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Abstract

Over the past few decades, the global financial market has been facing multiple distresses

and crashes which led to troubled years for the real economy and families. Dynamical

systems emerged in the mathematical finance literature to help comprehending better the

unique characteristics of these financial markets and the price dynamics over the time. This

work consists mainly of a statistical approach of the one discontinuity point dynamical

system market model introduced by Tramontana, Westerhoff and Gardini (2010). Using a

model’s version that produces chaotic orbits, we can observe stationary distributions under

specific parameters. In other words, the dynamical system can be chaotic in a point-wise

perspective, however, from a statistical approach, it can be asymptotically predictable,

that is, most trajectories converge to an attractor which we can describe statistically.

Still, under the proper parameters, the model may project an absolute erratic behavior,

even in the statistical approach sense. For the latter, we conclude the price forecast is

impossible because we can only restrict our prognoses to an invariant set sufficient large

whose contain the whole price dynamic.

Keywords: Chaotic dynamical systems, Bull and bear market dynamics, Piecewise linear

maps, Lorenz maps, Attractor, Ergodic theory
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Resumo

Nas últimas décadas, o mercado financeiro mundial tem enfrentado vários problemas e

colapsos que motivaram anos conturbados para a economia real e para as famı́lias. Os

sistemas dinâmicos apareceram na literatura de matemática financeira para ajudar a com-

preender melhor as caracteŕısticas únicas destes mercados financeiros e a dinâmica do

preço ao longo do tempo. Este trabalho consiste principalmente numa aproximação es-

tat́ıstica ao sistema dinâmico de modelo de mercado com um ponto de descontinuidade

introduzido por Tramontana, Westerhoff e Gardini (2010). Usando uma versão do modelo

que produz órbitas caóticas, podemos observar, para parâmetros espećıficos, distribuições

estacionárias. Por outras palavras, o sistema dinâmico pode ser caótico do ponto de vista

do estudo das órbitas, porém, em termos estat́ısticos, é assintoticamente previśıvel, isto

é, a maioria das trajetórias converge para um atractor que nós conseguimos descrevê-lo

estatisticamente. Ainda, para os parâmetros apropriados, o modelo pode projetar um

comportamento absolutamente errático, mesmo numa aproximação estat́ıstica. Para este

último, nós conclúımos que a previsão do preço é imposśıvel uma vez que só conseguimos

restringir os nossos prognósticos a um intervalo invariante suficientemente grande que

contém toda a dinâmica do preço.

Palavras-chave: Sistemas dinâmicos caóticos, Dinâmicas de mercado sobre e subval-

orizado, Funções lineares por ramos, Funções de Lorenz, Atrator, Teoria ergódica
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1 Introduction

After the Great Depression (1929), some economists1 didn’t believe that was possible

to experiment another financial crisis with such noxious and wicked consequences to the

global economy and the mankind. Nevertheless, the exponential growth of technology and

the fast development of emerging economies establish new demanding challenges to the

global financial system. Over the last four decades, financial market flaws became more

frequent and severe, jeopardizing the real economy. The first (1973) and the second Oil

crisis (1979), the Black Wednesday (1992), the Asian financial crisis (1997), the Dot Com

bubble (2000) and the Subprime crisis (2008) are a few remarkable examples of recent

global financial disasters with catastrophic outcomes at a global scale.

Past experience gives some vague clues about the causes of financial crises. Just before

a market crash, the price for a certain asset keeps growing, but, at some point, the market

is no longer willing to keep paying more for that asset and then the price drives in a

free falling. Such price dynamics is called bull-bear market dynamic. Bull markets are

optimistic periods when prices are generally rising. On the other hand, bear markets are

associated with pessimistic periods when prices are generally falling. It’s also important

to consider that in financial markets there is a very wide amount of participants, each

one with his own perception of the market and reaction to the available information. The

more the multiplicity and heterogeneity of the participants, the more unpredictable is the

variation of the market prices. This complex behavior must be taken into account when

designing mathematical models to forecast bull and bear dynamics, since participant’s

actions interfere direct or indirectly in the price of the assets.

The introduction of this kind of models had been made by Day and Huang (1990)

[6], when they presented a simple one-dimensional nonlinear system with three market

participants:

� Chartists - the noise traders; they believe in the persistence of bull or bear markets;

� Fundamentalists - they bear the price convergence to the fundamental price of the

asset2;

� Market maker - he adjusts the price according to the law of supply and demand.

This model absorbs the actions made by the participants changing the price dynamics

in an unpredicted way (the price in the next period, say n+ 1, can increase or decrease).

Bull and bear markets may appear and then we can measure how likely financial stress

events emerge. Huang and Day (1993) [12] modified their initial work and created an

one-dimensional continuous linear model to approach this issue. They have to assume the

fundamentalists are only willing to play in the market if the difference between the asset

price and his fundamental exceeds a certain critical value. Afterwards, several papers

and publications regard this matter come to light. Even with simple linear systems, it’s

1See Krugman (2009) [14].
2Fundamental price: sum of all discounted cash flows (net present value).

1



João Marques
Dynamics of Financial Markets: Study

of an Agent-based Model 2

possible to check some stylized facts from financial markets and the randomness of the

asset price evolution. Hence, these kind of models became important in the mathematical

finance literature.

For the purposes of this thesis we are going to discuss the work which we believe that

led to a good improvement of the models developed by Day and Huang. Tramontana et al

(2010) [18] generalized the financial models introduced by Day and Huang (1990) [6] and

Huang and Day (1993) [12] using piecewise systems rather than nonlinear or continuous

linear systems: the paper uses a model with one discontinuity point to approach this issue.

For each investment philosophy, the authors decided to split the market investors in two

types:

� Type 1 - always active in the market, no matter the price of the asset;

� Type 2 - only active in the market if the price of the asset is above or below a certain

critical value.

Across to the analysis of these financial models, we need to bring out some definitions

and results from dynamical systems applied to the one-dimensional space R. Dynamical

systems play a crucial role on approaching problems related to the real economy and

financial markets. As a consequence, they are essential and the core of this thesis.

The thesis is organized as follows. The Chapter 2 provides the basic mathematical

tools towards studying dynamical systems from the point-wise perspective. The Chapter

3 approaches the dynamical systems by using statistical tools and the probability measure

theory to describe them asymptotically. Both these chapters are the summary of the

relevant literature, mainly from Chapters 4, 5 and 8 of Day (1994) [7]. In the Chapter 4

we tune the study of dynamical systems restricted to an important class of systems: Lorenz

maps. Since the models studied by Tramontana, Westerhoff and Gardini are Lorenz maps,

this chapter is particularly relevant to understand better these models. In the Chapter 5

we applied the essential theoretical work presented in previous chapters into the model of

Tramontana et al (2010) [18] to study the attractors of price dynamics and how bull and

bear appears in the dynamics. Finally, the last chapter sums up the main results of the

thesis and points out some possible directions for future research.

2
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2 One-Dimensional Dynamical Systems

2.1 Linear and Nonlinear Systems

Definition 2.1. Consider a map (function) θ : D → D, where D is a close interval in R
like [a, b] or D is the whole set R. Then xn+1 = θ(xn) is a first-order difference equation.

The pair (θ,D) is called a system.

Example 2.1. We introduce some functions that can be used to define θ or that are in-

volved in the derivation of map θ for many cases. The domain sets are just demonstrative.

Affine system:

θ(x) = ax+ b, D = R, a, b ∈ R (2.1a)

Quadratic system:

θ(x) = α+ βx+ γx2, D = R+
0 and α, β, γ ∈ R (2.1b)

Piecewise linear system: let a0, ..., an, b0, ..., bn, be sequences of real numbers with

ai−1 < ai, i = 1, ..., n. Then D := [a0, an] and:

θ(x) = bi + βi(x− ai), ai ≤ x ≤ ai+1, (2.1c)

where βi = (bi− bi−1)/(ai−ai−1) = 1, ..., n. θ combines n linear (affine) segments that are

joint to form a continuous map on the interval [a0, an]. Nevertheless, θ may be also built

with n linear segments to define a discontinuous map on [a0, an] with continuous branches

on each [ai, ai+1].

Definition 2.2. Let (θ1, D1) and (θ2, D2) be two systems. If there exists a bijective func-

tion h : D1 → D2 such that θ2 ◦ h = h ◦ θ1, then θ1 and θ2 are conjugated and h is called

the conjugation which is represented by the following diagram:

D1 D1

D2 D2

θ1

h h

θ2

In a non-theoretical environment, specific formulas as we introduce in the previous

example are quite rare. They basically appear for illustration purposes. Fortunately,

in most cases it is possible to derive the behavior of a system based exclusively on its

qualitative properties. In terms of empirical work and forecasting, qualitative estimates

are the best tools available and are also sufficiently powerful.

A class of systems with broadly application to economics and finance is the following:

Definition 2.3. A map θ defined on D is monotonic if for all x, y ∈ D either:

θ(x) ≤ θ(y), for all x < y or θ(x) ≥ θ(y), for all x < y

3
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In the first (second) case, θ is monotonic increasing (decreasing). The map is

strictly monotonic (respectively increasing or decreasing) if either:

θ(x) < θ(y), for all x < y or θ(x) > θ(y), for all x < y

Strictly monotonic systems play an especially important role in the economics growth

theory.

Example 2.2. See the complete example in the Appendix - Section A.1 (page 34).

2.2 Semidynamical and Dynamical Systems

2.2.1 Iterated Maps and Semiflow

From the recursive application of the equation in Definition 2.1 we get this sequence:

x0 = x = θ0(x)

x1 = θ(x) = θ1(x)

x2 = (θ ◦ θ) (x) = θ2(x)

x3 = (θ ◦ θ ◦ θ) (x) = θ3(x)
...

xn = (θ ◦· · · ◦ θ) (x) = θn(x)

(2.2)

Using the latter method, any state of the system (θ,D) can be obtained from an initial

condition x. In that case, the state of the system at any time n is a well-defined function

of the initial condition x and the period n. Then, in general, we define θn+1 := θ ◦ θn

and the new function θn(x) is called the nth iterated map. The function h : (n, x) →
h(n, x) := θn(x), where n is an integer, is called the semiflow (two parameter-function:

x and n). The latter specifies that for any initial condition x and a n > 0 it returns the

subsequent state n periods later.

2.2.2 Trajectories and Orbits

A (finite) trajectory or sequence is the history from x until a period n:

τn(x) := (x, θ(x), θ2(x), ..., θn(x)) (2.3)

The infinite history of x is obtain recursively by the following formula:

τ(x) := (x, θ(x), θ2(x), ..., θn(x), ...) (2.4)

The orbit of a trajectory or γ(x) is the set of points through which the trajectory takes

place, i.e. γ(x) =
{
x, θ(x), θ2(x), ..., θn(x), ...

}
. From a trajectory with infinite history of

x, γ(x) may be a finite set if τ(x) repeats any point after a finite number of time intervals.

4
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2.2.3 Semidynamical Systems

Let θs and θt be two iterated maps (semiflows) beginning from two points x and y

with z = θs(y) and y = θt(x). By substitution, we have z = θs ◦ θt. Due to y is the state

that occurs t periods after x and z occurs s periods after y, then z will occur s+ t periods

after x, i.e.:

z =
(
θs ◦ θt

)
(x) := θs(θt(x)) = θs+t(x), (2.5)

where θs+t(x) is the (s+ t)th iterated map. By this method iterated maps are composed

to obtain other iterated maps.

The set of maps
{
θ0, θ1, θ2, ..., θn, ...

}
is a semigroup, with the group operation “◦”

defined by (2.5) and the identity element θ0. This set of maps determines the unique

trajectory from any initial condition.

Consequently, we define a semidynamical system as a system (θ,D) and its associ-

ated semigroup of iterated maps. The dynamical structure θ will represent the intrinsic

semidynamical system that generates it.

2.2.4 Dynamical Systems

Suppose the map θ is invertible in D. Then θn is defined for any n restricted to the

domain D. For the case when n is a positive integer we call θn a forward iterate (it

gives the states of the system n periods after the initial condition). On the contrary, a

backward iterate θn is defined when n is a negative integer (it gives the states of the

system n periods before the initial condition). Using inverse elements of θ and the group

operator we can define the identity: (θ−n ◦ θn) (x) = θn−n(x) = θ0(x) = x. Now, the

set of maps {θn, n = 0,±1,±2, ...} is a group which joins all the possible forward and

backward iterates of θ. Therefore, a dynamical system can be seen as generalization of

a semidynamical system by taking a θ invertible everywhere in D and considering a group.

In general, the backward iterates from nonlinear maps, for instance θ(x) = ax2 +bx+c,

are not invertible since, for an initial condition x, it could have been reached by different

points/paths. Let h : (x, n) → h(x, n) be a single-valued map such that h(x, n) ∈ θn(x),

where n is a positive integer and we denote a flow of the dynamical system (θ,D) as

θn(x) := {θn(x)}. Therefore, since semiflows doesn’t require that θ is invertible, they

always exists. The same is not valid for flows.

Example 2.3. (Semidynamical system)

θs(x) =

{
s(x− 1/2) + 1 if 0 ≤ x ≤ 1/2

s(x− 1/2) if 1/2 < x ≤ 1

If s =
√

2, then θ√2 is a semidynamical system because θ−1√
2
(x) is not single-valued at

5



João Marques
Dynamics of Financial Markets: Study

of an Agent-based Model 6

D = [0, 1]. For instance, the preimage of
√

2
2 is equal to

{
1−

√
2

2 , 1
}

.

Example 2.4. (Dynamical system)

θγ(x) = γx2, D = [0, 1]

Since θ−1
γ (x) is well-defined (all preimages has a single solution in D), θγ is a dynamical

system.

2.3 Explicit Solutions

An explicit solution can be derived using flows (if they exist) or semiflows. It’s

essentially a map which allows us to evaluate the trajectory of the states.

However, the deduction of explicit solutions is hard and not conventional in the dy-

namical system literature. Instead, a preferable way to study the trajectories of a system is

the recursive method shown in (2.2). Describing a trajectory based on an initial condition

x is sufficient and a better approach than obtaining explicit solutions.

2.4 Stationary Behavior

2.4.1 Fixed Points and Stationary States

A trajectory τ(x) is called stationary if for all n we have θn(x) = x, where x is called

a stationary state. Furthermore, let θ(x) = x, then x is a fixed point of θ (the existence

of stationary states for a dynamical system is equivalent to the existence of fixed points in

D for the map θ). The trajectory for any stationary state is itself stationary. The existence

of stationary states leads to a persistent situation which doesn’t let θ to escape from the

fixed point. The stationary states of a dynamical system can be graphically represented

by the intersection between the graph of θ and the line y = x.

2.4.2 Existence of Stationary States

Recall this classical result from calculus:

Theorem 2.1. Bolzano’s Theorem - Intermediate value theorem Let θ : D → D

be a continuous function and x, z ∈ D where θ(x)θ(z) < 0. Then, there is at least one

point y ∈ (x, z] such that θ(y) = 0.

Corollary 2.1. Let θ be continuous on D. If there exist y, z ∈ D such that θ(y) ≤ y and

θ(z) ≥ z then there exists a stationary state x of the difference equation in Definition 2.1.

Proof. See the Appendix - Section A.2 (page 35).

6
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2.5 Cycles

A point x is called p-cyclic or periodic point of period p, that is, the trajectory of

an initial condition x will be repeated every p periods. Formally we define x as a p-cyclic

if for an integer p > 1 we have:

θp(x) = x and θn(x) 6= x, n = 1, ..., p− 1 (2.6)

Moreover, a p-cyclic state is obviously a fixed point of θp. If x is p-cyclic, then θ(x)

is also p-cyclic (the idea is to apply θ to the both sides of (2.6) where we get: θ(x) =

(θ ◦ θp)(x) = (θp ◦ θ)(x)). The orbit γ(x) :=
{
x, θ(x), ..., θp−1(x)

}
is called a cycle of

period p.

2.6 Stability Theory

2.6.1 Stable, Asymptotically Stable and Unstable

For a nonperiodic initial condition, the study of stability clears how the (infinite)

trajectory behaves. The results presented in this section are also valid towards cycles of

p-order: just replace θ for θp.

Definition 2.4. A trajectory τ(x) is called stable if for all ε > 0, there is a δ > 0 such

that, for all |y − x| < δ implies |θn(y)− θn(x)| < ε.

Definition 2.5. A trajectory τ(x) is called asymptotically stable if there is a δ > 0

such that, for all |y − x| < δ implies limn→∞ |θn(y)− θn(x)| = 0.

Therefore, a system with asymptotically stable trajectories represents simple dynamics.

That is, after enough iterates of θ the trajectories will converge to a p-periodic behavior

of some period p and the system becomes more predictable.

However, stability doesn’t imply asymptotic stability, but the reciprocal is true. The

next example give us an illustration of this statement.

Figure 2.1: Plot of θ1 (blue line); γ(0.3) (red line) versus an orbit with initial condition
very close to 0.3 (purple line)

Example 2.5. Recall the θs(x) system introduced on Example 2.3. Considering s = 1:

7
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θ1(x) =

{
x+ 1/2 if 0 ≤ x ≤ 1/2

x− 1/2 if 1/2 < x ≤ 1

Since the slope of θ1(x) is equal to 1, the graph of θ1 is parallel with respect to the line

y = x. It’s also expected orbits with periodic behavior. From the previous graphic, it’s easy

to verify that orbit of x = 0.3 is a cycle of period 2. By choosing a x-point very close to

x = 0.3 we come up with a similar orbit (purple line).

Consequently, θ1(x) is stable because the distance between both orbits is bounded by a

scalar ε > 0. In this particular example ε is equal to δ. Moreover, θ1(x) is not asymptoti-

cally stable since the distance between both orbits doesn’t converge to 0.

As opposed to stable, we now introduce the notion of unstable trajectories:

Definition 2.6. A trajectory τ(x) is called unstable or not stable if there is a ε > 0

such that, for all δ > 0, there is a y ∈ D such that |y − x| < δ but |θn(y)− θn(x)| ≥ ε for

some n ≥ 0.

In other words, no matter how close two trajectories start from each other, they will

inevitable diverge.

The next theorem clarifies how we can categorize the different types of fixed points:

Theorem 2.2. Let θ be a function of class C1 and x be a fixed point of θ:

(i) If |θ′(x)| < 1, then x is asymptotically stable

(ii) If |θ′(x)| > 1, then x is unstable

Proof. See the Appendix - Section A.3 (page 35).

2.6.2 Expansivity

A map θ from an unstable system that satisfies the following theorem is named ex-

pansive. A map whose pth iterate θp is expansive, but θ0, ..., θp−1 are not expansive, is

known as p-expansive.

Theorem 2.3. Let θ be differentiable almost everywhere on D and assume that there

exists an integer m ≥ 1 such that |(θm)′(x)| ≥ δ > 1, for all x ∈ D where the derivative is

defined, then all trajectories in (θ,D) are unstable.

Proof. Without loss of generality, suppose that m = 1 (otherwise repeat the argument for

multiples of m). Therefore, the proof is equal to the Proof of Theorem 2.2.
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2.7 Chaos: an Informal Perspective

Chaos theory is the study of nonlinear dynamics with unstable trajectories. Such

dynamics seems surprisingly random and unpredictable.

There isn’t a single definition for chaos. Mathematicians diverge on the enough con-

ditions to name a system as chaotic. Nevertheless, we’ll introduce chaos according to

Devaney (1989) [8].

Remark 2.1. If a trajectory τ(x) is unstable in the sense of the Definition 2.6, then it

has sensitivity to initial conditions.

For instance, if a map has sensitivity to initial conditions, then small errors could

emerge in the attempt to compute numerically the map’s dynamic.

Definition 2.7. Let θ : D → D. θ is topologically transitive if for any pair of non-

empty open sets U and V in D, there is a non-negative integer k such that θk(U)∩V 6= 0.

Vaguely, a topologically transitive map has points which eventually move under iter-

ation from one arbitrarily small open set to any other. Consequently, such a dynamical

system cannot be decomposed into two disjoint open sets (Cattaneo et al (1997) [3]).

Convention 2.1. Denote by cl(A) the topological closure of A.

Definition 2.8. A is dense (or a dense set) in B if cl(A) contains B.

Definition 2.9. When θ(I) = I, then I is called an invariant set.

Finally we have all the proper mathematical tools to characterize a chaotic system.

Definition 2.10. (Devaney’s chaos) Let D be a set in R and θ : D → D. θ is chaotic

on D if:

(i) θ is sensitive to initial conditions;

(ii) θ is topologically transitive;

(iii) periodic points are dense in D.

Example 2.6. (Logistic map) Let θ : [0, 1]→ [0, α/4] be θ(x) = αx(1−x). The map has

two fixed points: θ(x) = 0 and θ(x) = α−1
α (their stability rely on α). Denavey (1989) [8]

and Holmgren (1994) [10] states that family of logistic maps are chaotic if α > 2 +
√

5.

Remark 2.2. Another example of a chaotic map is the map introduced in the Example

2.3 with s >
√

2. This map is topologically transitive (as we shall see further along in the

Lemma 4.3, the periodic points are dense in [0, 1]) and has sensitivity to initial conditions

(because s > 1).

9
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3 Statistical Dynamics

In the previous chapter we were focus on the qualitative properties of deterministic

dynamical systems and their point-wise orbits/trajectories when n drives to ∞. Never-

theless, in real life we are seldom capable to observe the precise states or the exact values

of a system (θ,D). Statistics help us to approach this issue, recognizing that a state x+ε,

where ε is the observational error, has an intrinsic probability of happening. Such mea-

sures are possible using random variables which are real-valued functions that gives a

numerical quantity to any state of D, i.e. X : D → R (later on we refer this function as an

observable). The purpose of this chapter is to develop statistical indicators for evaluate

the asymptotic behavior of the random variables by exploiting all the possible information

inside (θ,D).

Before starting this section, we need to recall some results from Measure Theory:

Definition 3.1. A σ-algebra is a collection of subsets F of a set D:

(i) that contains D, i.e., D ∈ F

(ii) that contains the complement of any set in F , i.e., A ∈ F implies Ac ∈ F

(iii) that contains the union of any countable collection of subsets in F , i.e., let {An}∞n=1

be a countable collection of sets with An ∈ F for all n; then
⋃∞
n=0An ∈ F

Definition 3.2. Let B(A) denotes the Borel σ-algebra on A. B(A) is the smallest σ-algebra

that contains all the open sets of A.

Definition 3.3. Let {An}∞n=0 be a countable collection of disjoint sets in a σ-algebra F .

A measure is a map µ : F → R+
0 such that:

(i) µ(∅) = 0

(ii) µ (
⋃∞
n=0An) =

∑∞
n=1 µ(An)

Definition 3.4. A measure space is a triple (D,F , µ) whose F is a σ-algebra of subsets

of D and µ is a measure defined on F . The sets in F are called measurable. The measure

space is called finite if µ(A) < ∞ for all A ∈ F . The measure µ is called a probability

measure if µ(D) = 1 and therefore (D,F , µ) is a probability space.

Definition 3.5. Let (D,F) be a measurable set and (R, T ) a topological set. A function

g : D → R is said F-measurable if and only if the preimage of A under g belongs to F for

all open set A ∈ R.

Definition 3.6. Let (D,F , µ) be a probability space and each random variable Xn is F-

mensurable for n ≥ 0. A family of random variables {Xn}n≥0 is called a stochastic (or

random) process. Any stochastic process can be seen as a function of two variables: n

and ω. For each fixed n, ω → Xn(ω) is a random variable. On the other hand, if we fix

ω instead, we see that the stochastic process is a function mapping ω to the real-valued

function n→ Xn(ω). These functions are called the trajectories of X.

10
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Definition 3.7. Given a probability space (D,F , µ), a F-mensurable system (θ,D) and

an integrable observable X : D → R, we define Xn = X ◦ θn for all n ≥ 0 as the stochastic

process which evaluates the states over γ(x), where X = X0 is the initial condition and θn

the deterministic transformation at the instant n.

Definition 3.8. A stochastic process {Xn}n≥0 is stationary if the random vectors (X0,

X1, X2, ..., Xm) and (Xh, Xh+1, Xh+2, ..., Xh+m) have the same joint distribution for all

h,m ≥ 0.

Definition 3.9. The support of a probability measure is the smallest closed set of full

probability. We denote the support of µ by supp(µ).

Example 3.1. Let (D,F) be a measurable space, x ∈ D and δ the Dirac measure defined

as:

δx(A) =

{
1 x ∈ A
0 x /∈ A

Since δx(D) = 1, the full probability set is {x}. Hence, the support of δx is also {x}.

Definition 3.10. Suppose (θ,D) is F-measurable. θ is called measure preserving and

µ is called invariant with respect to θ if, for all A ∈ Fθ =
{
θ−1(B) : B ∈ B

}
, the push-

forward measure of µ to θ is exactly equal to the measure µ, i.e. θ∗µ = µ
(
θ−1(A)

)
= µ(A).

Remark 3.1. It’s easy to see that θ∗µ is a measure in the sense of the Definition 3.3.

Theorem 3.1. (Change of variable formula) Let θ and ψ be F-measurable functions

in R. ψ is integrable with respect to the push-forward measure θ∗µ if and only if the

composition ψ ◦ θ is integrable with respect to the measure µ. Moreover the following

formula holds:∫
A
ψd(θ∗µ) =

∫
θ−1(A)

ψ ◦ θdµ

Proposition 3.1. If µ is an invariant measure to θ, then Xn = X ◦ θn is stationary.

Proof. See the Appendix - Section A.4 (page 36).

Remark 3.2. In particular, E(Xn) = E(X).

3.1 The Recurrence Theorem

Let
∑N−1

n=0 χA(θn(x)) be the number of times that the first N iterates of x will visit the

set A. The next theorem states that after wait enough time the orbit of x will eventually

enter in A, but not once: it will enter infinitely times.

Theorem 3.2. (Poincaré Recurrence Theorem) Let (X,F , µ) be a probability space

and let the measure µ be invariant under θ. Let A be any set of positive measure. Then

11
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almost all points of A return to A infinitely often. That is, for almost x ∈ A:

lim
N→∞

N∑
n=1

χA(θn(x)) =∞

Proof. See the Appendix - Section A.5 (page 37).

This theorem appeared in the statistical physics and it’s related to some of the most

famous paradoxes in the mechanic physics field.

3.2 Limit Sets and Attractors

In the Chapter 2, stable periodic trajectories were introduced and their limit points are

simply the elements of the periodic orbit to which trajectories converge (recall Definition

2.5). However, a general definition for limit set can emerge to consider chaotic systems.

Definition 3.11. The limit set ω(x) of the trajectory τ(x) is defined to be the set of all

limit points of τ(x), i.e., ω(x) :=
∞⋂
n=1

cl [γ(θn(x))], where γ(y) is the orbit from y.

Definition 3.12. An attractor for θ is a closed set L ⊂ D such that ω(x) = L for x in

a set B of positive Lebesgue measure. The set B is called the basin of attraction of L.

Remark 3.3. Note that ω(x) is closed and θ(ω(x)) = ω(x). Obviously, L ⊂ B and

θ(L) = L.

3.3 Ergodic Dynamical Systems

Ergodicity relates the notion of recurrence introduced by Theorem 3.2 and the existence

of invariant sets. A system is said ergodic if its trajectories enter in an unique invariant

set without leaving it. In particular, that set cannot be decomposed in different parts with

similar properties, which leads us to the next definition:

Definition 3.13. Let (D,F , µ) be a probability space. The dynamical system (θ,D) is

µ-ergodic if the measure of every undecomposable invariant set is either 0 or 1, i.e., if

A ∈ F , then θ−1(A) = A implies either that µ(A) = 0 or that µ(A) = 1.

As a consequence, ergodic systems imply that time average is equal to space aver-

age. In general, this is not true, because the measure µ can take any value from 0 to 1. In

this case, µ can only take the values 0 or 1, furthermore it’s also invariant to the system.

Theorem 3.3. (The Birkhoff-von Neuman Mean Ergodic Theorem) Let (D,F , µ)

be a probability space and let θ be a transformation which is measure preserving and ergodic.

Let X be an integrable observable, then:

lim
n→∞

1

n

n−1∑
i=0

X ◦ θi = E(X), for almost all x ∈ D

12
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Remark 3.4. In the conditions of the previous theorem, Xn = X ◦ θn is an ergodic

process.

The left side of the equation from last theorem is the time average value of Xn and

the right side is the space average of Xn defined explicitly as: 1
µ(D)

∫
D(X ◦ θn)(x)dµ.

Corollary 3.1. Let (D,F , µ) be a probability space and let θ be measure preserving and

ergodic on D. Then for µ-almost all x in D, τ(x) will visit every measurable set propor-

tionally to its measure.

Proof. Let A ∈ F be a set with positive measure. If a trajectory τ(x) starts in D, how

much time does τ spend in A?

Let X = χA(x) =

{
1 if x ∈ A
0 if x /∈ A

defines if a point x ∈ τ “enters” (or not) in A.

In general, (X ◦ θi)(x) = χA(θi(x)) =

{
1 if θi(x) ∈ A
0 if θi(x) /∈ A

According to Theorem 3.2, the sum of all points in τ that enters in the set A will be

infinite because A has positive measure. But by the Theorem 3.3 the average time spent

in the set A can be determined by:

lim
n→∞

1

n

n−1∑
i=0

χA
(
θi(x)

)
=

∫
D
χAdµ =

∫
A

dµ = µ(A)

3.4 Distributions for Dynamical Systems

3.4.1 Absolute Continuity: Density and Distribution

Now we’ll explore what kind of measures can be intimately related to distributions or

density functions.

Convention 3.1. We denote the Lebesgue measure in R by λ.

Definition 3.14. A measure is said to be absolutely continuous with respect to λ if

for all A ∈ F there exists an integrable function f , called the density of µ, such that:

µ(A) :=

∫
A
f(x)dx =

∫
θ−1(A)

f(x)dx = θ∗µ(A)

Remark 3.5. If µ is absolutely continuous the Theorem 3.1 is equivalent to the Definition

3.14.

Such measures are differentiable in the sense of the Radon-Nikodym derivative

(λ-almost everywhere), that is f = dµ
dx = dµ

dλ and for any interval [a, b] in R µ([a, b]) =

13
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a f(x)dx. Note that under these conditions f is unique as well as continuous λ-almost

everywhere.

Definition 3.15. Let µ1 and µ2 be two measures on the same measure space (D,F). We

say µ1 is absolutely continuous with respect to µ2 or µ1 << µ2 if for any set A ∈ D, such

that µ2(A) = 0 always implies µ1(A) = 0.

Definition 3.16. Let f : D → R be a density function and D a subset of R. The set-

theoretic support of f is the closure set of points in D where f is non-zero, i.e.:

supp(f) = cl ({x ∈ D|f(x) 6= 0})

Convention 3.2. Acip is the abbreviation for absolutely continuous invariant probability

measure and its density is called invariant density.

Remark 3.6. If µ is an acip, then supp(µ) is equal to supp(f).

Example 3.2. Recall the map from Example 2.3 where s = 2:

θ2(x) =

{
2(x− 1/2) + 1 if 0 ≤ x ≤ 1/2

2(x− 1/2) if 1/2 < x ≤ 1
=

{
2x if 0 ≤ x ≤ 1/2

2x− 1 if 1/2 < x ≤ 1

Let f = χ[0,1], where f is the density function of Lebesgue measure restricted to [0, 1].

We’ll use the results from Theorem 3.1 and Definition 3.14 to show that µ is an acip:

θ∗µ ([a, x]) =

∫
θ−1([a,x])

χ[0,1]dλ =

∫
[a,x]
2

1dλ+

∫
[a,x]
2

+ 1
2

1dλ = x−a =

∫
[a,x]

χ[0,1]dλ = µ ([a, x])

Definition 3.17. (Strongly ergodic dynamical systems) A dynamical system (θ,D)

that is ergodic with respect to an absolutely continuous measure µ defined on R will be

called strongly ergodic. For a strongly ergodic system with density f , the measure is

equivalent to the cumulative distribution function:

F(x) := µ([a, b]) =

∫ x

a
f(u)du =

∫ x

inf D
f(u)du

If we extend θ to R in the usual way, then we obtain F(x) =
∫ x
−∞ f(u)du.

Theorem 3.4. (Lasota-Yorke, 1973) Let θ : D → D be a piecewise function of class

C2 where D is an interval. If |θ′(x)| ≥ δ > 1 λ-almost everywhere in D, then there exists

an acip for θ.

Example 3.3. This result applies to piecewise linear systems like the system presented on

(2.1c) with βi > 1.

Corollary 3.2. If a map θ does not satisfy the assumption of Theorem 3.4 but there exists

an integer, say p, such that
∣∣ d
dxθ

p
∣∣ > 1, then the theorem holds.

14
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3.4.2 The Number of Absolutely Continuous Invariant Ergodic Measures

The next theorem sets up sufficient conditions to establish a maximum number of

ergodic acips in D. In addition, it tells us what we should expect for the shape of their

supports. The extension of the following work is available on Section 8.2 from Boyarsky

& Góra (1997) [1].

Theorem 3.5. Let (θ,D) be a dynamical system where D is an interval and the map θ is

piecewise with d discontinuity points and strictly monotonic on each piece of the partition

D of interval pieces Di, i = 1, ..., d + 1. Assume that for each i = 1, ..., d + 1, θ is

restricted to the interior of Di and it is continuously differentiable and expansive. Then

there exists at most d (could be less) ergodic acips µi whose supports are union of finitely

many intervals.

As an immediate consequence of Theorem 3.5 and Definition 3.12 we get:

Corollary 3.3. There exists a partition {Bi, i = 1, ...,m} of D such that Bi is a basin of

attraction of supp(µi). Moreover supp(µi) is an attractor for θ and this implies at most d

attractors.

Remark 3.7. If the map has only one discontinuity point (d = 1), then there exists an

unique ergodic acip with an unique attractor that is the union of closed intervals.

3.4.3 The Mean and Variance of a Trajectory

Let {Bi, i = 1, ...,m} be the partition imposed by Corollary 3.3. From Theorems 3.3

and 3.5 we have:

Corollary 3.4. Let fi = dµi
dλ for each ergodic acip µi. Then for all x ∈ Bi,

lim
n→∞

1

n

n−1∑
k=0

(
X ◦ θk

)
(x) =

∫
D
X(u)fi(u)du

In particular, for all x ∈ Bi, the expected or mean value of states in the trajectory is:

µ̄i = lim
n→∞

1

n

n−1∑
k=0

θk(x) =

∫
D
ufi(u)du

and the variance of states in the trajectory is:

σ̄i
2 = lim

n→∞

1

n

n−1∑
k=0

[
θk(x)− µ̄

]2
=

∫
D

(u− µ̄)2fi(u)du

3.5 Constructing Densities

Motivated by the last section, we will describe two methods for compute the density

function.
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3.5.1 The Frobenius-Perron Operator

Let (θ,D) be a dynamical system, where D is a finite interval [a, b] and suppose that

µ is an ergodic acip with an invariant density f .

Definition 3.18. The Frobenius-Perron Operator is defined by:

Pf(x) =
d

dx

∫
θ−1([a,x])

fdλ

Proposition 3.2. (Properties of P)

(i) P : L1 → L1 is linear, where L1 is the space of integrable functions.

(ii) Pf ≥ 0 if f ≥ 0

(iii)
∫
Pfdλ =

∫
fdλ

(iv) Pf = f if and only if µ(A) =
∫
A fdλ for all A is invariant under θ

Proof. See the Appendix - Section A.6 (page 38).

3.5.2 The Frobenius-Perron Operator for Piecewise Monotonic Systems

Now, we will show how the Pf operator can be used for piecewise monotonic maps.

Proposition 3.3. Let θ be a piecewise, strictly monotonic map satisfying Theorem 3.4.

Let Li be an attractor which is the support of an ergodic acip µi. Then µi has an unique

invariant density function f(x) that satisfies:

Pf(x) =
n∑
i=1

f(θ−1
i (x)) ·

∣∣∣∣dθ−1
i (x)

dx

∣∣∣∣ · χ[θ(ai−1),θ(ai)](x)

Proof. It comes from simple calculations and basic Lebesgue integration rules. For the

complete proof see Section 4.3, page 85 and 86 from Boyarsky & Góra (1997) [1].

3.5.3 Empirical Approach to Density Functions

Despite the fact that Frobenius-Perron operator offers a more precise formula for the

density function f , in most cases we are not able to compute it analytically due to the

complexity of the map. Instead, we may approach f numerically by collecting experimental

data. Recall Definition 3.17 for the cumulative distribution function (denoted by F). Let

X be a random variable, then: F(z) = Prob[X ≤ z] =
∫ z
−∞ f(x)dx, where f is the density

function of X. See more in Evans et al (2011) [9].

The previous expression is somehow similar to the space average (recall Theorem 3.3).

Let X = χ(−∞,z], then from the ergodic theory we know the time average will converge
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to µ ((−∞, z]). Since µ is an absolutely continuous measure with respect to λ, we have:

µ ((−∞, z]) = F(z). This result allows us to use the time average to build our empirical

distribution.

Lemma 3.1. The empirical cumulative distribution function for a random variable

X is denoted by ecdf and it has the following expression:

ecdf(z) = µ ((−∞, z]) =
1

n

l−1∑
i=0

χ(−∞,z] ◦ θi(x),

where n determines how many elements are inside τ(x) and l is the number of points used

to build the empirical cumulative distribution function.

In principle, ecdf should be a function of z and x. However, by the ergodic theorem

ecdf(z, x) is equal to ecdf(z) for µ-almost every x. This means that from a probabilistic

point of view we can remove the dependence on x.

The use of empirical data should lead to a cumulative distribution function quite similar

to the real underlying distribution. However, we don’t have the same ease for the density

function. In order to get a fair replicate of the true density function f , we need a large

amount of data. Otherwise, for close values of z the cumulative distribution function has

similar values and therefore the density function near those points goes (wrongly) to 0.

Plus, the function χ is not smooth because it isn’t differentiable everywhere. This is why

in the expression of ecdf we need to declare a variable l distinct of n. Note that with a

large l, on the one hand, we have more points to draw our ecdf, but the density function

will require lots of data to distinguish consecutive points. Hence, choosing a small but not

too small l and a large n (inducing some sort of smoothness) we can simulate f numerically

and see some resemblances to the true density function.

Lemma 3.2. The invariant density function f may be numerically obtained by:

f(z1) ≈ ecdf(z2)− ecdf(z1)

δ
, z2 > z1, δ =

1

l − 1

Example 3.4. See the complete example in the Appendix - Section A.7 (page 39).

Remark 3.8. The code used to compute the empirical distribution in the previous example

is available in the Appendix - Section A.8 (page 41).

3.6 Other Statistical Properties

Despite the “sensation” of randomness intrinsic to chaotic dynamical systems, they are

not actually stochastic processes because for an initial condition xn, the value for the next

iteration xn+1 is exactly known by a deterministic map. However, this kind of trajectories

shares some resemblances to stochastic processes in the sense that a trajectory appears
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to be a realization of a stochastic process (generating a series of independent, identically

distributed random variables). Now we’ll see how the ergodic theory can be related (in a

certain way) to a few important results in Probability Theory.

Theorem 3.6. (Strong Law of large number) Recall the definition of the stochastic

process {Xn}n≥0, where all Xn = X◦θn represent a sequence of independent and identically

distributed random variables. Then, by the strong law of large numbers, the sample average

(time average) converges with probability 1 to the expected value E(X) (space average):

µ

(
lim
n→∞

1

n

n−1∑
k=0

Xk = E(X)

)
= 1, µ-almost surely

Proof. It’s an immediate consequence of the ergodic theorem (see Theorem 3.3).

Note that the values of trajectories are not random and not necessarily independent

among them. Therefore the Theorem 3.3 must be seen as a generalization of the law of

large numbers.

From now on, let (θ,D) be in the conditions of Theorem 3.5 and suppose d = 1. By

Remark 3.7 there exists only one acip µ. In addition, suppose that (θ,D) is topological

mixing, i.e.:

Definition 3.19. Let θ : D → D be a real-valued function. θ is topological mixing if for

all interval I subset of D there is a non-negative N such that θN (I) = D.

In order to evaluate how fast the observable Xn = X ◦ θn becomes independent of the

initial X0 = X, Boyarsky & Góra (1997) [1] established the following result:

Theorem 3.7. (Decay of correlations) For any bounded observable X : D → R and

m ≥ 0, we have:

ρ(Xm, Xn) = lim
n→∞

|E(Xm, Xn)− E(Xm)E(Xn)| = 0

Proof. See Definition 8.3.1 and Theorem 8.3.2, page 148 from Boyarsky & Góra (1997)

[1].

When time average and space average are similar3, the sum of the observations under

the process Xn converges in limit to a standard normal distribution N (0, 1).

Theorem 3.8. (Central Limit Theorem) For any bounded observable X : D → R,

there is a σ > 0 such that:

lim
n→∞

µ

[
1

σ/
√
n

(
n−1∑
i=0

Xi − nE(X0)

)
< z

]
=

1√
2π

∫ z

−∞
exp

(
−x

2

2

)
dx

Proof. See Theorem 8.5.1, page 157 from Boyarsky & Góra (1997) [1].

3If n goes to ∞, the quotient 1
σ/

√
n

goes equally to ∞; then, the limit is only bounded by z when the
difference between the time average and space average is sufficient close to zero.
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4 Dynamics of Lorenz Maps

Before diving in the discussion of the market model of Tramontana et al (2010) [18],

we need to declare some results regarding the class of maps present in their work. The

next definition comes from Hubbard & Sparrow (1990) [13]:

Definition 4.1. Let θ : [0, 1]→ [0, 1] be a function of class C1 satisfying:

(i) There is a d ∈ (0, 1) such that θ is continuous and strictly increasing on [0, d) and

on (d, 1];

(ii) limx→d− θ(x) = 1 and limx→d+ θ(x) = 0;

(iii) θ is (topologically) expansive;

then θ is a Lorenz map.

Let θs take the form of the map from Example 2.3:

θs(x) =

{
s(x− 1/2) + 1 if 0 ≤ x ≤ 1/2

s(x− 1/2) if 1/2 < x ≤ 1
(4.1)

θs is a particular form of a Lorenz map called symmetric piecewise linear Lorenz

map because it is a symmetric function on the discontinuity d = 1/2. Moreover, θs is an

odd function4.

Lemma 4.1. Let ϕ(x) = 1− x, then θs is ϕ−symmetric, i.e.: θs ◦ ϕ = ϕ ◦ θs.

Theorem 4.1. Let θs be a symmetric piecewise linear Lorenz map. θs has an unique

ergodic acip µ. Moreover, this measure is ϕ-symmetric, i.e. ϕ∗µ = µ.

Proof. From the Theorem 3.5, θs is a class C1 expansive and a continuous function on

the partitions D1 and D2. By the first condition of the theorem we have d = 1. Then

it follows µi is equal to µ1. Therefore, µ1 is the unique admissible acip. With the result

from Remark 3.7, the proof is straightforward.

Remark 4.1. We say that an interval I is ϕ-symmetric if ϕ(I) = I, which means the

interval I is symmetric with respect to x = 1/2.

Lemma 4.2. Suppose s ∈
(
1,
√

2
]
. Let J =

[
1− 1

2s,
1
2s
]

be ϕ-symmetric and hs : J →
[0, 1] the affine transformation hs(x) = 1

s−1

(
x+ 1

2s− 1
)
, then hs ◦ θ2

s ◦ h−1
s = θs2 holds.

Proof. First we need to calculate an explicit expression for θ2
s . Due to the fact θs is a

piecewise function the composition θ2
s = θs ◦ θs won’t be a straight forward expression.

θs has a discontinuity at x = 1/2, so we will expect that θ2
s also has a discontinuity at

4A function θ is odd if θ(x) + θ(−x) = 0.
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Figure 4.1: Graph of θ2
s with s = 1.3 (blue line) and the set J (red box)

θs(x) = 1/2 and two other discontinuity points. After some calculus, we come up with this

expression (where u = 1
2 −

1
2s):

θ2
s(x) = s2(x− 1/2) +


1
2s+ 1 if 0 ≤ x ≤ u
1
2s if u < x ≤ 1/2

−1
2s+ 1 if 1/2 < x ≤ 1− u
−1

2s if 1− u < x ≤ 1

The Figure 4.1 shows when θ2
s is restricted to J , there is a striking resemblance to

the plot of θs. In some sense, the function inside of the red box may be understood as a

smaller version of θ with a slope equals to s2.

The inverse function of hs has the following expression:

h−1
s (x) = (s− 1)x− 1

2
s+ 1

Now, we’ll get the expression hs ◦ θ2
s ◦ h−1

s step-by-step. First compute θ2
s ◦ h−1

s :

s2

(
(s− 1)x− 1

2
s+ 1− 1/2

)
+


1
2s+ 1 if 0 ≤ h−1

s (x) ≤ u
1
2s if u < h−1

s (x) ≤ 1/2

−1
2s+ 1 if 1/2 < h−1

s (x) ≤ 1− u
−1

2s if 1− u < h−1
s (x) ≤ 1

Whereas h−1
s : [0, 1]→ J , the range of h−1

s is only defined on J ⊂ [0, 1]. Plus, by visual

proof we already know from the plot of θ2
s that u < 1− 1

2s (the complete proof is obtained

by verifying 1 − 1
2s − u > 0 is true for all s ∈

(
1,
√

2
]
). As a result we exclude the outer
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branches because they don’t lie on J . Then, we replace u by a stricter condition 1− 1
2s.

(
θ2
s ◦ h−1

s

)
(x) = s2

(
(s− 1)x− 1

2
s+ 1/2

)
+

{
1
2s if 1− 1

2s ≤ h
−1
s (x) ≤ 1/2

−1
2s+ 1 if 1/2 < h−1

s (x) ≤ 1
2s

Finally,

(
hs ◦ θ2

s ◦ h−1
s

)
(x) =

{
s2 (x− 1/2) + 1 if 0 ≤ x ≤ 1/2

s2 (x− 1/2) if 1/2 < x ≤ 1
= θs2(x)

Intuitively the previous lemma states the existence of a suitable affine function hs

which allows us to transform the information provided by θ2
s in a smaller scale, θs2 . Thus,

θ2
s and θs are somehow related. The goal of the next results is to deepen that relation

under the set J .

Remark 4.2. Note that if J =
[
1− 1

2s,
1
2s
]

is ϕ-symmetric and invariant, then the fol-

lowing inequality must hold:

1− 1

2
s < −1

2

(
s3 − s2 − s

)
Lemma 4.3. Suppose s ∈ (

√
2, 2], then θs is topological mixing, i.e. for all I subset of

[0, 1], there is a n ∈ N such that θns (I) = [0, 1].

Proof. See the Appendix - Section A.9 (page 42).

Corollary 4.1. If s ∈
(√

2, 2
]

and f is the ergodic invariant density of θs, then supp(f) =

[0, 1] and the attractor is also [0, 1].

Proof. This follows from the fact that supp(f) is invariant and contains an interval I. By

iterating this interval and due to the previous lemma we get supp(f) = [0, 1].

Definition 4.2. If θ is topological mixing, then θ is called prime (in the sense that is not

divisible).

Lemma 4.4. Let θ1 : D1 → D1 and θ2 : D2 → D2 be two arbitrary functions and

D2 ⊂ D1. Suppose there exists a bijective function h such that θ2 ◦ h = h ◦ θ1. Then θ1

is prime if and only if θ2 is also prime (the property of being prime is invariant under

conjugacy).

Proof. By the lemma’s hypothesis, for any subset of D1, say I, we have θn1 (I) = D1. If we

choose an interval J as a subset of D2, then there exists a n > 0 such that (θn1 ◦h−1)(J) =

D1. Now, we need to verify if θ2 is prime. It follows from the lemma that θ2 = h◦θ1 ◦h−1.
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If we take the nth iterated of θ2(J) we come up with: θn2 (J) = (h ◦ θ1 ◦ h−1)n(J) =

(h ◦ θn1 ◦ h−1)(J) = h(D1) = D2.

Definition 4.3. We call the order of renormalization of θs the number:

n = max
{
k ≥ 0 : s2k ≤ 2

}
,

and we say θs is n-times renormalizable.

Directly from the previous definition, θs is n-times renormalizable if the value s lies in

the interval
(

2
1

2n+1 , 2
1
2n

]
. Nonetheless θs is prime and also 0-times renormalizable when

s belongs to
(√

2, 2
]
. In the latter case we may also say θs is not renormalizable (n = 0).

Furthermore the set J , introduced on Lemma 4.2, depends on the order of renormalization

n and we will henceforth denote it as Jn.

Example 4.1. Suppose θs is 2-times renormalizable, that is s ∈
(

2
1
8 , 2

1
4

]
. Then:

{
hs ◦ θ2

s ◦ h−1
s = θs2

hs2 ◦ θ2
s2 ◦ h

−1
s2

= θs4
, (4.2)

where hs is the function introduced by the Lemma 4.2.

The goal is to find a bijective function which relates θ4
s with θs4 restricted to a certain

set, say J2. Rewriting the expression of θ2
s2 as the composition θs2 ◦ θs2:

θ2
s2 = θs2 ◦ θs2 =

(
hs ◦ θ2

s ◦ h−1
s

)
◦
(
hs ◦ θ2

s ◦ h−1
s

)
= hs ◦ θ4

s ◦ h−1
s

Now we’ll use this result to replace in the second equation of (4.2):

θs4 = hs2 ◦ θ2
s2 ◦ h

−1
s2

= hs2 ◦ hs ◦ θ4
s ◦ h−1

s ◦ h−1
s2

= (hs2 ◦ hs) ◦ θ4
s ◦ (hs2 ◦ hs)−1

The bijective function we are looking for is defined as hs2 ◦ hs. Therefore this function

is our conjugation:

J2 J2

[0, 1] [0, 1]

θ4s

hs2◦hs hs2◦hs
θs4

where J2 = (hs2 ◦ hs)−1 ([0, 1]). Note that s4 ∈ (
√

2, 2]. Hence θs4 : [0, 1]→ [0, 1] is prime,

then θ4
s restricted to J2 is prime.

Generalizing the previous example we can introduce the following lemma:
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Lemma 4.5. Let θs be n-times renormalizable. Moreover, let gn = h
s2

(n−1) ◦ · · · ◦hs2 ◦hs,

then the map θ2n
s : Jn → Jn, where Jn =

(
h
s2

(n−1) ◦ · · · ◦ hs2 ◦ hs
)−1

([0, 1]), is conjugated

to θs2n : [0, 1]→ [0, 1] through gn, i.e.:

Jn Jn

[0, 1] [0, 1]

θ2
n

s

gn gn

θ
s2

n

From the previous lemma and by the fact that θ2n
s restricted to Jn is prime, the

following corollary arises:

Corollary 4.2. If s ∈
(

2
1

2n+1 , 2
1
2n

]
, then the support of the ergodic acip is the union of

Jn, θs(J
±
n ), ..., θ2n−1

s (J±n ), where J−n = Jn ∩
[
0, 1

2

]
and J+

n = Jn ∩
[

1
2 , 1
]
.

Remark 4.3. By the previous corollary, the supp(f) is an union of 2n+1 − 1 intervals.

Figure 4.2: The graph explains for an initial condition on Jn how the path of the trajectory
is

Proposition 4.1. The set Jn has the following neat representation:

Jn = [an, bn] , where an =
n−1∑
i=0

(
1− s2i

2

)i−1∏
j=0

s2j − 1

 , bn =

(
n−1∏
i=0

s2i − 1

)
+ an

Proof. See the Appendix - Section A.10 (page 42).

Corollary 4.3. The length of interval Jn tends to zero when s drives to 1.

Proof. If we assume s goes to 1, by the Definition 4.3 the order of renormalization n will

never be upper bounded. Hence n goes to ∞ and then we have:

lim
s→1
|bn − an| =

∞∏
i=0

(
s2i − 1

)
= 0,

where each
(
s2i − 1

)
is less than 1.
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5 Applications: a Simple Financial Market Model

The model proposed by Tramontana, Westerhoff and Gardini is a combination of

several papers and contributes from the literature of agent-based financial market models.

According to their formulation, the interactions between heterogeneous agents, bounded

by simple technical and fundamentalist trading rules, may generate very interesting and

complex price dynamics, containing the appearance of financial distress events such as

bubbles and crashes. This model is closely related to the models found on Day and Huang

(1990) [6] and Huang and Day (1993) [12].

A survey study presented by Menkhoff & Taylor (2006) [16] proves market specula-

tors believe in technical and fundamental analysis to forecast prices on financial markets.

Fundamentalists support their trading strategies on the idea the price of an asset will

eventually revert to its (estimate) fundamental value (constant value known to all market

contestants) and stays there for awhile. In the bear (undervalued) market, when the mar-

ket prices are smaller than their fundamental value, fundamentalists seek for investment

opportunities as buyers and the lower the price, more aggressive fundamentalists are. Due

to their conventional approach, they usually contribute to the stability of the market. On

the other hand, chartists, technical analysts or just noise traders disregard the hypothesis

of the prices revert to their fundamental value. Instead, they evaluate the future prices

of the market based on the chart analysis, which consists studying historical price pat-

terns and exploit them to make (destabilizing) investment decisions. Chartists are more

comfortable to explore investment opportunities as buyers in the bull (overvalued) mar-

ket because they believe the prices will continue rising. Fundamentalists and chartists

may responds with asymmetrically aggressiveness, different trading horizons/volume and

market entry levels whether they are facing a bull or bear market. Thus, the model dis-

tinguishes fundamentalists or chartists in two types. Type 1 speculators are always active

in the market regardless the price. Type 2 speculators are more conservative and they are

only able to interact in the market if the mispricing (absolute difference between the asset

price and its fundamental) reaches to a certain critical value. Type 2 fundamentalists

believe the investment opportunities close to the fundamental value are worthless due to

the slim chances to be profitable. Type 2 chartists don’t trust the persistence of bull or

bear markets when the mispricing is close enough to the fundamental value.

In order to reduce the positive or negative excess of demand, the market maker adjusts

the prices to reach a classic market equilibrium (in the sense of the basic hypotheses of the

law of supply and demand). Therefore, the market maker quotes the market prices under

the following rule: Pn+1 = Pn + a
(
DC,1
n +DC,2

n +DF,1
n +DF,2

n

)
, where P is the log price,

a is a positive price adjustment factor, and DC,1
n , DC,2

n , DF,1
n and DF,2

n are the investment

orders of the four types of speculators. Positive excess demand (loosely speaking, more

buyers than sellers) makes prices rising and negative demand forces prices to fall. Without

loss of generality, we’ll set the positive factor a equal to 1.
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Surprisingly, this whole financial plot can be represented as an one-dimensional dis-

continuous piecewise-linear system. Depending on the form of DC,1
n , DC,2

n , DF,1
n and DF,2

n ,

the system may (or not) have chaotic dynamic (led by unstable orbits) and multiple dis-

continuity points. Further in this chapter, we will demonstrate even with such a simple

mathematical setup the possibility to generate very interesting dynamics (which allows

us to study the bull-bear market phenomena). In this way, this deterministic model is

already capable to incorporate some stylized facts from financial markets like bubbles,

crashes and excess of volatility. In the next section we are disclosure one possible shape

for Pn+1.

5.1 Setup with One Discontinuity Point

The one discontinuity model is presented according to Tramontana et al (2010) [18].

Type 1 chartists believe in the persistence of bull (+) and bear markets (−), then their

orders are specified as:

DC,1
n =

{
c−1 (Pn − F ) if Pn − F < 0

c+
1 (Pn − F ) if Pn − F ≥ 0

, (5.1)

where c+
1 and c−1 are positive reaction factors and F is the log of the fundamental value.

This type of speculator will take buying (selling) positions if the prices are above (bellow)

the fundamental value. If c+
1 > c−1 , the chartists are trading more aggressive in the bull

market than the bear market. On the other hand, the chartists are submitting orders with

larger size in the bear market if c+
1 < c−1 .

Type 2 chartists submit their orders based on the following rule:

DC,2
n =


−c−2 if Pn − F < 0

0 if Pn − F = 0

c+
2 if Pn − F > 0

, (5.2)

where c+
2 and c−2 are positive reaction factors. This type of chartists still believe in the

persistence of bull-bear markets but they assume an idle position when the price is equal

to its fundamental value. The size of the orders are now only subordinate to the reaction

factors c+
2 (order size in the bull market) and c−2 (order size in the bear market), no matter

how far or close the price is to the fundamental value.

On the contrary, type 1 fundamentalists believe the prices will converge to their

fundamental value in the long run, then their orders are placed according to:

DF,1
n =

{
−u−1 (Pn − F ) if Pn − F < 0

−u+
1 (Pn − F ) if Pn − F ≥ 0

, (5.3)

where u+
1 and u−1 are positive reaction factors. In contrast to the chartist trade strategy,
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fundamentalists take buying (selling) positions in the bear (bull) market hopping the price

will eventually rise up (fall) to the fundamental value. Moreover, type 1 fundamentalists

may respond asymmetrically to the bull and bear markets: when u−1 > u+
1 fundamentalists

are more aggressive in the bear market and u−1 < u+
1 otherwise.

Lastly, type 2 fundamentalists submit their orders under the following rule:

DF,2
n =


u−2 if Pn − F < 0

0 if Pn − F = 0

−u+
2 if Pn − F > 0

, (5.4)

where u+
2 and u−2 are positive reaction factors. Type 2 fundamentalists are in an idle state

when the price is equal to the fundamental value. Otherwise, they are buying (selling)

orders by the size of u−2 (u+
2 ).

After a few variable changes, we come up with the following dynamical system which

expresses the model in terms of the deviations from the fundamental value:

xn+1 = ψ(xn) =


ψL(xn) = sLxn +mL if xn < 0

ψC(xn) = 0 if xn = 0

ψR(xn) = sRxn +mR if xn > 0

, (5.5)

where xn = Pn−F , sL = 1+c−1 −u
−
1 , sR = 1+c+

1 −u
+
1 , mL = u−2 −c

−
2 and mR = c+

2 −u
+
2 .

This map formulation is generally an one-dimensional discontinuous map, except for the

very particular case when we omit type 2 speculators (mR = 0 and mL = 0) which has

limited interest for our applications. Note that sL, sR, mL and mR are linear combinations

of positive factors, hence they can take any value in R. To simplify the work in the next

sections and without loss of generality, let the mathematical model in (5.5) be reduced

to5:

xn+1 = ψ(xn) =

{
ψL(xn) = sLxn +mL if xn < 0

ψR(xn) = sRxn +mR if xn ≥ 0
(5.6)

As we explained in the Chapter 3, there are many cases where it’s very hard to ob-

serve the states under their natural form. For instance, in a financial market, how many

speculators can predict the exact asset’s closing price? Probably none. Without access

to the real prices, how they decide to issue their orders? Some of them are able to get

fair forecasts: instead of predict the exact prices, they perform prognoses based on price

intervals by assuming an observational error6, say ε. That’s exactly the approach we are

seeking. We assume an initial condition X which is an observable such that the states

in D are assigned to a real number. Later we use the deterministic transformation of ψ,

5From the statistical standpoint, the branch ψC is irrelevant because the probability of reaching x = 0
is zero.

6The price prediction is often associated with an observational error, the difference between the real
price and the initial prediction of the real price.
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which is our law of the market, to iterate X. This process is a particular application of

the stochastic process Xn already introduced in the Definition 3.7.

5.2 Bounded Instability Regime

(a) Orientation preserving case (b) Orientation reverse case

Figure 5.1: Plot of two versions of ψ presented in this section (blue line) and the invariant
interval I (red box); y = x line (yellow line)

Different agent behavior and market price fluctuations are derived by manipulating

the reaction factors. For the purposes of the thesis, we’ll restrict the model variables such

that we get two distinct cases:

� For the orientation preserving case (see Figure 5.1a), type 1 chartists trade more

aggressively in the bull/bear market than type 1 fundamentalists. This means the

slopes sL and sR must be positive and greater than 1. On the other hand, for

type 2 speculators, the fundamentalists trade more aggressively in the bull/bear

market than chartists. This statement implies that mL is positive (intercept of the

left branch) and mR is negative (intercept of the right branch). Inside the bull or

bear market, when the current price increases (decreases), the future price increases

(decreases).

� The orientation reverse case (see Figure 5.1b) may be seen as a negation of the

previous case. For the type 1 speculators, fundamentalists are now trading more

aggressively than chartists, therefore we assume that both slopes sL and sR are

negative and less than −1. Simultaneously, type 2 chartists are trading more heavily

than fundamentalists which suggests mL is negative and mR is positive. In this case,

whenever the current price inside the bull or bear market increases (decreases), the

future price decreases (increases).

Since the slopes for both cases are greater than 1 in absolute value, ψ is an expansive

map and so we expect its orbits be unstable. In these scenarios, which will be henceforth

referred as the instability regime, only chaotic dynamics can occur.

Remark 5.1. The methods studied for the orientation preserving case can be applied to

the orientation reverse case. Note that the second iteration for both cases (ψ2) is the same

when the model parameters are symmetric, i.e. each slope and intercept for both cases are

equal in absolute value.
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Therefore, we will only keep studying the orientation preserving case. Considering

all the restrictions, two unstable fixed points can be determined: x−∗ = mL
1−sL < 0 and

x+
∗ = mR

1−sR > 0. Any initial condition outside the interval (x−∗ , x
+
∗ ) drives the orbit to

∞. From an economic point of view, the explosion of the dynamic gives practically no

information regarding the evolution of the price because in the real markets prices won’t

indefinitely rise or fall. Thus, we need to find more restrictive conditions to determine

when bounded behavior is indeed a reality.

Lemma 5.1. ψ has bounded orbits if any initial condition lies on (x−∗ , x
+
∗ ) and mR belongs

to the interval
(

mL
1−sL ,mL(1− sR)

)
or, alternatively, mL lies on

(
mR(1− sL), mR

1−sR

)
.

There is also an invariant interval I = [mR,mL] which absorbs the dynamic and don’t

never let it exit from I.

Proof. If any initial condition belongs to the interval (−∞, x−∗ )∪(x+
∗ ,∞), the orbit of xn is

divergent towards∞. In addition, we know there exists an interval I = [mR,mL] such that

it’s an invariant absorbing interval. In that case the following conditions must hold: x−∗ <

mR and x+
∗ > mL. Then, we obtain the desire condition for mR =

(
mL

1−sL ,mL(1− sR)
)

(or for mL) by replacing x−∗ and x+
∗ for their respective expressions.

Figure 5.2: Plot of ψ (blue line) where I (red box) is not an invariant interval

Otherwise, once the orbit of xn is inside I, it could escape from I. Figure 5.2 allows

us to see what happen when the fixed points are inside I. There are two intervals which

don’t verify the condition of invariance and they are [mR, x
−
∗ ] and [x+

∗ ,mL].

The previous lemma is a direct consequence of the Theorem 3 from Tramontana et

al (2010) [18]. The authors were more concerned to extensively exhibit the qualitative

properties of the model’s orbits as well as show strong evidences of chaos (for instance,

see section 3.3. Case III from Tramontana et al (2010) [18]). The existence of chaos

with such simple trading market rules is indeed intriguing, but does this mean the prices

in this regime are unpredictable? The answer depends whether we are investigate the

dynamics in the point-wise or statistical standpoint. Note that when chaos emerges, by the

ergodic theory it’s possible to asymptotically obtain a stationary distribution. In a certain

way, dynamics with erratic point-wise behavior may lead to well-behaved and predictable

distributions. But first, recall the expression of the measure absolutely continuous µ with

respect to λ, that is, µ(A) =
∫
A f(x)dx.
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Theorem 5.1. Under the hypotheses of Lemma 5.1, the stochastic process Xn = X ◦ ψn

is an ergodic and stationary process.

Proof. From Theorem 3.5, it follows that ψ has only one ergodic acip µ. Since in stochastic

processes notation we replace the concept of invariant measure by stationary distribution,

the proof is complete.

Lemma 5.2. Under the hypotheses of Lemma 5.1 and let sL and sR be greater than
√

2

and less than 2 (topological mixing regime). Given a point x0 ∈ I and a small positive

error, say ε, then there is a n > 0 such that ψn ([x0 − ε, x0 + ε]) = I

(a) Cobweb plot
(b) Time series for 500 iter-
ations (c) Empirical density function

Figure 5.3: Simulation of γ(1) with the parameters sL = 1.85, sR = 1.65, mL = 2 = −mR

When the differences of behavior between chartists and fundamentalists of the same

type are very wide, the prediction of future prices becomes an useless exercise, even with

a very small observational error. This result comes from the Lemma 4.3 (this lemma

doesn’t require symmetric functions and it can be generalized for functions with different

slope branches). Furthermore, from Figures 5.3a-5.3b, we conclude that the trajectories

of ψ are spread all over the entire interval I without any pattern. It’s unquestionably a

topological mixing scenario where prices change between bull and bear market without

any logical sequence, with high unpredictability. Therefore, the attractor of ψ becomes

the whole interval I. Moreover, considering an initial condition X (an observable) and

this deterministic transformation ψ, then the following results must hold:

Corollary 5.1. Assume the hypotheses from Lemma 5.2. By the Theorem 3.7, the initial

observable X becomes more independent of its next iterations when the deviance between X

and the next iterations increases. If we try to predict prices for an enough distant future,

those predictions won’t be related to our start point X.

Corollary 5.2. Under the hypotheses of Lemma 5.2 and by the Theorem 3.8, the sum of

the observations Xn = X ◦ψn (properly normalized) follows a standard normal distribution

N (0, 1).
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5.3 Symmetric Speculator Behavior

We now assume more restrictive conditions than the instability regime: the speculators

behave identically in the bull and bear market. In this case the following conditions must

hold:

sL = sR = s ∈ (1,
√

2] and mL = −mR = m > 0 (5.7)

Hence, ψ can be redefined under the new conditions:

ψs(xn) =

{
sxn +m if xn < 0

sxn −m if xn ≥ 0
(5.8)

The symmetric speculator behavior expression derives from the fact that ψs, under

these new restrictions, is in fact symmetric with respect to the origin (more specifically,

ψs is an odd function). Unlike the instability regime, we are now capable to use all the

results from Chapter 4 about symmetric piecewise linear Lorenz maps.

Lemma 5.3. Let h be the unique orientation preserving affine map that maps the interval

I to [0, 1]. Then h ◦ ψs ◦ h−1 is a Lorenz map with slope s.

Proof. See the Appendix - Section A.11 (page 43).

Lemma 5.4. The map ψs is n-times renormalizable where n only depends on the slope s

and lies on
(

log2

(
1

log2 s

)
− 1, log2

(
1

log2 s

)]
.

Proof. See the Appendix - Section A.12 (page 44).

Definition 5.1. We call the interval Fns the fundamental region where it contains the

fundamental price value F and has the order of renormalization n. Explicitly, Fns is equal

to h−1(Jn).

Proof. Since θs is equal to (4.1), we are now able to cite the work from Chapter 4. Recall

the neat formula for Jn (see Proposition 4.1). But the expression of Jn itself is not enough

because this interval only exists in [0, 1]→ [0, 1]. However, we can send Jn to I using the

inverse of h. Therefore Fns = h−1(Jn).

Remark 5.2. Bull and bear market regions can be seen as a complementary set of Fns.

Lemma 5.5. Given an initial condition, say x0, the orbit of x0 will visit the interval Fns

with probability µ(Fns).

Proof. Using the Theorem 3.3 and assuming X = χFns
(x) (the function takes the value 1

when the orbit of x0 enters in Fns and is valued 0 otherwise), the proof is quite similar to
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the proof of Corollary 3.1: the time average converges to the space average which is equal

to µ(Fns).

Remark 5.3. Due to µ << λ and from the Corollary 4.3, if the slope s goes to 1, the

length of Fns, i.e. λ(Fns), goes to zero. The latter implies that µ(Fns) converges to zero.

Theorem 5.2. Under the hypotheses of Lemma 5.1 and the symmetric speculator behavior,

the density of the stationary ergodic process Xi is supported in 2n+1 − 1 intervals for all

i ∈ N0.

Proof. By Remark 4.3, the proof is straightforward.

Remark 5.4. The length of the market cycle is 2n. After 2n periods, the market returns

to its fundamental region Fns.

(a) Cobweb plot

(b) Time series for 500 iter-
ations (c) Empirical density function

Figure 5.4: Simulation of γ(1) with the parameters s = 1.3, m = 2

Unlike the instability regime, in this case the orbit seems to stay focus roughly in three

regions (the fundamental region and two extreme regions whose represent the bull and the

bear market) and exchanging among them. The dispersion inside these regions becomes

much smaller when s goes to 1 and much bigger when s goes in the opposite direction to√
2. Analytically this means the support (or the attractor) is divided in a few but large

intervals or in many tiny intervals (by Theorem 5.2, it depends on how many times the

map is renormalizable). Consequently, when chartists and fundamentalists of type 1 have

less differences in matters of aggressiveness to the market (note that s varies between 1

and
√

2), the price may change abruptly between regions or remain in the same market

region where it was before.

In this scenario, price forecast could be achievable. Future prices will attain to those

three regions almost surely (which is the attractor of ψs). If we consider, for instance,

a 1-time renormalizable ψs we can divide the fundamental region in the usual way, the

three regions are given by three distinct intervals: ψs(Fns ∩ [−m, 0]) (bull market), Fns

(fundamental region) and ψs(Fns ∩ [0,m]) (bear market). If we instead take a 2-times

renormalizable ψs, the three regions are composed by 7 different intervals and so on.
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5.4 Extreme Cases of Symmetric Speculator Behavior

(a) γ(−0.25) for s = 1, m = 2 (b) γ
(

1+
√
5

2

)
for s = 2, m = 2

Figure 5.5: Time series of 50 iterations of 2 distinct orbits

Here we will briefly show two other regimes by assuming the symmetry of the specu-

lators (sL = sR = s and mL = −mR = m > 0). When type 1 speculators are in an idle

position (s = 1), it’s the case where the map ψ1 is parallel with respect to the line y = x.

Therefore its orbits are 2-cyclic. Using an initial condition x0, it’s hard to get fair price

prediction with a such simple dynamic (only binary decisions: x0 or ψ1(x0)).

However, assuming the scenario that type 1 chartists are much more aggressive than

type 1 fundamentalists (s = 2), we have completely the opposite. We are facing the most

chaotic and unpredictable scenario from all we presented so far (even more unpredictable

than the topological mixing regime). With no surprise, in these conditions the forecast of

future prices is useless.

The easiest way to prove if ψ2 is a highly chaotic map7 is to determine what’s the

empirical distribution for its orbits (in particular if the ECDF converges to an uniform

distribution). Here we found an inconsistency: for multiple initial conditions, the orbits

of ψ2 after awhile will converge to a fixed point. But how is this happen for an expansive

map? The problem is we need to recognize the limitations of the empirical method by

using the computer. The set of (eventually) periodic points of ψ2 is given by Q∩ [−m,m]

which has zero Lebesgue measure. Nevertheless, the computer cannot work with irrational

numbers because it has finite memory (more specifically, a number of fixed decimal places).

Therefore, it converts irrational numbers into rationals which could force orbits to converge

wrongly to an impossible path or point (in the sense that ψ2 would never take that

trajectory if it was computed analytically).

To draw the ECDF of ψ2 instead of considering s = 2 we take s = 1.999 (solving our

issue with the periodic points) and we may conclude that there is convergence to an uniform

distribution (similar arguments like Example 3.4 show that the uniform distribution is the

unique acip of ψ2). This implies that the probability of the price jump to (or stay in) the

bull or bear market is equal to 1/2.

7Note that ψ2 shows strong resemblances with Dyadic transformations but with the discontinuity at
x = 0.
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6 Discussion and Conclusions

This thesis approaches the financial model proposed by Tramontana el al (2010) [18]

from a statistical standpoint which gives us more insights about the behavior of the spec-

ulators and how the price may vary in the long term inside the invariant interval I. The

study is mainly centered in two different regimes8: the topological mixing regime and the

symmetric speculator behavior. For the first one, we assume the type 1 chartists are much

more aggressive than type 1 fundamentalists (sL, sR ∈ (
√

2, 2)). In such conditions, it’s

impossible to predict the prices (even with a very small observational error) to a suffi-

cient distant period. Due to the price dynamic is so chaotic inside I, we don’t get any

information about the possible outcome. In the topological mixing regime, I becomes the

attractor of the map’s regime. On the other hand, in the symmetric speculator behavior

we assume symmetry between bull and bear markets (sL = sR = s and mL = −mR = m),

maintaining the dominance of type 1 chartists over type 1 fundamentalists but with less

intensity (1 < s ≤
√

2). With this formulation, the map’s renormalization and the support

of the acip under this map rely on s. In this regime, the price dynamic is still chaotic but

the chaotic region is small, i.e. the chaotic attractor is a finite union of tiny intervals gener-

ated by a fundamental region for which there is a precise description. Moreover, the price

dynamic is recurrent to the fundamental region and there is a concrete characterization

of its period depending on the parameters of the model.

Other two cases analyze the price dynamics in the extreme conditions of symmetric

speculator behavior. When type 1 agents are not contestants in the financial market

(s = 1), the price dynamic takes a cycle of period 2. No useful knowledge can be taken by

this particular model, once the market hardly rely on such simple price predictions. At

last, we consider the most chaotic case (s = 2) which implies type 1 chartists to be much

more aggressive than type 1 fundamentalists. In this case, the price dynamic is highly

unstable and unpredictable. Like the topological mixing regime, the pricing forecast has

no interest because we cannot narrow it down to a reasonable small subset of I.

For further investigation, we point out some possible directions. Firstly, we may con-

sider to introduce a white noise in the model. The point is to transform the deterministic

model in a stochastic model such that Xε
n = X ◦ψn + εn, where εn ∼ N (0, σ2) and ε is an

iid process. It would be also interesting to compare the results obtained in this thesis and

in the stochastic version when σ2 drives to 0 (for instance, the study of the stationary pro-

cesses Xn versus Xε
n). Secondly, we believe the study of the model with two discontinuity

points will better capture what’s happening in the real financial markets (for example, see

Tramontana & Westerhoff (2013) [19]). For certain conditions, we expect the map has 2

attractors (2 acips), one when x ∈ R− and other when x ∈ R+. However, a particular

case of this model is the overlap of the attractors which will lead to an unique attractor

and the price dynamic is allowed to jump freely between the bull and the bear market.

8For both regimes we assume that type 2 fundamentalists are more aggressive than type 2 chartists
(mL > 0 and mR < 0).
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Appendix

A.1. Example 2.2 - Strictly Monotonic System

In economics, the Cobb-Douglas Production Function is a well-known particular form

of the production function and widely used to represent the relationship between an output

and their inputs (usually between labor and capital as inputs and the amount of output

that can be produced by those inputs):

Π(K,L) = κKαLβ

� Π = total production (the monetary value of all goods produced in a year)

� K = capital input (the monetary worth of all machinery, equipment and buildings)

� L = labor input (the total number of person-hours worked in a year)

� κ = total factor productivity

� α and β are the output elasticities of capital and labor, respectively and they are

also constants between 0 and 1

For this example, we will consider the constant returns to scale form of Cobb-Douglas

Production Function, which means output will increase by the same proportional change

as all inputs change (α+ β = 1).

A discrete version of the Solow-Swan can be introduced using the work found in Brida

& Pereyra (2008) [2]. Our production function Π(K,L) satisfies the required properties:

� Π(λK, λL) = λΠ(K,L),∀λ,K,L ∈ R+ (constant return to scale)

� Π(K, 0) = Π(0, L) = 0, ∀K,L ∈ R+

�
∂Π
∂K > 0, ∂Π

∂L > 0; ∂2Π
∂K2 < 0, ∂

2Π
∂L2 < 0

� limK→0+
∂Π
∂K = limL→0+

∂Π
∂L =∞; limK→∞

∂Π
∂K = limL→∞

∂Π
∂L = 0

The next system explains the changes on capital stock where, in this particular model,

part of savings are used for investment purposes to replace depreciated capital.{
Kt+1 −Kt = sΠ(Kt, Lt)− δKt

Lt+1 = (1 + n)Lt
(6.1)

� s = fraction of output is saved

� sΠ(Kt, Lt) = gross investment at t or total saving at t

� δ = rate of depreciation

� δKt = capital depreciation at t

� n = positive constant growth rate of labor
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Let u = K
L . Therefore u is the capital per worker and π(u) = Π(u, 1) is the production

function in the intensive form with these properties:

π(0) = 0, π′(u) > 0 ∀u ∈ R+, π′′(u) < 0 ∀u ∈ R+, lim
u→0+

π′(u) =∞, lim
u→∞

π′(u) = 0

(6.2)

From the system (6.1), we are now able to describe how capital per worker changes

over time:

ut+1 = θ(ut) =
sπ(ut) + (1− δ)ut

1 + n

The function θ is the sum of two components: s
1+nπ(ut) and 1−δ

1+nut. In general, θ will

be characterized by the same properties in (6.2) which define π. If the first derivative of

π is always positive, then θ′(ut) > 0 and θ is strictly monotonic increasing.

Now we’ll check if this general result can be applied for the Cobb-Douglas Production

Function. Replacing π(u) for the Cobb-Douglas Production Function in the intense form,

thus θ takes the following form:

θ(ut) =
sπ(ut) + (1− δ)ut

1 + n
=
sκ(ut)

α(1)β + (1− δ)ut
1 + n

=
ut

1 + n

(
sκuα−1

t + 1− δ
)

By the model hypotheses, α lies on the interval (0, 1) and the numbers 1−δ
1+n , sκ

1+n are

always positive. Hence, from the Definition 2.3, θ is strictly monotonic increasing, i.e.

θ(ut) < θ(ut+1) for all ut < ut+1.

A.2. Proof of Corollary 2.1

Proof. A stationary state x is obtained if θ(x) = x.

Suppose g(w) = θ(w)− w. By the limit laws, g is still a continuous function on D.

Using the points y and z, we obtain: g(y) = θ(y)−y ⇒ g(y) < 0 and g(z) = θ(z)−z ⇒
g(z) > 0

By the Bolzano’s Theorem result, we know that there is a number x such that g(x) = 0.

Therefore: g(x) = 0⇔ θ(x)− x = 0⇔ θ(x) = x

A.3. Proof of Theorem 2.2

Proof. We will prove the case (ii). By analogy, the proof for case (i) is identical.
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Recall Definition 2.6 and since |θ′(x)| ≥ δ > 1 for all x ∈ D, by the chain rule we have:∣∣(θn)′(x)
∣∣ =

∣∣θ′(θn−1(x))
∣∣ · ∣∣θ′(θn−2(x))

∣∣ · · · ∣∣θ′(x)
∣∣︸ ︷︷ ︸

n terms

> δ · δ · δ · · · δ = δn

For every small ε:

(θn)′(x) = lim
ε→0

θn(x+ ε)− θn(x)

ε

Now we pick a n ≥ 0 such that the next condition holds:

|θn(x+ ε)− θn(x)| ≥ δnε > 1

From the Definition 2.6, for all ε > 0 there exists a n ≥ 0 such the orbit of x is

unstable.

A.4. Proof of Proposition 3.1

Proof. Let B be a Borel set such that B ∈ B. We start by computing the joint distribution

function of the random vector (Xh, Xh+1, Xh+2, ..., Xh+m) for B:

pXh,Xh+1,Xh+2,...,Xh+m
(B) := µ ({ω ∈ D : (Xh(ω), Xh+1(ω), Xh+2(ω), ..., Xh+m(ω)) ∈ B})

For each i = 0, ...,m, replace Xh+i by X ◦ θh+i:

µ
({
ω ∈ D : (X ◦ θh)(ω), (X ◦ θh+1)(ω), (X ◦ θh+2)(ω), ..., (X ◦ θh+m)(ω)) ∈ B

})
Now let A = {ω̄ ∈ D : (Xh(ω̄), Xh+1(ω̄), Xh+2(ω̄), ..., Xh+m(ω̄)) ∈ B}

Then:

µ
({
ω ∈ D : θh(ω) ∈ A

})
:= θh∗µ(A)

Since µ is invariant to θ, it follows:

θh∗µ(A) = µ(A) = µ
({
ω ∈ D : (X ◦ θ0)(ω), (X ◦ θ1)(ω), (X ◦ θ2)(ω), ..., (X ◦ θm)(ω)) ∈ B

})
Therefore we reached the desire identity:

pXh,Xh+1,Xh+2,...,Xh+m
(B) = pX0,X1,X2,...,Xm(B)
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A.5. Proof of Theorem 3.2

Proof. This proof is based on Day (1994), pages 138-140 [7].

Consider the set of points Ak that is eventually mapped into A after at least k periods

for any k ≥ 0, that is: Ak := {x | there exists a n ≥ k such that θn(x) ∈ A}

Iterating the inverse image of θ until n (that is the set of points which enters in A after

the nth-period):

θ−1(A)⇒ x ∈ θ−1(A)⇔ θ(x) ∈ θ1(A)

θ−2(A)⇒ x ∈ θ−2(A)⇔ θ(x) ∈ θ2(A)

θ−3(A)⇒ x ∈ θ−3(A)⇔ θ(x) ∈ θ3(A)

...

θ−n(A)⇒ x ∈ θ−n(A)⇔ θ(x) ∈ θn(A)

So, equivalently we have: Ak := {x | there exists a n ≥ k such that θn(x) ∈ A} =
∞⋃
n=k

θ−n(A)

Of course, A0 is the set of all points eventually mapped into A, which obviously includes

A. Notice that θ−1(Ak) is the set of points that maps into the set Ak, which maps itself

into A after k periods. Therefore,

A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ . . . and Ak+1 = θ−1(Ak)

Because, Ak =
⋃∞
n=k θ

−n(A) = θ−k(A) ∪ θ−(k+1)(A) ∪ θ−(k+2)(A) ∪ . . .

Then, θ−1(Ak) = θ−1(
⋃∞
n=k θ

−n(A)) = θ−1(θ−k(A)∪ θ−(k+1)(A)∪ θ−(k+2)(A)∪ . . . ) =

θ−(k+1)(A) ∪ θ−(k+2)(A) ∪ θ−(k+3)(A) ∪ · · · = Ak+1

Let A∗ =
∞⋂
k=0

Ak = {x | ∃(nk) increasing sequence with θnk(x) ∈ A}

Since A∗ = A0 ∩A1 ∩A2 ∩ ...⇒ A∗ ⊂ A ⊂ A0

By assumption µ is invariant with respect to θ. Therefore, µ(Ak) = µ
(
θ−1(Ak)

)
=

µ(Ak+1), for all k.

The goal is to prove that all point which belongs to A is recurrent in this sense:

µ(A∗) = µ(A)

The non-recurrent points form the set A\A∗ and it must be also a null measure set:

A\A∗ = A\
( ∞⋂
k=0

Ak

)
=
∞⋃
k=0

(A\Ak)

However, A\Ak ⊂ A0\Ak

Using the measure properties and the fact µ is invariant:

µ(A0) = µ(Ak + A0\Ak) ⇔ µ(A0) = µ(Ak) + µ(A0\Ak) ⇔ µ(A0\Ak) = µ(A0) −
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µ(Ak)⇔ µ(A0\Ak) = 0

This implies that (measure monotonicity): 0 = µ(A0\Ak) ≥ µ(A\Ak) = 0

This means the set of points that both belong to A and eventually “return” to A has

positive measure.

A.6. Proof of Proposition 3.2

Proof. The argument of item (iv) will be proven bellow. The other properties are trivial

to check. This proof is based on Day (1994), page 151 [7].

By invariance we know that:

µ(θ−1(A)) = µ(A), ∀A ∈ F

In particular:

µ
(
θ−1([a, x])

)
= µ([a, x]), ∀x ∈ [a, b]

By absolute continuity we meant:∫
θ−1([a,x])

f(u)du =

∫ x

a
f(u)du

Taking the derivative on the both sides, we get:

d

dx

∫
θ−1([a,x])

f(u)du =
d

dx

∫ x

a
f(u)du = f(x)

From the expression on the left arises the Frobenius-Perron Operator, denoted as follow:

Pf(x) =
d

dx

∫
θ−1([a,x])

fdλ

Combining the last two equations we therefore have:

Pf(x) = f(x), ∀x ∈ D
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A.7. Example 3.4 - Invariant Density Function

Recall the map from Example 2.3 where s =
√

2. To avoid any confusion, let θ = θ√2:

θ(x) =

{ √
2(x− 1/2) + 1 if 0 ≤ x ≤ 1/2√
2(x− 1/2) if 1/2 < x ≤ 1

=

{
θ1(x) if 0 ≤ x ≤ 1/2

θ2(x) if 1/2 < x ≤ 1

(a) Plot of θ (b) ECDF of θ (c) Empirical (blue) versus Real
(green) density function of θ

Figure 6.1: Simulation with s =
√

2, x0 = 1√
3
, n = 1000000, l = 50

We want to find an explicit expression for the density function of θ. We have to apply

the Frobenius-Perron Operator:

Pf(x) =

n∑
i=1

f(θ−1
i (x)) ·

∣∣∣∣dθ−1
i (x)

dx

∣∣∣∣ · χ[θ(ai−1),θ(ai)](x) = f(θ−1
1 (x)) ·

∣∣∣∣dθ−1
1 (x)

dx

∣∣∣∣ · χθ1([0,1/2])(x)+

+ f(θ−1
2 (x)) ·

∣∣∣∣dθ−1
2 (x)

dx

∣∣∣∣ · χθ2([1/2,1])(x) = f

(√
2(x− 1) + 1

2

)
·

∣∣∣∣∣
√

2

2

∣∣∣∣∣ · χθ1([0,1/2])(x)+

+ f

(√
2x+ 1

2

)
·

∣∣∣∣∣
√

2

2

∣∣∣∣∣ · χθ2([1/2,1])(x) =

√
2

2

[
f

(√
2(x− 1) + 1

2

)
χ

[1−
√
2

2
,1]

(x)+

+f

(√
2x+ 1

2

)
χ

[0,
√
2

2
]
(x)

]

Before we keep further on the calculation of the Pf operator, we must find the suitable

form of f . It can be obtained by computing the trajectory of the discontinuity (i.e.

x = 1/2):

τ(1/2) =
(
θ0(1/2), θ1(1/2), θ2(1/2), θ3(1/2), ...

)
=

(
1

2
, 1,

√
2

2
, 1−

√
2

2
,

√
2

2
, 1−

√
2

2
, ...

)

Note that the trajectory of x = 1/2 enters in a cycle of period 2. To build f , we’ll

consider all unique values from τ(1/2), i.e. γ(1/2) (5 unique values plus the origin x = 0).

39



João Marques
Dynamics of Financial Markets: Study

of an Agent-based Model 40

Rearranged by ascendant order, we have the following expression:

f(x) = a1χ[0,1−
√
2
2

]
(x) + a2χ[1−

√
2

2
,1/2]

(x) + a3χ[1/2,
√
2
2

]
(x) + a4χ[

√
2

2
,1]

(x)

Now, replacing f on the Pf(x) equation:

Pf(x) =

√
2

2

[(
a1χ[0,1−

√
2
2

]

(√
2(x− 1) + 1

2

)
+ a2χ[1−

√
2

2
,1/2]

(√
2(x− 1) + 1

2

)
+

+a3χ[1/2,
√
2

2
]

(√
2(x− 1) + 1

2

)
+ a4χ[

√
2

2
,1]

(√
2(x− 1) + 1

2

))
χ

[1−
√
2
2
,1]

(x)+

+

(
a1χ[0,1−

√
2
2

]

(√
2x+ 1

2

)
+ a2χ[1−

√
2

2
,1/2]

(√
2x+ 1

2

)
+ a3χ[1/2,

√
2

2
]

(√
2x+ 1

2

)
+

+a4χ[
√
2

2
,1]

(√
2x+ 1

2

))
χ

[0,
√
2

2
]
(x)

]

After some calculus we come up with this expression:

Pf(x) =
√

2
2

[
a3χ[0,1−

√
2

2
]
(x) + (a1 + a4)χ

[1−
√
2

2
,1/2]

(x) + (a1 + a4)χ
[1/2,

√
2

2
]
(x) + a2χ[

√
2
2
,1]

(x)

]

To find the ai values we’ll reduce the problem to a matrix:

√
2

2


0 0 1 0

1 0 0 1

1 0 0 1

0 1 0 0



a1

a2

a3

a4

 =


a1

a2

a3

a4

⇔


a1 =
√

2
2 a3

a2 = a3

a3 = a3

a4 =
√

2
2 a3

Using the general properties of density functions:

∫
fdλ = 1⇔ a1

(
1−
√

2

2
− 0

)
+a2

(
1/2− 1 +

√
2

2

)
+a3

(√
2

2
− 1/2

)
+a4

(
1−
√

2

2

)
= 1⇔

⇔ a3 =
1

2(
√

2− 1)

Then, we finally obtain an explicit expression for the invariant density f(x):

f(x) =

√
2

4(
√

2− 1)
χ

[0,1−
√
2
2

]
(x) +

1

2(
√

2− 1)
χ

[1−
√
2

2
,
√
2

2
]
(x) +

√
2

4(
√

2− 1)
χ

[
√
2
2
,1]

(x)
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From Theorem 3.3 and Corollary 3.4, the mean and variance are known:

µ̄ = lim
n

1

n

n−1∑
i=0

θi(x) =

∫
R
xf(x)dx =

1

2

σ̄2 = lim
n

1

n

n−1∑
i=0

(
θi(x)− µ̄

)2
=

∫
R

(x− µ̄)2f(x)dx =
3
√

2− 4

8(
√

2− 1)

A.8. Example 3.4 - MATLAB Code for the Empirical Approach

Expression for θs(x):

function y = theta(x,s)

if x<=0.5

y=s*(x-0.5)+1;

else

y=s*(x-0.5);

end

end

Orbit of x0 using the function θs(x):

function X = orbit(x0,dimOrbit,s)

X = zeros(1,dimOrbit);

X(1) = x0;

for i = 2:dimOrbit

X(i) = theta(X(i-1),s);

end

end

Empirical cumulative distribution function:

function Y = cdf(s,x0,dimOrbit,ecdfScale)

Y = zeros(1,ecdfScale);

X = orbit(x0,dimOrbit,s);

for i = 1:ecdfScale-1

Y(i+1) = sum(X<=i/(ecdfScale-1))/dimOrbit;

end

Z = linspace(0,1,ecdfScale);

plot(Z,Y);

end

Empirical invariant density function:

function dX = pdf(s,x0,dimOrbit,ecdfScale)

X = cdf(s,x0,dimOrbit,ecdfScale);

delta = 1/(ecdfScale-1);

dX = zeros(1,ecdfScale-1);

for i = 2:ecdfScale

dX(i-1) = (X(i)-X(i-1))/delta;
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end

Z = linspace(0,1,ecdfScale-1);

stairs(Z,dX);

end

A.9. Proof of Lemma 4.3

Proof. Start by choosing an arbitrary interval I such that I = [a, b] ⊂ [0, 1], hence the

length of I is b− a.

After each iteration of θ2
s(I), the length of the interval will grow at a rate of s2 which

is larger than 2. At some point, say an even number k, θks (I) will intercept a discontinuity

point d. In this case, the next iteration will return two disjoint intervals, say J1 and J2.

For the purpose of the proof, it makes sense to disregard the smaller intervals in the

next iteration. The trajectory of the largest interval will attain faster to [0, 1] rather than

the smaller intervals, hence we’ll only keep the largest interval.

After p iterations of I by θ2
s , we’ll inevitably face the dilemma of finding two discon-

tinuity points in an interval Jp, say d1 and d2. One of those discontinuity points is equal

to 1/2 and the other one takes the value of u or 1− u.

Suppose d1 = u and d2 = 1/2 (the other case is analogous), therefore Jp = [a1, u] ∪
[u, 1/2] ∪ [1/2, a2], where 0 ≤ a1 < u and 1/2 < a2 < 1 − u. It’s easy to check the interval

[u, 1/2] is the largest, then we take it as Jp+1.

Now we want to prove that θ4
s(Jp+1) = [0, 1]. We know that θ2

s(Jp+1) =
[
0, 1

2s
]

and

since s belongs to the interval
(√

2, 2
]
, the number 1

2s is always greater than 1
2 , i.e. θ2

s(Jp+1)

contains
[
0, 1

2

]
. With no surprise, we conclude that θ4

s(Jp+1) contains θ2
s

([
0, 1

2

])
= [0, 1].

A.10. Proof of Proposition 4.1

Proof. First, we need to deduct the expression of hk ◦ hk−1 ◦ · · · ◦ h0 by recursion where

for all i = 0, ..., k we have a function hi(x) = αix+ βi and the real numbers αi and βi:

h0 = α0x+ β0

h1 ◦ h0 = α1 (α0x+ β0) + β1 = α1α0x+ α1β0 + β1

h2 ◦ h1 ◦ h0 = α2 (α1α0x+ α1β0 + β1) + β2 = α2α1α0x+ α2α1β0 + α2β1 + β2

...

hk ◦ hk−1 ◦ · · · ◦ h0 = αk · · ·α0x+ αk · · ·α1β0 + αk · · ·α2β1 + αk · · ·α3β2 + ...+ αkβk−1 + βk =

=
k∏
i=0

αix+
k∑
i=0

βi

k∏
j=i+1

αj = Fkx+Gk =

(
k∏
i=0

αi

)
x+

k∑
i=0

βi

(∏k
i=0 αi∏i
j=0 αj

)
=
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=

k∏
i=0

αi

(
x+

k∑
i=0

βi
α0 . . . αi

)

Now, recall this result:

hs(x) =
1

s− 1

(
x+

1

2
s− 1

)
=

1

s− 1
x+

1

s− 1

(
1

2
s− 1

)
= αsx+ βs

Therefore, the expression for h with slope equals to s2i is given as follow:

h
s2i

(x) = α
s2i
x+ β

s2i
=

1

s2i − 1
x+

1

s2i − 1

(
1

2
s2i − 1

)

From Lemma 4.5 and combining the results we obtained so far, we have:

gn =
n−1∏
i=0

1

s2i − 1

x+

n−1∑
i=0

1

s2i−1

(
1
2s

2i − 1
)

∏i
j=0

1

s2
j−1

 =

=

n−1∏
i=0

1

s2i − 1

x+

n−1∑
i=0

(
s2i

2
− 1

) ∏n−1
j=i

1

s2
j−1∏n−1

i=0
1

s2i−1

 =

=

n−1∏
i=0

1

s2i − 1

x+

n−1∑
i=0

(
s2i

2
− 1

)i−1∏
j=0

s2j − 1



We already know that Jn = g−1
n ([0, 1]) =

(
h
s2

(n−1) ◦ · · · ◦ hs2 ◦ hs
)−1

([0, 1]), then:

g−1
n ([0, 1]) =

(n−1∏
i=0

s2i − 1

)
x+

n−1∑
i=0

(
1− s2i

2

)i−1∏
j=0

s2j − 1

 ([0, 1]) =

=

n−1∑
i=0

(
1− s2i

2

)i−1∏
j=0

s2j − 1

 ,

(
n−1∏
i=0

s2i − 1

)
+
n−1∑
i=0

(
1− s2i

2

)i−1∏
j=0

s2j − 1

 = [an, bn]

A.11. Proof of Lemma 5.3

Proof. The aim is to construct a function h such that maps the invariant set I = [−m,m]

into the interval [0, 1]. Then, we have the following diagram:

I I

[0, 1] [0, 1]

ψs

h h

θs
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where h(−m) = 0 and h(m) = 1. Now it’s clear what we want to accomplish: the idea is

to prove that θs is the symmetric piecewise linear Lorenz map defined in (4.1) for us to

apply the results found in Chapter 4.

The complete expressions for h and h−1 are:

h(x) =
x+m

2m
and h−1(x) = m(2x− 1)

From the conjugation diagram, we know that θs = h ◦ ψs ◦ h−1. It’s easier if we break

the conjugation in two parts. First consider ψs ◦ h−1:

(
ψs ◦ h−1

)
(x) =

{
m[s(2x− 1)− 1] if h−1(x) ≥ 0

m[s(2x− 1) + 1] if h−1(x) < 0

After some calculus we obtain the final expression for θs:

(
h ◦ ψs ◦ h−1

)
(x) =

{
m[s(2x−1)−1]+m

2m if h−1(x) ≥ 0
m[s(2x−1)+1]+m

2m if h−1(x) < 0
=

{
s(x− 1/2) if x ≥ 1/2

s(x− 1/2) + 1 if x < 1/2

A.12. Proof of Lemma 5.4

Proof. From the Definition 4.3 we know that s ∈
(

2
1

2n+1 , 2
1
2n

]
. Then, we may rewrite this

condition based on the value n:

s ≤ 2
1
2n ⇔ n ≤ log2

(
1

log2 s

)

s > 2
1

2n+1 ⇔ n > log2

(
1

log2 s

)
− 1

Therefore:

n ∈
(

log2

(
1

log2 s

)
− 1, log2

(
1

log2 s

)]
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