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Resumo

A teoria de valorização de opções que conhecemos hoje em dia deu o seu maior passo

quando Fischer Black e Myron Scholes escreveram um artigo com uma fórmula

fechada que permitia calcular os preços de opções Europeias de compra e venda

cujo subjacente é uma acção ou um ı́ndice. No entanto, evidências mostram que

a fórmula anterior não funciona bem num grande número de situações reais: os

preços estimados desviam-se significativamente dos preços de mercado. Isto deve-se

às hipóteses, muito restritivas, em que o modelo está assente.

Esta dissertação alarga o modelo de Black-Scholes a situações em que a volatil-

idade do preço do ativo é variável. As implicações desta extensão são estudadas

tanto de um ponto de vista teórico como prático. Existem muitos modelos propos-

tos para o caso em estudo e este trabalho foca-se nos modelos de volatilidade local

porque mantêm as caracteŕısticas mais importantes do modelo original. Foram sele-

cionadas quatro funções diferentes para descrever a volatilidade do preço do ativo e

um método de diferenças finitas foi implementado para obter estimações e previsões

do preço de opções.

Os resultados obtidos realmente indicam que os modelos de volatilidade local

estimam melhor os preços das opções do que o modelo de Black-Scholes original.

Palavras-chave: Valorização de opções, Volatilidade local, Método de

Crank-Nicolson, Calibração.
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Abstract

The modern theory of option pricing gave its biggest step when Fischer Black and

Myron Scholes wrote a paper with a closed form solution for the prices of European

call and put options on a single stock or index. However, evidence shows that the

former formula no longer holds in many real cases: the estimated prices deviate

significantly from the market ones. This is due to the very restrictive assumptions

on which the model is based.

This dissertation extends the Black-Scholes model by making the volatility of

the asset price variable. The implications of this extension are studied from both

theoretical and practical points of view. Several models have been proposed and this

work focuses on the local volatility models because they maintain the most important

features of the classical model. Four different functions were selected to describe the

volatility of the asset price and a finite difference method was implemented in order

to obtain the estimations and predictions of the option prices.

The results suggest that indeed local volatility models have a better performance

than the classical Black-Scholes model in estimating option prices.

Keywords: Option Pricing, Local Volatility, Crank-Nicolson scheme, Cal-

ibration.
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Chapter 1

Introduction

Since 1973, when the famous paper by Black and Scholes appeared [1], a huge

growth in the options market has been observed. These authors influenced the way

investors saw this market and started the modern theory of option pricing. However,

their model is based on assumptions that clearly do not match reality and evidence

shows that the theoretical prices (prices predicted by Black-Scholes formula) deviate

significantly from the market prices (prices at which options are actually traded).

One of the most important assumptions of this model is that the stock price follows

a geometric Brownian motion with constant volatility, which several authors showed

not to be the case [5,8].

The aim of this dissertation is to build a model closer to reality by relaxing the

constant volatility assumption and allowing for variable volatility in the asset price

dynamics. This modification increases the complexity of the model, leading to a

solution that cannot be obtained in a closed form. This drawback is counterbalanced

by the fact that option prices closer to the market ones are expected to be obtained

even if approximative methods are required.

Several alternatives have been proposed for the generalization of the Black-

Scholes model and most of the literature is based on stochastic volatility [11, 12] and

jump models [10], but we will focus on other type of models, called local volatility

models [7, 9]. These models extend the classical Black-Scholes retaining its most

important features without increasing the degree of uncertainty, in contrast with the

former, which introduce non-traded sources of risk: stochastic volatility and jumps,

1



Chapter 1. Introduction 2

respectively. The local volatility models are characterized by a Partial Differential

Equation (PDE) that explains the evolution of an option’s price, which has the same

form as the one obtained using classical assumptions. Nevertheless, it generally does

not have an analytical solution, so it will be solved using numerical methods.

One of the most popular methods used in Finance in option problems when

we have to solve a PDE is the Crank-Nicolson scheme [22], well suited for solving

initial boundary value problems (IBVP). This scheme is second order accurate in

time and space, gives good approximations for the solution and is relatively easy to

program. Because of the nature of the chosen problem - a parametric local volatility

model - calibration is needed in order to get the best possible fitting to the data (to

implement the method and calibrate the model, we used MatLab code).

To compare the improved model to the standard Black-Scholes model, the prices

for call options on the S&P 500 Index were estimated and set against the real market

prices. Moreover, using the models that estimated the market prices better than the

Black-Scholes, we tested their performance outside sample to see if the predictions

were good.

The dissertation is structured as follows: Section 2.1 presents the classes of

models found in the literature, concerning extensions of the Black-Scholes model,

in particular the class of local volatility models. Section 2.2 contains the functions

which will be used for the local volatility and in Section 2.3 the Partial differential

equation for the price of an European option with underlying asset following a gener-

alized Geometric Brownian Motion is derived. Chapter 3 is dedicated to the solution

of the PDE presented in Section 2.3. In the first section of this chapter, we describe

the numerical method used, the Crank-Nicolson method. Section 3.2 presents some

PDEs usually found in Finance. The last section presents the calibration problem,

which will allow for the choice of parameters in the functions described in Section

2.2. Chapter 4 describes the market data used and the results obtained. In the

appendix, we can find the code used to implement the Crank-Nicolson scheme. We

can also find the market data and the calibrated parameters for each of the models

used.



Chapter 2

Option Valuation with Variable

Volatility

Although Black and Scholes have influenced the modern theory of option pricing,

the estimated prices using the original formula often quite diverge from the market

ones, which led to several extensions of the classical model. One class of extensions

is concerned with the assumption of constant volatility in the asset price dynamics,

which is of the form

dSt = αStdt+ σStdWt,

where α ∈ R is the mean return, σ ∈ R+ is the (local) volatility and Wt is a

standard Wiener process. Using this model, a closed form solution for the price of

an European call (or put) can be derived:

C(S, t) = N(d1)S −Ke−r(T−t)N(d2), (2.1)

where r is the risk-free rate, K is the strike price, T is the maturity and

d1 = ln(S/K)+(r+σ2/2)(T−t)
σ
√
T−t and d2 = d1 − σ

√
T − t.

Under the assumption of constant volatility, it is expected that, when inserting

the market price of a call option into (2.1) with the respective strike and time

to maturity, by solving it with respect to the volatility, the result is constant for

different strikes and maturities. The volatility resulting from this process is called

implied volatility.

3



Chapter 2. Option Valuation with Variable Volatility 4

The problem is that, by calculating the implied volatilities, we can observe a

distinguish feature, usually denominated volatility smile: volatility depends both on

strike and time to maturity [5, 8], contradicting the assumption of the Black-Scholes

model. Generally, in stock and index options, it is observed what is called a neg-

ative skew: the implied volatility is a decreasing function of the strike price. The

relationship of the implied volatility with time to maturity is called term structure

and, in general, it is observed that the implied volatility increases with time to ma-

turity. Using data from [18] of 77 call options on the S&P 500 Index and calculating

the corresponding implied volatilities, we can observe the two features described in

Figure 2.1:

(a) Negative skew (b) Term structure

Figure 2.1: Properties of implied volatility

2.1 Extensions of the Black-Scholes Model

In the literature, there are essentially three different classes of extensions concerning

the problem of variable volatility: stochastic volatility models, jump diffusion models

and local volatility models. In this section, we will briefly discuss these alternative

models, particularly the local volatility models.

In stochastic volatility models, as the name implies, the volatility of the asset is

itself assumed to follow a stochastic differential equation, which frequently has some

correlation with the stock price dynamics. This allows for skewness (measure of

asymmetry) and leptokurtic (measure of tail weights) features in the distribution of

the asset, which are many times observed in the market. The pioneers of this type of

models were Hull and White [12], but there are several other authors that later used
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this idea to account for the so-called volatility smile observable on option prices.

Heston [11], for instance, used a mean-reverting equation to model the volatility

and obtained a closed form solution for some types of options.

In jump diffusion models, the distribution of the underlying stock return is no

longer continuous and the innovation is the introduction of a jump component in the

asset dynamics, which allows for a positive probability of an abrupt change in the

stock price. Merton [10] associates the appearance of a jump to outliers observed in

stock series as a result of some announcement on the firm. This author highlights

two different variations associated to the change in the stock price: the normal one,

which follows Black-Scholes theory, and the abnormal variations, which arrive at

discrete points in time and have the jump component. This results in a path for the

stock price that is continuous most of the time, but sudden jumps of different sizes

can occur. Finally, to obtain an equation that explains the evolution of the option

price, Merton uses the Capital Asset Pricing Model (CAPM) and the fact that the

jump component represents a non-systematic risk.

These two types of models have a common property: both of them add a new

source of randomness (in the first case, the stochasticity of the volatility and in the

second one, the jump component), which results in an incomplete market and a new

approach must be made in order to find an equation for the option’s price. We say

that a market is complete if every financial derivative can be replicated; because the

sources of uncertainty added in the first two models cannot be traded in the market,

this replication is no longer possible and the completeness is lost (see [22] for a more

precise cover of the topic).

The loss of completeness is not a problem for the local volatility models which

stay close to the original Black-Scholes. The idea behind these kind of models is

quite simple and intuitive: if the implied volatility depends on the strike and ma-

turity of the option, then the local volatility depends on the price of the asset and

on time. Then it can be assumed that the volatility of the asset is a deterministic

function of the two variables, and we continue to have only one source of uncer-

tainty: the Brownian motion in the asset’s price dynamics. In the literature we can

find, primarily, two different approaches: an implicit approach, where the volatil-

ity function σ(S, t) is deduced from the smile, and a second approach, where the
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volatility function assumes a specific form, i.e., an explicit expression is assumed.

This specific function can be fixed or variable in the sense that it has some unknown

parameters that are calibrated using market prices. The first kind of approach was

initiated by Dupire [3], Derman and Kani [8] and Rubinstein [23], who used implied

trees to extract the local volatility function from market data by matching the theo-

retical values of the options with the real ones. However, this exact fit to the current

market data does not perform well when it is applied to predict future prices [4, 5].

Moreover, using this type of models does not give an intuitive explanation for the

volatility function, contrarily to the second approach. Although the parametric local

volatility approach, when calibrated with market data, also does not exactly match

the option prices, it is the strategy chosen for this dissertation because it seems the

best compromise between fitting market data and staying close to the classical BS

model.

2.2 Local Volatility Functions

The work by Dumas, Fleming and Whaley [5] is one of the first attempts at ex-

plaining the local volatility function by giving a specific parametrization to σ(S, t):

these authors tried different quadratic models which resulted in a good fit when

calibrating the parameters for the data used. Nevertheless, it didn’t work outside

the sample: the predicted prices were too different from the real ones. A num-

ber of other researchers contributed with answers to this problem, each one using

a different approach, but always with the same goal in mind: to consider a local

volatility function flexible enough to adjust to the market data (using calibration,

for instance).

Following the work of Hull, Daglish and Suo [4] and Brown and Randall [6], the

functions we have chosen to explain the local volatility of the asset are:

σ(S, t) = a0 + a1ln(S/S0) + a2ln(S/S0)
2 + a3(T − t)

+a4(T − t)2 + a5ln(S/S0)(T − t)
(2.2)

σ(S, t) = b0 + b1
ln(S/S0)√
T − t

+ b2

(
ln(S/S0)√
T − t

)2

+ b3

(
ln(S/S0)√
T − t

)3

(2.3)
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σ(S, t) = c0 + c1
ln(S/S0)

(T − t)d0
+ c2

(
ln(S/S0)

(T − t)d0

)2

+ c3

(
ln(S/S0)

(T − t)d0

)3

(2.4)

σ(S, t) = σATM(t) + σskew(t)tanh (γskew(t)ln(S/S0)− θskew(t))

σsmile(t) (1− sech (γsmile(t)ln(S/S0)− θsmile(t)))
(2.5)

Functions (2.2)-(2.4) are based on a set of rules of thumb proposed by investors

and/or traders about the implied volatility surface. The authors [4] divide these

rules in three classes: the strike rule, where the implied volatility is assumed to be

independent of the asset price; the delta rule, where the implied volatility depends

on the moneyness variable K/S; and the square root of time rule, where the implied

volatility depends on time trough the square root of time left to maturity. Consulting

the results found by the authors, we conclude that the first rule gives worse results

compared to the other rules, so we do not insert any function concerning it.

In the last function (2.5), all functions σ, γ and θ are of the form β1+β2t
1+β3

, with

different parameters each. As the names appeal, σATM describes the term structure

of at-the-money volatilities, and the functions with skew and smile subscript account

for the skew and smile components, respectively. Besides that, σ, γ and θ associated

to these two components give the magnitude, width and centre, respectively, of the

skew and smile. The functions chosen - hyperbolic tangent and hyperbolic secant -

are based on the properties expected for the local volatility. The authors [6] state

that, when pricing European options on stocks or indexes, making σsmile(t) = 0

captures most of the behaviour and we do not need the extra parameters given by

the last term on (2.5). Because a parsimonious model is preferable, when applying

to market data, first we will use the model making the above adjustment and then,

if the results are not as good as expected, the extra parameters will be added.

The parameters of the functions above are determined by calibration using avail-

able market data and we will study the estimation and prediction quality of the

models by comparing the option prices that they supply with the real ones in and

outside sample. This study will take place in Chapter 4 with a theoretical framework

given in Chapter 3.
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2.3 Generalized Black-Scholes Equation

The Black-Scholes model is based on a world where we have a non-dividend paying

stock, denoted by St, and a risk-free asset, which will be denoted by Bt. Following

[2], we will present a generalized Partial differential equation (PDE) where these

assets can be characterized by the following dynamics:

dBt = rBtdt

dSt = αStdt+ σ(St, t)StdWt
(2.6)

where Wt is a standard Wiener process and the asset price follows a lognormal

distribution with mean α and (local) volatility σ(S, t). Also, r is the risk-free rate.

The only difference between the classical Black-Scholes and this generalized

model is that the volatility of the stock price is non-constant, the remaining as-

sumptions are maintained.

The derivation of the PDE consists in setting a riskless portfolio composed by

a long position on an option and some amount on the respective underlying asset.

This amount is chosen in such a way that the resulting portfolio is risk free or, in

other terms, the dWt term vanishes. Then, we will use the proposition below and

the resulting PDE is easily obtained.

Proposition 1. Suppose that there exists a portfolio such that the value process U

has the dynamics

dU = kUdt, (2.7)

where k is a constant. Then, either k = r, or there exists an arbitrage possibility,

where r is the same as in (2.6).

Let V (t, St) be the price of an European option on the stock St at time t. The

option and the stock are affected by the same source of uncertainty (movements in

the stock price, in particular the Wiener process driving the stock’s stochastic dif-

ferential equation), so we can create a riskless portfolio consisting of a long position

on the option and a short amount ∂V
∂S

of the underlying stock. Let Πt denote the
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price of that portfolio at time t,

Πt = V (t, S)− ∂V

∂S
S.

Using Itô’s formula on V (t, S), the infinitesimal change on the price of the portfolio

is given by

dΠt =

(
∂V

∂t
+

1

2
σ(t, S)2S2∂

2V

∂S2

)
dt.

We can see that the choice of the amount of stock in the portfolio made the Wt

term disappear from the portfolio’s dynamics, eliminating the risk. This kind of

manipulation is called delta hedging and must be performed continuously so that

the portfolio is immune to changes in the stock price.

Without randomness in the portfolio, its dynamics must be equal to the one of

the riskless asset or there will exist arbitrage opportunities, according to Proposition

1. Therefore, using (2.7), we have

∂V

∂t
+

1

2
σ(t, S)2S2∂

2V

∂S2
= r

(
V − ∂V

∂S
S

)
.

Rearranging the terms, we get the equation,

∂V

∂t
(t, S) +

1

2
σ(t, S)2S2∂

2V

∂S2
(t, S) + rS

∂V

∂S
(t, S)− rV (t, S) = 0. (2.8)

Equation (2.8) is the Generalized Black-Scholes Partial Differential Equation. In

order to get the full problem we need to add extra conditions that will depend on

the type of option to be priced, i.e, if it is a call or a put option.

Even though it seems that this PDE is not that different from the one found on

[1], in general, it has no closed form solution, so it needs to be solved numerically

as we will see in the next chapter.



Chapter 3

Numerical Methods for Option

Pricing

When the option pricing models become more complex, it has been discussed that

it is no longer possible to obtain analytical solutions and numerical ones have to

be found. In the literature, there are three classes of methods that often appear:

tree-based methods, Monte Carlo method and finite difference methods [16, 22, 24].

Tree-based methods rely on the assumption that the stock price, in the next

time step, will have a known number of possible values with given probabilities (in

the case of binomial trees we have two possibilities, trinomial trees display three

possibilities, etc.); then a tree of these stock prices is build until the maturity of the

option. At the maturity, the value of the option is known and, from there, at each

node of the tree, the price of the option is calculated backwards by discounting the

expected value of the option prices in the nodes ahead.

Monte Carlo is a simulation method. It repeatedly generates sample paths of the

underlying, assuming a lognormal distribution for the asset price. This generation

is done until expiry, where we can have an estimated value for the option. Then, we

take the average of all the estimations for the option price and discount it back to

the present.

Finite Difference methods are applied when one needs to solve numerically a

Partial differential equation. These methods convert the PDE into a system of

linear equations by replacing the derivatives with the respective finite difference

10
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approximations.

Monte Carlo method converges slowly (we may need to run it many times until

we get a good approximation, resulting in a high computational cost), which makes

it an undesirable choice. However, when we have an option based on more than two

assets, it becomes more efficient [24, 25] and is widely used in such cases. Although

simple and easy to implement, tree methods also converge at a slow rate. Finite

Difference methods are efficient when dealing with options based on a single asset

[24], which is a plus comparing with the former methods. Moreover, it is easy to

program and handles well coefficients that are time and/or space dependent as in

(2.8). The advantages provided by this method are the reason why it will be the

one used to estimate the option prices in Chapter 4.

The problem one wants to solve is the following:

Find a function u(x, t) : D → R, with D = [A,B]× [0, T ] satisfying:

− ∂u

∂t
+ a(x, t)

∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(x, t)u = f(x, t) in intD (3.1)

u(x, 0) = u0(x), x ∈ [A,B] (3.2)

u(A, t) = g0(t), u(B, t) = g1(t), t ∈ [0, T ] (3.3)

This type of problem is usually called a reaction-advection-diffusion problem. Func-

tions a(x, t), b(x, t) and c(x, t) are associated to diffusion, advection and reaction

coefficients, respectively. It has an initial condition and Dirichlet boundary condi-

tions.

3.1 Finite Difference Methods Overview

The first step when dealing with finite difference methods is to discretize the domain

both in time and space, resulting in a uniform grid:

• In time: divide [0, T ] into N equally spaced intervals 0 = t0 < t1 < ... < tN =

T , with length k = T
N

, resulting in N+1 points, denoted by ti = ik, i = 0, ...N ;

• In space: divide [A,B] into M equally spaced intervals A = x0 < x1 <

... < xN = B, with length h = B−A
M

, resulting in M+1 points, denoted by
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xj = A+ jh, j = 0, ...,M .

A generic node at the grid is identified by the indices i and j as (ti, xj). This

discretization results in a grid with (N + 1)× (M + 1) points as in Figure 3.1. The

aim of this method is to approximate the function u(x, t) at these grid-points.

Figure 3.1: Space-time discretization

There are three classic finite difference methods usually applied to IBVPs such

as (3.1)-(3.3): Euler explicit scheme, Euler implicit scheme and Crank-Nicolson

scheme. The explicit scheme is the simplest one, but it has the disadvantage of being

conditionally stable, that is, its stability depends on h and k and their relationship,

more precisely, k/h2 must be less than a certain constant. Using this scheme, for

each time step, we obtain explicitly the value of a grid-point (xi, tj+1) using three

values of the previous time step: (xi−1, tj), (xi, tj) and (xi+1, tj).

If a scheme is not stable, the numerical error tends to accumulate as we go

further in time and we cannot guarantee that it remains bounded. This problem is

handled using implicit schemes. The implicit Euler method is unconditionally stable

and the value of a grid-point (xi, tj) is obtained using three values of the next time

step: (xi−1, tj+1), (xi, tj+1) and (xi+1, tj+1). Here, an explicitly relation cannot be

achieved and a linear system of equations needs to be solved at each time step.

Finally, the Crank-Nicolson scheme is an average of the two previous schemes

and has the advantage of being second order accurate in both the x and t directions,

while the other schemes are second order accurate in the x direction but only first
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order in the t direction [13]. Hence, Crank-Nicolson method is the most precise of

the three and this is the reason why is the one used in the dissertation.

As already mentioned, in this methods we deal with differences instead of deriva-

tives. By Taylor’s expansion, we can write to some function φ(x, t):

φ(x± h, t) = φ(x, t)± h∂φ
∂x

(x, t) +
h2

2

∂2φ

∂x2
(x, t)± h3

6

∂3φ

∂x3
(η±, t)

φ(x, t+ k) = φ(x, t) + k
∂φ

∂t
(x, t) +

k2

2

∂2φ

∂t2
(x, υ)

with η+ ∈ (x, x+ h), η− ∈ (x− h, x) and υ ∈ (t, t+ k).

Rearranging the terms, we get the following:

D+φ(x, t) ≡ φ(x, t+ k)− φ(x, t)

k
=
∂φ

∂t
(x, t) +O(k) (3.4)

D+D−φ(x, t) ≡ φ(x+ h, t)− 2φ(x, t) + φ(x− h, t)
h2

=
∂2φ

∂x2
(x, t) +O(h2) (3.5)

D0φ(x, t) ≡ φ(x+ h, t)− φ(x− h, t)
2h

=
∂φ

∂x
(x, t) +O(h2) (3.6)

(3.4) is called a forward difference approximation and is a first order approximation

to the first derivative of φ with respect to (w.r.t.) t. (3.6) is called a centre difference

approximation and is a second order approximation to the first derivative of φ w.r.t.

x. Finally, (3.5) is a second order approximation to the second derivative of φ w.r.t.

x.

Then, we have the following approximations of the derivatives in (3.1):

∂φ

∂t
(x, t) ≈ φ(x, t+ k)− φ(x, t)

k
∂2φ

∂x2
(x, t) ≈ φ(x+ h, t)− 2φ(x, t) + φ(x− h, t)

h2

∂φ

∂x
(x, t) ≈ φ(x+ h, t)− φ(x− h, t)

2h
,

which can provide approximate values for ∂φ
∂t

, ∂2φ
∂x2

and ∂φ
∂x

at any grid point, given

the values of φ.
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3.1.1 Crank-Nicolson method

At this point, the goal is to convert the continuous problem (3.1)-(3.3) to the cor-

responding discrete version based on the Crank-Nicolson method. We begin by

enumerating some properties of this scheme:

• Consistency : It is consistent. This means that the finite difference represen-

tation converges to the PDE as h and k tend to zero;

• Stability : It is unconditionally stable with respect to h and k, i.e., for any

choice of these two steps, the error remains bounded;

• Convergence: It is convergent, i.e, the numerical solution tends to the exact

solution when N,M →∞;

• Accuracy : It has a second order accuracy with respect to both x and t, i.e.,

|τ ij | ≤ C(h2 + k2), where C is a constant and τ ij is the truncation error (see

[13]). The order in x comes directly from (3.5) and (3.6); because this scheme

is evaluated at 1
2
(ti + ti+1), using a centre difference approximation to the first

derivative of u w.r.t t, we get an order of two in time as well.

The notation in this section follows Duffy [14]. Let Lkh be the discrete operator

defined at the grid-points. One wants to approximate the function u(x, t) : D → R,

with D = [A,B]× [0, T ] at the grid-points, that is, to find uij = u(xj, ti) such that:

−
ui+1
j − uij
k

+
1

2
(Lkhu

i
j + Lkhu

i+1
j ) = f

i+1/2
j , i = 1, ..., N − 1, j = 1, ...,M − 1 (3.7)

u0j = u0(xj), j = 0, ...,M (3.8)

ui0 = g0(ti), u
i
M = g1(ti), i = 1, ..., N , (3.9)

where Lkhu
i
j = aijD+D−u

i
j + bijD0u

i
j + ciju

i
j, a

i
j = a(xj, ti), b

i
j = b(xj, ti), c

i
j = c(xj, ti),

f ij = f(xj, ti), with functions a, b, c and f the same as in (3.1) and

D+D−u
i
j =

uij+1 − 2uij + uij−1
h2

,

D0u
i
j =

uij+1 − uij−1
2h

.
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The system (3.7)-(3.9) does not give an intuitive idea of how we can get the values

of u at the grid-points, but we can transform it into a system of linear equations.

Expanding (3.7), we get

−
ui+1
j − uij
k

+
1

2

(
aij
uij+1 − 2uij + uij−1

h2
+ bij

uij+1 − uij−1
2h

+ ciju
i
j

)
+

1

2

(
ai+1
j

ui+1
j+1 − 2ui+1

j + ui+1
j−1

h2
+ bi+1

j

ui+1
j+1 − ui+1

j−1

2h
+ ci+1

j ui+1
j

)
= f

i+1/2
j .

Rearranging the terms and multiplying by 4h2k, it follows

Aiu
i+1
j+1 +Biu

i+1
j + Ciu

i+1
j−1 = Di ,

where Ai = 2kai+1
j +hkbi+1

j , Bi = −4h2−4kai+1
j +2h2kci+1

j , Ci = 2kai+1
j −hkbi+1

j and

Di = −[uij+1(2ka
i
j +hkbij)+uij(4h

2−4kaij +2h2cij)+uij−1(2ka
i
j−hkbij)]+4h2kf

i+1/2
j ,

for i ∈ {1, ...N} and j ∈ {1, ...,M}.

Specifically, starting with a given initial condition, we obtain the solution at the

next time step by solving the following linear system:



1 0 0 . . . . . . 0

C1 B1 A1 0 . . . 0

0 C2 B2 A2 . . . 0

0 0
. . . . . . . . . 0

0 . . . 0 CM−1 BM−1 AM−1

0 0 0 . . . 0 1





ui+1
0

ui+1
1

ui+1
2

...

ui+1
M−1

ui+1
M


=



D0

D1

D2

...

DM−1

DM


The matrix on the left side is a (M + 1)× (M + 1) matrix and D0 and DM are the

boundary conditions at x = A and x = B, respectively.

To implement the Crank-Nicolson method we used MatLab. The code for the

general system of equations (3.1)-(3.3) can be found in A1.

3.2 Important PDEs Found in Finance

This overview of some numerical methods had the goal of solving Equation (2.8).

This equation needs complementary conditions in order to have a unique solution.
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In the case of European vanilla call and put options, denoting the price of the put

by P (S, t), we have the conditions:

C(S, T ) = max(S −K, 0) , P (S, T ) = max(K − S, 0) (3.10)

C(0, t) = 0 , P (0, t) = Ke−r(T−t) (3.11)

C(S, t)→ S −Ke−r(T−t), P (S, t)→ 0 as S →∞ (3.12)

Comparing (2.8) plus the complementary conditions (3.10)-(3.12) with problem

(3.1)-(3.3), there are two differences: the first is the fact that, in the option problem,

we have a terminal condition while in the generalized problem we have an initial

condition; the second is that, in the option problem, the domain of the variable S

is infinite and in the generalized problem the domain is bounded. So, one needs

to make some adjustments in the options problem in order to solve it using C-N

method: truncate the domain of S and perform a change of variables so that t

denotes time left to maturity and not maturity itself.

Artificially truncating the domain of the asset price implies an additional error

to the finite difference scheme. To attenuate the effect of this error, one must choose

the maximum value of the asset price - let Smax be that value - far enough of the

so called region of interest, but not too far as to bring a lot of computer effort.

Investigations from [20] and [21] suggest a value of about three to four times the

highest strike of the market data available.

In the next subsections, three examples of Partial differential equations com-

monly found in Finance are given. These PDEs are going to be used to get the

estimated prices of options that we then use to compare with the market prices.

The choice of the PDE we will use to estimate the prices will depend on the type of

data used.

Forward PDE

In this first adjustment, we will truncate the domain in the variable S as [0, Smax].

The following change of variable is done: t∗ = T − t, where t∗ stands for time left to

maturity, that is, we have now a function V ∗(S, t∗) = V (S, T − t∗). Therefore, we
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have
∂V ∗

∂t∗
=
∂V

∂t

∂t

∂t∗
= −∂V

∂t
.

Replacing this derivative in (2.8) and returning to the original variable names, i.e.,

t and V (S, t) denoting time to maturity and price of the option, respectively, we get

the new PDE (with respective conditions) in the call case:

− ∂V

∂t
+

1

2
σ(t, S)2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, t ∈ (0, T ) , S ∈ (0, Smax)

V (S, 0) = max(S −K, 0)

V (0, t) = 0, V (Smax, t) = S −Ke−rt

This is called a forward Partial Differential Equation.

Logarithmic PDE

In this second adjustment, we will perform two changes of variables: t∗ = T − t and

x = log(S). The first one is exactly the same as above, the second transforms the

prices into its logarithm. Now, the resulting function is V ′(x, t∗) = V (ex, T − t∗)

and we calculate the derivatives:

∂V ′

∂t∗
=
∂V

∂t

∂t

∂t∗
= −∂V

∂t
∂V ′

∂x
=
∂V

∂S

∂S

∂x
= S

∂V

∂S
∂2V ′

∂x2
= S

∂V

∂S
+ S

∂2V

∂S2

∂S

∂x
= S

∂V

∂S
+ S2∂

2V

∂S2
.

In this case, the domain of the variable x is truncated as (xmin, xmax), where xmin

no longer needs to be zero. Now, again denoting t as time left to maturity, we can

write the PDE (with respective conditions) for a call option:

− ∂V

∂t
+

1

2
σ(x, t)2

∂2V

∂x2
+

(
r − 1

2
σ(x, t)2

)
∂V

∂x
− rV = 0, t ∈ (0, T ) , x ∈ (xmin, xmax)

V (x, 0) = max(ex −K, 0)

V (xmin, t) = 0, V (xmax, t) = ex −Ke−rt
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According to [13], when pricing vanilla options, the choice between these two

PDEs does not affect the solution in a significant way, what really matters is to use

a suitable grid.

Dupire PDE

Here, we are going to present a particular Partial Differential Equation for a call

option as a function of strike and time to maturity, C(K,T ), derived by Dupire, see

[13]. Fixing t = 0 and denoting the spot price by S0, the price of a call option must

satisfy the following PDE:

− ∂C

∂T
+

1

2
σ(K,T )2K2 ∂

2C

∂K2
− rK ∂C

∂K
= 0, T ∈ (0, Tmax) , K ∈ (0, Kmax)

C(K, 0) = max(S0 −K, 0)

C(0, T ) = S0, C(Kmax, T ) = 0

This equation is called Dupire PDE and allows to price call options with various

strikes and maturities on the same underlying asset.

Comparing the three Partial Differential Equations above with problem (3.1)-

(3.3), the generic coefficient and respective conditions become:

Forward PDE Logarithmic PDE Dupire PDE
a(x, t) 1

2
σ(S, t)2S2 1

2
σ(x, t)2 1

2
σ(K,T )2K2

b(x, t) rS r − 1
2
σ(x, t)2 −rK

c(x, t) −r −r 0
f(x, t) 0 0 0
u0(x) max(S −K, 0) max(ex −K, 0) max(S0 −K, 0)
g0(t) 0 0 S0

g1(t) S −Ke−rt ex −Ke−rt 0

Table 3.1: PDEs found in Finance

3.3 Calibration

Model calibration can be defined as the process of fitting models to market data.

These models can depend on some unknown parameters (as the local volatility

functions chosen in Section 2.2) which will be calibrated using observations taken
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from the market. The aim is to choose the parameters in such a way that the

estimated prices are as close as possible to the market prices. The term close has

no unique definition, it will depend on the problem formulated, particularly, on the

function chosen to minimize the differences.

In general, the first step when one wants to calibrate a model is to choose which

function (generally called objective function) will be minimized and, once this de-

cision is made, choose which optimization process will be used to minimize the

objective function.

One way to solve the calibration problem is via least squares formulation. Least

squares are broadly discussed in the literature [22] in its linear form, but the structure

of our problem excludes this possibility, so we have to work with nonlinear least

squares. Even though this form can fit a wide range of functions, it has the following

disadvantage: an iterative algorithm needs to be used in order to get the parameter

estimates. Besides the fact that the implementation is harder than in the linear

case (where the solution can be found analytically), this kind of methods are not

flawless, that is, they strongly depend on the initial solution, and more than one

stopping condition must be imposed so that the algorithm terminates, even if an

optimum is not reached. Nevertheless, theory behind non linear least squares is well

developed [26] and MatLab has an incorporated function which handles this kind

of problems. From now on, we will only talk about nonlinear least squares. The

procedure consists in finding the best fitting to a given set of points by minimizing

the sum of squares of the offsets of the points from the fitted values, i.e., find the

coefficient a ∈ Rp which solves the problem of finding:

arg min
a

n∑
i=1

[yi(a)− ydatai]2

This method can be extended so it handles restrictions on the search domain for

a = (a1, ..., ap).

The MatLab function to solve such problems works, summarily, in this way [29]:

1. Starts with an initial estimate for each coefficient, called initial solution;

2. Calculates the value of the objective function for the current set of coefficients;
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3. Adjusts the coefficients and determines whether the fit improves. The function

has five different algorithm choices and the default one can solve most of the

problems, so that’s the one which will be used;

4. Iterate the process by returning to step 2 until the fit reaches the specific

convergence criteria. The convergence criteria has four types of situations:

function converges to a solution; change in the solution is less than a certain

value; change in the residual is less than a certain value; or magnitude of search

direction is smaller than a pre-established value.

For the choice of initial solution in step 1, if we do not have any prior information

that could give us an intuition about it, we should generate many sets of initial

values and select the one that leads to a better solution (in our case, the solution

which has the lowest value).

Local Volatility Model

In our particular case, i.e., in the local volatility model, is quite straightforward that

each choice of parameters for σ(t, S), fixing one of the functions (2.2)-(2.5), gives

a different solution to the option value, so one needs to estimate the parameters

that give the minimum value for the sum of the squared differences between the

estimated price and the observable one. Our problem is of the type:

arg min
a∈Rp

n∑
i=1

[V (Ki, Ti; a)− V ∗i ]2 (3.13)

s.t. σ(t, S; a) ≥ 0 (3.14)

where n is the number of market observations, V is the price estimated by the model

with strike Ki, maturity Ti, and volatility parameter a, and V ∗ is the market value

for the same strike and maturity. The data used in this problem consists of a family

of vanilla call or put options with different strikes and maturities on some underlying

asset (stock or index).
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Results

To get the results searched for this dissertation, one needs to do the following: for

each local volatility function defined in Chapter 2, calculate the estimated prices for

a call or put option using the Crank-Nicolson scheme, choosing one of the PDEs in

Section 3.3. This method will return a grid where each point defines an option price

for a given maturity and strike.

The grid constructed is uniform (see Figure 3.1), so the prices of the options

produced by the Crank-Nicolson method will have strikes and times left to maturity

evenly spaced. The probability of getting option data which lies in these exact points

is low, so we need to find a way to deal with this problem. It can be overcome by

using interpolation between the values calculated at the grid points: according to

[20] and [21] a cubic spline interpolation should be sufficient as it will not affect the

error in a significant way.

After interpolating the estimated data, we are ready for the calibration by just

using the MatLab function to minimize the sum of the squared differences between

the interpolated data and the market one, subject to the constrain that the local

volatility must be non-negative (problem (3.13)-(3.14)). Once we have all the pa-

rameters for each local volatility function, we can compare the results to see which

model(s) seems more suitable and if it is really an improvement over the standard

Black-Scholes. Besides that, we should also see if the qualitative properties showed

in Figure 2.1 for the local volatility are preserved.

From the beginning of this work, it is clear that the only difference between the

21
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local volatility model and the standard Black-Scholes model is the assumption of

constant volatility. This modification is made in order to get closer to reality and

hence to improve the capacity of estimation of the BS model; therefore, throughout

the next sections, we will start by giving the results using the standard Black-Scholes

model and then will use these values to assess the quality of the new models.

4.1 Data

The market data used in this dissertation consists of call options whose underlying

is the S&P 500 Index. This decision was made based on the amount of options

traded daily on this Index and, since more trades give a better perspective of the

market, we chose one of the most active options in the market. From the various

strikes and maturities available, 86 options were chosen with strike prices varying

from 2150$ to 2650$ and time left to maturity from 8 days to 638 days (March 2017

to December 2018). These options were taken on 23 March 2017 and at the close

of the market the S&P 500 Index was worth 2345.96$. It is a common practice

to work with midprices (see [22] for instance), that is, the average between the bid

(maximum price that a buyer is willing to pay) and ask (minimum price that a seller

is willing to receive) prices:

Ci =
Cask
i + Cbid

i

2
.

The midprices for the 86 call options and a plot of the prices against strike can be

found in Appendix A.2.

Both the Forward PDE and the Logarithmic PDE presented in Section 3.2 are

used to obtain the price of an option where the strike is fixed and the asset price

is variable. Since our data consists of points of the form (Ki,Ti), where Ki is the

strike and Ti is the time left to maturity of the ith option, respectively, it seems that

the Dupire PDE is the most suitable choice, because it treats the call option as a

function of both strike and time left to maturity.

To get all the data for the calculation of the option prices, we still need one more

element: the risk-free rate. This value is defined as the return of an investment with

no risk, but in real life such thing does not exist because every investment carries
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some risk, even if it is insignificant. Frequently, government security rates are used

as a proxy for risk-free rates, either short-term or long-term [27]. In practice, it is

common to use the interest rate on a three-month U.S. Treasury Bill as a proxy for

the risk-free rate, and we will follow it. From the U.S. Department of the Treasury

[28] was possible to recover the T-Bill rates on 23 March 2017. In Table 4.1, we can

observe the values for different time horizons.

4 Weeks 13 Weeks 26 Weeks 52 Weeks
0.72 0.75 0.88 0.95

Table 4.1: Treasury Bill Rates on 23 March 2017 (%)

Reading the table and taking into account the usual practice, we obtain a risk-

free rate of 0.75% (75 basis points).

4.2 Parameter Calibration and Estimation

In the next sections we will present the results of the calibration of the standard

Black-Scholes model and the local volatility model, using the dataset described in

the previous section. All four functions for the volatility are used, so we will end with

four different estimations plus the Black-Scholes estimation for the option prices.

The comparison between the different models and the market prices will have two

components: a “numerical” one, using different measures to describe the goodness

of the fit, and a “visual” one, where we plot the market prices against the model

ones. In this plot, the market prices are denoted by a blue circle and the model

prices by a red plus sign. The goal is to calibrate the models in such a way that the

plus signs and the circles overlap or stay as close as possible.

4.2.1 Black-Scholes model

Using the Black-Scholes formula for call options (2.1) to estimate the option prices

and stating the volatility parameter σ as the unknown parameter which needs to be

calibrated, we get a value of σ = 11.79%. This is the value which gives the best fit

by minimizing the squared differences between the BS prices and the market ones

and we can see in Figure 4.1 the comparison between them.
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Although for the shorter maturities the estimation is accurate, we observe that,

as the maturity increases, there is a big discrepancy between the estimated and the

market prices. This evidence is expected and backs up what was mentioned on the

introduction regarding the quality of the BS model in market price estimation.

Figure 4.1: Market Prices vs. Black Scholes estimation

4.2.2 Local Volatility model

At this point, we will make a parameter calibration using the four different local

volatility functions (2.2)-(2.5). The variable t is defined in years and varies from 0

to 2.5 to include all the maturities of the data. The variable K varies from 0 to

8000.

Using the procedure already described at the beginning of this chapter, we made

some experiments using different steps (time and space) on the Crank-Nicolson

method and different starting points for the minimization of the objective function.

Changing the time and space steps of the scheme does not change the magnitude

of the results, that is, it increases or decreases the value of the objective function

but not in a significant way. The running time of the program (computational time)

didn’t change much using bigger or smaller steps, so we decided to use M = 400

and N = 100, with M and N having the same notation as in Chapter 3. The same

cannot be said about the starting points: in all models, except Model 1, a different

starting point can give a different solution. To try to overcome this problem, we
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started at different starting points and kept the solution which gave the lowest value

for the objective function. This behaviour can be associated to the existence of local

minimum points.

For the first function (2.2), we can find the value of the calibrated parameters

in Table A.2 in the Appendix. Looking at Figure 4.2 (a), we can see that there

exists a big improvement over the Black-Scholes model as the estimated prices are

closer to the real ones, particularly at longer maturities, which were the ones where

the Black-Scholes estimation was less accurate. For almost all the prices the crosses

are inside the circles, i.e, there exists an overlap between estimated and real prices,

which is the aim when one uses a model to describe the options market.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 4.2: Market prices vs. model estimations

For the second function (2.3) the same didn’t happen. The estimated prices are

even further from the real ones when we compare them to the BS estimation. This

difference is more notable when we look at the longer maturities as we can see in
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Figure 4.2 (b), which is where this models seems to fail more. The parameters values

can be found in the Appendix, Table A.3.

The third function (2.4) is an extension of the previous one. The only difference

is an extra parameter which gives more flexibility, hence we expect this model to

give better results than the second. This is indeed true, there exists an improvement

over Model 2 and even more, this improvement extends to the BS model. Comparing

Figure 4.2 (c) and Figure 4.1, we can see that the prices estimated by this model

are closer to the real ones. Nevertheless, there are still some prices that are far from

the market ones. The parameters can be found in Table A.4.

The fourth function (2.5) produces Figure 4.2 (d), where we can observe an

improvement over the Black-Scholes estimation. It seems that this model had a

better performance than the third in estimating the option prices (particularly at

longer maturities) and the results are similar to the ones produced by Model 1. The

parameters can be found in Table A.5.

With the parameters obtained from the calibration, we can construct the local

volatility surface for each function. Figure 4.3 shows the local volatility as a function

of time left to maturity and asset price and its values are in percentage.

The local volatility surface generated by Model 1 in Figure 4.3 (a) shows, in

overall, the properties expected for the local volatility: as the asset price decreases

its value increases and increases as the maturity rises. For the longest maturity,

there is an exception: the volatility decreases a little before it starts increasing.

Observing Figure 4.3 (b), we can see that for the second model the volatility is

practically plain in the domain under consideration. This means that, even consid-

ering a deterministic function for the volatility, when we calibrate the parameters,

the volatility becomes constant, in this case, with a value around 10%. For the third

model, the relationship of the volatility with maturity follows the expected pattern,

i.e., it increases as the maturity increases. For the relationship with the asset price,

the shape is not what we excepted, instead it is a U-shape. Finally, observing Figure

4.3 (d) we can see that Model 4 shows, in overall, the features we expected, with

one exception. For small values of the asset price, the volatility decreases when the

maturity increases, which contradicts the properties seen in Figure 2.1.

From Figure 4.2, we can conclude, at a first glance, that the second model is not
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 4.3: Local volatility surface for each model

better than Black-Scholes in estimating the option prices. As for models 1, 3 and 4,

we saw a substantial improvement as they seem to estimate the market prices much

better than the standard BS model.

4.2.3 Model comparison

For comparative purposes, we will use a measure proposed in [18], which estimates

the goodness of fit. It is called root-mean-squared-error (RMSE) and is given by:

RMSE =

√√√√ N∑
i=1

(market pricei − model pricei)2

N
,

where N denotes the number of options. Moreover, we also register the compu-

tational times because they are an important parameter when comparing models

based on numerical methods. Adding to these two measures other features - maxi-
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Model RMSE max difference min difference Computational time(s)
Black Scholes 6.88 25.74 0.098 -

1 1.74 4.5 0.016 2484.25
2 10.93 48.35 0.17 977.85
3 3.62 12.83 0.1 4922.92
4 1.85 4.28 0.039 19231.73

Table 4.2: Comparison between various models

mum and minimum difference between real and estimated prices (in absolute value),

Table 4.2 was obtained.

Observing Table 4.2, the measures obtained support what we noticed in the

previous section. Comparing the values of the RMSE with the one for the Black-

Scholes model, we can see that for the first model it decreases to approximately

a quarter of the value, which is consistent with Figure 4.2 (a). Besides that, the

minimum and maximum differences are less than what we have for the Black-Scholes,

emphasizing that the larger difference for the BS model is more than five times what

we have for the first model. For Model 2, as we expected from the Section 4.2.2, the

values we get are the worst considering all the models explored in this dissertation.

The RMSE is almost twice the value in the BS model as well as the maximum

difference between the estimated and the real prices. Model 3 shows an improvement

over the Black-Scholes model: the RMSE reduces to approximately half the value

of the BS model and the maximum difference between the estimated and market

prices also decreases considerably. Between Model 4 and Model 1, there is not much

difference: the RMSE is similar for the two models as well as the maximum and

minimum differences found among the prices. These two models are the ones with

better results.

However, so far we haven’t considered the last column of the table, which is

important to compare models 1, 3 and 4, the ones that performed better than the

standard model. Model 1 takes 2484.25 seconds ≈ 41.4 minutes to calibrate the

parameters, Model 3 takes 4922.92 seconds ≈ 82 minutes ≈ 1.37 hours and Model

4 takes 19231.73 seconds ≈ 320.53 minutes ≈ 5.34 hours (on average). As we can

see, Model 4 consumes much more time than the other two models to calibrate the

parameters and hence to estimate the option prices. Moreover, Model 1 is the one
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that takes less time to calibrate the parameters and combining this with the results

observed in Table 4.2, we can conclude that this model is the best among all the

models.

To finalize, observing all the results obtained for the local volatility models con-

sidered and the comparisons made between them and the original Black-Scholes

model, the second one is not a good model because it doesn’t estimate the prices

better than the standard model. The first, second and fourth models are an im-

provement over the Black-Scholes, with Model 1 performing better than the others,

considering both the numerical results and computational times.

4.3 Prediction

In this section, another property of the models will be studied: we will check if the

local volatility models used in the previous section are good predictors, i.e., we will

study the ability of the models to predict prices outside sample. The procedure is

done in the following way: we calibrate the model considering a certain sub-sample

of the data and then predict the prices outside that same sub-sample. Given the

conclusions made in the previous sections, we will only perform the described for

models 1, 3 and 4.

To study this feature, we distinguish two different sub-samples of the original

dataset:

• All strikes from the shorter maturity until 21 July 2017;

• All maturities with strike varying from 2305 to 2395.

These sub-samples were chosen in a way to balance the number of options that will be

calibrated and those that will be used for forecasting. We should have more options

in the calibration procedure, but we cannot have few in the forecast, otherwise this

would affect the purpose of this study.

Replicating the strategy of the previous sections, the values of the parameters

(for the two sub-samples) for the models can be found in the Appendix. Comparing

the values of the calibration for the whole sample and for each of the sub-samples,

we notice that for Model 1 (Table A.2) the first parameters a0 and a1 are similar for
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all the samples. Looking to the line related to the predictability in time to maturity,

the other parameters change significantly, either in magnitude or in sign. In terms

of predictability in strike, a2 is the only parameter that changes in a visible way

as it is much bigger than the one calibrated using the entire sample. This suggests

that the results for the sub-samples should be different from the ones found on the

previous section. For Model 3, in Table A.4, we can see that c0 is similar along

the lines. The second line of the table, related to the predictability in t, shows

that all the other parameters change considerably. Looking at the last line, c1 and

d0 change slightly but c1 and c2 are much higher than the parameters calibrated

using the complete sample. Like in Model 1, the results for the sub-samples should

be different from the ones using the entire sample. For Model 4, the parameters

calibrated using each sub-sample are quite different both in magnitude and in sign.

With so many differences in the parameters values, we cannot have any idea how

the model predicts future prices.

(a) Model 1 (b) Model 3

(c) Model 4

Figure 4.4: Predictability in t
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Using the values in Tables A.2, A.4 and A.5, two different figures were generated:

the first stands for the prediction in time to maturity and the second for the pre-

diction in strike. A table was also generated to show the maximum and minimum

differences between real and predicted prices.

Observing Figure 4.4, there is almost no difference between the models. Neither

of the models seems to predict well the prices, particularly for the longest time to

maturity, where the difference is very impressive. This can also be seen on Table

4.3, where we observe that the maximum differences between the real prices and the

predicted ones are 1509.57, 1509.86 and 697.95 for models 1, 3 and 4, respectively.

Looking at Figure 4.5, models 1 and 3 predict the prices in a reasonably way.

Still, these models show some discrepancies between estimated and market prices.

Model 4 predicts the prices worse than the former models, namely for the longer

maturities.

(a) Model 1 (b) Model 3

(c) Model 4

Figure 4.5: Predictability in K
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Model Prediction Max difference Min difference

1
t 1509.57 25.74
K 23.74 0.48

3
t 1509.86 0.76
K 45.54 0.042

4
t 697.95 0.33
K 115.62 0.12

Table 4.3: Comparison of prediction ability between models 1, 3 and 4

We can conclude that, although these models estimate the prices much better

than the Black-Scholes model, their prediction ability is not very good. If we wish

to predict the prices with longer times to maturity than those in our sample, they

do not seem to find correct values. The same can be said about the prediction of

prices with strikes outside the sample, even though the results are better in this

case.



Chapter 5

Conclusions

The aim of this dissertation was to improve the famous Black-Scholes model by

letting the volatility of the asset price to be a deterministic function of both time

and asset price and then study the consequences of this change. Choosing the local

volatility to be a parametric function, from a theoretical point of view, does not

introduce many changes: the price of an European vanilla call or put option is still

explained as the solution of a partial differential equation, derived using the same

arguments that Black and Scholes used in their paper. This was possible because

this extended model did not add any new source of uncertainty, unlike stochastic

volatility models or jump diffusion models. The downside was that the solution of

this PDE couldn’t be obtained in a closed form, so we needed to use a numerical

method: the Crank-Nicolson scheme was the selected one.

Four different functions for the local volatility were formulated and all the pa-

rameters involved were calibrated using options on the S&P 500 Index. Numerical

results showed that three of these models performed better than Black-Scholes model

in estimating the option prices, with Model 1 giving the best results. Regarding the

predictive ability, neither of the models performs acceptably in predicting prices

with longer time to maturity than the ones in the sample or with strikes outside

the sample. This is due to the fact that the calibrated parameters show significant

changes from sample to sample.
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Appendix A

Numerical Code, Data and

Parameter Values

A.1 C-N method code

%N - number of time intervals

%M - number of space intervals

%(xmin,xmax) - domain of the space variable

%T - final time

%initial - intial condition: t=0

%down - boundary condition at xmin

%up - boundary condition at xmax

%a,b,c,f - coefficients of the PDE: a*uxx+b*ux+c*u-ut=0 as functions. It

%should be passed as strings: ’a’, ’b’, ’c’ and ’f’ or @a, etc...

function [t,x,u]=CrankN_fit(param,xdata,initial,down,up,a,b,c,f,S0,r)

N=xdata(1);

M=xdata(2);

xmin=xdata(3);

xmax=xdata(4);

T=xdata(5);

%create the grid in time and space
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%in time: divide [0,T] into N intervals

k=T/N; %time step

t=0:k:T; %t(n)=(n-1)*k, n=1,...,N+1

%in space: divide [xmin,xman] into M intervals

h=(xmax-xmin)/M; %space step

x=xmin:h:xmax; %x(i)=xmin+(i-1)*h, i=1,...,M+1

u=zeros(M+1,N+1); %matrix where the solutions will be put

%set initial condition

for i=1:(M+1)

u(i,1)=feval(initial,S0,x(i));

end

%initialize method

for j=2:N+1

F=zeros(M+1); %matrix used to get solutions in the next time step

D=zeros(M+1,1);

F(1,1)=1; %to get boundary conditions in the matrix form

F(M+1,M+1)=1;

%set boundary conditions

D(1,1)=feval(down,S0,t(j))

D(M+1,1)=feval(up,t(j));

for i=2:M

a_actual=feval(a,param,S0,x(i),t(j-1)); %functions at current time

b_actual=feval(b,r,x(i),t(j-1));

c_actual=feval(c,x(i),t(j-1));

a_next=feval(a,param,S0,x(i),t(j)); %functions at next time

b_next=feval(b,r,x(i),t(j));

c_next=feval(c,x(i),t(j));

f_actual=feval(f,x(i),0.5*(t(j)+t(j-1))); %f at time t+1/2

%set elements of the matrix

F(i,i-1)=2*k*a_next-h*k*b_next;

F(i,i)=-4*h^2-4*k*a_next+2*h^2*k*c_next;

F(i,i+1)=2*k*a_next+h*k*b_next;
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D(i,1)=-u(i+1,j-1)*(2*k*a_actual+h*k*b_actual)-u(i,j-1)*(4*h^2

-4*k*a_actual+2*h^2*k*c_actual)-u(i-1,j-1)*(2*k*a_actual

-h*k*b_actual)+4*h^2*k*f_actual;

end

u(:,j)=linsolve(F,D); %solve system to get values at next time step

end

end

A.2 Data

Figure A.1: Call option prices against Strike
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Strike
31

March
2017

28
April
2017

19
May
2017

16
June
2017

21
July
2017

15
September

2017

15
December

2017

21
December

2018
2150 224.2 242.2
2250 144.6 167.3
2290 59.7
2300 51.1 70.1 109.4
2305 47
2310 42.95 55.7 62.8
2315 39 51.95
2320 35.1 55.9
2325 31.5 44.9 93
2330 28 41.5
2335 24.6 38.1 45.99 57.05
2340 21.3 35 43 54.2
2345 18.3 39.8 51.05
2350 15.5 28.9 36.95 48.2 77.7 102.3 184.3
2355 12.9 26.2 34.2 45.3
2360 10.6 23.5 31.5
2365 8.4 39.8
2370 6.8 18.7 26.5
2375 5.2 16.6 24.2 34.6
2380 4.05 14.6 21.9
2385 3.1 12.7 19.8
2390 2.3 11.1 17.9
2395 1.7 9.5 16.1
2400 1.3 8.2 14.3 23.6 50.9 75.2
2405 0.9
2425 146.2
2450 17.2 30.2 51.9
2475 11.2 122.1
2500 16
2525 4.3 26.4
2550 7.8
2600 74.4
2650 59

Table A.1: Call options
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A.3 Parameter values

Parameters a0 a1 a2 a3 a4 a5
Whole sample 0.1002 -0.7272 1.3017 0.0659 -0.0224 0.2630

Predictability in t 0.1201 -1.1021 3.8869 -0.4346 2.0190 -1.2028
Predictability in K 0.1013 -1.1731 8.2046 0.0423 -0.0166 -0.0039

Table A.2: Calibrated parameters for volatility function 1

Parameters b0 b1 b2 b3
Whole sample 0.09905 -0.0001 1.0e-07×-8.96 1.0e-10×2.11

Table A.3: Calibrated parameters for volatility function 2

Parameters c0 c1 c2 c3 d0
Whole sample 0.1079 -0.5984 7.9975 -5.7968 -0.0808

Predictability in t 0.1076 0.8529 1.8210 -0.0000 -44.4086
Predictability in K 0.0931 -0.9319 19.8466 -9.7225 0.1012

Table A.4: Calibrated parameters for volatility function 3

Parameters Whole sample Predictability in t Predictability in K

σATM

β1 129788.69 11160.36 4.54
β2 2013.31 18234.66 0.78
β3 259177.4 22094.03 -0.027

σskew

α1 91.36 17973.97 3.99
α2 -6.41 -6774.49 0.69
α3 191.6 11911.95 -0.14

λskew

γ1 0.55 -17.64 -6.52
γ2 -0.23 -6.25 14.17
γ3 -1.11 261.66 -0.21

θskew

θ1 -23.36 2094.47 11.61
θ2 0.047 6807.04 -0.46
θ3 -20.21 7906.1 4.15

Table A.5: Calibrated parameters for volatility function 4
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