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Abstract

The main purpose of this work is to evaluate the ability of the New Keynesian

wage Phillips curve (NKWPC), proposed by Gaĺı (2011), to describe U.S. wage

inflation dynamics over the 1965-2018 period. To study this relationship, a threshold

regression model that allows assessing the existence of regime-switching nonlinearity

is employed.

Our results suggest that wage inflation dynamics are well described by a 3-regime

threshold model where the best threshold variable is the current unemployment rate.

The estimated thresholds split the NKWPC into regimes consistent with periods of

deep recessions, moderate business cycle fluctuations and prolonged expansions. We

find evidence that the negative relationship between wage inflation and unemploy-

ment implied by the NKWPC holds when unemployment is between the thresholds

5.69% and 7.63%; when unemployment is outside this band the relationship seems

to break down.

To assess the robustness of our estimates, we account for possible endogeneity

of the regressors and the threshold variable by using the structural threshold model

proposed by Kourtellos et al. (2016). In this setting, we conclude that our baseline

results are not very sensitive to endogeneity affecting the regressors. In contrast,

the threshold estimates obtained when the threshold variable is considered as en-

dogenous yield a substantial reduction in the number of observations in the second

regime.

Keywords: New Keynesian wage Phillips curve; threshold regression model;

nonlinearity; endogeneity.

JEL classification: C22, E24, E31, E52.
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Resumo

Neste trabalho, avaliamos a capacidade da curva de Phillips salarial Neo-Keynesiana

(CPSNK) proposta por Gaĺı (2011) para descrever a inflação dos salários nos EUA

durante o peŕıodo 1965-2018. De forma a estudar esta relação, empregamos um mod-

elo de regressão de limiar que nos permite examinar a existência de não-linearidades.

Os nossos resultados sugerem que a taxa de inflação salarial é bem descrita

por um modelo de limiar com 3 regimes em que a variável de limiar é a taxa de

desemprego. As estimativas para os parâmetros de limiar dividem a CPSNK em

regimes consistentes com peŕıodos de recessão profunda, de flutuações moderadas

do ciclo económico e de crescimento prolongado. Encontramos evidência emṕırica

consistente com a relação negativa entre a inflação salarial e a taxa de desemprego

prevista pela CPSNK quando a taxa de desemprego está entre os limites de 5.69% e

7.63%. Quando a taxa de desemprego está fora deste intervalo, esta relação parece

desaparecer.

Para avaliar a robustez das nossas estimativas, incorporamos a posśıvel endo-

geneidade dos regressores e da variável de limiar ao estimar o modelo de regressão

limiar estrutural proposto por Kourtellos et al. (2016). Neste contexto, conclúımos

que os nossos resultados não são muito diferentes quando permitimos que os re-

gressores sejam endógenos. Por outro lado, as estimativas dos coeficientes de limiar

obtidas quando a variável de limiar é considerada como endógena implicam uma

redução significativa do número de observações no segundo regime.

Palavras-chave: curva de Phillips salarial Neo-Keynesiana; modelo de regressão

de limiar; não linearidade; endogeneidade.

Classificação JEL: C22, E24, E31, E52.
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1 Introduction

Ever since A. W. Phillips (1958) first documented the statistical evidence of a nega-

tive relationship between wage inflation and the rate of unemployment in the United

Kingdom, the ‘Phillips Curve’ has become one of the most active fields of research

in the economics profession.

The history associated with the Phillips curve is remarkably rich and full of

fascinating debates; see Gordon (2011) for a comprehensive survey. In the last

decades, we have witnessed the development of a new branch of this vast literature

as a result of the emergence of the so-called New Keynesian (NK) macroeconomics.

By combining the rigorous theoretical foundations of Real Business Cycle models

with distinctive Keynesian ingredients (such as nominal rigidities and monopolis-

tic competition), NK models have become an increasingly dominant framework for

monetary policy analysis. In this setting, inflation dynamics are described by the

NK Phillips curve. The appealing theoretical microfoundations and early empirical

success led the NK Phillips curve to become a popular formulation to study the

relationship between inflation and real economic activity.

More developed NK models often extend the specification of the wage-setting

block by modelling wage inflation in a similar fashion as price inflation. Under

appropriate assumptions, the NK wage Phillips curve (NKWPC) states wage infla-

tion as a function of future expected wage inflation and the current deviation of

wage markups from their optimal value, which reflects the degree of labour market

slack. Despite the empirical success of NK models, there has been some criticism

in relation to the lack of reference to unemployment, a central variable in policy

debate. An important reformulation of the NKWPC that tackles this shortcoming

was presented by Gaĺı (2011). By adopting the formalism of Erceg et al. (2000),

Gaĺı derives a NKWPC that explicitly introduces the rate of unemployment in the

wage inflation equation.

As a consequence of the negligible wage growth recorded in the aftermath of the

‘Great Recession’, the empirical assessment of Gaĺı’s version of the NKWPC has
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received increasing attention. In fact, the relationship between wage growth and

unemployment may provide important guidance for monetary policy in the slow

recovery environment experienced after the 2007-2008 recession. A strong negative

estimate of this relationship would favour the strand of the literature that argues the

need for policy normalization to prevent inflationary pressures (Yellen, 2014), given

the low level of unemployment. On the other hand, a different body of research

argues that the economy is still not near full employment (Blanchflower and Levin,

2015). In this case, evidence of a weak relationship provides an additional argument

in support of more accommodative policies since unemployment can be reduced

further without bearing the cost of higher inflation.

Although the relationship between wage inflation and unemployment is com-

monly assumed as linear, the role of nonlinearities is often emphasized in the Phillips

curve literature. As highlighted by G. Akerlof et al. (1996), one of the main reasons

that might lead us to expect the existence of nonlinearities is downward wage rigid-

ity. This feature implies that wages might be more responsive to variations in the

unemployment rate in periods of low labour market slack in comparison with peri-

ods of high labour market slack. While firms tend to increase wages more rapidly

during periods of low unemployment, downward wage rigidity reduces the respon-

siveness of wages as the unemployment rate increases. Therefore, this obstacle to

wage adjustment implies that the NKWPC should exhibit an asymmetric behavior,

as the slope of the curve varies according to labour market conditions.

Our approach to capture the possible nonlinearity of the NKWPC is to estimate

a threshold regression model, which splits the observations according to different

regimes defined by a threshold variable. The key advantages of using this framework

is that the thresholds are endogenously estimated and the study of nonlinearity can

be performed through a formal and well developed econometric framework. Thus,

the objective of the present work is to estimate and test a threshold regression model

for the U.S. NKWPC and to provide an empirical assessment of the model’s fit to

the wage inflation dynamics over the 1965-2018 period.

In many ways this dissertation closely follows the empirical work of Donayre
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and Panovska (2016) who also study the formulation of the NKWPC presented by

Gaĺı (2011) using a threshold model. However, we complement our analysis by

examining the robustness of the threshold model estimates to possible endogeneity

in the NKWPC. In fact, it might be reasonable to consider the possibility that wage

inflation and the adopted measure of labour market slack are jointly determined.

Since our regime-switching regression is motivated by the idea that the NKWPC

varies according to regimes defined by the level of labour market slack, we allow

for endogeneity in both the regressors and in the threshold variable. To account

for endogeneity, we resort to the structural threshold regression model of Kourtellos

et al. (2016) which relies on the use of instrumental variables.

Our results provide evidence that the NKWPC is well described by a 3-regime

threshold model. The relationship implied by the NKWPC changes when unem-

ployment crosses the estimated thresholds of 5.69% and 7.63%, which split the

observations into 3 regimes that correspond to deep recessions, moderate business

cycle fluctuations and prolonged expansions. We only find evidence consistent with

the negative relationship between wage inflation and unemployment predicted by

the NKWPC in the intermediate unemployment regime. In both the low and high

unemployment regimes the NKWPC relationship seems to break down. We show

that these results are robust to endogeneity of the regressors. On the other hand,

we find some sensitivity of the NKWPC to endogeneity of the threshold variable,

considering that, in this setting, we obtain a higher estimate for the threshold sepa-

rating the low and intermediate unemployment regimes. This causes the number of

observations in the second regime to be reduced in almost half and yields a smaller

estimate for the slope NKWPC in this regime.

The present work is organized as follows: section (2) presents the NKWPC;

we briefly describe some theoretical foundations for nonlinearity in section (3); the

threshold regression model is presented in section (4); we discuss the empirical

evidence in section (5); in section (6) we analyze the robustness of our results to

endogeneity in the NKWPC; finally, section (7) concludes.
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2 The New Keynesian Wage Phillips Curve

In this section, we present the theoretical foundations of the NKWPC proposed by

Gaĺı (2011). This formulation for wage inflation incorporates the staggered wage

setting specification presented by Erceg et al. (2000) in which workers are unable

to re-optimize their nominal wage with probability θw. Because this probability is

independent from the time elapsed since the last wage revision, θw can be interpreted

as an index of nominal wage rigidities. The structural model for wage inflation can

be expressed as

πwt = βwEtπ
w
t+1 − λw(µwt − µw) . (1)

Wage inflation is defined as πwt and µw denotes the desired level of the average wage

markup µwt . It can be shown that λw can be written as

λw =
(1− θw)(1− βwθw)

θw(1 + εwϕ)
,

where ϕ corresponds to the inverse of the Frisch labour supply elasticity1, εw is the

wage elasticity of demand and βw is the standard utility discount factor.

Gaĺı shows that a simple relationship between the wage markup and the unem-

ployment rate may be obtained by making the additional assumption that members

of the representative household decide to participate in the labour market only when

the prevailing real wage rate is superior to the disutility from work. Under this set-

ting, the real wage rate depends positively on the labour supply. Considering that

the unemployment rate is defined as the difference between the labour supply and

the employment rate, the wage markup can be written as a linear function of the

unemployment rate

µwt = ϕut . (2)

Defining unt as the natural rate of unemployment, this is the unemployment rate

prevailing if there were no nominal wage rigidities, equation (2) implies

un =
µw

ϕ
. (3)

1The Frisch labour supply elasticity measures the response of labour supply given a variation

in the real wage rate.
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Plugging equations (2) and (3) into (1) yields the following expression for the

NKWPC:

πwt = βwEtπ
w
t+1 − λwϕ(ut − un) . (4)

In this formulation, wage inflation and unemployment are inversely related. It is

important to emphasize that this is a microfounded equilibrium relationship. Note

that the steepness of the curve is decreasing with respect to ϕ and to θw (through

the parameter λw) so that in the absence of nominal rigidities the NKWPC becomes

vertical. Also, the forward looking nature of wage inflation is embedded in equation

(4). Indeed, if we iteratively substitute the expectation term, the NKWPC can be

expressed as

πwt = −λwϕ
∞∑
i=0

βiEt{(ut+i − un)} ,

implying that πwt is determined in a purely forward-looking manner, since it is a

function of the discounted sums of the present and future unemployment rate.

In order to capture wage inflation persistence, the model can be extended to

allow for automatic wage indexation to price inflation. In this setting, nominal

wages are revised even when the representative household is not given the chance to

re-optimize. Considering the wage indexation rule used by Gaĺı (2011), the NKWPC

can be written as

πwt = α + ρπpt−1 + βwEt{πwt+1 − π
p
t} − λwϕ(ut − un) ,

where πpt denotes the price inflation measure to which the wages are indexed.

To derive a simple reduced form representation of the NKWPC we follow Gaĺı

(2011) and assume that cyclical unemployment, defined as ût = ut − un, follows

a stationary AR(2) process with parameters φ1 and φ2. Then, the reduced form

representation for the (πwt , ût) relationship is

πwt = α + ρπpt−1 + ψ0ût + ψ1ût−1 , (5)

where

ψ0 = − λwϕ

1− βw(φ1 + βwφ2)
ψ1 = − λwϕβwφ2

1− βw(φ1 + βwφ2)
. (6)
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Gaĺı (2011) documented the ability of equation (5) to describe U.S. data. Although

the model can provide a reasonable fit, it fails to account for much of the wage

inflation dynamics, especially during the Great Recession period. Gaĺı (2011) sug-

gests that this poor fit results from the fact that the model presented above ignores

the role played by downward wage rigidities. If this is the case, a nonlinear model

would yield a better characterization of the data. In the next section we present

some theoretical foundations for a nonlinear Phillips curve and review some previous

empirical results.

3 Nonlinearity in the Phillips Curve

The shape of the short-run Phillips curve is often regarded as nonlinear and depen-

dent on labour markets conditions. A potential explanation for a nonlinear Phillips

curve is downward wage rigidity2. An important branch of this literature is based

in the efficiency wage theory, according to which wages are linked to effort so that

firms resistance to cut wages during periods of high unemployment is consistent with

a profit maximizing behavior. There are several theoretical models that can gener-

ate this feature. In Shapiro and Stiglitz (1984) firms pay higher wages to prevent

shirking, while in the gift-exchange model (G. A. Akerlof, 1982) and the fair wage

hypothesis (G. A. Akerlof and Yellen, 1990) lower wages have a negative effect on

workers loyalty, thus reducing productivity.

A different strand of the literature is inspired by the insider-outsider theory

of Lindbeck and Snower (1988). This theory states that incumbent workers have

their position protected by labour turnover costs. Thus, firms may avoid to cut

wages to prevent the materialization of these costs. Stiglitz (1974) shows how wage

reductions increase the propensity of employees to quit and how increases in labour

turnover have a negative effect on profits. The insider-outsider theory also provides a

rationale for how institutions, such as labour unions and social norms, can contribute

to increases in labour turnover costs and, therefore, to the degree of downward wage

2See Dupasquier and Ricketts (1998) for other explanations for nonlinearity in the Phillips curve

and Babecky et al. (2009) for a discussion of theories that imply downward wage rigidity.
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rigidities.

Motivated by these theoretical foundations, empirical studies of the U.S. wage

Phillips curve have employed a wide variety of strategies to model nonlinearities.

For brevity, we only review studies which use a threshold approach, since these are

more closely related to the present work. Kumar and Orrenius (2016) use state-

level panel data and introduce a linear spline term which allows for a different slope

whenever the unemployment rate crosses the sample average of 6.1%. In addition,

a three knot cubic spline model is also estimated. The chosen knots correspond

to the quartiles of the unemployment rate empirical distribution. Taking into ac-

count that the different knots were chosen in a data-dependent fashion the authors

perform a number of robustness checks, always obtaining results consistent with a

strongly convex wage Phillips curve. Nalewaik (2016) models the U.S. wage Phillips

curve using a 2-regime Markov-switching model. The strength of nonlinearity is

measured as the coefficient of a quadratic function of cyclical unemployment. The

author also studies nonlinearity through a standard regression with a break in the

coefficient of the unemployment rate. The results imply that the U.S. wage Phillips

curve is considerably steeper when unemployment decreases below 5%. Donayre

and Panovska (2016) use a 3-regime threshold model to study the NKWPC of Gaĺı

(2011) using U.S. data. Their analysis suggests that the curve has a negative slope

during mild recessions and consequent recovery periods. In contrast, the evidence of

a negative relationship is weaker in the low unemployment regime while in the deep

recessions regime this relationship breaks down. Also, the authors conclude that

the results are consistent with the concept of downward wage rigidity. Donayre and

Panovska (2018) use a threshold vector autoregressive model and find favourable

evidence of a nonlinear wage Phillips curve. The authors allow for two different

threshold variables and conclude that wage inflation dynamics change according to

the unemployment rate and price inflation. Other related works that use threshold

models to study the U.S. price Phillips curve include Doser et al. (2017) and Olivei

and Barnes (2004) who find favourable evidence for nonlinearity using a threshold

model.
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4 The Threshold Regression Model

4.1 Representation

An intuitive and parsimonious strategy to model economic relationships using non-

linear models seems to be to allow for the possibility that the data generating process

changes according to different states of the world or regimes. A certain time series or

economic relationship is said to be state-dependent or regime-switching if its under-

lying properties differ across regimes. An important class of state-dependent models

assumes that the transition between regimes over time can be characterized by an

observable stochastic variable. In this context, the regimes are delimited by certain

observable thresholds. Given an estimate of such threshold it is possible to assign

present and past observations to a particular regime.

The idea of approximating a general nonlinear relationship through a model with

several regimes was initially proposed by Quandt (1958) and was further developed

by Tong (1978) and Tong and Lim (1980). The latter authors formalized the class of

threshold autoregressive (TAR) models. The essential characteristic of TAR models

is the piecewise linearization through the introduction of an indicator variable that

acts as the mathematical mechanism that enables a regime switch. Therefore, each

regime follows a distinct AR(p) model over the state space defined by the thresholds.

Tong (2011) referred to this idea as the threshold principle.

In this section we present the main features associated with the threshold re-

gression model, a specific switching regression model that allows each regime to

be described by a different multivariate linear model. Considering the time series

(yt, xt, qt)
T
t=1, a 2-regime threshold model is given by

yt =

 x′tβ1 + et, qt ≤ γ ,

x′tβ2 + et, qt > γ ,
(7)

where xt = (xt1, xt2, ..., xtk)
′ is a k×1 vector of exogenous explanatory variables, β =

(β1,β2) denotes the associated parameters and qt is an observable threshold variable
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that splits the observations into two different regimes. Note that the explanatory

variables are the same in both regimes, but the coefficients are allowed to change.

The model determines which set of coefficients to use by evaluating the value of

qt in relation to the threshold γ. If qt ≤ γ the slope coefficients are given by β1

and when qt > γ the regime coefficients correspond to β2. The regression error et

is assumed to be a martingale difference sequence so that E(et|Ft−1) = 0, where

the conditioning set Ft−1 denotes past information, and σ2 = E(e2
t ). From this

representation the popular TAR model with regimes described by an AR(p) model

arises if we set xt = (yt−1, yt−2, ..., yt−p)
′. Additionally, if we consider the threshold

variable to be the lagged dependent variable, qt = yt−d, where d is a positive integer

delay parameter, the resulting model is the self-exciting threshold model (SETAR).

The threshold regression model of equation (7) may be written in an alternative

way by considering the variable I(qt ≤ γ) where I(.) is the indicator function. Thus,

the model takes the following representation

yt = x′tβ1I(qt ≤ γ) + x′tβ2I(qt > γ) + et . (8)

The indicator function implies that the transition between regimes occurs instan-

taneously whenever the value of qt crosses the threshold γ, which might not be a

reasonable assumption for some applications. If this is the case, the indicator vari-

able can be replaced by a continuous function G(qt; s, γ), defined between 0 and 1,

that allows the parameters of the models to change slowly between regimes. The

speed of the adjustment is controlled by the smoothness parameter s. The resulting

model is the smooth transition model3.

In some instances it might be reasonable to assume that the model is described

by more than two regimes. Consider the 3-regime representation of the threshold

model

yt = x′tβ1I(qt ≤ γ1) + x′tβ2I(γ1 < qt ≤ γ2) + x′tβ3I(qt > γ2) + et . (9)

Intuitively, the relationship between the two variables can be seen to change when-

ever the value of the threshold variable lies outside the band defined by two thresh-

3A comprehensive review of this class of models is provided by Lütkepohl and Krätzig (2004).
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olds γ1 and γ2.

A general m-regime threshold model can be written by considering the variable

I(γj−1 < qt ≤ γj) and setting xt(γ) = xt I(γj−1 < qt ≤ γj). Thus,

yt =
m∑
j=1

xt(γ)′βj + et ,

where j = 1, ...,m and −∞ = γ0 < γ1 < ... < γm = ∞. Finally, it will be useful

to write the threshold model in matrix form. Defining y and e as T × 1 vectors by

stacking yt and et and X(γ) as a T ×K matrix by stacking xt(γ) we can express the

model as

y =
m∑
j=1

X(γ)βj + e . (10)

4.2 Estimation

Despite being nonlinear in the parameters, the model depicted in equation (10) is a

regression equation and therefore a natural estimation method is least squares (LS).

This method corresponds to maximum likelihood estimation under the auxiliary as-

sumption that et is iid N(0, σ2). If the threshold parameters were known, we could

simply split the observations into the different regimes and estimate each linear

segment of the model using LS. However, in most instances the values of the thresh-

olds are unknown and must be estimated. Fortunately, Chan (1993) showed that

consistent estimates of the model parameters can be obtained through sequential

conditional least squares (CLS), which we describe next.

Let the model parameters be collected as θ = (βj,γ), where γ = (γ1, γ2, ..., γm−1)

denote the threshold parameters. Define êm as the LS residuals of the m-regime

threshold regression and write the sum of squared residual as Sm = ê′mêm. The LS

estimates θ̂ solves the following problem

θ̂ = argmin
θ

Sm .

Since Sm is discontinuous with respect to γ, the estimates θ̂ must be obtained

through a grid-search over the possible values of γ. A standard approach is to restrict
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the search of γ to the observed values of qt. Additionally, it is useful to assume that

γ is bounded by the set Γ = [γ, γ̄], where γ and γ̄ are the τth and (1−τ)th percentiles

of qt, respectively, so that each regime has at least Tτ observations. This assumption

not only ensures that an adequate number of observations is used in the estimation

of each regime parameters, but also prevents abnormal realizations of test statistics.

The estimation procedure can be implemented by sorting the threshold variable qt

and evaluating the sum of squared residuals function sequentially for each set of

different values for γ ∈ Γ. Conditionally on γ, we can estimate equation (10) in

order to obtain the estimates β̂j(γ) and the corresponding sum of squared residuals

S∗m(γ) ≡ Sm|βj=β̂j(γ). Since S∗m(γ) can only assume a finite number of distinct

values, γ̂ can be obtained as

γ̂ = argmin
γ

S∗m(γ) .

Plugging in the threshold estimate into β̂j(γ), the slope parameters can be computed

as β̂j = β̂j(γ̂).

In our exposition so far, we have assumed that the threshold variable is known.

Although economic theory might indicate the appropriate threshold variable, this

might not always be the case. In such circumstances, it is possible to use an exten-

sion of the estimation procedure described above in order to determine the optimal

threshold variable. Consider a T × d̄ matrix constituted by the set of candidate

threshold variables. Let the column indexes of this matrix be denoted by D = [1, d̄ ]

and define the optimal threshold variable index as d ∈ D. Then, the estimation of

the optimal threshold variable amounts to the estimation of d, which we can think

of as an additional parameter of the model. The CLS procedure can be extended to

consider a grid-search over (γ, d) ∈ Γ × D. Therefore, the sum of squared residu-

als function is evaluated at all the admissible threshold values of all the considered

threshold variables. The CLS estimates of (γ, d) minimize the sum of squared resid-

uals

(γ̂, d̂ ) = argmin
(γ,d)

S∗m(γ, d) . (11)

The possible threshold variables considered in the grid-search can be exogenous

variables included as regressors in the model or variables outside the model. In
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the case of a SETAR model, where qt = yt−d, the search for the optimal threshold

variable corresponds to the estimation of the optimal delay lag of the dependent

variable.

4.3 Testing for the Number of Regimes

An important step when proposing a nonlinear model is to assess whether it obtains

a better fit to the data than a linear model. Formally, the hypothesis of a linear

model against a 2-regime threshold model can be stated as H0 : β1 = β2. Because

the linear model is nested in the 2-regime threshold model, an intuitive approach is

to reject the null hypothesis for large values of the standard F statistic

F12(γ̂) = T

(
S1 − S2

S2

)
, (12)

which corresponds to the likelihood ratio statistic under the auxiliary assumption

that et is iid N(0, σ2). If γ is known, F12 could be approximated by a χ2(k) distri-

bution in large samples. However, standard asymptotic theory cannot be used to

derive the limiting distribution of F12(γ̂) because the linearity test suffers from the

unidentified nuisance parameter problem4. To understand this problem note that γ

is not present in the linear model. Thus, in this context, the threshold parameter is

an unidentified parameter since any value of γ is consistent with the null hypothe-

sis. Naturally, the value of S1 does not depend on γ because this parameter is not

present in the linear model. In contrast, γ must be estimated in order to estimate

the 2-regime model and obtain S2. Then, even if β1 = β2 there is no reason to expect

that S1 = S2 since S2 is a function of γ, which is estimated in order to yield the

best possible fit of the 2-regime model. As a consequence, the limiting distribution

of F12(γ) is non-standard and depends on the nuisance parameter γ.

To see that F12(γ̂) does not have a χ2(k) asymptotic distribution note that

equation (12) is a monotonic function of S2, since F12 always increases when S2

decreases. Because the LS estimates minimize S2 over the sets Γ and D we can

4This problem was first presented and discussed by Davies (1977).
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write

F12 = max
γ

F12(γ̂) , (13)

Thus, the test statistic F12 is actually the maximum of a set of distinct χ2(k) random

variables and, therefore, the distribution of F12 is considerably greater than the

χ2(k). To derive the asymptotic distribution of F12 we need to think of this test

statistic as the random maximum of the random function F12(γ). Following a general

investigation of inference in the presence of nuisance parameters, B. E. Hansen

(1996) shows that the asymptotic distribution of F12 depends on the moments of the

regressors and of the threshold variable qt (which are application specific), thereby

making the tabulation of critical values impossible.

A practical method to compute a bootstrap approximation to the sampling dis-

tribution of F12 is provided by B. E. Hansen (1999). Before describing the procedure

let us define a more general version of the test statistic F12 that can be used to test

models with a different number of regimes against each other. Specifically, for i < l,

the test statistic (13) can be generalized as

Fil = max
γ

Fil(γ̂) = T

(
Si − Sl
Sl

)
. (14)

The key feature of the bootstrap approximation of B. E. Hansen (1999) is to

generate multiple simulated times series that satisfy the null hypothesis that the

data follows a i-regime threshold model. Under the assumption that et is con-

ditionally homoskedastic, E(e2
t |Ft−1) = σ2, the procedure can be described as

follows: (i) Generate a sample ê∗ by making random draws (with replacement)

from the i-regime threshold model residuals; (ii) Set the simulated observations as

y∗ =
∑i

j=1X(γ̂)β̂j + ê∗, where the estimates θ̂ = (β̂j, γ̂) are taken from the esti-

mated i-regime threshold model; (iii) Use the estimation method described in sub-

section (4.2) and the data (y∗,X) to estimate the i and l-regime threshold models to

obtain S∗i and S∗l , respectively, and compute F ∗il in a similar way as in equation (14);

(iv) Repeat the previous steps a large number of times to obtain successive draws

from F ∗il; (v) Compute the bootstrap p-value as the percentage of simulated samples

for which F ∗il is greater than the observed value for Fil. Although this procedure is

easy to implement and achieves a reasonable rate of convergence to the asymptotic
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distribution, it requires the assumption that the errors et are independent from the

past information Ft−1, which is considerably stronger than the martingale difference

sequence assumption.

If et is conditionally heteroskedastic the bootstrap procedure just described has

to be modified in order to obtain simulated times series with heteroskedastic errors.

Because the only difference in relation to the homoskedastic bootstrap lies in how

the errors are generated we relegate the details of this procedure to the appendix

(B).

4.4 Inference

We now turn to the topic of inference on the threshold model estimates. Chan (1993)

finds that the LS estimator of γ is T -consistent but has a non-standard limiting dis-

tribution which depends on a host of nuisance parameters5. Specifically, he showed

that the threshold estimator follows a compound Poisson process which is a function

of the marginal distribution and coefficients of the regressors. Thus, the asymptotic

theory developed by Chan (1993) does not yield a practical procedure for inference

on γ or for the computation of confidence intervals. Hansen proposed solution to

overcome this difficulty is to let the threshold effect tend to zero asymptotically,

in a similar fashion as in the change point literature6. Under this assumption the

threshold model simplifies to a linear model as the sample size increases. B. E.

Hansen (1997) and B. E. Hansen (2000) show that using this approach it is possible

to derive an asymptotic distribution for γ which is free from nuisance parameters

other than a scale parameter.

Consider a 2-regime threshold model. Under the auxiliary assumption that et

is iid N(0, σ2), we can test the hypothesis H0 : γ = γ0 using the likelihood ratio

statistic. Define this statistic as

LR(γ) = T
S(γ)− S(γ̂)

S(γ̂)
. (15)

5A generalization of this asymptotic theory to the m-regime model was provided by Li and Ling

(2012).
6See Picard (1985) and Bai (1997).
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We would reject H0 for large values of LR(γ). Note that S(γ̂) is evaluated at

all admissible values of γ during the estimation of the model. Therefore, the test

statistic LR(γ) is a by-product of estimation. B. E. Hansen (2000) shows that the

asymptotic distribution of the LR(γ) is given by

LR(γ)
d−→ η2 ξ , (16)

where ξ has a distribution function given by P (ξ ≤ x) = (1 − e−x/2)2 and η2 is a

nuisance parameter which depends upon the error variance and on moments of the

regressors. If the homoskedasticity assumption holds then η2 = 1 and the limiting

distribution of LR(γ) is non-standard and free from the nuisance parameter η2. If the

errors are conditionally heteroskedastic the scale parameter η2 has to be estimated.

Details on the estimation of η2 are relegated to the appendix (C).

This theory enables the computation of asymptotically valid confidence inter-

vals for γ. For this purpose, B. E. Hansen (2000) suggests inverting the LR(γ)

statistic. Let cξ(C) be the critical value for predefined confidence level C, then an

asymptotically valid confidence interval can be obtained as

Γ̂ = {γ : LR(γ) ≤ cξ(C)} . (17)

A practical method to visualize the confidence intervals is to plot the LR(γ) statistic

as a function of γ along with a line at the relevant critical value cξ(C). All values of

γ below cξ(C) are included in Γ̂. If the errors are believed to be heteroskedastic we

can construct valid confidence intervals by substituting the LR(γ) statistic in (17)

by a scaled likelihood statistic defined as LR(γ)∗ = LR(γ)/η̂2.

Finally, we discuss inference on the slope parameters. Note that the estimator

β̂(γ) depends on the threshold parameter. When γ is known it is possible to show

that
√
T (β̂(γ)− β)

d−→ N(0,Vβ) ,

where Vβ = (X ′(γ)X(γ))
−1X ′(γ)E(ee′)X(γ)(X

′
(γ)X(γ))

−1 is the asymptotic covari-

ance matrix under heteroskedasticity. Because the estimator γ̂ is super consistent,

B. E. Hansen (2000) argues that the parameter γ is not of first order asymptotic

importance to the distribution of β̂(γ). Therefore, valid confidence intervals may
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be constructed using the normal distribution as an approximation, even when the

threshold parameter is estimated.

5 Empirical Evidence

5.1 Data Description

To analyze the U.S. NKWPC we employ quarterly time series from the Federal Re-

serve Data (FRED) over the period 1964:Q1-2018:Q1. Wage inflation is based on

earnings data for production and non-supervisory workers while price inflation is

measured as the consumer price index, both variables are computed as four quarter

growth rates. The unemployment rate is calculated as a hundred times the ratio

between the number of unemployed and the civilian labour force. Finally, the nat-

ural unemployment rate corresponds to the Congressional Budget Office estimate.

We use the same variables (and the same data transformations) as in Donayre and

Panovska (2016) but we work with an extended sample which includes more observa-

tions on the recovery period following the ‘Great Recession’. Standard Dickey-Fuller

tests suggest that the considered time series are stationary. Wage inflation also seems

to be stationary if we allow for a level shift in the early 80s. In appendix (A) we

provide additional information regarding the variables employed in this work.

The NKWPC implies an inverse relationship between wage inflation and un-

employment. Thus, as a preliminary step to our analysis, we proceed to briefly

discuss if the data reflects this feature. Panel (a) of figure (1) plots wage infla-

tion and the unemployment rate over our sample period. Additionally, we display

a scatter plot in panel (b) of figure (1), where the observations are grouped ac-

cording to different periods of the American economy. We consider the following

time spans: 1965:Q1-1969:Q4 (60s), 1970:Q1-1981:Q4 (70s and early 80s), 1982:Q1-

2006:Q4 (‘Great Moderation’) and 2007:Q1-2018:Q1 (‘Great Recession’ onwards).

From this graphical analysis it is not easy to identify the negative relationship pre-

dicted by the NKWPC. In fact, the correlation coefficient between the two variables

over the entire sample is practically zero. Also, as noted by Gaĺı (2011), the relation-
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(a)

(b)

Figure 1: The (πwt , ut) relationship in the U.S. (1965:Q1-2018:Q1)

ship between wage inflation and the unemployment rate seems to be rather unstable

over time7. However, a closer look reveals that the data seems to be consistent with

the NKWPC during specific periods. The negative relationship is very pronounced

during the 1960s and, to a lesser extent, during the ‘Great Moderation’. It is worth

noting that a common feature between these two periods is the absence of very se-

vere recessions; in fact both periods are associated with solid economic expansions,

despite the mild recessions in 1991 and 2001. Conversely, the relationship between

the two variables is considerably different during the 1970s and early 1980s and in

7Evidence of instability in the context of a price Phillips curve is discussed in, for instance,

King et al. (1995) and Musso et al. (2007)
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the period following the ‘Great Recession’. In the former period, the U.S econ-

omy was marked by the event of stagflation which translates into simultaneous high

levels of wage inflation and unemployment. In fact, during this period of macroe-

conomic instability, the correlation between the two series (0.36) is positive, which

contradicts the predicted sign of the NKWPC introduced in section (2). Similarly,

there is also a mismatch between the data and the model predictions regarding the

‘Great Recession’ episode and the subsequent recovery period. The discrepancy lies

in the fact that, taking into account the sharp increase in unemployment after 2007,

inflation did not decrease as much as it would be expected if the data followed a

linear wage Phillips curve. In contrast to other severe recessions (most notably the

‘Great Depression’) the economy did not enter into a deflationary period, leading

the recent phenomenon to be labelled as the missing disinflation (see Doser et al.,

2017). Additionally, the recovery period following the ‘Great Recession’ also seems

to be at odds with the model predictions, given that the decrease of unemployment

towards pre-crisis levels did not generate on inflationary pressure on wages. This

observation suggests that the wage Phillips curve relationship became weaker dur-

ing this period. The assessment of the existence and strength of a NKWPC type

relationship has important implications to understand inflation dynamics and to the

conduct of monetary policy.

This preliminary graphical analysis provides additional support for the case of

nonlinearity, as it displays how the relationship between wage growth and unem-

ployment changed over different periods of the American economy. Indeed, the wage

Phillips curve appears to be rather unstable. Therefore, a model that aims to pro-

vide a good characterization of the data must be able to reproduce the changes in

the relationship between wage inflation and the unemployment rate over different

macroeconomic environments.

5.2 Specification Issues

We now turn to the estimation of the U.S. NKWPC. As discussed in section (2),

the linear version of the reduced form NKWPC represented in equation (5) depends
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on the assumption that cyclical unemployment follows a stationary AR(2) process.

An univariate analysis of this variable suggests that this assumption is reasonable

since an AR(2) model is sufficient to eliminate symptoms of residual autocorrelation.

Additionally, the estimates for the autoregressive parameters φ1 and φ2 are positive

and negative, respectively. This implies that the NKWPC predicts a negative sign

on current cyclical unemployment and a positive sign on its lag, since, as we can

see from equation (6), the signs of the NKWPC reduced form parameters ψ1 and

ψ2 only depend on the signs of φ1 and φ2.8

Given this preliminary note, and taking into account the evidence of nonlin-

earities in the (πwt , ut) relationship discussed in the last subsection, we now con-

sider the ability of a 2 and 3-regime threshold regression model to describe the

U.S. NKWPC. Using the 2-regime model representation in equation (8), and the 3-

regime representation in equation (9), we can write the NKWPC by setting yt = πwt

xt = (1 πpt−1ût ût−1)′ and βj = (αj ρj ψ0,j ψ1,j). At this point, it is important

to discuss some options adopted in our estimation procedure. To simplify the ex-

position, we use the 2-regime model results to present our choices. We begin by

discussing the selection of the threshold variable, qt. It is important to emphasize

that our regime switching regression approach is motivated by evidence that the

NKWPC varies across the different phases of the business cycle. Therefore, we re-

strict the set of admissible threshold variables, qt, to the current and lagged series

of unemployment (ut−d), cyclical unemployment (ût−d) and variations in unemploy-

ment (∆ut−d = ut−d−ut−d−1), which are often regarded as indicators of the state of

the business cycle. Also, we set d̂ = 3 to define the maximum value considered for

the delay parameter d. The results from the CLS grid-search indicate that the sum

of squared residuals function is minimized when ut is considered as the threshold

variable and therefore we set qt = ut in our empirical application.

This result seems to indicate that current labour market conditions have an

immediate effect on the prevailing NKWPC dynamics, as the regime switches are

8This implication of the NKWPC is consistent with the idea that wage inflation depends neg-

atively on the level and change of cyclical unemployment. See A. W. Phillips (1958), Blanchard

and Gaĺı (2007) and Blanchard and Gaĺı (2010).
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Table 1: Threshold estimates for the 2-regime NKWPC

Threshold Variable τ γ̂ 95% Confidence Interval SSR 2-Regimes

ut 0.15 7.63 [7.41; 7.75] 221.83

ut 0.1 8.18 [7.63; 8.28] 219.88

determined by a contemporaneous variable. If this is the case, it seems reasonable

to consider the possibility that πwt and ut are jointly determined and take into

account the endogeneity of qt when estimating the NKWPC. In contrast to our

result, Donayre and Panovska (2016) use a similar, but shorter, sample and conclude

that ut−1 is the optimal threshold variable. In any case, the selection of ut as the

threshold variable is not a novelty in the literature (see Kumar and Orrenius, 2016

and Donayre and Panovska, 2018), even though these studies devote little attention

to the robustness of their estimates to the possibility of an endogenous threshold

variable. Additionally, we also want to assess the sensibility of our results to the

potential endogeneity of the regressor ût, due to the fact that this variable is also

an indicator of the current level of labour market slack. For now, we proceed our

study assuming that both ut and ût are pre-determined and analyze the robustness

of our results when these variables are taken as endogenous in the next section.

Table (1) displays the CLS results for the 2-regime model. We report the estimated

threshold along with the respective 95% confidence intervals for different values of

the trimming parameter, τ , which determines the minimum number of observations

in each regime. The table reveals that the estimated threshold depends on the value

of τ . When τ = 0.15 we obtain γ̂ = 7.63 with a 95% confidence interval given by

Γ̂ = [7.41; 7.75]. However, it is possible to obtain a new global minimum for the

sum of squared residuals function by considering τ = 0.1. In this case, the threshold

estimate is γ̂ = 8.18 with Γ̂ = [7.63; 8.23]. Thus, the change in regime appears to

occur at high values of ut. In fact, the 90th percentile of ut is 8.29 which implies

that the estimate γ̂ = 8.18 almost reaches the maximum admissible value. Because

our sample size is moderate, we take a conservative approach and set τ = 0.15 in

our application to ensure a larger number of observations in the high unemployment
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Table 2: Tests for linearity and for the number of regimes

Test Statistic Homo. Bootstrap p-value Het. Bootstrap p-value

F12 42.68 0.00 0.00

F13 67.86 0.00 0.00

F23 20.97 0.01 0.01

regime.

An important conclusion from our discussion of the 2-regime model is that the

estimated threshold corresponds to a value close to the right end of the empiri-

cal distribution of ut. This, in turn, implies that ut seldom crosses the estimated

threshold, which can be interpreted as favourable evidence for a linear specification.

However, our threshold estimate is very accurate as reflected by the narrow confi-

dence interval for γ̂. The high and precise threshold estimate seems to indicate that

there is a significant change in wage inflation dynamics when the economy enters in

a period of severe recession. Therefore, the nonlinearities in the NKWPC appear to

justify the distinction of, at least, two different regimes.

In order to define the appropriate number of regimes, we report in table (2)

the F-statistics and respective bootstrapped p-values associated with the test pro-

cedure described in subsection (4.3). The estimated sampling distributions of the

F-statistics are reported in appendix (D). The statistics F12 and F13 refer to the test

of the linear model against the 2 and 3-regime model, respectively. To discriminate

between the two nonlinear models we use the statistic F23 to test for remaining non-

linearity in the 2-regime model. The linearity tests provide strong evidence for the

rejection of the linear model as the p-values for F12 and F13 are approximately zero.

Also, the p-values obtained for F23 clearly favor a 3-regime model. These results are

identical for both the homoskedastic and heteroskedastic versions of the bootstrap.

We arrive at the same conclusion as in Donayre and Panovska (2016) and, in fact,

our results for the F-statistics and respective p-values are very similar to those re-

ported in this study. Given these results, we present and discuss the results for the

3-regime NKWPC in the next section.

21



Figure 2: Estimated thresholds for the U.S. NKWPC (1965Q1:2018Q1)

5.3 Results

The estimated thresholds of the 3-regime NKWPC correspond to γ̂1 = 5.69 and

γ̂2 = 7.63. Figure (2) displays how the model splits the data into the different

regimes. Based on the threshold estimates, we can observe that wage inflation

dynamics are described by the first regime, which is active when ut ≤ 5.69, during

the most part of the 1965-1975 and 1994-2008 periods. We can think of this regime

as corresponding to prolonged economic expansions associated with reduced levels

of cyclical unemployment. It is also possible to conclude that this regime includes

most of the low and stable wage inflation periods, which justifies the inclusion of

the 1969-70 recession in the first regime, as the wage inflation was not yet at the

very high levels observed during most of the 1970s and early 1980s.

When unemployment lies in the boundary defined by ut ∈ (5.69; 7.63] the NKWPC

is described by the second regime. This regime can be associated with moderate

business cycle fluctuations. Lastly, deep recessions are included in the third regime.

In particular, this regime captures the most severe years of the early 1980 and 2008

recessions.

Confidence intervals for the estimated threshold are represented in figure (3),

where we plot the LR(γ) statistic profile along with the 95% critical value. As dis-
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(a) 1st Threshold γ̂1 (b) 2nd Threshold γ̂2

Figure 3: Likelihood ratio sequence in γ for the two thresholds

cussed in the previous subsection, we obtain a very precise estimate of the threshold

γ̂2 = 7.63 as reflected by the narrow confidence interval given by Γ̂γ̂2 = [7.41; 7.75].

On the other hand, the confidence interval for γ̂1 is Γ̂γ̂1 = [5.28; 6.29] which implies

a higher level of uncertainty regarding this estimate. In any case, this interval is

still not very wide and, since there is a significant distance between the upper limit

for γ̂1 and the lower limit for γ̂2, we interpret these estimates as consistent with the

conclusion that a 3-regime threshold model seems to be appropriate to model the

NKWPC.

Table (3) reports the estimation results for the 3-regime NKWPC. The diagnosis

of the model residuals using the Breusch-Pagan test provides significant evidence

for the rejection of homoskedastic errors. Additionally, standard autocorrelation

tests based on the Ljung-Box and LM statistics reveal that the 3-regime model

residuals show symptoms of autocorrelation. Therefore, we report HAC standard

errors in addition to heteroskedastic robust standard errors9. The intercept estimate

is similar across the first and second regimes, while in the third it rises to 3.60. The

coefficients associated with lagged price inflation πpt−1 suggest that price indexation

is economically relevant, especially in the second regime. It is also worth noting that

the standard errors of the coefficients associated with πpt−1 are remarkably small and

9HAC standard errors are estimated using a Bartlett Kernel and the Newey-West fixed band-

width method option in Eviews 10.
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Table 3: Estimation results for the 3-regime threshold model

Threshold Variable ut 1st Threshold 5.69 SSR 202.3

Trimming Parameter 0.15 2nd Threshold 7.63 Residual Variance 0.95

Regime 1 (ut ≤ 5.69) Regime 2 (5.69 < ut ≤ 7.63) Regime 3 (ut > 7.63)

Standard Errors Standard Errors Standard Errors

Variable Estimate HAC White Estimate HAC White Estimate HAC White

Constant 2.216 0.190 0.115 2.161 0.678 0.392 3.604 1.858 1.245

πpt−1 0.373 0.067 0.040 0.612 0.075 0.047 0.377 0.094 0.064

ût -0.709 0.647 0.483 -2.177 0.725 0.482 0.318 0.420 0.284

ût−1 -0.145 0.675 0.499 1.351 0.602 0.420 -0.710 0.327 0.249

Observations (% of total) 95 (44.6%) 83 (39%) 35 (16.4%)

Regime Variance 0.478 1.424 1.104

that this variable is statistically significant across all regimes.

In our analysis, we are most interested in the coefficients associated with cyclical

unemployment as they allow us to evaluate if the data supports the relationship

predicted by the NKWPC. Overall, the NKWPC predictions that cyclically unem-

ployment should exhibit a negative signal on its current value and a positive signal

on its lag does not hold in all regimes. Additionally, and in contrast to Donayre and

Panovska (2016), our results seem to indicate that the NKWPC is convex since the

sum of the coefficients associated with cyclical unemployment is decreasing as we

move from the first regime to the third.

In the first regime, associated with prolonged economic expansions, the coeffi-

cients associated with cyclical unemployment are both negative. Furthermore, none

of them is statistically significant for standard significance levels. In contrast, Don-

ayre and Panovska (2016) find a marginally significant coefficient on ût at the 10%

significance level. We can justify this difference by the fact that we estimate the first

regime parameters including the observations from the 2014-2018 period which, in

turn, seem to contribute to the conclusion of a weak relationship between wage infla-

tion and cyclical unemployment. This description of the first regime seems consistent

with the recent experience in the U.S. of weak wage growth and a simultaneous low

level of unemployment.

24



Figure 4: Fitted values for the U.S. wage inflation (1965Q1:2018:Q1)

The second regime results are consistent with the predictions of the NKWPC

as the estimates for the cyclical unemployment coefficients have the correct signals

and are statistically significant. Furthermore, cyclical unemployment appears to

have an important effect on wage growth as a percentage point increase in cyclical

unemployment results in a 2.18 percentage point decrease in wage inflation on im-

pact and 1.35 percentage point increase after one quarter. Our results suggest that

when unemployment is in an intermediate level there is a traditional Phillips curve

relationship between wage inflation and cyclical unemployment as the two variables

appear to be negatively related.

In the deep recessions regime, the NKWPC provides a poor description of the

data. In particular, the two coefficients associated with cyclical unemployment have

the incorrect sign. Additionally, only lagged cyclical unemployment is statistically

significant. Therefore, the relationship embodied in the NKWPC does not seem to

yield a practical monetary policy guide during severe economic depressions.

To further evaluate the ability of the 3-regime NKWPC to describe U.S. wage

inflation, figure (4) plots the model fitted values along with the observed wage infla-

tion. Also, the fitted values from the linear model are also displayed for comparison.

In general, the 3-regime NKWPC seems to provide a reasonable fit to the data as

it captures most of the general movement in wage inflation. On the other hand, the
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model estimates misses much of the high-frequency variation and fails to account

for the 1971-1972, 1976-1977 and ‘Great Recession’ periods. When compared to the

linear model, the fit of the 3-regime model is substantially better. In fact, the root

mean squared error of the 3-regime model is 13% inferior to the linear model, while

there is an improvement of 6% in the correlation between the actual and fitted series

of the 3-regime model in relation to the linear model.

From our analysis so far we can conclude that the NKWPC is significantly non-

linear and that a 3-regime threshold model can provide a reasonable characterization

for the behavior of wage inflation in the U.S. from 1965 to 2018. The model esti-

mates show that the relationship between wage inflation and cyclical unemployment

is consistent with the NKWPC in the second regime, which is active when the un-

employment rate is in an intermediate level. Therefore, the traditional negative

relationship between wage inflation and unemployment seems to hold only during

moderate business cycle fluctuations. On the other hand, the NKWPC seems to

break down in the first and third regimes, associated with deep recessions and pro-

longed expansions periods, respectively. As a result, and according to our model,

further reductions in the unemployment rate will not contribute to the recovery of

the wages from the sluggish growth observed since the ‘Great Recession’.

6 Endogeneity

6.1 Theoretical Motivation

In the previous section, we conducted our study assuming that both current unem-

ployment and cyclical unemployment were orthogonal to the error term. However,

contemporaneous variables that aim to capture the degree of labour market slack

are often regarded as endogenous in the literature10.

The case for endogeneity is motivated by the existence of a feedback effect be-

tween wage inflation and the level of economic activity. NK models derive the

10See chapter 7 of B̊ardsen et al. (2005), Malikane and Mokoka (2014), Piazza (2018), Ho and

Njindan Iyke (2018) and Albuquerque and Baumann (2017)
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interdependence between these two variables and typically treat them as a sys-

tem11. McLeay and Tenreyro (2018) provide further rationale for endogeneity by

analyzing a simple model where the monetary authorities take this relationship into

account when setting the optimal policy rule. By assuming that the inflation rate

is determined by a Phillips curve and that the policymaker can determine the level

of cyclical unemployment, the authors show that it is not possible to identify the

Phillips curve from the data, precisely because the central bank can offsets this re-

lationship. Intuitively, this lack of identification is the result of a simultaneity bias,

as the observed inflation rate is the equilibrium outcome between the central bank

policy rule and the Phillips curve.

Based on the conclusions of McLeay and Tenreyro (2018), we could argue that

the absence of evidence for NKWPC in the low and high unemployment regimes

reflects the increase in central bank efforts to counter inflationary or deflationary

pressures in the economy, which offsets the Phillips curve relationship. Thus, in order

to assess the robustness of our results, we now relax the orthogonality assumption

regarding the unemployment rate, which plays the role of threshold variable, and the

current cyclical unemployment rate. To accommodate this new set of assumptions

in the threshold regression model we need a different estimation and inference theory

from the one presented in section (5). In the next subsection we describe this new

framework.

6.2 The Structural Threshold Model

Endogeneity is an increasingly popular topic in the threshold regression literature.

An extension of the asymptotic framework of B. E. Hansen (2000) to the case of

endogenous regressors and an exogenous threshold variable is presented by Caner

and B. E. Hansen (2004). Kourtellos et al. (2016) developed a consistent estimator

and a distribution theory that allows for endogeneity in both the regressors and

the threshold variable. To address the endogeneity problem, these studies rely on

the utilization of instrumental variables, leading to the emergence of two stage least

11See, for instance, the basic 3 equation NK model presented in Gaĺı (2015).
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squares (2SLS) and general method of moments (GMM) estimators in the thresh-

old model literature. A nonparametric approach that does not require the use of

instrumental variables was introduced by Yu and P. C. Phillips (2018), which also

allows for endogeneity in both the regressors and threshold variable. However, the

application of this nonparametric estimator is restricted to iid data, in contrast with

Kourtellos et al. (2016) which allows for stationary and ergodic data. Additional

related literature includes Kapetanios (2010), who provides a procedure to test the

exogeneity of the regressors based on the bootstrap of a Hausman-type statistic,

and Dentler et al. (2014), who analyze the conditions under which the endogeneity

of an explanatory variable does not affect nonlinearity tests.

In our empirical application, we are interested in an estimator that addresses the

case of endogeneity in both the threshold variable and the regressors. Therefore, we

now provide a description of the Kourtellos et al. (2016) structural threshold model.

Intuitively, consistent estimation of the threshold is achieved by adding parametric

assumptions regarding the structural model. In fact, Kourtellos et al. (2016) relate

the problem of having an endogenous threshold variable to the problem of having an

endogenous sample selection variable, as in the limited dependent variable literature;

see Heckman (1979). The difference between the two frameworks, however, is that in

the sample selection model the assignment of observations into the different regimes

is observed (this is, the threshold is known) but the sample selection (or threshold)

variable is taken as latent, where in threshold models it is not possible to known

with certainty which observations belong to each regime (that is, the threshold is

unknown) and the threshold variable is observable. Once again, consider the 2-

regime threshold model studied by B. E. Hansen (2000) augmented by a reduced

form equation for qt and for xt

yt = x′tβ1I(qt ≤ γ) + x′tβ2I(qt > γ) + et ,

qt = z′tδq + vqt ,

xt = z′tδx + vxt ,

where zt = (zt1, zt2, ..., ztp)
′ is a 1 × p vector of exogenous explanatory variables

and xt = (xt1, xt2, ..., xtk)
′, such that p ≥ k. The reduced form errors vqt and vxt are
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martingale difference sequences and therefore E(vqt|Ft−1) = 0 and E(vxt|Ft−1) = 0.

We denote the conditional expectation for xt by gt = E(xt|Ft−1) = z′tδx. We

are interested in the case where qt is endogenous and therefore we assume that

E(et|Ft−1, vqt) 6= 0. As shown by Yu (2013), the CLS estimation method of B. E.

Hansen (2000) is inconsistent in this setting. Additionally, Yu (2013) demonstrates

that a ‘näıve’ 2SLS procedure, where qt is substituted by the adjusted values q̂t =

z′tδ̂q in the CLS grid-search, also fails to produce consistent estimates. Intuitively,

the inconsistency of these two estimators is caused by the fact that the endogeneity

bias is not taken into account in the CLS objective function. In order to achieve

consistency, Kourtellos et al. (2016) adds a set of parametric assumptions regarding

the (et, vqt) relationship to derive the bias correction terms. The assumptions are

the following

A.1. E(et|Ft−1, vqt) = E(et|vqt); A.2. E(et|vqt) = κvqt; A.3. vqt ∼ N(0, 1) .

The first assumption establishes conditional mean independence of et from the infor-

mation set Ft−1. Assumption A.2. implies a linear relationship between E(et|vqt)

and vqt. Lastly, A.3. assumes that the reduced form error vqt follows a normal

distribution. Using these assumptions it can be shown that

E(et|Ft−1, vqt ≤ γ − z′tδq) = κλ1t(γ − z′tδq) , (18)

E(et|Ft−1, vqt > γ − z′tδq) = κλ2t(γ − z′tδq) , (19)

where λ1t(γ−z′tδq) = − φ(γ−z′tδq)

Φ(γ−z′tδq)
and λ2t(γ−z′tδq) =

φ(γ−z′tδq)

1−Φ(γ−z′tδq)
denote the inverse

Mills ratios terms. The parameter κ corresponds to the covariance between et and

vqt and the functions φ(.) and Φ(.) are the normal pdf and cdf, respectively. We

can write the inverse Mills ratio terms in a single equation by using the following

definition

Λt(γ) = λ1t(γ − z′tδq) I(qt ≤ γ) + λ2t(γ − z′tδq) I(qt > γ) , (20)

which allows us to write the structural threshold regression model, with endogenous

threshold and slope variables, as

yt = g′tβ1I(qt ≤ γ) + g′tβ2I(qt > γ) + κΛt(γ) + εt , (21)
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where εt = et−κΛt(γ). It is possible to see how this model nests different variations

of the threshold regression model. If κ = 0, we get the threshold model studied by

Caner and B. E. Hansen (2004). If xt = zt the model corresponds to the one studied

in Seo and Linton (2007), in which qt is a linear function of observed variables.

Additionally, if the slope variables are exogenous and qt corresponds to a single

variable we have the threshold model of B. E. Hansen (2000).

Three steps are required to estimate the model. First, estimate the reduced form

regression for xt and qt by LS to obtain δ̂x and δ̂q, in order to set ĝt = z′tδ̂x and

Λ̂t(γ) = λ1t(γ − z′tδ̂q) I(qt ≤ γ) + λ2t(γ − z′tδ̂q) I(qt > γ). Second, perform a CLS

grid-search to obtain the conditional estimates for the slope parameters β̂1(γ), β̂2(γ)

and κ̂(γ). Then, we can estimate γ by minimizing the SSR function as

γ̂ = argmin
γ

T∑
t=1

(yt − ĝ′tβ̂1(γ)I(qt ≤ γ)− ĝ′tβ̂2(γ)I(qt > γ)− κ̂(γ)Λ̂t(γ))2 . (22)

Finally, split the observations into different regimes according to γ̂ and obtain the

estimates for the slope parameters β and κ by LS or GMM. Assuming that both

the threshold effect, β1 − β2, and the endogeneity bias, κ, tend to zero, Kourtellos

et al. (2016) shows that inference and construction of confidence intervals is similar

to the case of an exogenous threshold variable.

The estimation of the 3-regime model can be done using the following proce-

dure12. We begin by estimating a 2-regime model using the complete sample in

order to obtain the initial threshold estimate, γ̂1, that allows us to split the data

into two subsamples. Then, by imposing that one element of γ = (γ1, γ2) equals

γ̂, say γ1 = γ̂1, we proceed to estimate a 2-regime model for the subsample where

the null of linearity is rejected, which yields the second-stage threshold estimate,

γ̂2. It can be shown, that this method yields consistent estimates for γ = (γ1, γ2).

By iterating this method at least once, this is, by imposing that one element of

γ = (γ1, γ2) equals γ̂2 in order to obtain a refined estimate γ̂1, the threshold esti-

mates can be made asymptotically efficient, in the sense that they have the same

12This method was developed by Bai (1997) and Bai and Perron (1998) in the context of change-

point models. For an application of this procedure to the case of a SETAR model see B. E. Hansen

(1999).
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asymptotic distribution as those obtained by joint minimization of the CLS criteria

with respect to the pair (γ1, γ2). Given the final estimate γ̂ = (γ̂1, γ̂2), slope variable

estimates can be obtained by LS or GMM on each subsample.

6.3 Robustness of the NKWPC Estimates to Endogeneity

In this subsection, we examine the sensibility of the NKWPC estimates when poten-

tial endogeneity of ut and ût, is taken into account. We consider three different cases:

i) endogenous threshold variable only; ii) endogenous regressor only; iii) endogenous

threshold variable and regressor. In order to accommodate these assumptions, we

use the estimator developed by Kourtellos et al. (2016), which relies on the use of

instrumental variables.

To select the appropriate instruments, we resort to the strategies typically used

in studies of the Phillips curve. The first strategy we explore is the use of lags

of endogenous variables as instruments. As noted by Albuquerque and Baumann

(2017), this seems to be a common strategy when accounting for endogeneity since

it is both intuitive and simple to implement. In fact, McLeay and Tenreyro (2018)

argue that in order to commit to a certain optimal policy rule, monetary authorities

have to consider the future development of labour market slack, thus generating a

correlation between unemployment and its lags. This information can, therefore, be

accounted in the estimation of the model.

We also consider as instruments the set of variables used in the linear NK Phillips

curve literature13. A common practice in this literature is to directly estimate the

structural equation of the NK Phillips curve using GMM to account for endogeneity

in both the slack variable and in the expected inflation term. The basis of this

approach relies on the assumption of rational expectations, which implies that the

error term should be orthogonal to variables dated t − 1 and earlier. The set of

instrumental variables in these studies typically includes lags of the labour share,

output gap, long-short interest rate spread and commodities price inflation.

13Some very influential articles in this field are for instance Gaĺı and Gertler (1999) and Gaĺı,

Gertler, and Lopez-Salido (2001); for a critical review of these studies see Rudd and Whelan (2007).
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To evaluate the validity of the instruments, we resort to the procedure presented

by L. Hansen (1982) and test subsets of the orthogonality conditions. Given that

there is no distribution theory to conduct these tests in the context of threshold

models we assess the validity of the instruments in the linear setting. This simpli-

fying approach allows us to obtain a certain degree of confidence in the instruments

used for the regressor ût. However, by performing the tests in the linear setting, we

can not directly assess the validity of the instruments employed for the threshold

variable ut. Notwithstanding, if a subset of instruments seems to be valid for ût we

consider it to be equally valid to instrument ut. In appendix (E) we present the lists

of instruments employed in estimation and report the results from these tests, which

seem to indicate that all the considered instrumental variables are appropriate.

In table (4) we report the estimation results when we allow for endogeneity in

the NKWPC. The slope parameters are estimated by GMM for all the presented

exercises and the standard errors estimates are corrected for autocorrelation. Next to

the threshold estimates we report the 95% confidence interval in brackets. The first

main remark is that the estimated thresholds are very similar to those obtained in

the previous section. In fact, we obtain an estimate of γ̂2 = 7.63 in all but one of the

reported exercises. The estimate γ̂1 is more sensible to the set of adopted hypothesis

and instruments, which is expectable given the higher variability associated with the

estimation of this threshold as reflected by panel (a) of figure (3). It is worth noting

that when we consider an endogenous threshold variable, the estimate for γ̂1 is

slightly larger. However, this small increase leads to a substantial reduction in the

number of observations in the second regime, when we compare with the results

of section (5). In general, the confidence intervals are similar to those of the last

section. The exception is when both the threshold variable ut and the regressor ût

are taken as endogenous, in which case the confidence interval for γ1 is considerably

wider. Even though the confidence intervals for the thresholds overlap, the distance

between the point estimates seems sufficient to support a 3-regime model.

We now turn to the evaluation of the NKWPC predictions for the coefficients

related to cyclical unemployment. The qualitative implications of the estimates ob-
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Table 4: Structural threshold regression estimates of the NKWPC

Endogenous threshold variable only: ut

Instrument set 1 Instrument set 2

1st Threshold, γ̂1= 6.1 [5.54; 6.32] 1st Threshold, γ̂1= 6.1 [5.55; 6.2]

2nd Threshold, γ̂2= 7.63 [7.47; 7.75] 2nd Threshold, γ̂2= 7.63 [7.42; 7.75]

Variable Regime 1

(ut ≤ 6.1)

Regime 2

(6.1 < ut ≤ 7.63)

Regime 3

(ut > 7.63)

Regime 1

(ut ≤ 6, 1)

Regime 2

(6.1 < ut ≤ 7.63)

Regime 3

(ut > 7, 63)

Constant 1.483 2.108 5.098 1.632 1.805 5.431

(0.186) (0.625) (1.200) (0.165) (0.520) (0.836)

πpt−1 0.445 0.700 0.342 0.404 0.683 0.346

(0.040) (0.046) (0.057) (0.035) (0.040) (0.035)

ût -0.907 -2.881 -0.048 -1.122 -2.652 -0.116

(0.338) (0.659) (0.249) (0.292) (0.527) (0.235)

ût−1 -0.155 2.290 -0.612 0.005 2.153 -0.645

(0.311) (0.532) (0.2) (0.28) (0.422) (0.165)

Observations 130 48 35 130 48 35

Endogenous regressor only: ût

Instrument set 1 Instrument set 2

1st Threshold, γ̂1= 5.61 [5.48; 5.99] 1st Threshold, γ̂1= 5.72 [5.48; 6.95]

2nd Threshold, γ̂2= 7.75 [7.42; 7.75] 2nd Threshold, γ̂2= 7.63 [7.39; 7.75]

Variable Regime 1

(ut ≤ 5.61)

Regime 2

(5.61 < ut ≤ 7.75)

Regime 3

(ut > 7.75)

Regime 1

(ut ≤ 5.72)

Regime 2

(5.72 < ut ≤ 7.63)

Regime 3

(ut > 7.63)

Constant 2.271 2.060 3.157 2.301 2.054 3.327

(0.123) (0.362) (1.283) (0.115) (0.342) (0.845)

πpt−1 0.362 0.650 0.393 0.367 0.594 0.399

(0.043) (0.043) (0.06) (0.038) (0.041) (0.041)

ût 0.070 -2.82 0.921 -0.006 -1.465 0.262

(0.551) (0.773) (0.408) (0.468) (0.531) (0.324)

ût−1 -0.909 1.995 -1.202 -0.868 0.823 -0.587

(0.556) (0.666) (0.339) (0.468) (0.469) (0.213)

Observations 96 85 32 107 71 35

Endogenous threshold variable and regressor: ut and ût

Instrument set 1 Instrument set 2

1st Threshold, γ̂1= 5.61 [5.48; 6.2] 1st Threshold, γ̂1= 6.15 [5.56; 6.32]

2nd Threshold, γ̂2= 7.63 [6.02; 7.75] 2nd Threshold, γ̂2= 7.63 [6.02; 7.75]

Variable Regime 1

(ut ≤ 5.61)

Regime 2

(5.61 < ut ≤ 7.63)

Regime 3

(ut > 7.63)

Regime 1

(ut ≤ 6.15)

Regime 2

(6.15 < ut ≤ 7.63)

Regime 3

(ut > 7.63)

Constant 2.252 2.065 6.154 1.77 1.704 5.981

(0.206) (0.565) (1.341) (0.157) (0.556) (1.030)

πpt−1 0.314 0.649 0.293 0.360 0.691 0.302

(0.054) (0.050) (0.064) (0.041) (0.040) (0.042)

ût 0.196 -2.461 -0.028 -0.366 -2.573 0.236

(0.480) (0.710) (0.300) (0.414) (0.508) (0.246)

ût−1 -1.145 1.564 -0.867 -0.742 2.153 -1.090

(0.532) (0.637) (0.263) (0.422) (0.487) (0.186)

Observations 96 82 35 132 46 35
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tained for regime 1 and 3 are similar to those described in section (5). In particular,

the coefficients associated with cyclical unemployment have the wrong sign or are

not significant. In contrast, examination of the second regime results shows that the

coefficients of ût and ût−1 are both significant and have the sign predicted by the

NKWPC, negative on the contemporaneous variable and positive on the lag. In this

regime, the instrument set 1 yields a larger estimate for the slope of the NKWPC,

in comparison to the instrument set 2.

When we consider endogeneity in ût only, our results indicate that a percentage

point increase in cyclical unemployment has a total effect in wage inflation similar

to that obtained in section (5), even though the individual estimates for the cyclical

unemployment coefficients are substantially lower when we employ the instrument

set 2 in estimation. On the other hand, endogeneity in the threshold variable seems

to have an important impact given that, in this setting, the total effect of cyclical

unemployment in wage inflation is considerably smaller. When both ût and ut

are endogenous the estimate for the slope of the NKWPC is more volatile to the

set of instruments used. However, we tend to favor the results obtained with the

instrument set 2, given that it incorporates more (seemingly valid) orthogonality

conditions in estimation, which also suggests a higher estimate for γ1 and a smaller

effect of cyclical unemployment on wage inflation.

Overall, the uncertainty regarding the slope of the NKWPC in the second regime

seems to be closely related to the estimate of γ1, considering that small variations in

this threshold generate large differences in the number of observations in the second

regime. Endogeneity of the regressor ût does not seem to change the results of the

last section. However, when we consider endogeneity in the threshold variable ut the

slope of the NKWPC seems to be smaller. Additionally, the substantial reduction

in the number of observations in the second regime suggests that a 2-regime model

might be sufficient to account for the variability in the U.S. wage inflation. There-

fore, testing for the number of regimes in the context of the framework developed by

Kourtellos et al. (2016) would certainly be an useful additional step in this study.
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7 Conclusions

In this work we analyzed the NKWPC for the U.S. wage inflation over the 1965-2018

period. We provide evidence that this relationship is nonlinear and well described

by a 3-regime threshold model, where the optimal threshold variable is given by the

contemporaneous unemployment rate. The relationship implied by the NKWPC

varies whenever unemployment crosses the estimated thresholds of 5.69% and 7.63%,

which splits the observations into 3 regimes: deep recessions, moderate business cy-

cle fluctuations and prolonged expansions. Our analysis shows that the negative

relationship between wage inflation and unemployment predicted by the NKWPC

is only observable in the second regime, while in the first and third regimes the

NKWPC seems to break down. These results seem to indicate that further reduc-

tions in the U.S. unemployment rate by itself will not generate an acceleration in

wage growth.

We also check for the robustness of our estimates to endogeneity in the context

of the 3-regime threshold model by incorporating the parametric bias correcting

term proposed by Kourtellos et al. (2016). We argue that, accounting for possible

endogeneity in the regressors does not yield significant differences in our baseline

results. However, when the threshold variable is treated as endogenous, we obtain a

higher estimate for the threshold that separates the low and intermediate unemploy-

ment regimes. As a consequence, the number of observations in the second regime

is significantly lower and the estimate for the slope of the NKWPC is smaller.

Useful topics for future research related to the study threshold effects in the

NKWPC would be to test for the number of regimes when accounting for an en-

dogenous threshold variable and to test for endogeneity of the regressors and the

threshold variable. Additionally, it would be interesting to assess different, more dy-

namic, specifications of the NKWPC that would contribute to eliminate the residual

autocorrelation. Finally, the assessment of the ability of different measures of the

labour market slack to account for the variation in wage inflation in the context of

a threshold model would also be an useful and current line of investigation.
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Appendix

A Variables Description

Table 5: Descriptive statistics

Variable Average Min Max St. Deviation Description

Wage inflation 4,30 1,38 9,20 1,97 4-quarter growth rate of the earnings for produc-

tion and non-supervisory workers.

Price inflation 4,17 -1,61 14,43 2,86 4-quarter growth rate of the consumer price in-

dex.

Unemployment rate 6,13 3,39 10,67 1,65 Ratio between the number of unemployed and

the civilian labour force.

Natural rate of un-

employment

5,63 5,00 6,27 0,45 Rate of unemployment consistent with the ab-

sence of cyclical fluctuations in aggregate de-

mand.

Labour Share 61,20 55,97 65,32 2,27 Percentage of the economic product that reverts

to workers.

Output gap 0,16 -8,51 6,63 3,17 Computed applying the procedure recom-

mended in Hamilton (2017) to the series of real

GDP.

Commodities price

inflation

3,59 -13,27 22,40 5,22 4-year growth rate of the commodities price in-

dex.

Interest rate spread 1,07 -4,13 3,71 1,67 Computed as the difference between 10 years US

government bond yields and the federal funds

rate.

B Heteroskedastic Bootstrap

To approximate the sampling distribution of the test statistic (12) under the hypoth-

esis of heteroskedasticity, bootstrap the data as described in section (4.3), but we

now set ê∗ = σ̂∗ � ε̃∗ (where � denotes the Hadamard product) in order to obtain

simulated time series with heteroskedastic errors. In our application, we will follow

B. E. Hansen (1999) and assume that the conditional variance σ2 is a linear function

of the squared regressors, which we define as Z = X �X. Thus, let σ2 = Z
′
α



and e2 = Z
′
α+υ with E(υ|Ft−1) = 0 so that α̂ can be obtained by regressing the

squared LS residuals on Z. The fitted values σ̂2 = Z
′
α̂ are then used to compute

the rescaled residuals ε̃ = ê/σ̂ from the i-regime threshold model. To generate

ε̃∗ we make independent draws (with replacement) from the empirical distribution

of ε̃, which in turn, enables the computation of ẽ∗. Naturally, the validity of the

bootstrap depends upon the specification of the conditional variance. Consequently,

the simplifying premise that the bootstrap results are not overly sensitive to the

adopted model must inevitably complement this approach.

C Estimation of the Nuisance Parameter η2

As discussed in subsection (4.4), the LR(γ) statistic can be used to test hypothesis

H0 : γ = γ0. B. E. Hansen (2000) shows that, when the errors are heteroskedas-

tic, the asymptotic distribution of this statistic depends on the nuisance param-

eter η2, which therefore must be estimated. Define r1t = [(β1 − β2)′xt]
2(e2

t/σ
2)

and r2t = [(β1 − β2)′xt]
2, as well as the corresponding sample counterparts r̂1t =

[(β̂1 − β̂1)′xt]
2(ê2

t/σ̂
2) and r̂2t = [(β̂1 − β̂2)′xt]

2. Then, define the following ratio of

conditional expectations

η2 =
E(r1t |qt = γ0)

E(r2t |qt = γ0)
.

B. E. Hansen (2000) proposes a polynomial regression in qt or a kernel regression to

estimate η2. For j=1 and 2, a quadratic polynomial regression can be obtained by

estimating the following LS regressions

r̂tj = µ̂j0 + µ̂j1qt + µ̂j2q
2
t + %̂jt .

Then the estimate η̂2 is obtained as

η̂2 =
µ̂10 + µ̂11γ̂ + µ̂12γ̂

2

µ̂20 + µ̂21γ̂ + µ̂22γ̂2
.

Alternatively, we can use the Nadaraya-Watson kernel estimator

η̂2 =

∑T
t=1Kh(γ̂ − qt)r̂1t∑T
t=1Kh(γ̂ − qt)r̂2t

.
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For a selected bandwidth h, we can compute Kh(u) = h−1K(u/h) where K(u) is,

for instance, the Epanechnikov kernel.

D Estimated Sampling Distributions for F12, F13

and F23

In the following figures we display the estimated densities of the bootstrap distri-

bution for the test statistics employed in the present work. These estimates were

computed using an Epanechnikov kernel.
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E Testing for the Validity of the Instrumental

Variables

To evaluate the validity of the set of instrumental variables employed in the empirical

work, we estimate a linear version of the NKWPC by GMM where ût is treated as

an endogenous regressor, and test the validity of subsets of orthogonality conditions

using the procedure described by L. Hansen (1982). We perform these tests using

two different instruments sets:

• instrument set 1 includes a constant, 2 lags of price inflation, 3 lags of unem-

ployment and 3 lags of cyclical unemployment;

• instrument set 2 includes a constant, 2 lags of price inflation, 3 lags of unem-

ployment, 3 lags of cyclical unemployment, 2 lags of the output gap, 2 lags of

the labour share, 2 lags of the interest rate spread, 2 lags of commodities price

inflation

The underlying strategy of instrument set 1 is to employ lags of the endogenous

variables as instruments. Given that we consider endogeneity of both cyclical unem-

ployment and unemployment, we add lags of both these variables to instrument set

1 when we test for the validity of the orthogonality conditions in the linear setting.
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However, it is important to note that the variables employed in the instrument set

1 to obtain the results reported in table (4) are different across the adopted set

of assumptions regarding the NKWPC. When only the regressor ût is endogenous

we exclude the 3 lags of unemployment from the instrument set 1. On the other

hand, when only ut is considered as endogenous we exclude the 3 lags of cyclical

unemployment. We only use 3 lags of unemployment and of cyclical unemployment

simultaneously in the case where both the regressor ût and the threshold variables

ut are treated as endogenous.

None of the results reported in table (6) provides evidence for the rejection of the

null hypothesis and, therefore, all the variables are considered as valid instruments.

Table 6: Testing subsets of the orthogonality conditions

Instrument set 1

Valid instruments under the null hypothesis Difference in J-stats p-value

3 lags of unemployment 4.305 0.366

3 lags of cyclical unemployment 5.157 0.272

2 lag of price inflation 2.499 0.287

Instrument set 2

Valid instruments under the null hypothesis Difference in J-stats p-value

3 lags of unemployment 5.386 0.146

3 lags of cyclical unemployment 5.304 0.151

2 lags of the output gap 1.400 0.497

2 lags of the labour share 2.456 0.293

2 lags of the interest rate spread 1.098 0.578

2 lags of commodities price inflation 5.092 0.078

2 lag of price inflation 3.607 0.165
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