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Resumo

Esta dissertação tem como objetivo a implementação de uma abordagem numé-

rica moderna à solução da equação diferencial parcial de Black-Scholes, usada para

calcular o preço de opções �nanceiras usando um método sem grelha baseado em

funções de base radial. Estas equações são normalmente resolvidas através de méto-

dos numéricos tradicionais tal como o método das diferenças �nitas, elementos �nitos

ou volumes �nitos. Mais ainda, o cálculo do preço de opções pode ser feito através

de modelos binomiais e/ou simulação de Monte Carlo.

A interpolação de pontos utilizando funções de base radial (RBPI) é muito útil

quando o número de derivados �nanceiros é elevado, por exemplo no caso das "basket

options" cujo lucro depende do valor de um conjunto de derivados (portefólio). Este

método permite concentrar os graus de liberdade do problema nas regiões do domínio

mais relevantes, distribuindo os esforços computacionais.

Esta dissertação apresenta a implementação do RBPI em vários problemas teste

e uma análise de convergência dos problemas relativamente à sua solução exata bem

como os respectivos tempos computacionais.

Foi possível concluir que o método é válido e que os resultados obtidos são consis-

tentes. No futuro, consideraremos problemas de maior dimensão bem como outras

implementações deste método.

Palavras-Chave: Valorização de Opções, Funções de Base Radial, Equação

de Black-Scholes, Métodos Numéricos.
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Abstract

This dissertation aims at implementing a modern numerical approach to the so-

lution of the Black-Scholes partial di�erential equation, used for pricing �nancial

options, by using a mesh-free method based on radial basis functions. These equa-

tions are normally solved by standard numerical methods like �nite di�erences, �nite

elements or �nite volumes. Additionally, option pricing can also be performed using

binomial models and/or Monte Carlo Simulation.

Radial Basis Point Interpolation (RBPI) is very useful when the number of

derivatives is high, for example in basket options where the pay-o� depends on

the value of a portfolio (or basket) of derivatives. This method allows to concen-

trate the degrees of freedom on the most relevant regions in the domain, distributing

the computational e�orts.

This dissertation presents the implementation of the radial basis point interpo-

lation in several test problems and an analysis of the convergence of the discrete

problems to the exact solutions, including computational times.

We conclude that the method is valid and the obtained results are consistent.

In the future, we will consider problems in higher dimensions as well as parallel

implementations of this method.

Keywords: Option Pricing, Radial Basis Functions, Black-Scholes equation,

Numerical Methods.
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Chapter 1

Introduction

The idea of what an option is comes from the 14th century, when insurance

companies would make promises of buying ships or cargoes when they'd fail to arrive

in order to provide against that danger [12], but its main growth has happened since

1950.

Everyday, all around the world, options on securities are exchanged. An option

is a type of derivative, which is a contract between two parties: the writer and the

holder. Call options give the holder the right (but not the obligation) to buy an

underlying asset S by a certain date called maturity T for a certain price called

the strike price K. Put options give the holder the right to sell the underlying

asset, on the same conditions as the Call Option. The most used options are called

European and American and the di�erence between them is that the �rst can only

be exercised at maturity whereas the second can be exercised at any moment from

the establishment of the contract until the maturity date [11].

Fisher Black and Myron Scholes were two economists that in the year of 1973

published a paper [3] where they presented a formula which valuates an option in

terms of the price of the underlying stock. This formula is very well known and still

used nowadays. For more general option contracts there are no closed form solutions

and the valuation must be made solving certain partial di�erential equations with

the aid of numerical methods.

For instance, �nite di�erence methods allow to approximate the solution of par-

tial di�erential equations numerically by transforming them in a set of di�erence

1
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equations, which are solvable by iteration [11]. The advantage of this numerical

method, and others, is that their solutions can be computationally derived [10].

The �nite di�erence method has some limitations, namely the usage of a constant

space-time grid. To approximate the solution of partial di�erential equations using

mesh-free methods (without the need of a constant space-time grid), usually it is

discretized in nodes by collocation methods [14].

When the data is scattered, radial basis point interpolation methods are a good

approach since they allow to interpolate the solution of the PDE between the data

sites as a linear combination of radial basis functions and monomials. A scheme

with �nite di�erences is used to approximate the derivatives in time but in space the

derivatives are a linear combination of the Radial Basis Functions and Polynomials

used.

In the following chapters you may �nd a theoretical introduction on Option

Pricing, focused on the Black Scholes Model, followed by the presentation of the

numerical methods that are used afterwards. The numerical results present com-

parisons between the method in study and others, with a study of convergence to

the exact solutions. Finally, some conclusions are drawn. In the appendices are

available the MATLAB programs used to obtain the presented results.
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Chapter 2

Option Pricing

Derivatives play an increasingly important role in �nance all over the world. This

way, it is very important to understand how they work, how can they be used and,

most importantly, how to price them. Hull [11] de�nes a derivative as "a �nancial

instrument whose value depends on (or derives from) the values of other, more basic,

underlying variables" such as prices of traded assets. For example, the price of a

stock option depends heavily on the price of a stock, but there are many factors

(some of them not so evident) in�uencing the price of a derivative.

An option is a contract between two parties: the holder and the writer. There

are two types of options:

• Call Option - gives the holder the right to buy the underlying asset at a speci�c

date for a speci�c price

• Put Option - gives the holder the right to sell the underlying asset at a speci�c

date for a speci�c price

Note that the holder has the right to (buy or sell) but not the obligation to do

it, which means that he may decide not to exercise his right. The factors that a�ect

the price of the option are the price of the stock S, the strike price K which is the

amount that the holder must pay in order to exercise his option, the maturity of the

contract T which is the date where the contract expires, the volatility of the market

σ and the risk free interest rate r.

3
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The decision of the holder to exercise or not the option, obviously, depends on its

pro�t. The interpretation of the meaning of the strike price depends on the nature

of the option. If the option is a call, the strike price is the price at which the option

holder can purchase the underlying asset, therefore in this case he will exercise if

the stock price is greater than the strike price, earning a pro�t equal to S −K. If

the option is a put, the strike price is the price at which the option holder can sell

the underlying asset, then he will exercise if the stock price is lower than the strike

price, earning a pro�t equal to K − S.

The timing of this decision depends on whether the option is European or Amer-

ican. In the �rst case, the holder is allowed to exercise only at the maturity date

but in the second, he may exercise whenever he pleases, from the date when the

contract is established until the maturity date. There are other types of options,

but they will not be object of study in this dissertation.

2.1 Black Scholes Equation

The Black Scholes model published in 1973 [3] has been explored by several

authors. In the introduction of his famous book in Arbitrage Theory [2], Björk

covers the basic Black Scholes theory by following the arguments of Merton. We

will now highlight the most relevant steps, starting with the assumptions of the

model:

1. The price of a stock follows a Geometric Brownian Motion

2. There is a continuous trading

3. The market is e�cient (arbitrage free) and frictionless (there are no transaction

costs)

4. Short positions are allowed

5. The volatility σ is constant

6. The yield curve is �at

4
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7. The portfolio is locally riskless

8. The derivative which integrates the portfolio can be bought and sold on a

market

Let there be a market with a price process B that refers to the price of a risk free

asset with the dynamics

dBt = rBtdt, (2.1)

where r is the short interest rate and the stock price S given by

dSt = αStdt+ σtStdWt, (2.2)

where α is the mean rate of return of S, σ is the (stochastic) volatility of S and W

is a Wiener process.

Consider a �nancial derivative X with maturity T of the form X = Φ(S(T ))

and price process Π(t,X). If the case is of an European put option, then Φ(x) =

max(K − x, 0). The value of the option at maturity is quite simple to understand:

• if the price of the derivative is lower than the strike price, the holder has

interest in exercising the option since he will be selling the derivative to the

writer at a higher price than in the market and gain a pro�t equal to K−S(T );

• if the opposite situation occurs, then it wouldn't make sense to exercise, since

the holder could sell the underlying asset at a higher price in the market, and

therefore the pro�t of this contract is 0.

This way, we can derive Π(T ) = max(S(T )−K, 0).

Now that we know the behavior of the price of the option at maturity, we must

derive its price for all time t ∈ [0, T [.

Suppose there is a self �nancing portfolio (i.e. a collection of assets where the

purchase of determined assets is �nanced through the sale of others) with value V

such that

dVt = kVtdt. (2.3)

5
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If the market is free of arbitrage, i.e. there are no opportunities of taking ad-

vantage from a di�erence of prices, then we must have k = r (remember the price

process of B from equation (2.1).

Assume that the price of the derivative has the form Πt(X) = F (t, St), i.e. is a

function depending on time and on the stock price, then by using Itô's formula we

may obtain the dynamics of Πt in terms of the unknown function F :

dΠt = dF (t, St)

=
∂F

∂t
dt+

∂F

∂S
dS +

1

2

∂2F

∂S2
dS2

=

(
∂F

∂t
+ αS

∂F

∂S
+
σ2

2
S2∂

2F

∂S2

)
dt+ σS

∂F

∂S
dW.

(2.4)

Simplifying, we get

dΠt = απΠdt+ σπΠdW (2.5)

with

απ =
∂F
∂t

+ αS ∂F
∂S

+ σ2

2
S2 ∂2F

∂S2

F
and σπ =

σS ∂F
∂S

F
.

Let there be a self �nancing portfolio with value V based on the underlying stock

and the derivative asset where us is the proportion of the investment in the stock

and uπ is the proportion of the investment in the derivative, such that us + uπ = 1.

Then, the dynamics of the portfolio is given by

dV = V

{
us
dS

S
+ uπ

dΠ

Π

}
= V {us(αdt+ σdW ) + uπ(απdt+ σπdW )}

= V {(αus + απuπ)dt+ (σus + σπuπ)dW} .

(2.6)

We must choose a proportion of investment such that the Brownian term dW dis-

appears in order to ensure a locally riskless portfolio. This way the condition

σus + σπuπ = 0 must hold. Adding the obvious condition us + uπ = 1 then we

have enough to determine the proportions us and uπ.
σus + σπuπ = 0

us + uπ = 1

⇔


us =

σπ
σπ − σ

uπ = − σ

σπ − σ

(2.7)
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Substituting the expression of σπ from (2.5), then

us =
S ∂F
∂S

S ∂F
∂S
− F

and uπ = − F

S ∂F
∂S
− F

. (2.8)

Recalling the arbitrage condition, then we must also have αus +απuπ = r. Now,

substituting the expression of απ from (2.5) and the proportions from (2.8) in the

arbitrage condition, we have

α
S ∂F
∂S

S ∂F
∂S
− F

+
∂F
∂t

+ αS ∂F
∂S

+ σ2

2
S2 ∂2F

∂S2

F

(
− F

S ∂F
∂S
− F

)
= r

⇔ ∂F

∂t
+ rS

∂F

∂S
+
σ2

2
S2∂

2F

∂S2
− rF = 0.

(2.9)

Since at maturity Π(T ) = Φ(S(T )) = F (T, S) then, �nally, we have that S can

take any value and F has to satisfy the PDE


∂
∂t
F (t, S) + rS ∂

∂S
F (t, S) + σ2

2
S2 ∂2

∂S2F (t, S)− rF (t, S) = 0

F (T, S) = Φ(S)

(2.10)

This result (2.10) is the so-called Black-Scholes equation that allows to price the

derivative in a relative way, i.e. as a function of the price of the underlying asset.

This means that the underlying price process(es) must be known.

2.1.1 European Put Option Pricing

We will now consider the speci�c case of an European Put Option. The price of

a put option with strike price K and maturity T on an underlying asset S is given

by V (S, t) where the Black-Scholes operator is given by

LV (S, t) =
∂

∂t
V (S, t) +

σ2

2
S2 ∂

2

∂S2
V (S, t) + rS

∂

∂S
V (S, t)− rV (S, t) (2.11)

The problem is written, for S ∈ ]0,+∞[ and t ∈ [0, T [:

LV (S, t) = 0

V (S, T ) = max(K − S, 0)

V (0, t) = Ke−r(T−t)

limS→∞ V (S, t) = 0

. (2.12)

7
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Since the value of the underlying asset S lies in the interval [0,+∞[, the change

of variables

x(S) = 1− e−
S
L , (2.13)

where L is a constant parameter, transforms the unbounded S-domain in the bounded

x-domain [0, 1[ which allows us to choose a �nite number of RBPI centers inside this

interval [15]. Equivalently, we have S(x) = −L ln(1− x). With this transformation,

S = 0⇒ x(S) = 0 and limS→∞ x(S) = 1. Furthermore,

dx

dS
= −

(
− 1

L

)
e−

S
L =

1

L
(1− x) =

1− x
L

for 0 < x < 1. (2.14)

De�ning U(x, t) = V (S(x), t) then we must modify the BS operator (2.11) ac-

cording with this change of variable:

L̃U(x, t) =
∂

∂t
V (S(x), t) +

σ2

2
S(x)2 ∂2

∂S(x)2
V (S(x), t) + rS(x)

∂

∂S(x)
V (S(x), t)

− rV (S(x), t)

=
∂

∂t
U(x, t) +

σ2

2
(−L ln(1− x))2

((
1− x
L

)2
∂2

∂x2
U(x, t)

+
x− 1

L2

∂

∂x
U(x, t)

)
+ r(−L ln(1− x))

∂

∂x
U(x, t)

(
1− x
L

)
− rU(x, t)

=
∂

∂t
U(x, t) +

σ2

2
(1− x)2 ln2(1− x)

∂2

∂x2
U(x, t) +

(
σ2

2
(x− 1) ln2(1− x)

− r(1− x) ln(1− x)

)
∂

∂x
U(x, t)− rU(x, t)

using the chain rule to calculate the following partial derivatives:

∂V

∂S
=
∂U

∂x

dx

dS
=
∂U

∂x

(
1− x
L

)

∂2V

∂S2
=
∂2U

∂x2

dx

dS

(
1− x
L

)
+
∂U

∂x

∂

∂S

(
1− (1− e−S

L )

L

)
=
∂2U

∂x2

(
1− x
L

)2

+
∂U

∂x

(
− 1

L2
e−

S
L

)
=
∂2U

∂x2

(
1− x
L

)2

+
∂U

∂x

(
x− 1

L2

)
Finally,

L̃U(x, t) =
∂

∂t
U(x, t) +A(x)

∂2

∂x2
U(x, t) + B(x)

∂

∂x
U(x, t)− rU(x, t) (2.15)

8
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where

A(x) =
σ2

2
(1− x)2 ln2(1− x) and B(x) =

σ2

2
(x− 1) ln2(1− x)− r(1− x) ln(1− x).

Then, with the change of variables (2.13), the initial problem (2.12) now writes

L̃U(S, t) = 0

U(x, T ) = max(K + L ln(1− x), 0)

U(0, t) = Ke−r(T−t)

U(1, t) = 0

. (2.16)

2.2 Black Scholes Formula

In their paper [3], Black and Scholes derived a formula from the partial di�eren-

tial equation that is known as the Black Scholes formula. We will skip its derivation

which can be found in [3].

The price of a European call option with strike price K and time of maturity T

is given by

C(t, S) = SN [d1(t, S)]− e−r(T−t)KN [d2(t, S)], (2.17)

where N is the Normal cumulative distribution function and

d1(t, S) =
1

σ
√
T − t

(
ln

(
S

K

)
+

(
r +

σ2

2

)
(T − t)

)
,

d2(t, S) = d1(t, S)− σ
√
T − t.

The value of a Put Option P (S, t) may be derived from the value of a Call Option

C(t, S) using a known formula called Put-Call Parity

C(t, S)− P (t, S) = S −Ke−r(T−t) ⇔ P (t, S) = C(t, S)− S +Ke−r(T−t). (2.18)

Note that this formula is suitable in a very limited context. Any changes in

the model hypothesis or in the contract conditions obliges the numerical solution of

the Black Scholes equation instead of using this closed formula. Nevertheless, this

formula allows to validate the numerical solution of the equation since it provides

an exact solution (in the terms �xed).

9
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2.3 Other pricing models

The Black-Scholes model is based on the Brownian Motion (or Wiener process)

that follows a Normal Distribution. One of the drawbacks of this model is that

empirical evidence goes against the Normal distribution of the returns. This way,

other more general processes were considered, for instance Lévy processes, which use

an in�nitely divisible distribution, maintaining the good properties of the Wiener

process (independent and stationary increments) [17]. Furthermore, Lévy processes

have jumps, which is another important property to consider in the price process

that the Black Scholes model does not include.

Consider that the dynamics of an underlying asset have the form St = S0e
−rt+Xt ,

where Xt is a Lévy process. Then, the risk-netural dynamics of St are given by

St = S0 +

∫ t

0

rSu−du+

∫ t

0

Su−σdWu +

∫ t

0

∫ +∞

−∞
(ex − 1)Su−J̃X(du, dx) (2.19)

where J̃X is the compensated random measure describing the jumps of X, St is a

Markov process with in�nitesimal generator

LSf(x) = rx
∂f

∂x
+
σ2x2

2

∂2f

∂x2
ν(dy)

[
f(xey)− f(x)− x(ey − 1)

∂f

∂x

]
. (2.20)

Using a proper change of variable we obtain a equation for the value of a European

option C(t, S): 
∂C
∂t

+ LSC(t, S)− rC(t, S) = 0

C(T, S) = Φ(S)

. (2.21)

This is similar to the Black-Scholes equation mentioned before, with the di�er-

ence in the operator: instead of a second order di�erential operator we now have a

integro-di�erential operator [5].

Another argument against the hypothesis of the Black Scholes model is that

volatility is not constant. First, let us de�ne what is the implied volatility. Suppose

we know the price of an option and the price of its underlying for a certain maturity

and strike price with today's risk-free asset. Then, we may implicitly obtain the

value of the market's volatility - this is called the implied volatility. Now, if the

assumption of constant volatility was to be right, then collecting data concerning

10
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di�erent options with the same maturity on the same underlying and plotting the

implied volatility against the strike price, it should present a straight line. Instead, if

we do so, we obtain a curve with the shape of a "smile" - that is called the volatility

smile [2]. This proves that contrarily to the assumption of the Black Scholes model,

volatility depends on the strike price.

In spite of the limitations of the Black-Scholes model, since we will focus on

the RBPI method, we will not use more elaborated models, although they could be

considered.

11



Chapter 3

Numerical Methods

The need to solve complex problems in many �elds in science and engineering,

along with the computational solution provided the development of numerical anal-

ysis. The �rst recorded use of �nite di�erences to approximate derivatives was in

Euler's method in 1768, which consists of a procedure to solve a �rst order di�er-

ential equation [1]. Since then, this approach has been extended and improved to

higher order problems.

Finite di�erence methods allow to numerically solve partial di�erential equations

such as the Black Scholes equation, using di�erences to approximate the partial

derivatives, based on a discrete grid on space and time. They start with an initial or

�nal condition and solve the problem at each node in time and space by iteration.

Meshless methods are a very powerfull tool to solve partial di�erential equations

since they avoid the generation of a grid and can be applied with any node distri-

bution [15]. The radial basis point interpolation that will be explored later on is

one possible mesh-free approach. They allow to reconstruct unknown functions that

may be solutions of the PDE from known data.

Finite element methods provide data dependent spaces, i.e. the space furnishing

the "trial" functions is �xed in advance. The reconstruction of multivariate functions

cannot be done this way, that's why meshless methods have been suggested: they

avoid triangulations, re-meshing and other geometric programming [16].

Another way to value derivatives is to use binomial methods. The binomial op-

tion pricing model assumes time to be discrete and divided in periods and calculates

12
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the price of an option by iteration between the time of maturity and the valuation

date. Assuming that the interest rate is constant and that the price of a derivative

follows a binomial process over each period of time, if the current price of a stock

is S then at the end of one period its price will be either uS if it goes up (with

probability q) or dS if it goes down (with probability 1− q) where u > 1 and d < 1

[6]. In the end of that period the same happens and so on.

It is possible to simulate the trajectory of a stochastic process using Monte

Carlo Method which samples outcomes of the process randomly. This is useful

in the pricing of derivatives since they depend on the evolution of the underlying

stock. The method generates a random path for S and calculates the pay-o� of the

derivative associated to that stock price. Then it repeats this process many times

and calculate the mean of the obtained payo�s. Discounting this average pay-o� at

the risk-free rate, a value for the derivative is obtained [11]. This is a heavy method

since it requires a high number of simulations.

We will not go into detail on binomial models and Monte Carlo simulations since

our focus is to price options using the numerical solution of the BS equation.

3.1 Finite Di�erence Methods

The value of the derivative of a function in a speci�c point can be approximated

by the di�erence of values of the function in that point and in a point in its neigh-

bourhood. There are three di�erent ways to approximate it [8]: forward di�erence

(3.1), backward di�erence (3.2) and centered di�erence (3.3)

f ′(a) ≈ D+f(a) ≡ f(a+ h)− f(a)

h
, (3.1)

f ′(a) ≈ D−f(a) ≡ f(a)− f(a− h)

h
, (3.2)

f ′(a) ≈ D0f(a) ≡ f(a+ h)− f(a− h)

2h
. (3.3)

The approximate formulas presented above may be used to solve Partial Di�er-

ential Equations in two independent variables such as the Black Scholes Equation.

By convention, those variables are usually x (space) and t (time).

13



The Use of Radial Basis Functions in the Numerical Solution of Option Pricing Problems

Example 1 Suppose we have a simple PDE like the heat equation to solve using

�nite di�erences
∂u

∂t
=
∂2u

∂x2
(3.4)

We consider a grid of mesh points (x, t) = (jh, nk) where h and k are the space

and time step of the problem (which are small, tending to zero) and j and n are

natural numbers. The approximated solution of the problem in those points, Un
j will

be obtained replacing the partial derivatives by �nite di�erences [18]. According to

the forward, backward and centered di�erences, respectively, we de�ne:

• in space

D+U
n(x) =

Un
j+1 − Un

j

h
, D−U

n(x) =
Un
j − Un

j−1

h
, D0U

n(x) =
Un
j+1 − Un

j−1

2h
.

• in time

D+Uj(t) =
Un+1
j − Un

j

k
, D−Uj(t) =

Un
j − Un−1

j

k
, D0Uj(t) =

Un+1
j − Un−1

j

2k
.

For the second order derivative in space, we use the three-point formula

D+D−U
n(x) =

Un
j+1 − 2Un

j + Un
j−1

h2
. (3.5)

This way, equation (3.4) may be written in di�erences

Un+1
j − Un

j

k
=
Un
j+1 − 2Un

j + Un
j−1

h2
. (3.6)

When we consider the full discretization, in both time and space, two types of

schemes can be used: the explicit or implicit, corresponding to the speci�c method

used for time integration. The di�erences between them are that the explicit meth-

ods, as the name implies, expresses the solution at t = (n+1)k explicitly in terms of

the values in the previous time step t = nk, whereas in the implicit schemes a system

of equations must be solved in order to compute the solution at time t = (n + 1)k.

Among the implicit schemes, a very popular one is the Crank Nicholson scheme, pro-

viding second order accuracy in both space and time. The �nite di�erence scheme

used in (3.6) is the explicit.

14
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3.1.1 Euler Implicit Scheme

We will now focus on the fully implicit �nite di�erence scheme [19] which is the

one that will be used later on. It uses the backward di�erence scheme for the partial

derivative in time, the centered di�erence scheme for the �rst order derivative in

space and the three point formula for the second order derivative in space.

In �nite di�erence methods one should de�ne a space-time grid in order to dis-

cretize the partial derivatives in time and space. Let l, h, k be constants such that

l > 0, h ∈ (0, 1] is the space step, k ∈ (0; 1] is the time step and M = l/k is the

number of time discretizations.

Qh,k = {(x, t) : x = jh, t = nk, j = −M, . . . ,M, n = 0, . . . , 1} (3.7)

Let U be the function that represents the solution to problem (2.16) in Qh,k :

U(jh, nk) = Un
j . (3.8)

Using the most usual change of variables when trying to solve the Black Scholes

equation S = ex [9] then, setting U(x, t) = V (S, t), problem (2.12) is equivalent to

∂
∂t
U(x, t) + σ2

2
∂2

∂x2
U(x, t) +

(
r − σ2

2

)
∂
∂x
U(x, t)− rU(x, t) = 0

U(x, T ) = max(K − ex, 0)

U(0, t) = Ke−r(T−t)

U(−l, t) = U(l, t) = 0

. (3.9)

By means of discretization using the implicit scheme, this system can be approx-

imated by 

Un+1
j − Un

j

∆t
+
σ2

2

(
Un+1
j+1 − 2Un+1

j + Un+1
j−1

(∆x)2

)

+

(
r − σ2

2

)
Un+1
j+1 − Un+1

j−1

2∆x
− rUn+1

j = 0

UN
j = max(K − ex, 0)

Un
−M = Un

M = 0

. (3.10)

Or, in matrix form,

AUn+1 = Un (3.11)

15
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where

A =



b c

a b c
. . . . . . . . .

a b c

a b


, Un+1 =



Un+1
−M+1

Un+1
−M+2

...

Un+1
M−2

Un+1
M−1


, Un =



Un
−M+1

Un
−M+2

...

Un
M−2

Un
M−1


,

with

a = −σ
2

2

∆t

(∆x)2
+

(
r − σ2

2

)
∆t

2∆x
,

b = 1 + ∆t

(
r +

σ2

(∆x)2

)
,

c = −σ
2

2

∆t

(∆x)2
−
(
r − σ2

2

)
∆t

2∆x
.

At each step, the linear system presented above must be solved numerically.

3.2 Interpolation Methods

There is the need to use interpolation whenever we deal with discrete data and

want to obtain an approximation for speci�c point (or set of points) that is not

available. Linear interpolation allows to determine an unknown value between two

given values by tracing the line that connects those two points and localizing the

point of interest in that line. This is the simplest method of interpolation but there

are many others.

3.2.1 Polynomial Interpolation

The advantages of using polynomials in approximation are their easy evaluation,

di�erentiation and integration in a �nite number of steps with the use of basic

arithmetic operations [7].

A polynomial of order n (and n degrees of freedom) is a function of the type

p(x) = β1 + β2x+ β2x
3 + ...+ βnx

n−1 =
n∑
i=1

βix
i−1. (3.12)

16



The Use of Radial Basis Functions in the Numerical Solution of Option Pricing Problems

The Lagrange method uses n di�erent points x1, ...xn in a determined interval

[7]. The ith Lagrange polynomial for the data sites nodes is given by

li(x) =
n∏
j=1
j 6=i

x− xj
xi − xj

. (3.13)

This way, if g(x1), . . . , g(xn) are the known values for the data sites x1, . . . , xn

then there is one function p verifying p(xi) = g(xi) where

p =
n∑
i=1

g(xi)li(x). (3.14)

Then the linear system

β1 + β2xi + . . .+ βnx
n−1
i = bi i = 1, . . . , n (3.15)

has a unique solution for arbitrary values of bi which makes p the only interpolant

from the set of all polynomials of order n to g at the points xi for i = 1, . . . , n.

3.2.2 Radial Basis Point Interpolation Method

A radial basis function is a function which value depends on the distance of the

argument from the origin (or any other center), therefore any rotations of it have no

e�ect in its value [4]. This way, if ϕ is a radial basis function, then ϕ(x) = ϕ(‖x‖).

There are several di�erent radial basis functions, for example

• ϕ1(x) = x2 ln(x) (thin-plate splines)

• ϕ2(x) =
√
x2 + c2 (multiquadratics) where c is a positive parameter

• ϕ3(x) = e−cr
2
(Gaussian)

This functions, apart from its radial symmetry, are smooth and have good Fourier

transform properties.

When there is need to approximate scattered data (i.e. points that have no

relationship with each other in space) in more than one dimension, the radial ba-

sis function method is a very common approach [4]. It has the advantage of the

possibility to select the nodes for the interpolation [13].
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Given known values y of an unknown "function" in the points ξ ∈ S such that

y = f(ξ) we wish to interpolate the known values in order to construct the function

f .

For approximations using RBF, the approximants s are normally �nite linear

combinations of translates of a radially symmetric basis function [4] (which means

that any rotations of the point make no di�erence in its value) and have general

form

s(x) =
∑
ξ∈S

λξϕ(‖x− ξ‖), (3.16)

with coe�cients λξ ∈ R.

The algorithm for obtaining the coe�cients will now be described.

Let u be the function we want to obtain. By interpolation, the value of u at any

given point x is approximated at n+ 1 scattered nodes x0, x1, ..., xn ∈ S. There are

multiple ways of performing this interpolation, depending on the chosen functions.

We will focus on the Radial Basis Point Interpolation which uses a combination of

polynomials and radial basis functions. Let us denote the function that interpolates

u by uRBPI . Then

uRBPI(x) =
n∑
i=0

αiϕi(x) +
m∑
j=0

αn+1+jυj(x), (3.17)

where ϕi is the radial basis function in the node xi such that

ϕi(x) = ϕ(|x− xi|) for i = 0, 1, ..., n, (3.18)

υj is the monomial of order j such that

υj(x) = xj for j = 0, 1, ...,m (3.19)

and αi are the n+m+2 coe�cients of the radial basis function (at the n+1 centers)

and the m+ 1 monomials, respectively.

The presence of the monomials in the interpolation ensures the non-singularity

of the interpolation matrix in case of need. Furthermore, while the radial basis

functions have a local e�ect concentrated in the point, the monomials have a global

e�ect in the whole domain.
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Using the function (3.17) to interpolate the nodes xi for i = 0, 1, ..., n we obtain

a system of equations to determine the coe�cients α0, α1, ..., αn+m+2:



∑n
i=0 αiϕi(x0) +

∑m
j=0 αn+1+jυj(x0) = u0∑n

i=0 αiϕi(x1) +
∑m

j=0 αn+1+jυj(x1) = u1

...∑n
i=0 αiϕi(xn) +

∑m
j=0 αn+1+jυj(xn) = un

. (3.20)

Note that this system is undetermined since we have n+1 equations to determine

n+m+ 2 unknowns. This way, to have a determined system, if m 6= 0 we add more

equations, for example the orthogonality condition:

n∑
i=0

αiυj(xi) = 0 for j = 0, 1, ...,m. (3.21)

Gathering the systems of equations (3.20) and (3.21) we have the linear system

GA = U ⇔ A = G−1U, (3.22)

where

G =

 R P

P T 0

 , (3.23)

R =


ϕ0(x0) ϕ1(x0) . . . ϕn(x0)

ϕ0(x1) ϕ1(x1) . . . ϕn(x1)
...

...
. . .

...

ϕ0(xn) ϕ1(xn) . . . ϕn(xn)

 , P =


υ0(x0) υ1(x0) . . . υm(x0)

υ0(x1) υ1(x1) . . . υm(x1)
...

...
. . .

...

υ0(xn) υ1(xn) . . . υm(xn)

 ,

A =
[
α0 α1 . . . αn 0 . . . 0

]T
,

U =
[
u0 u1 . . . un 0 . . . 0

]T
.

After obtaining the vector of the coe�cients A we may now obtain an approxi-

mation for any value of x using expression (3.17) or, equivalently,

uRBPI(x) =
[
RT (x) P T (x)

]
A. (3.24)
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3.2.3 RBPI implementation in the Black Scholes model for

European put options

In order to solve problem (2.16) numerically, one must discretize it. We will

divide the interval of time [0, T ] inM+1 moments in time equally spaced t0, t1, ..., tM

where tk = k∆t and ∆t = T
M
. This way, Uk(x) = U(x, k∆t), k = 0, 1, ...,M . The

partial derivative of U(x, t) with respect to time may be approximated by

∂

∂t
U(x, t) ≈ U(x, t+ h)− U(x, t)

h
≈ 1

∆t
(U(x, k∆t+ ∆t)− U(x, k∆t))

≈ 1

∆t
(Uk+1(x)− Uk(x)).

(3.25)

Additionally, we must de�ne a criteria to choose the value of the constant pa-

rameter L which constitutes the change of variable proposed in (2.13). Following the

criteria used in [15], recall that the change of variable does an equivalence between

the nodes xi in the domain [0, 1] and the nodes si in the domain [0,+∞) such that

s(x) = −L ln(1− x). We want the majority of the nodes si to be in the interval

[0, 2K]. If we choose the parameter L in a way that 70% of the nodes xi are in the

interval [0, 1 − e−
K
L ] then we have 70% of the nodes si in the interval [0, K] and

therefore almost all of them are in the interval [0, 2K] as intended.

Thus,

1− e−
K
L = w∆x⇔ L = − K

ln(1− w∆x)
, (3.26)

where w = 7
10

∆x.

With this approximation, using an implicit scheme, we may apply it to the Black

Scholes operator (2.15) for each moment in time

L̃Uk(x) =
1

∆t
(Uk+1(x)−Uk(x))+A(x)

∂2

∂x2
Uk(x)+B(x)

∂

∂x
Uk(x)−rUk(x). (3.27)

Using a Radial Basis Point Interpolation, we consider n+1 equally spaced points

in the interval [0, 1] and approximate Uk(x) with

Uk
RBPI(x) =

n∑
j=0

λkjφj(x) for k = 0, 1, ...,M, (3.28)

where φ0(x), . . . , φn(x) are the shape functions.
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In order to get numerical results involving this method, one should construct a

numerical code, deriving the necessary matrices to solve the approximation of the

solution for each moment in time.

Considering equation (3.27), we want to solve L̃Uk(x) = 0, using Uk
RBPI(x) as

an approximation of Uk(x) in order to perform the discretization in time. This way

1

∆t
(Uk+1

RBPI(x)−Uk
RBPI(x))+A(x)

∂2

∂x2
Uk
RBPI(x)+B(x)

∂

∂x
Uk
RBPI(x)−rUk

RBPI(x) = 0

(3.29)

with �nal condition UM = max(K + L ln(1− x), 0).

In matrix notation, considering the boundary conditions presented in (2.12), we

get the following system

AΦ′′λk +BΦ′λk −
(
r +

1

∆t

)
Φλk + Cλk = − 1

∆t
Φλk+1 +Dk (3.30)

⇔ (AΦ′′ +BΦ′ −
(
r +

1

∆t

)
Φ + C)λk = − 1

∆t
λk+1 +Dk, (3.31)

solving recursively backwards for k = M − 1, . . . , 1, 0 starting from

UM = max(K + L ln(1− x), 0)⇔ (Φ + C)λM = max(K + L ln(1− x), 0), (3.32)

where

A =



0

A(x1) 0
. . .

0 A(xn−1)

0


, B =



0

B(x1) 0
. . .

0 B(xn−1)

0


,

C =



ϕ0(0) ϕ1(0) . . . ϕn−1(0) ϕn(0)

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

ϕ0(1) ϕ1(1) . . . ϕn−1(1) ϕn(1)


, Dk =


Ke−r(T−k∆t)

0
...

0

 ,
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Φ =



0 0 . . . 0 0

ϕ0(x1) ϕ1(x1) . . . ϕn−1(x1) ϕn(x1)
...

...
. . .

...
...

ϕ0(xn−1) ϕ1(xn−1) . . . ϕn−1(xn−1) ϕn(xn−1)

0 0 . . . 0 0


,

Φ′ =



0 0 . . . 0 0

ϕ′0(x1) ϕ′1(x1) . . . ϕ′n−1(x1) ϕ′n(x1)
...

...
. . .

...
...

ϕ′0(xn−1) ϕ′1(xn−1) . . . ϕ′n−1(xn−1) ϕ′n(xn−1)

0 0 . . . 0 0


,

Φ′′ =



0 0 . . . 0 0

ϕ′′0(x1) ϕ′′1(x1) . . . ϕ′′n−1(x1) ϕ′′n(x1)
...

...
. . .

...
...

ϕ′′0(xn−1) ϕ′′1(xn−1) . . . ϕ′′n−1(xn−1) ϕ′′n(xn−1)

0 0 . . . 0 0


.

Solving the system we obtain the coe�cients λk for k = 0, 1, ...,M that may be

stored in a matrix of size (n+ 1)× (M + 1):

Λ =



λ0
0 λ1

0 . . . λM−1
0 λM0

λ0
1 λ1

1 . . . λM−1
1 λM1

...
...

. . .
...

...

λ0
n−1 λ1

n−1 . . . λM−1
n−1 λMn−1

λ0
n λ1

n . . . λM−1
n λMn


. (3.33)

Then, we may able to determinate an approximate solution for a certain value

of x = 1− e−S
L using expression (3.28).

Constructing a cycle that goes through each column k of the matrix Λ and

multiplies each element in the line j for j = 0, 1, . . . , n by the shape functions on x

we obtain a vector of solutions URBPI where each element correspond to the value

of the option in time k.
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Numerical Results

The numerical results were performed on a PC Laptop Intel(R) Core(TM) i7-

6500U CPU 3.1GHz 8GB RAM and the programs were developed and run under

Matlab R2017a, 64-bit.

4.1 Interpolation: Polynomial vs. Radial Based

Let us select a known function as a reference for interpolation, i.e. to compute

values for a grid of selected points to do an interpolation between those values with

the aim of comparing the interpolated function with the original one, using both

polynomials and radial basis functions.

Suppose that this function has the expression

f(x) = sin(8πx). (4.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1
sin(8  x)

Figure 1: Graphic of the function to be approximated
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Selecting randomly a set S of 10 points in the interval [0, 1] and determining the

images of the interpolation points f(S), we may perform both interpolations using

a 9th order polynomial function p(x) =
∑9

i=0 βix
i and a radial basis functions of the

form ϕ(x) = x4 ln(x), separately.

Starting this comparison with the interpolation using a RBF, we use the points

xi ∈ S to implement the method described in (3.2.2) ignoring the polynomial terms,

and obtain the coe�cients αi that for a given value x will be multiplied by the

Radial Basis Function ϕi(x) for i = 0, 1, ..., 9.

Similarly, we implement a polynomial interpolation using the same points xi ∈ S

and obtain its coe�cients β.

Then, we plot both interpolations against 100 equally spaced points in the in-

terval [0, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0

1
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3

4

Interpolation Points
RBPI
f(x)=sin(8  x)

Figure 2: Radial Basis Point Interpolation
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f(x)=sin(8  x)

Figure 3: Polynomial Interpolation
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Taking a look at both graphics, it is possible to observe that the radial basis

point interpolation, in �gure 2, gets much closer to the graphic of f(x) than the

polynomial interpolation, in �gure 3. Let us de�ne the maximum error and root

mean square error:

MaximumError = max
i=0,1,...,n

|f̃(xi)− f(xi)|, (4.2)

RMSE =
1

n

√√√√ n∑
i=0

(f̃(xi)− f(xi))2 (4.3)

where f̃ is either the approximant using RBPI or polynomial interpolation.

Calculating this values, we observe in table 1 that we obtain a smaller error for

the interpolation using the radial basis point interpolation method.

Maximum Error RMSE Time (s)

Radial Basis Point Interpolation 3.7372 0.6634 0.057363

Polynomial Interpolation 297.8186 47.2143 0.155770

Table 1: Errors associated to the di�erent interpolations

Recalling the types of radial basis functions presented before, we may now apply

the RBPI method to approximate values of the same function f(x) using di�erent

examples of radial basis functions to observe the associated error. In all of them, we

try to implement the method using radial basis functions only and adding monomi-

als.

We observe in table 2 that, in this experiments, the Radial Basis Function that

presents a smaller associated error is ϕ(x) = x4 ln(x) and that the addition of the

polynomial term does not improve the convergence of the approximation to the exact

solution. The computational times are very similar for every function and order of

polynomials.
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Function Polynomial Order Maximum Error RMSE Time Elapsed

√
x2 + 9

- 1.0408 0.1005 0.023328

0 1.0405 0.1005 0.026673

1 1.1330 0.0993 0.015527

2 1.1462 0.0967 0.014248

3 1.1505 0.0960 0.015118

4 1.4300 0.1011 0.014430

e−3x2

- 1.2048 0.0984 0.015672

0 1.1988 0.0985 0.016577

4 1.4215 0.1010 0.016137

x2 ln(x)

- 0.2540 0.0060 0.016625

0 0.2538 0.0060 0.016814

4 0.4064 0.0095 0.016944

x4 ln(x)

- 0.0745 0.0016 0.016042

0 0.0904 0.0020 0.016169

4 0.0778 0.0017 0.020683

Table 2: Error associated to each radial basis function

4.2 Black-Scholes PDE discretization with RBPI

Let us consider a market with risk-free interest rate r = 5% and an European

option with maturity T = 2, strike price K = 80 on an underlying asset with

volatility σ = 30%.

Taking into consideration the results obtained in the previous section, we will

perform the radial basis point interpolation method with functions of the the type

ϕ(x) = x4 ln(x) and monomials will not be used, unless the matrix of the coe�cients

becomes singular which obliges the addition of monomials.

Let the number of divisions of the space and time intervals, respectively, be

n = 100 and M = 1000 which originates a space step ∆x = 0.01 and a time step

∆t = 0.002.

Using the methodology explained in section 3.2.3, we built a numerical code
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presented in appendix A.2 that constructs the necessary matrices in order to solve

a matricial system that gives as output a matrix of size (n + 1) × (M + 1) with

the coe�cients λ where each column refers to a moment in time tj, j = 0, 1, ...,M

and has n coe�cients λi, i = 0, 1, ..., n. With the use of an auxiliary function

that associates the coe�cients of this matrix to the radial basis function ϕ(x) in

the argument ‖x − ξ(i)‖ we are now able to obtain a vector of solutions of size

M for a speci�c value of x that represents the prices of the put option with the

characteristics presented before at the di�erent moments in time and for a speci�c

price of the underlying asset S = −L ln(1− x).

Generating a vector of 100 points xi in the interval [0, 1] we may now calculate

the value of the option for each one of the di�erent prices S and, registering the �rst

element of each obtained vector, we get to observe the evolution of the value of the

put option at the establishment date (t = 0) for di�erent values of S in �gure 4.
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Price of the derivative S

0

20

40

60

80
Value of the Option
Payoff function

Figure 4: Value of the put option and payo� function

We may also observe the distribution of the centers s0, s1, ...s99 in �gure 5. Note

that the node s100 represents S →∞ (since it is given, using the change of variables,

by x100 = 1).
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Figure 5: Position of the centers si

Furthermore, since we have a grid in time and space, we may plot a surface of

the matrix of solutions Uk(x) for ∀k, x. See �gure 6.

Figure 6: Value of the put option varying in time and space

Let URBPI(x) and U denote the European put option price approximated by the

RBPI method and calculated exactly using the Black Scholes Formula (presented in

section 2.2), respectively.
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As it have been done previously, we will use as reference the establishment date

(t = 0). Settling the �xed parameters and changing the number of RBPI centers we

may observe the evolution of the error with respect to the and time of computation

of the approximated price.

We will compute both the maximum error and root mean square error between

the approximated and exact price for each center xi for i = 0, 1, ..., n.

MaximumError = max
i=0,1,...,n

|URBPI(xi, 0)− U(xi, 0)| (4.4)

RMSE =
1

n

√√√√ n∑
i=0

(URBPI(xi, 0)− U(xi, 0))2 (4.5)

Let us �x the time step M = 100.

n Maximum Error RMSE Elapsed time (s)

10 0.4619 0.0767 0.045508

25 0.0514 0.0035 0.089983

50 0.0346 0.0022 0.276126

75 0.0137 0.0009 0.539480

100 0.0214 0.0010 0.851010

150 0.0190 0.0007 2.246037

200 0.0182 0.0006 3.852224

500 0.0173 0.0004 36.866097

Table 3: Errors associated to di�erent space divisions
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4.2.1 The �nite di�erence method vs. The RBPI method

Using the methodology presented in 3.1.1 we constructed a program (see A.3) to

obtain the same results of the previous section but using the �nite di�erence method

(in particular the implicit scheme). Doing so, we may perform a comparison between

both algorithms and �nding the advantages of each one.

Let us divide space in n = 500 points and time in M = 1000 points.

Even though the algorithms constructed for the Finite Di�erence Method and

for the Radial Basis Point Interpolation Method are based on di�erent changes of

variables from S to x, their outputs are comparable since after they derived in terms

of the original variable S.

Maximum Error RMSE Elapsed Time (s)

Finite Di�erence Method 0.5368 0.0065 0.134898

RBPI Method 0.0182 0.0006 4.404781

Table 4: FD method and RBPI method errors

It is possible to observe in table 4 that there is an advantage of accuracy in the

results of the solution to the Black-Scholes equation using the RBPI method, when

compared to the FD method. The computational time in order to derive the result is

higher using the RBPI method since the matrices involved are much more complex

than in the Finite Di�erence method, therefore the computational e�ort is bigger.

4.3 Convergence

We may now try some experiments changing the space and time steps in order

to observe the evolution of the error comparing the approximated solution using the

RBPI method with the value of the exact solution of the Black Scholes equation in

the same conditions.

One can estimate the convergence order α by calculating the error derived from

an experiment with two di�erent space steps. From now on let us denote the

space step ∆x by h. Then, if h1, h2 are two di�erent space steps and RMSE(h1),
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RMSE(h2) are their associated root mean square errors, then the convergence order

is given by

RMSE(h1)

RMSE(h2)
=

(
h1

h2

)α
⇔ α =

log

(
RMSE(h1)

RMSE(h2)

)
log

(
h1

h2

) (4.6)

∆t = 0.1 ∆t = 0.01

RMSE α Time (s) RMSE α Time (s)

∆x = 0.1 0.0829
1.2751

0.170502 0.0760
2.1233

0.058604

∆x = 0.01 0.0044 0.377598 5.722×10−4 2.021670

∆x = 0.05 0.0197
0.9314

0.056961 0.0138
1.9777

0.124012

∆x = 0.01 0.0044 0.377598 5.722×10−4 2.021670

Table 5: Convergence order evolution

The veri�ed convergence order variation is mainly related with the discretization

in time since it doesn't change much with the choice of di�erent space steps.

4.4 Introduction of a source term in the IBVP

In the case of the Black Scholes equation, we have, in some cases, an exact solu-

tion that allows us to compare if the numerical method built is correct by comparing

the obtained approximated solutions with the exact value. When the exact solution

is not available the numerical method must be tested in some other way.

In order to do so, we �x a solution to the problem satisfying the �nal and bound-

ary conditions, substituting it in the PDE and deriving a source term. Running the

numerical method, the computed solution should be close to the exact one.

Introducing a source term in the problem (2.16), instead of a homogeneous PDE

we have

∂

∂t
U(x, t) +A(x)

∂2

∂x2
U(x, t) + B(x)

∂

∂x
U(x, t)− rU(x, t) = f(x, t) (4.7)

Suppose that the solution to this problem is

U(x, t) = Ke−r(T−t)(x− 1)2 (4.8)
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This solution veri�es the boundary conditions in (2.16) since

U(0, t) = Ke−r(T−t)(0− 1)2 = Ke−r(T−t) and U(1, t) = Ke−r(T−t)(1− 1)2 = 0

We must change the �nal condition since, assuming the solution (4.8) then

U(x, T ) = Ke−r(T−T )(x− 1)2 = K(x− 1)2 (4.9)

To derive the expression of f(x, t), we must substitute the solution (4.8) in the

PDE (4.7)

Starting with the calculus of the partial derivatives

∂

∂t
U(x, t) = rKe−r(T−t)(x− 1)2,

∂

∂x
U(x, t) = 2Ke−r(T−t)(x− 1),

∂2

∂x2
U(x, t) = 2Ke−r(T−t),

(4.10)

we now plug them in (4.7):

rKe−r(T−t)(x− 1)2+A(x)2Ke−r(T−t) + B(x)2Ke−r(T−t)(x− 1)

− rKe−r(T−t)(x− 1)2 = f(x, t)

⇔ 2Ke−r(T−t)(A(x) + (x− 1)B(x)) = f(x, t)

Substituting also the expressions for A(x) and B(x) written in (2.1.1), we get:

2Ke−r(T−t)
(
σ2

2
(1− x)2 ln2(1− x) + (x− 1)(

σ2

2
(x− 1) ln2(1− x)− r(1− x) ln(1− x)

))
= f(x, t).

Finally, setting

f(x, t) = 2Ke−r(T−t) ln(1− x)(σ2 ln(1− x) + r)(x− 1)2, (4.11)

the exact solution is (4.8).

In order to implement this method numerically, suppose the same parameters

used in the previous section: σ = 30%, r = 5%, T = 2 and K = 80. Let the time

and space steps be ∆t = 0.002 and ∆x = 0.01.
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The numerical procedure will be very similar to the one presented in (3.2.3)

except for the introduction of the function in the equation to be solved numerically.

This way equation (3.30) will now be written(
AΦ′′ +BΦ′ −

(
r +

1

∆t

)
Φ + C

)
λk = − 1

∆t
λk+1 +Dk + F k (4.12)

where

F k =



0

f(x1, tk)
...

f(xn−1, tk)

0


, (4.13)

and all the other matrices are de�ned as in section 4.2. The matrix of the co-

e�cients Λ will be obtained in the same way, solving recursively backwards for

k = 0, 1, ...,M − 1 starting from the �nal condition:

UM = K(x− 1)2 ⇔ (Φ + C)λM = K(x− 1)2. (4.14)

Afterwards, we may now use the auxiliary function once again to obtain the

value of the solutions for every time and space step and plot the numerical solution

simultaneously with the exact solution and calculate the associated errors.
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Figure 7: Exact and Numerical Solutions
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Maximum Error RMSE Elapsed Time (s)

1.8× 10−3 2.4× 10−5 9.216839

Table 6: Errors associated to the experiment with a source term

Observing the obtained results in table 6, it is possible to conclude that the

method is working with precision since the errors between the approximated and

exact values tend to 0.

∆t = 0.1 ∆t = 0.02

RMSE α Time (s) RMSE α Time (s)

∆x = 0.1 0.0204
1.4065

0.036503 0.0208
2.9379

0.304140

∆x = 0.01 0.0008 0.734559 2.4× 10−5 9.216839

∆x = 0.05 0.0033
0.8805

0.042677 0.0031
3.0204

0.467194

∆x = 0.01 0.0008 0.734559 2.4× 10−5 9.216839

Table 7: Convergence order evolution

Performing a convergence study, in table 7, once again we observe that the

veri�ed convergence order variation is mainly related with the discretization in time,

although in this case there is a higher di�erence in its value changing the space step

than in the previous section.
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Conclusion

We discretized the Black Scholes partial di�erential equation using the radial

basis point interpolation to obtain its derivatives in space along with an implicit

scheme for the discretization in time.

The method has been proven to be more accurate than the �nite di�erence

method in the discretization in space, since using the same number of time and

space steps we obtain an approximation closer to the exact result using this proposed

method.

We conclude that the method is working with accuracy, therefore it may be

adapted to other problems. Since there is a closed formula to solve the problems

that were used in this dissertation, it is interesting to try it on more complex types

of options such as basket options where the number of underlying assets is bigger.

Pricing this type of options cannot be done using closed formulas or even the �nite

di�erence method. The advantage of the radial basis point interpolation resides in

the fact that it is possible to concentrate the computational e�orts in the important

points instead of distributing the e�orts equally in the whole grid.

Future work in this �eld could also be done in terms of the relaxation of the lim-

ited assumptions of the Black-Scholes model such as constant volatility and absence

of jumps in the price of the underlying asset.
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Appendix A

MATLAB Code

A.1 Radial Basis Point Interpolation

1 %% Radial Bas i s Point I n t e r p o l a t i o n

2 y=@(x ) s i n (8∗ pi ∗x ) ;

3 xx=rand (10 ,1 ) ' ;

4 n=length ( xx )−1;

5 R=@(x , xx ) (x−xx ) .^4∗ l og ( abs (x−xx ) ) ;

6 P=@(x , j ) x^ j ;

7 MatrixR=ze ro s (n+1,n+1) ;

8 f o r i =0:n

9 f o r j =0:n

10 MatrixR ( i +1, j +1)=R(xx ( i +1) , xx ( j +1) ) ;

11 end

12 end

13 f o r i =0:n

14 MatrixR ( i +1, i +1)=0;

15 end

16 m=0;

17 MatrixP=ze ro s (n+1,m+1) ;

18 f o r i =0:n

19 f o r j =0:m

20 MatrixP ( i +1, j +1)=P(xx ( i +1) , j ) ;

21 end

22 end
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23 G=[MatrixR , MatrixP ; t ranspose (MatrixP ) , z e r o s (m+1,m+1) ] ;

24 U=[y ( xx ) , z e r o s (1 ,m+1) ] ;

25 c o e f s=G\U' ;

26 x=l i n s p a c e (0 , 1 , 100 ) ;

27 z=ze ro s (1 , l ength (x ) ) ;

28 f o r i =1: l ength (x )

29 z ( i )=RBFinterp (x ( i ) ,n ,m, xx , coe f s ,R,P) ;

30 end

31 f i g u r e ( )

32 p lo t (x , z ) ;

33 hold on

34 s c a t t e r ( xx , y ( xx ) ) ;

35 %% Polynomial I n t e r p o l a t i o n

36 p=p o l y f i t ( xx , y ( xx ) ,9 ) ;

37 x1=l i n s p a c e (0 , 1 ) ;

38 y1=po lyva l (p , x1 ) ;

39 f i g u r e

40 p lo t ( xx , y ( xx ) , ' o ' )

41 hold on

42 p lo t ( x1 , y1 )

A.2 RBPI in the Black Scholes Model

1 s i g =0.3 ; r =0.05;T=2;M=1000;K=80;

2 x i=l i n s p a c e (0 ,1 , 101) ' ;

3 n=length ( x i )−1; dx=x i (2 )−x i (1 ) ; dt=T/M;

4 t=ze ro s (1 ,M+1) ;

5 f o r k=0:M

6 t ( k+1)=k∗dt ;

7 end

8 w=7/(10∗dx ) ;L=−K/ log (1−w∗dx ) ;

9 A=Diag0 (@(x ) ( s i g ^2/2)∗(1−x ) ^2∗( l og (1−x ) ) ^2 , x i ) ;

10 B=Diag0 (@(x ) ( s i g ^2/2) ∗(x−1)∗( l og (1−x ) )^2−r∗(1−x ) ∗ l og (1−x ) , x i ) ;

11 phi=@(x , xx ) (x−xx ) .^4∗ l og ( abs (x−xx ) ) ;

12 Phi=ze ro s (n+1,n+1) ;

13 f o r i =1:n+1

14 f o r j =1:n+1
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15 i f i==j

16 Phi ( i , j )=0;

17 e l s e i f i==1

18 Phi ( i , j )=0;

19 e l s e i f i==n+1

20 Phi ( i , j )=0;

21 e l s e

22 Phi ( i , j )=phi ( x i ( i ) , x i ( j ) ) ;

23 end

24 end

25 end

26 phi1=@(x , xx ) (x−xx ) .^3∗(4∗ l og ( abs (x−xx ) )+1) ;

27 Phi1=ze ro s (n+1,n+1) ;

28 f o r i =1:n+1

29 f o r j =1:n+1

30 i f i==j

31 Phi1 ( i , j )=0;

32 e l s e i f i==1

33 Phi1 ( i , j )=0;

34 e l s e i f i==n+1

35 Phi1 ( i , j )=0;

36 e l s e

37 Phi1 ( i , j )=phi1 ( x i ( i ) , x i ( j ) ) ;

38 end

39 end

40 end

41 phi2=@(x , xx ) (x−xx ) .^2∗(12∗ l og ( abs (x−xx ) )+7) ;

42 Phi2=ze ro s (n+1,n+1) ;

43 f o r i =1:n+1

44 f o r j =1:n+1

45 i f i==j

46 Phi2 ( i , j )=0;

47 e l s e i f i==1

48 Phi2 ( i , j )=0;

49 e l s e i f i==n+1

50 Phi2 ( i , j )=0;

51 e l s e
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52 Phi2 ( i , j )=phi2 ( x i ( i ) , x i ( j ) ) ;

53 end

54 end

55 end

56 BC1=ze ro s (n+1,n+1) ;

57 f o r i =1:n+1

58 i f i==1

59 BC1(1 , i )=0;

60 e l s e i f i==n+1

61 BC1(n+1, i )=0;

62 e l s e

63 BC1(1 , i )=phi (0 , x i ( i ) ) ;

64 BC1(n+1, i )=phi (1 , x i ( i ) ) ;

65 end

66 end

67 UBC=K∗exp(−r ∗(T−t ) ) ;LBC=ze ro s (1 ,M+1) ;

68 BC2=ze ro s (n+1,M+1) ;BC2( 1 , : )=UBC;BC2(n+1 , :)=LBC;

69 LambdaM=(Phi+BC1) \max(K+L∗ l og (1−x i ) , 0 ) ;

70 LambdaOld=LambdaM;

71 LAMBDA( : ,M+1)=LambdaM;

72 f o r k=M:−1:1

73 LambdaNew=(A∗Phi2+B∗Phi1−(1/dt+r ) ∗Phi+BC1) \(−(1/dt ) ∗Phi∗LambdaOld+

BC2( : , k ) ) ;

74 LAMBDA( : , k )=LambdaNew ;

75 LambdaOld=LambdaNew ;

76 end

77 %% So lut i on at the es tab l i shment date ( t=0)

78 W=zero s (n+1 ,1) ;

79 f o r i =1:n+1

80 aux=BSinterp ( x i ( i ) , xi , phi ,LAMBDA) ;

81 W( i )=aux (1) ;

82 end

83 p lo t (−L∗ l og (1−x i ) ,W)

84 hold on

85 p lo t (−L∗ l og (1−x i ) ,max(K+L∗ l og (1−x i ) , 0 ) )
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A.3 Finite Di�erence Method

1 s i g =0.3 ; r =0.05;T=2;M=1000;K=80;n=500;

2 Xmax=log (2∗K) ; Xmin=−Xmax; dx=(Xmax−Xmin) /(n−1) ; x i=(Xmin : dx :Xmax) ' ;

3 dt=T/M;

4 t=ze ro s (1 ,M+1) ;

5 f o r k=0:M

6 t ( k+1)=k∗dt ;

7 end

8 alpha=(r−0.5∗ s i g ^2) ;

9 a=−0.5∗ s i g ^2∗dt/dx^2+alpha ∗dt /(2∗dx ) ;

10 b=1+r ∗dt+dt∗ s i g ^2/dx^2;

11 c=−0.5∗ s i g ^2∗dt/dx^2−alpha ∗dt /(2∗dx ) ;

12 A=Trid iag1 (n , b , c , a ) ;

13 A(1 ,1 ) =1; A(1 , 2 ) =0;

14 A(n , n−1)=0; A(n , n)=1;

15 UBC=K∗exp(−r ∗(T−t ) ) ;LBC=ze ro s (1 ,M) ;

16 USol=ze ro s (n ,M) ;

17 USol ( : ,M)=max(K−exp ( x i ) , 0 ) ;

18 Uold=USol ( : ,M) ;

19 f o r k=M−1:−1:1

20 Uold (1 )=UBC(k ) ; Uold (n)=LBC(k ) ;

21 Unew=A\Uold ;

22 USol ( : , k )=Unew ;

23 Uold=Unew ;

24 end

25 p lo t ( exp ( x i ) , USol ( : , 1 ) )

26 hold on

27 p lo t ( exp ( x i ) ,max(K−exp ( x i ) , 0 ) )

A.4 RBPI with the introduction of a source term

1 s i g =0.3 ; r =0.05;T=2;M=1000;K=80;

2 F=@(x , t ) 2∗K∗exp(−r ∗(T−t ) ) ∗ l og (1−x ) ∗( l og (1−x ) ∗ s i g^2+r ) ∗(x−1) . ^2 ;

3 x i=l i n s p a c e (0 ,1 , 101) ' ;

4 n=length ( x i )−1;

5 dx=x i (2 )−x i (1 ) ;
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6 dt=T/M;

7 t=ze ro s (1 ,M+1) ;

8 f o r k=0:M

9 t ( k+1)=k∗dt ;

10 end

11 w=7/(10∗dx ) ;

12 L=−K/ log (1−w∗dx ) ;

13 A=Diag0 (@(x ) ( s i g ^2/2)∗(1−x ) ^2∗( l og (1−x ) ) ^2 , x i ) ;

14 B=Diag0 (@(x ) ( s i g ^2/2) ∗(x−1)∗( l og (1−x ) )^2−r∗(1−x ) ∗ l og (1−x ) , x i ) ;

15 phi=@(x , xx ) (x−xx ) .^4∗ l og ( abs (x−xx ) ) ;

16 Phi=ze ro s (n+1,n+1) ;

17 f o r i =1:n+1

18 f o r j =1:n+1

19 i f i==j

20 Phi ( i , j )=0;

21 e l s e i f i==1

22 Phi ( i , j )=0;

23 e l s e i f i==n+1

24 Phi ( i , j )=0;

25 e l s e

26 Phi ( i , j )=phi ( x i ( i ) , x i ( j ) ) ;

27 end

28 end

29 end

30 phi1=@(x , xx ) (x−xx ) .^3∗(4∗ l og ( abs (x−xx ) )+1) ;

31 Phi1=ze ro s (n+1,n+1) ;

32 f o r i =1:n+1

33 f o r j =1:n+1

34 i f i==j

35 Phi1 ( i , j )=0;

36 e l s e i f i==1

37 Phi1 ( i , j )=0;

38 e l s e i f i==n+1

39 Phi1 ( i , j )=0;

40 e l s e

41 Phi1 ( i , j )=phi1 ( x i ( i ) , x i ( j ) ) ;

42 end
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43 end

44 end

45 phi2=@(x , xx ) (x−xx ) .^2∗(12∗ l og ( abs (x−xx ) )+7) ;

46 Phi2=ze ro s (n+1,n+1) ;

47 f o r i =1:n+1

48 f o r j =1:n+1

49 i f i==j

50 Phi2 ( i , j )=0;

51 e l s e i f i==1

52 Phi2 ( i , j )=0;

53 e l s e i f i==n+1

54 Phi2 ( i , j )=0;

55 e l s e

56 Phi2 ( i , j )=phi2 ( x i ( i ) , x i ( j ) ) ;

57 end

58 end

59 end

60 BC1=ze ro s (n+1,n+1) ;

61 f o r i =1:n+1

62 i f i==1

63 BC1(1 , i )=0;

64 e l s e i f i==n+1

65 BC1(n+1, i )=0;

66 e l s e

67 BC1(1 , i )=phi (0 , x i ( i ) ) ;

68 BC1(n+1, i )=phi (1 , x i ( i ) ) ;

69 end

70 end

71 UBC=K∗exp(−r ∗(T−t ) ) ;LBC=ze ro s (1 ,M+1) ;

72 BC2=ze ro s (n+1,M+1) ;BC2( 1 , : )=UBC;BC2(n+1 , :)=LBC;

73 LambdaM=(Phi+BC1) \(K∗( xi−1) .^2) ;

74 LambdaOld=LambdaM;

75 LAMBDA( : ,M+1)=LambdaM;

76 Faux=ze ro s (n+1,M+1) ;

77 f o r i =1:n+1

78 f o r j =1:M+1

79 i f i==1
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80 Faux( i , j )=0;

81 e l s e i f i==n+1

82 Faux( i , j )=0;

83 e l s e

84 Faux( i , j )=F( x i ( i ) , t ( j ) ) ;

85 end

86 end

87 end

88 f o r k=M:−1:1

89 LambdaNew=(A∗Phi2+B∗Phi1−(1/dt+r ) ∗Phi+BC1) \(−(1/dt ) ∗Phi∗LambdaOld+

BC2( : , k )+Faux ( : , k ) ) ;

90 LAMBDA( : , k )=LambdaNew ;

91 LambdaOld=LambdaNew ;

92 end

93 W=zero s (n+1 ,1) ;

94 f o r i =1:n+1

95 aux=BSinterp ( x i ( i ) , xi , phi ,LAMBDA) ;

96 W( i )=aux (1) ;

97 end

98 p lo t ( xi ,W, '+' )

99 hold on

100 p lo t ( xi ,K∗( xi−1) .^2∗ exp(−r ∗(T) ) , ' r ' )

A.5 Black Scholes Formula

1 f unc t i on [ c a l l , put ]=BSFormula (S0 ,K, r , s i g , t0 ,T)

2 tau=T−t0 ;

3 i f tau==0;

4 c a l l=max(S0−K, 0 ) ;

5 put=max(K−S0 , 0 ) ;

6 e l s e

7 d1=( log ( S0/K)+(r+s i g ^2/2)∗ tau ) /( s i g ∗ s q r t ( tau ) ) ;

8 d2=d1−s i g ∗ s q r t ( tau ) ;

9 c a l l=S0∗normcdf ( d1 )−normcdf ( d2 ) ∗K∗exp(−r ∗ tau ) ;

10 put=c a l l+K∗exp(−r ∗ tau )−S0 ;

11 end

12 end
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A.6 Auxiliar functions

1 f unc t i on [u_RBPI]=RBFinterp (x , n ,m, xx , coe f s ,R,P)

2 u_RBPI=0;

3 dim=n+m+2;

4 f o r i =0:n

5 i f x==xx ( i +1)

6 aux=0;

7 e l s e

8 aux=R(x , xx ( i +1) ) ;

9 end

10 u_RBPI=u_RBPI+aux∗ c o e f s ( i +1) ;

11 end

12 f o r i =0:m

13 u_RBPI=u_RBPI+P(x , i ) ∗ c o e f s (n+i +2) ;

14 end

15 end

1 f unc t i on [M]=Diag0 (u , x i )

2 M=zero s ( l ength ( x i ) , l ength ( x i ) ) ;

3 f o r i =2: l ength ( x i )−1

4 M( i , i )=u( x i ( i ) ) ;

5 end

6 end

1 f unc t i on [ USol ]=BSinterp (x , xx ,RBF, c o e f s )

2 [~ ,M]= s i z e ( c o e f s ) ;

3 M=M−1;

4 n=length ( xx )−1;

5 USol=ze ro s (n , 1 ) ;

6 f o r k=1:M+1

7 sum=0;

8 f o r j =1:n+1

9 i f x==xx ( j )

10 aux1=0;

11 e l s e

12 aux1=RBF(x , xx ( j ) ) ;

13 end
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14 aux2=co e f s ( j , k ) ∗aux1 ;

15 sum=sum+aux2 ;

16 end

17 USol ( k )=sum ;

18 end

19 end
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