = 80.78 — 0.093 = 80.69

We can now observe that the return between these two pulled prices has
turned into a more acceptable return of 0.01% 10-day adjusted return of the
pulled prices.

The backtesting technique’s conclusions, for the Pull Price Method with
Gross prices, can be seen in Tables 6, 7, 8 and 9.

From these tables we can see that the performance of this method de-
creases when the « of the VaR is decreased from 5% to 1%. It is to note that
in this study, the historical data horizon is of 250 days. Even though the
method fails to achieve at the o = 1%, it still has a relatively low approval
rate for the a = 5% of 38.8% for a confidence interval of 99% and 16,7% for
a confidence interval of 95%?2.

2Computed dividing the approved bonds over the total

15



Figure 5: VaR at a = 0.05 of Gross and Clean pull price
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Figure 6: VaR at alpha=0.05 for the AIG Mortgage Bank bond
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A closer analysis to the results for a = 0.01 indicates that the VaRs esti-
mated with this method for this particular « is, in fact, underestimated for
all the rejecting cases. In other words, the VaR expected was below the ac-
tual losses incurred in our time frame. This can have negative consequences
for a company since it’s expecting outcomes that are "too optimistic".
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Figure 7: Portfolio Duration method VaR

Portfolio VaR Duration Method

]hh m..h..xwﬁh.mnn.-m
I8 | L
ol
= —
= S 7]
i}
[ —| — waR alpha=0.05
= &R alphs=0.01
o3 — Hizstorical Return
e E B B

blar 31 2010 blar 01 2012 Feb 28 2014
Dates

5 The portfolio results

5.1 Cash Flow Mapping

Just like the individual bond VaR, the results from this method applied for
a portfolio were greatly underestimated. In fact, by plotting the portfolio
return and the VaR’s at & = 1% and a = 5%, the VaR’s were so small (Fig-
ure 9) that they appear to be an horizontal axis. It goes without saying that
the backtesting tool failed the method due to a big number of exceedances.
Tables 14, 15, 16 and 17 depict the results obtained and, as we can see, the
number of exceedances was too great to don’t reject the HO.

5.2 Duration Method

Following the results from the individual bond VaR, the results of the Du-
ration method were greatly overestimated as we can see in Figure 7. The
backtesting tool failed this method due to the non-existence of exceedances
of the historical returns towards the estimated VaRs. These conclusions can
be easily observed after analysing Tables 22, 23, 24 and 25.
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Figure 8:

Portfolio Pull Price method VaR
Portfolio VaR Pull Price Method
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5.3 Pull Price Method

For the Pull Price method, using the Undiversified portfolio VaR, the back-
testing method concluded positively for an a@ = 5% for both confidence
intervals considered, 95% and 99%. On the other hand, for an a = 1% the
results were negative for both confidence intervals (Tables 18, 19, 20 and
21). The graphical representation of the VaR for this method can be seen
in figure 8. After analysing the figure we can see that the systematic issue
of the accrued rates was softened by the diversification of the portfolio. The
fact that there are more bonds in the portfolio made the yearly-shocks seem
less evident even though they still persist.
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6 Conclusions

As we mentioned before, computing the VaR for bonds requires an extra
effort when compared to stocks. The pull to par effect makes sure that ap-
plying an historical simulation directly, with bond prices, is ineffective since
different prices have different underlying conditions. From the three meth-
ods, the one who received the most positive feedback from the backtesting
tool was the Pull Price method with an approval rate (for a VaR « = 5%)
of 38.8% for a significance of 99% and 16.7% for an significance of 95%. On
the other hand, when the VaR’s a = 1% the results declined. This leads us
to believe that the method isn’t sensitive enough to the shift from o = 5%
to an a = 1% because, for the later, the results were largely underestimated.
This means that the portfolio incurred losses larger to those forecast by the
method. This demands extra attention and should be revised by future lit-
erature. Additionally, the method isn’t flawless when applying for coupon
bonds since it doesn’t account for difference in accrued rates between the
relevant maturities n,ar and nyqr4n. This study included some minor ad-
justments that yielded positive results by removing the accrued rates of the
same relevant maturities. This method also received good results for a port-
folio of bonds when alpha = 5% and negative results when alpha = 1%
following the trend from the individual bond computations.

Both the other methods, the CFM and the Duration, failed for oppo-
site reasons. The CFM was very underestimated with a large number of
exceedances making us believe that the method underestimates the VaR.
Even that the yield curve considered isn’t the appropriate for most of the
bonds in this portfolio, some bonds fit the criteria and still followed the same
trend as others. Retrieving data for the computation of this method is one
of its biggest downsides when the portfolio is composed of corporate debt.
The Duration method failed the backtesting test for the opposite reason of
the CFM since its results were overestimated. For many of these bonds, the
number of exceedances were zero which meant that, throughout the histor-
ical computations, the returns never went below the VaR estimations. In
Figure 10 we can see the the difference between the three methods for an
o = 5% and each method appeared to have its own independent behaviour
throughout time. Each method should carefully be revised in a near future.
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Figure 10: Comparison of results for AIB Mortgage Bank bond

Comparison of Methods

= historical ret
— CFh WaR
= Full VaR
e = DurvaR
Q —
]
L
=
<
L
.
=

Apr 152010 Oct03 2071 Apr01 2013

22



References

1]

2]

ALEXANDER, C. Pricing, hedging and trading financial instruments.
Wiley, 2008.

BAseL COMMITTEE. Basel 3: A global regulatory framework for more
resilient banks and banking systems. Basel Committee on Banking
Supervision, Basel (2010).

BERKOWITZ, J., AND OBRIEN, J. How accurate are value-at-risk mod-
els at commercial banks? The Journal of Finance 57, 3 (2002), 1093—
1111.

Branco, C. Value at risk for energy: Is var useful to manage energy
price risk? Financial Engineering Associates (1998).

CAMPBELL, S. D. A review of backtesting and backtesting procedures.
Divisions of Research & Statistics and Monetary Affairs, Federal Re-
serve Board, 2005.

EINHORN, D., AND BROWN, A. Private profits and socialized risk.
Global Association of Risk Professionals 42 (2008), 10-26.

HENRARD, M. Comparison of cashflow maps for value-at-risk. Journal
of Risk 3 (2000), 57-72.

HurL, J. Options, futures and other derivatives. Pearson education,
2009.

JORION, P. Value at risk: the new benchmark for managing financial
risk, vol. 2. McGraw-Hill New York, 2007.

JORION, P., ET AL. Financial risk manager handbook, vol. 116. John
Wiley & Sons, 2009.

Kupriec, P. H. Techniques for verifying the accuracy of risk measure-
ment models. THE J. OF DERIVATIVES 3, 2 (1995).

LiNsMEIER, T. J., AND PEARSON, N. D. Risk measurement: An
introduction to value at risk.

LSEG. Methodology for determining the parameters used in margin
calculation for fixed income instruments.

23



[14]

[15]

[16]

[17]

[18]

Lucas, A. Evaluating the basle guidelines for backtesting banks’ in-
ternal risk management models. Journal of Money, Credit and Banking
(2001), 826-846.

MORGAN, J. Riskmetrics: technical document. Morgan Guaranty Trust
Company of New York, 1996.

PERIGNON, C., DENG, Z. Y., AND WANG, Z. J. Do banks overstate
their value-at-risk? Journal of Banking € Finance 32, 5 (2008), 783~
794.

Sousa, J. B., EsQuiverL, M., GaspaRr, R., AND REAL, P. Bonds
historical simulation value at risk.

TALEB, N. The world according to nassim taleb. Derivatives Strategy
2,1 (1997), 37-40.

VLAAR, P. J. Value at risk models for dutch bond portfolios. Journal
of banking & finance 24, 7 (2000), 1131-1154.

WATANABE, D. Analytical var for nord pool electricity derivatives: an
adjusted riskmetrics approach.

24



Table 2: Backtesting - CFM « = 5%, confidence interval = 95%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision

1 42.00 287.00 686.63 3.84 0.00 Reject HO
2 20.00 103.00 189.78 3.84 0.00 Reject HO
3 20.00 101.00 182.33 3.84 0.00 Reject HO
4 20.00 173.00 509.53 3.84 0.00 Reject HO
5 20.00 125.00 278.35 3.84 0.00 Reject HO
6 20.00 119.00 253.02 3.84 0.00 Reject HO
7 20.00 123.00 269.81 3.84 0.00 Reject HO
8 15.00 90.00 194.26 3.84 0.00 Reject HO
9 10.00 50.00 84.15 3.84 0.00 Reject HO
10 20.00 110.00 216.66 3.84 0.00 Reject HO
11 9.00 39.00 55.56 3.84 0.00 Reject HO
12 20.00 108.00 208.85 3.84 0.00 Reject HO
13 20.00 134.00 317.88 3.84 0.00 Reject HO
14 20.00 174.00 514.86 3.84 0.00 Reject HO
15 9.00 54.00 109.55 3.84 0.00 Reject HO
16 20.00 126.00 282.65 3.84 0.00 Reject HO
17 20.00 165.00 470.50 3.84 0.00 Reject HO
18 20.00 170.00 493.66 3.84 0.00 Reject HO
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Table 3: Backtesting - CFM « = 5%, con fidence interval = 99%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision

1 42.00 287.00 686.63 6.63 0.00 Reject HO
2 20.00 103.00 189.78 6.63 0.00 Reject HO
3 20.00 101.00 182.33 6.63 0.00 Reject HO
4 20.00 173.00 509.53 6.63 0.00 Reject HO
5 20.00 125.00 278.35 6.63 0.00 Reject HO
6 20.00 119.00 253.02 6.63 0.00 Reject HO
7 20.00 123.00 269.81 6.63 0.00 Reject HO
8 15.00 90.00 194.26 6.63 0.00 Reject HO
9 10.00 50.00 84.15 6.63 0.00 Reject HO
10 20.00 110.00 216.66 6.63 0.00 Reject HO
11 9.00 39.00 55.56 6.63 0.00 Reject HO
12 20.00 108.00 208.85 6.63 0.00 Reject HO
13 20.00 134.00 317.88 6.63 0.00 Reject HO
14 20.00 174.00 514.86 6.63 0.00 Reject HO
15 9.00 54.00 109.55 6.63 0.00 Reject HO
16 20.00 126.00 282.65 6.63 0.00 Reject HO
17 20.00 165.00 470.50 6.63 0.00 Reject HO
18 20.00 170.00 493.66 6.63 0.00 Reject HO
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Table 4: Backtesting - CFM « = 1%, con fidence interval = 95%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision

1 8.00 287.00 1563.59 3.84 0.00 Reject HO
2 4.00 103.00 496.58 3.84 0.00 Reject HO
3 4.00 101.00 482.52 3.84 0.00 Reject HO
4 4.00 173.00 1047.42 3.84 0.00 Reject HO
5 4.00 125.00 657.77 3.84 0.00 Reject HO
6 4.00 119.00 612.64 3.84 0.00 Reject HO
7 4.00 123.00 642.64 3.84 0.00 Reject HO
8 3.00 90.00 466.63 3.84 0.00 Reject HO
9 2.00 50.00 231.65 3.84 0.00 Reject HO
10 4.00 110.00 546.57 3.84 0.00 Reject HO
11 1.00 39.00 168.47 3.84 0.00 Reject HO
12 4.00 108.00 532.16 3.84 0.00 Reject HO
13 4.00 134.00 727.03 3.84 0.00 Reject HO
14 4.00 174.00 1056.06 3.84 0.00 Reject HO
15 1.00 54.00 271.99 3.84 0.00 Reject HO
16 4.00 126.00 665.38 3.84 0.00 Reject HO
17 4.00 165.00 982.23 3.84 0.00 Reject HO
18 4.00 170.00 1021.65 3.84 0.00 Reject HO
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Table 5: Backtesting - CFM « = 1%, con fidence interval = 99%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision

1 8.00 287.00 1563.59 6.63 0.00 Reject HO
2 4.00 103.00 496.58 6.63 0.00 Reject HO
3 4.00 101.00 482.52 6.63 0.00 Reject HO
4 4.00 173.00 1047.42 6.63 0.00 Reject HO
5 4.00 125.00 657.77 6.63 0.00 Reject HO
6 4.00 119.00 612.64 6.63 0.00 Reject HO
7 4.00 123.00 642.64 6.63 0.00 Reject HO
8 3.00 90.00 466.63 6.63 0.00 Reject HO
9 2.00 50.00 231.65 6.63 0.00 Reject HO
10 4.00 110.00 546.57 6.63 0.00 Reject HO
11 1.00 39.00 168.47 6.63 0.00 Reject HO
12 4.00 108.00 532.16 6.63 0.00 Reject HO
13 4.00 134.00 727.03 6.63 0.00 Reject HO
14 4.00 174.00 1056.06 6.63 0.00 Reject HO
15 1.00 54.00 271.99 6.63 0.00 Reject HO
16 4.00 126.00 665.38 6.63 0.00 Reject HO
17 4.00 165.00 982.23 6.63 0.00 Reject HO
18 4.00 170.00 1021.65 6.63 0.00 Reject HO
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Table 6:

Backtesting - Pull Price Method o = 5%, con fidence interval = 95%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 37.00 29.00 2.39 3.84 0.12 Fail to Reject HO
2 38.00 50.00 3.29 3.84 0.07 Fail to Reject HO
3 38.00 51.00 3.86 3.84 0.05 Reject HO
4 38.00 61.00 11.78 3.84 0.00 Reject HO
5 38.00 53.00 5.13 3.84 0.02 Reject HO
6 38.00 62.00 12.78 3.84 0.00 Reject HO
7 38.00 70.00 21.99 3.84 0.00 Reject HO
8 26.00 23.00 0.45 3.84 0.50 Fail to Reject HO
9 14.00 24.00 6.03 3.84 0.01 Reject HO

10 38.00 57.00 8.15 3.84 0.00 Reject HO
11 8.00 0.00 3.84 Reject HO
12 38.00 70.00 21.99 3.84 0.00 Reject HO
13 38.00 56.00 7.34 3.84 0.01 Reject HO
14 38.00 66.00 17.12 3.84 0.00 Reject HO
15 6.00 0.00 3.84 Reject HO
16 38.00 70.00 21.99 3.84 0.00 Reject HO
17 38.00 51.00 4.18 3.84 0.04 Reject HO
18 38.00 68.00 19.49 3.84 0.00 Reject HO
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Table 7:

Backtesting - Pull Price Method o = 5%, con fidence interval = 99%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 37.00 29.00 2.39 6.63 0.12 Fail to Reject HO
2 38.00 50.00 3.29 6.63 0.07 Fail to Reject HO
3 38.00 51.00 3.86 6.63 0.05 Fail to Reject HO
4 38.00 61.00 11.78 6.63 0.00 Reject HO
) 38.00 53.00 5.13 6.63 0.02 Fail to Reject HO
6 38.00 62.00 12.78 6.63 0.00 Reject HO
7 38.00 70.00 21.99 6.63 0.00 Reject HO
8 26.00 23.00 0.45 6.63 0.50 Fail to Reject HO
9 14.00 24.00 6.03 6.63 0.01 Fail to Reject HO

10 38.00 57.00 8.15 6.63 0.00 Reject HO
11 8.00 0.00 6.63 Reject HO
12 38.00 70.00 21.99 6.63 0.00 Reject HO
13 38.00 56.00 7.34 6.63 0.01 Reject HO
14 38.00 66.00 17.12 6.63 0.00 Reject HO
15 6.00 0.00 6.63 Reject HO
16 38.00 70.00 21.99 6.63 0.00 Reject HO
17 38.00 51.00 4.18 6.63 0.04 Fail to Reject HO
18 38.00 68.00 19.49 6.63 0.00 Reject HO
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Table 8:
Backtesting - Pull Price Method o = 1%, con fidence interval = 95%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 7.00 21.00 16.20 3.84 0.00 Reject HO
2 7.00 22.00 17.82 3.84 0.00 Reject HO
3 7.00 21.00 15.74 3.84 0.00 Reject HO
4 7.00 23.00 20.01 3.84 0.00 Reject HO
5 7.00 41.00 71.92 3.84 0.00 Reject HO
6 7.00 35.00 52.31 3.84 0.00 Reject HO
7 7.00 31.00 40.41 3.84 0.00 Reject HO
8 5.00 8.00 1.24 3.84 0.26  Fail to Reject HO
9 2.00 15.00 26.23 3.84 0.00 Reject HO

10 7.00 27.00 29.59 3.84 0.00 Reject HO
11 1.00 0.00 3.84 Reject HO
12 7.00 30.00 37.60 3.84 0.00 Reject HO
13 7.00 36.00 55.43 3.84 0.00 Reject HO
14 7.00 30.00 37.60 3.84 0.00 Reject HO
15 1.00 0.00 3.84 Reject HO
16 7.00 30.00 37.60 3.84 0.00 Reject HO
17 7.00 26.00 27.27 3.84 0.00 Reject HO
18 7.00 34.00 49.24 3.84 0.00 Reject HO
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Table 9:
Backtesting - Pull Price Method o = 1%, con fidence interval = 99%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 7.00 21.00 16.20 6.63 0.00 Reject HO
2 7.00 22.00 17.82 6.63 0.00 Reject HO
3 7.00 21.00 15.74 6.63 0.00 Reject HO
4 7.00 23.00 20.01 6.63 0.00 Reject HO
5 7.00 41.00 71.92 6.63 0.00 Reject HO
6 7.00 35.00 52.31 6.63 0.00 Reject HO
7 7.00 31.00 40.41 6.63 0.00 Reject HO
8 5.00 8.00 1.24 6.63 0.26  Fail to Reject HO
9 2.00 15.00 26.23 6.63 0.00 Reject HO

10 7.00 27.00 29.59 6.63 0.00 Reject HO
11 1.00 0.00 6.63 Reject HO
12 7.00 30.00 37.60 6.63 0.00 Reject HO
13 7.00 36.00 55.43 6.63 0.00 Reject HO
14 7.00 30.00 37.60 6.63 0.00 Reject HO
15 1.00 0.00 6.63 Reject HO
16 7.00 30.00 37.60 6.63 0.00 Reject HO
17 7.00 26.00 27.27 6.63 0.00 Reject HO
18 7.00 34.00 49.24 6.63 0.00 Reject HO
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Table 10:
Backtesting - Duration Method o = 5%, con fidence interval = 95%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 35.00 0.00 3.84 Reject HO
2 36.00 11.00 25.68 3.84 0.00 Reject HO
3 36.00 0.00 3.84 Reject HO
4 36.00 0.00 3.84 Reject HO
) 36.00 0.00 3.84 Reject HO
6 36.00 0.00 3.84 Reject HO
7 36.00 0.00 3.84 Reject HO
8 24.00 0.00 3.84 Reject HO
9 12.00 0.00 3.84 Reject HO

10 36.00 0.00 3.84 Reject HO
11 6.00 0.00 3.84 Reject HO
12 36.00 0.00 3.84 Reject HO
13 36.00 0.00 3.84 Reject HO
14 36.00 0.00 3.84 Reject HO
15 4.00 0.00 3.84 Reject HO
16 36.00 0.00 3.84 Reject HO
17 36.00 0.00 3.84 Reject HO
18 36.00 0.00 3.84 Reject HO
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Table 11:
Backtesting - Duration Method a = 5%, con fidence interval = 99%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 35.00 0.00 6.63 Reject HO
2 36.00 11.00 25.68 6.63 0.00 Reject HO
3 36.00 0.00 6.63 Reject HO
4 36.00 0.00 6.63 Reject HO
) 36.00 0.00 6.63 Reject HO
6 36.00 0.00 6.63 Reject HO
7 36.00 0.00 6.63 Reject HO
8 24.00 0.00 6.63 Reject HO
9 12.00 0.00 6.63 Reject HO

10 36.00 0.00 6.63 Reject HO
11 6.00 0.00 6.63 Reject HO
12 36.00 0.00 6.63 Reject HO
13 36.00 0.00 6.63 Reject HO
14 36.00 0.00 6.63 Reject HO
15 4.00 0.00 6.63 Reject HO
16 36.00 0.00 6.63 Reject HO
17 36.00 0.00 6.63 Reject HO
18 36.00 0.00 6.63 Reject HO
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Table 12:
Backtesting - Duration Method a = 1%, con fidence interval = 95%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 7.00 0.00 3.84 Reject HO
2 7.00 4.00 1.82 3.84 0.18 Fail to Reject HO
3 7.00 0.00 3.84 Reject HO
4 7.00 0.00 3.84 Reject HO
5 7.00 0.00 3.84 Reject HO
6 7.00 0.00 3.84 Reject HO
7 7.00 0.00 3.84 Reject HO
8 4.00 0.00 3.84 Reject HO
9 2.00 0.00 3.84 Reject HO

10 7.00 0.00 3.84 Reject HO
11 1.00 0.00 3.84 Reject HO
12 7.00 0.00 3.84 Reject HO
13 7.00 0.00 3.84 Reject HO
14 7.00 0.00 3.84 Reject HO
15 0.00 0.00 3.84 Reject HO
16 7.00 0.00 3.84 Reject HO
17 7.00 0.00 3.84 Reject HO
18 7.00 0.00 3.84 Reject HO
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Table 13:
Backtesting - Duration Method a = 1%, con fidence interval = 99%

Bond Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 7.00 0.00 6.63 Reject HO
2 7.00 4.00 1.82 6.63 0.18 Fail to Reject HO
3 7.00 0.00 6.63 Reject HO
4 7.00 0.00 6.63 Reject HO
5 7.00 0.00 6.63 Reject HO
6 7.00 0.00 6.63 Reject HO
7 7.00 0.00 6.63 Reject HO
8 4.00 0.00 6.63 Reject HO
9 2.00 0.00 6.63 Reject HO

10 7.00 0.00 6.63 Reject HO
11 1.00 0.00 6.63 Reject HO
12 7.00 0.00 6.63 Reject HO
13 7.00 0.00 6.63 Reject HO
14 7.00 0.00 6.63 Reject HO
15 0.00 0.00 6.63 Reject HO
16 7.00 0.00 6.63 Reject HO
17 7.00 0.00 6.63 Reject HO
18 7.00 0.00 6.63 Reject HO
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Table 14:
Portfolio Backtesting - CFM Method « = 5%, con fidence interval = 95%

Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 43.00 320.00 824.29 3.84 0.00 Reject HO
Table 15:
Portfolio Backtesting - CFM Method « = 5%, con fidence interval = 99%
Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 43.00 320.00 824.29 6.63 0.00 Reject HO
Table 16:
Portfolio Backtesting - CFM Method « = 1%, con fidence interval = 95%
Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 8.00 319.00 1800.38 3.84 0.00 Reject HO
Table 17:
Portfolio Backtesting - CEM Method a = 1%, con fidence interval = 99%
Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 8.00 319.00 1800.38 6.63 0.00 Reject HO
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Table 18:

Portfolio Backtesting - Pull Price Method a = 5%,
confidence interval = 95%

Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value

Decision

1 33.00 32.00 0.05 3.84 0.82

Fail to Reject HO

Table 19:

Portfolio Backtesting - Pull Price Method o = 5%,
con fidence interval = 99%

Portfolio FExpected Exceedances Actual Exceedances Test Statistic Critical Value p-Value

Decision

1 33.00 32.00 0.05 6.63 0.82

Fail to Reject HO

Table 20:

Portfolio Backtesting - Pull Price Method o = 1%,
con fidence interval = 95%

Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision

1 6.00 15.00 7.78 3.84 0.01 Reject HO

Table 21:

Portfolio Backtesting - Pull Price Method o = 1%,
con fidence interval = 99%

Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision

1 6.00 15.00 7.78 6.63 0.01 Reject HO
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Table 22:

Portfolio Backtesting - Duration Method o = 5%,
confidence interval = 95%

Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 31.00 0.00 3.84 Reject HO
Table 23:
Portfolio Backtesting - Duration Method o = 5%,
con fidence interval = 99%
Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 31.00 0.00 6.63 Reject HO
Table 24:
Portfolio Backtesting - Duration Method o = 1%,
con fidence interval = 95%
Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 6.00 0.00 3.84 Reject HO
Table 25:
Portfolio Backtesting - Duration Method a = 1%,
con fidence interval = 99%
Portfolio Expected Exceedances Actual Exceedances Test Statistic Critical Value p-Value Decision
1 6.00 0.00 6.63 Reject HO
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