

MESTRADOCIÊNCIAS ATUARIAIS

TRABALHO FINAL DE MESTRADO

DISSERTAÇÃO

ESTUDO DA HOMOGENEIDADE NAS TAXAS DE MORTALIDADE DA POPULAÇÃO PORTUGUESA

RUTE MARISA LOPES FERREIRA

OUTUBRO 2015

MESTRADO EMCIÊNCIAS ATUARIAIS

TRABALHO FINAL DE MESTRADO

DISSERTAÇÃO

ESTUDO DA HOMOGENEIDADE NAS TAXAS DE MORTALIDADE DA POPULAÇÃO PORTUGUESA

RUTE MARISA LOPES FERREIRA

ORIENTAÇÃO:

PROF. ONOFRE ALVES SIMÕES

OUTUBRO 2015

Agradecimentos

Gostaria de agradecer ao meu orientador, Professor Onofre Simões, pelo apoio, disponibilidade e conselhos dados ao longo de toda esta dissertação.

À Dr.^a Carmen Oliveira pelo tempo que disponibilizou para a realização deste trabalho e pelas sugestões e ideias partilhadas.

Também não podia deixar de agradecer à minha mãe, por todo o apoio, incentivo e carinho.

Ao meu namorado pela ajuda, paciência e encorajamento nesta etapa.

E por fim um obrigada aos meus amigos pela compreensão e apoio que me deram, com especial agradecimento à Mariana Baptista, Cláudia Conceição e João Sequeira.

Resumo

Com o aumento na esperança média de vida, a existência dos indivíduos está sujeita durante mais tempo a um conjunto variado de fatores, o que se traduz em efeitos visíveis nas estruturas das populações. Assim, nas últimas décadas, tem sido dada uma maior atenção à análise das diferenças existentes dentro das populações, ou seja, à maior ou menor heterogeneidade que as caracteriza.

A consideração da heterogeneidade mostra-se particularmente importante na seleção dos modelos de mortalidade mais ajustados para fins atuariais. Em particular, o seu impacto pode ser muito significativo no cálculo do valor das rendas dependentes da vida humana que, pelo papel central que desempenham, requerem modelos tão aproximados da realidade quanto possível.

Recentemente, (Su & Sherris, 2012) analisaram a heterogeneidade na população australiana. Recorreram, para tal, à noção de fragilidade e a diferentes modelos que a literatura anterior recomenda como adequados neste âmbito.

Com base no trabalho dos dois autores, procura-se na presente dissertação aplicar a mesma metodologia à população portuguesa, numa tentativa de detetar os efeitos no comportamento da mortalidade no nosso país resultantes da eventual existência de heterogeneidade. Neste contexto são aplicados os modelos de fragilidade, associados à função Gama e à função Inversa Gaussiana. Para finalizar, e também à semelhança de (Su & Sherris, 2012), procura aferir-se a significância desses efeitos no cálculo dos valores das rendas dependentes da duração da vida humana, em Portugal.

Palavras-Chave: Heterogeneidade, Homogeneidade, Modelos de Fragilidade, Função Gama, Função Inversa Gaussiana, Tábuas de Mortalidade, Portugal.

Abstract

With the increase of the average life expectancy, a person's existence is subject for longer to a diversified set of factors that translates in visible effects on the structures of populations. Thus, in the last decades, it has been given an increased relevance to the analyses of the differences within the populations, if they are more or less heterogeneous.

The consideration of heterogeneity shows to be important in the selection of the mortality models more adjusted for actuarial purposes. In particular its impact can be very significant in the calculus of life annuities, that, because of the main role they play, they require models as approximated to reality as possible.

Recently (Su & Sherris, 2012) analysed the heterogeneity of the Australian population. They have fallen back upon the notion of frailty and different models that the previous literature recommends as appropriate in this field.

Using as base the work of the two authors, the goal of this dissertation is to apply the same methodology to the Portuguese population, in an attempt to detect the effects in the behavior of mortality in our country resulting from an eventual existence of heterogeneity. In this context are applied the frailty models associated with the Gamma function and the Inverse Gaussian function. As a final remark, as stated in (Su & Sherris, 2012), it aims at gauging the significance of those effects in the calculus of the values of life annuities in Portugal.

Key-Words: Heterogeneity, Homogeneity, Frailty Models, Gamma Function, Inverse Gaussian Function, Mortality Tables, Portugal.

Índice

1	In	itro	lução	1
2	Co	once	itos Básicos	5
	2.1	Fui	ıção de Sobrevivência	5
	2.2	Esp	oerança de Vida Completa	6
	2.3	Foi	ça de Mortalidade	6
	2.4 Tál		ábuas de Mortalidade	
	2.5	Tax	xa Central de Mortalidade	8
	2.6	Lei	s de Mortalidade	9
3	Fı	ragil	idade	10
	3.1	Fra	gilidade e Mortalidade	10
	3.2	Mo	delos de Fragilidade	11
	3.	2.1	Modelo Gama	12
	3.2.2		Modelo Inversa Gaussiana	13
	3.3 Met		todologia de Estimação	14
	3.3.1		Modelo Gama	15
	3.3.2		Modelo Inversa Gaussiana	16
4	Aplicação à População Portuguesa			
	4.1 Dad		dos	18
	4.2	Foi	ça de Mortalidade	20
	4.2.1		Estimação dos Parâmetros	20
	4.	2.2	Previsão da Força de Mortalidade Futura	22
	4.3	An	álise da Heterogeneidade	23
5	Aplicação Atuarial			
	5.1 Valor Atuarial de uma Pensão à Idade de Reforma		28	
	5.2 População em Geral, Tábua Convencional vs. Tábua Heterogénea		30	
	5.3 Fundos de Pensões, Tábua Convencional vs. Tábua Heterogénea		31	
	5.4	Seg	guros de Vida, Tábua Convencional vs. Tábua Heterogénea	32
6	Co	oncl	usão	33
Bi	bliog	rafi	a	35

Anexo	S	37
A.	Base de Dados	37
В.	Tábua de Mortalidade com Heterogeneidade	41
C.	Tábua Portuguesa	44
D.	Tábua TV88/90	47
E.	Tábua GRF95	48

Índice de Figuras

Figura 2.1 Linha do tempo para $_tq_x$	7
Figura 4.1 Probabilidades de morte observadas para as gerações de 1950 e	
Figura 4.2 Força de mortalidade observada para cada género comparando os em estudo	
Figura 4.3 Média da força de mortalidade estimada versus força de mortalio observada	
Figura 4.4 Previsão da força de mortalidade futura, (mulheres)	22
Figura 4.5 Previsão da força de mortalidade futura, (homens)	23
Figura 4.6 Distribuição da fragilidade nas diferentes idades	24
Figura 4.7 Probabilidades de morte com diferentes fragilidades	27

Índice de Tabelas

Tabela 4.1 Parâmetros estimados para os modelos de fragilidade20
Tabela 4.2 Média estimada da fragilidade ao longo dos anos25
Tabela 4.3 Desvio padrão estimado da fragilidade ao longo dos anos25
Tabela 5.1 \ddot{a}_{65} para as várias fragilidades29
Tabela 5.2 \ddot{a}_{65} para as tábuas portuguesas30
Tabela A.1 Tábua geracional portuguesa de 1950, referente ao número de expostos ao risco
Tabela A.2 Tábua geracional portuguesa de 1950, referente à taxa central de mortalidade38
Tabela A.3 Tábua geracional portuguesa de 1960, referente ao número de expostos ao risco39
Tabela A.4 Tábua geracional portuguesa de 1960, referente à taxa central de mortalidade40
Tabela B.1 q_x e l_x (mulheres) para o ano do 1950, com inclusão de heterogeneidade41
Tabela B.2 q_x e l_x (homens) para o ano do 1950, com inclusão de heterogeneidade42
Tabela B.3 q_x e l_x da população total nascida em 1950, com inclusão de heterogeneidade43
Tabela C.1 Número de sobreviventes da tábua portuguesa 2011-2013, (mulheres)
Tabela C.2 Número de sobreviventes da tábua portuguesa 2011-2013, (homens)
Tabela C.3 Número de sobreviventes da tábua portuguesa 2011-2013, para a população total
Tabela D.1 Número de sobreviventes em cada idade da tábua TV88/9047
Tabela E.1 Número de sobreviventes em cada idade da tábua GRF9548

1 Introdução

O estudo da mortalidade e do seu comportamento, numa dada população, tem um papel importante em diversas áreas, nomeadamente, o atuariado, a medicina, a demografia, a economia, a biologia, entre outras. Um dos fatores que pode explicar o comportamento da mortalidade é a heterogeneidade. Segundo (Hougaard, 1982) a heterogeneidade é uma medida não observada, chamada neste contexto, de "fragilidade", sendo por vezes considerada uma variável qualitativa. Em estudos citados posteriormente são consideradas outras medidas para a heterogeneidade.

A heterogeneidade baseia-se no facto de que os indivíduos de uma população diferem em "robustez" uns dos outros, existindo indivíduos com maior fragilidade. Esta característica, que cada indivíduo adquire ao longo da vida, pode estar relacionada com um acumular de diversos fatores que determinam a "fragilidade" de cada um, influenciando assim a sua probabilidade de morte. Tendo em conta a seleção natural dos indivíduos, os mais frágeis tendem a falecer primeiro, (Vaupel, Manton, & Stallard, 1979). Desta forma, numa população heterogénea o comportamento da mortalidade difere de indivíduo para indivíduo.

Em oposição à heterogeneidade há naturalmente o conceito de homogeneidade, em que se assume que toda a população segue um comportamento de mortalidade semelhante para uma determinada idade, sem diferenças significativas nas taxas de mortalidade para cada indivíduo, ver (Wienke, 2010).

A heterogeneidade das populações não é considerada de forma explícita nas taxas de mortalidade habituais, ou seja, não se tem em conta a diversificação da população, considera-se esta como um todo ao longo de cada idade. Desta forma, nas tábuas de mortalidade convencionais assume-se, para a população em estudo, o pressuposto de homogeneidade, o que pode não ser verdade. Em particular, pode não ser o pressuposto mais correto para a população portuguesa.

A literatura disponível no âmbito deste trabalho, concretamente na abordagem à análise da heterogeneidade das populações, recorrendo aos modelos de fragilidade, é relativamente recente. O estudo da heterogeneidade nas taxas de mortalidade das populações adquiriu mais impacto com (Vaupel, Manton, & Stallard, 1979), que explora a definição de fragilidade, admitindo-a como uma variável aleatória.

Estes autores utilizam um modelo de fragilidade, dito multiplicativo, com a finalidade de obter a força de mortalidade heterogénea, para o que relacionam a força de mortalidade designada *standard* com a fragilidade. Neste caso em particular, estudado para a população sueca, concluiu-se que a heterogeneidade tem impacto na população. No mesmo estudo faz-se ainda uma comparação entre as populações sueca e americana. A função Gama é o modelo proposto para modelar a fragilidade.

Em (Hougaard, 1982), é apresentada, para além da função Gama, a função Inversa Gaussiana. Este autor faz a comparação entre os dois modelos e observa que, recorrendo à função Inversa Gaussiana, e como seria de esperar, à medida que o tempo passa a heterogeneidade vai atenuando. Com a função Gama, essa evolução natural não é tão bem captada.

Na modelação da fragilidade, há ainda outras propostas, como por exemplo a abordagem da função Weibull realizada por (Vaupel, Manto, & Stallard, 1986) e a abordagem da função Poisson Composta e da função Log-Normal desenvolvida por (Wienke, 2010).

Outros contributos exploraram o modelo proposto por (Vaupel, Manton, & Stallard, 1979), considerando diversas leis de mortalidade para modelar a força de mortalidade *standard*. A lei de mortalidade de Gompertz surge como uma das mais utilizadas na literatura, aparecendo em diversos trabalhos, por exemplo, (Butt & Haberman, 2004), (Olivieri, 2006), (Wienke, 2010), (Engelman, 2011) e (Su & Sherris, 2012). Para além da função de mortalidade de Gompertz, em (Butt & Haberman, 2004) é possível ver a aplicação da lei de Gompertz-Makeham, assim como em (Wienke, 2010). Em (Missov, 2013) e (Vaupel & Missov, 2014) encontram-se estudos comparativos reunindo diversas leis.

Um outro fator relevante prende-se com as várias metodologias que podem ser utilizadas na estimação dos diferentes modelos. Como exemplo, veja-se a abordagem da função de Máxima Verosimilhança realizada por (Su & Sherris, 2012), e a aplicação dos modelos lineares generalizados em (Butt & Haberman, 2004).

Mais recentemente o modelo *Markov ageing* surge como uma abordagem ao estudo da heterogeneidade nas populações, sem recurso à noção de fragilidade. Proposto em 2007 por Lin e Liu, este modelo baseia-se na idade fisiológica e é utilizado para descrever o processo de envelhecimento do corpo humano. A idade fisiológica de um indivíduo representa o grau de envelhecimento, e a cada idade corresponde um diferente nível de funcionalidade do corpo humano. Isto implica, que uma alteração na idade fisiológica representa um declínio no metabolismo do indivíduo. Este trabalho mostra que o modelo se aplica satisfatoriamente às populações sueca e americana.

A principal referência para esta dissertação é, contudo, o recente trabalho desenvolvido por (Su & Sherris, 2012). Estes autores estudam a heterogeneidade nas populações, quantificando-a, tomando em particular a população australiana, para o que aplicam os modelos de fragilidade e o modelo *Markov ageing*. No âmbito dos modelos de fragilidade, a abordagem é feita através da função Gama e da função Inversa Gaussiana, tendo em conta a lei de Gompertz para modelação da força de mortalidade *standard*.

(Su & Sherris, 2012) têm por objetivo selecionar o modelo mais adequado para captar a heterogeneidade existente na população considerada e, adicionalmente, propõem-se avaliar o impacto desta heterogeneidade no preço das rendas dependentes da vida humana. Nas suas conclusões observa-se que o impacto é significativo, o que se reflete no preço das anuidades. Estes autores concluem ainda que no mercado atuarial a heterogeneidade deve ser considerada, sendo importante identificar os fatores que determinam a sua existência nas populações.

O principal motivo para esta escolha, como referência principal, prende-se com o facto de se ter entendido que seria interessante e útil, desenvolver estudo semelhante para a população portuguesa.

Esta dissertação visa assim abordar os modelos de fragilidade aplicados à população portuguesa. À semelhança de (Su & Sherris, 2012), será igualmente estudada a implicação da heterogeneidade no mercado atuarial, nomeadamente no valor das rendas dependentes da vida humana, como comparação às anuidades calculadas com base nas tábuas frequentemente utilizadas. O modelo *Markov agein*, por limitações de diversas ordens, não será tratado.

A estrutura do texto é a seguinte, no Capítulo 2 introduz-se os conceitos chave, desde a função de sobrevivência até à força de mortalidade, essenciais para o presente trabalho. No Capítulo 3, inicia-se a análise aos modelos de fragilidade, definindo fragilidade e apresentando os modelos utilizados no seu estudo, com destaque para as funções Gama e Inversa Gaussiana. Descreve-se também a metodologia utilizada para a estimação dos parâmetros.

Concluída a parte de exposição e análise dos modelos, no Capítulo 4 inicia-se a sua aplicação à população portuguesa, seguindo as metodologias do capítulo anterior. Nesta etapa, dada a necessidade de se conhecer o número de indivíduos expostos ao risco e a força de mortalidade, foram utilizados dados disponibilizados pela HMD (*The Human Mortality Database* (Shkolnikov, Barbieri, & Wilmoth, 2015)). Escolheram-se para este estudo tabelas geracionais dos anos de 1950 e 1960, pelo facto de um indivíduo nascido em 1950 ter agora 65 anos, idade próxima da idade normal de reforma. Para efeitos de comparação optou-se pela década seguinte, 1960. Todos os dados retirados da HMD estão disponíveis no Anexo A. Adotou-se

assim o mesmo critério de (Su & Sherris, 2012), que escolhem as tabelas de 1945 e 1955.

No quarto capítulo são também realizadas estimações para os parâmetros das funções propostas, assim como a previsão da mortalidade para os próximos anos. Apresentam-se os resultados aplicados ao estudo da heterogeneidade da população, com análises por idade e género.

O Capítulo 5 apresenta uma aplicação atuarial dos resultados anteriores. Tenta assim perceber-se o impacto da heterogeneidade nos preços das rendas sobre a vida humana. São utilizadas para comparação com as tábuas de mortalidade heterogéneas, tábuas portuguesas retiradas do INE (Instituto Nacional de Estatistica, 2015), a tábua de mortalidade francesa TV88/90, usualmente aplicada em Portugal, nomeadamente na área de fundos de pensões, e a tábua suíça GRF95, também normalmente utilizada em Portugal, mas em seguradoras vida.

Por fim, as conclusões são apresentadas no Capítulo 6, bem como outras ideias finais.

2 Conceitos Básicos

Os conceitos apresentados neste capítulo podem ser encontrados em livros introdutórios à Matemática Atuarial, como por exemplo, (Bowers, Gerber, Hickman, James, & Nesbitt, 1997), (Dickson, Hardy, & Waters, 2009) e (Garcia & Simões, 2010). A notação utilizada é a notação atuarial internacional, (Perryman, 1914).

2.1 Função de Sobrevivência

Dado um indivíduo com idade x (designado daqui em diante como (x)) e sendo T_x o seu tempo de vida futura, então a idade no momento de morte será $x+T_x$. Admitindo que a variável aleatória T_x , tem função de densidade $f_x(t)$ e função distribuição $F_x(t) = P(T_x \le t)$, então $F_x(t)$ é a probabilidade de $f_x(t)$ morrer nos próximos $f_x(t)$ anos.

A partir de $F_x(t)$ pode obter-se a função de sobrevivência $S_x(t)$, que indica a probabilidade de (x) viver mais do que t anos, isto é, $S_x(t) = 1 - F_x(t)$.

Representado ainda por ω a idade máxima admissível, verifica-se que:

- $S_{r}(0) = 1$
- $S'_{r}(t) < 0$
- $S_x(t) = 0$ para $t \ge \omega x$

Escrevendo $S_x(t)$ a partir de $S_0(t)$, tem-se

$$S_x(t) = P(T_0 > x + t | T_0 > x) = \frac{S_0(x + t)}{S_0(x)}.$$

Outra notação usual para $S_x(t)$ é tp_x , e tq_x para $F_x(t)$. Assim sendo,

$$_{t}p_{x}=1-_{t}q_{x}$$
 (2.1)

Note-se que quando t=1 o primeiro índice é omitido, e representa-se a probabilidade de (x) permanecer vivo passado um ano por p_x , e a probabilidade de morrer ao longo desse ano por q_x .

A probabilidade de (x) sobreviver nos próximos n anos e morrer nos m anos que se lhe seguem é

$$_{n\mid m}q_{x}=_{n}p_{x}-_{n+m}p_{x}$$
.

(No caso particular m=1, o índice m é suprimido e fica-se com $n|q_x$.)

2.2 Esperança de Vida Completa

A esperança de vida futura de (x) é, como o nome indica, a média da variável T_x . Representa-se por \dot{e}_x e vem

$$\dot{e}_x = E(T_x) = \int_0^{\omega - x} t p_x \ dt.$$

2.3 Força de Mortalidade

A força de mortalidade μ_x , também designada por intensidade instantânea de transição do estado *vivo* para o estado *morto*, define-se

$$\mu_x = \lim_{h \to 0} \frac{{}_h q_x}{h}, com \ h > 0,$$

ou simplesmente

$$\mu_x = -\frac{d}{dx} \log(S_0(x)) = -\frac{S'_0(x)}{S_0(x)} = \frac{f_0(x)}{S_0(x)}.$$

Deve notar-se que, enquanto q_x é a probabilidade de morte ao longo de um ano, ou seja entre as idades x e x + 1, a força de mortalidade é uma medida relativa da mortalidade no momento em que se atinge a idade x, não sendo portanto uma probabilidade (e consequentemente não é necessariamente menor que um, mas tal como a probabilidade de morte é necessariamente maior ou igual a zero).

A força de mortalidade de (x) à idade x + t é dada por

$$\mu_{x+t} = -\frac{d}{dt}\log(S_x(t)) = -\frac{S'_x(t)}{S_x(t)} = \frac{\frac{d}{dt} p_x}{p_x} = \frac{f_x(t)}{S_x(t)}.$$
 (2.2)

A força de mortalidade também é frequentemente chamada hazard rate, tendo função densidade $h_x(t) = \frac{f_x(t)}{S_x(t)}$ e função hazard cumulativa $H_x(t) = \int_0^t h_x(u) \ du$.

A partir da equação (2.2) podem retirar-se algumas igualdades importantes,

$$_{t}p_{x} = e^{-\int_{0}^{t} \mu_{x+s} ds} = e^{-H_{x}(t)},$$
 (2.3)

$$f_x(t) = {}_t p_x. \mu_{x+t} ,$$

$$F_x(t) = {}_t q_x = \int_0^t {}_s p_x \mu_{x+s} ds$$
 (2.4)

Na equação (2.4) considere-se um tempo s, com $0 \le s < t$, a probabilidade de (x) estar vivo à idade x + s é dada por $_sp_x$. A probabilidade de (x) morrer entre as idades x + s e x + s + ds, estando vivo à idade x + s e considerando ds como um valor muito pequeno, é aproximadamente $\mu_{x+s}ds$. Desta forma, pode afirmar-se que $_sp_x\mu_{x+s}ds$ é a probabilidade de (x) morrer entre as idades x + s e x + s + ds. Considerando todos os possíveis intervalos que existem entre s e ds, necessita-se então de integrar para se obter a probabilidade de (x) morrer antes de perfazer a idade x + t.

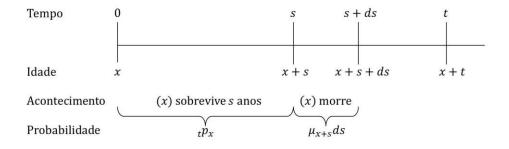


Figura 2.1 Linha do tempo para $_tq_x$ Adaptado de (Dickson, Hardy, & Waters, 2009)

2.4 Tábuas de Mortalidade

Considere-se uma população hipotética com um número inicial de indivíduos l_0 , arbitrariamente grande, onde l_x é o número dos indivíduos da população em questão vivos à idade x. Considerando todos os possíveis valores para x, inteiro, obtém-se então uma sucessão de l_x 's, que se designa por tábua de mortalidade.

Uma tábua de mortalidade pode ser contemporânea (estática) ou geracional (dinâmica). No primeiro caso, sendo tábuas unidimensionais, analisa-se uma população no pressuposto de que todos os indivíduos estão sujeitos ao mesmo comportamento de mortalidade, variando apenas ao longo da idade. As tábuas geracionais consistem em estudar a população nascida em cada ano civil, ou seja,

são tábuas bidimensionais, variando ao longo da idade e dependendo do ano de nascimento.

Note-se que normalmente, dependendo do tipo de seguro, exigem aos segurados exames médicos. Assim sendo, assume-se muitas vezes que a população segurada tem um padrão de mortalidade diferente do da população não segurada, geralmente inferior ao desta última, ou seja, uma população selecionada dá assim origem a uma tábua selecionada, ver (Dickson, Hardy, & Waters, 2009).

Para qualquer tábua de mortalidade, pode então escrever-se a probabilidade de sobrevivência da idade x à idade x + t como

$$_{t}p_{x} = \frac{l_{x+t}}{l_{x}} \tag{2.5}$$

e designando o número de mortes entre as idades x e x+1 por d_x , $d_x=l_x-l_{x+1}$, tem-se $q_x=\frac{d_x}{l_x}$.

Para a maior parte das populações aceita-se que o número de mortes entre as idades x e x+1 é uma variável aleatória \mathcal{D}_x , tal que $\mathcal{D}_x \sim Binomial(l_x, q_x)$, podendo muitas vezes fazer-se a aproximação à distribuição Poisson de parâmetro $l_x q_x$ e à distribuição Normal com média $l_x q_x$ e variância $l_x q_x p_x$.

Recorrendo às tábuas de mortalidade pode também obter-se o número médio de pessoas com idade x, expostas ao risco de morte durante um ano, seja

$$E_x \approx l_x - \frac{1}{2} d_x$$
 ou $E_x \approx \frac{l_x + l_{x+1}}{2}$.

Usando interpolação linear pode obter-se uma boa aproximação para a força de mortalidade, $\mu_x = \frac{1}{2}(\log(l_{x-1}) - \log(l_{x+1}))$, ver (Garcia & Simões, 2010).

2.5 Taxa Central de Mortalidade

A taxa central de mortalidade relaciona o número médio de pessoas expostas ao risco ao longo de um ano com a mortalidade na idade x, definindo-se por

$$m_{x} = \frac{d_{x}}{E_{x}}. (2.6)$$

Uma aproximação comum é $m_x \approx \mu_{x+\frac{1}{2}}$.

Admitindo idades inteiras, pode ser utilizada a taxa central de mortalidade como estimador para a força de mortalidade.

A taxa central de mortalidade fornece um estimador para q_x , assumindo a distribuição uniforme das mortes (UDD), ver (Garcia & Simões, 2010),

$$\hat{q}_x = \frac{m_x}{1 + \frac{1}{2}m_x}. (2.7)$$

2.6 Leis de Mortalidade

Ao longo dos séculos muitos esforços têm sido feitos para tentar modelar matematicamente o comportamento da mortalidade das populações, pela observação do comportamento passado da mortalidade, (Garcia & Simões, 2010).

Este estudo tem mais importância a partir de 1724, com uma lei bastante simples proposta pelo matemático francês de Moivre. Até aos dias de hoje inúmeras leis de mortalidade foram sugeridas, como as leis dos britânicos Benjamin Gompertz (1825) e Makeham (1860), ou a lei do sueco Weibull (1939), sendo a lei de Gompertz um caso especial da lei de Makeham. Este trabalho, como referido no Capítulo 1, apoia-se na lei de Gompertz, à semelhança de (Su & Sherris, 2012).

A lei de Gompertz assume que μ_x é crescente com a idade e que o seu inverso constitui uma medida de vitalidade. A partir deste prossuposto Gompertz propôs então uma função para modelar a força de mortalidade,

$$log\mu_x = \beta x + log\alpha$$
, com $\beta = \frac{\mu_x'}{\mu_x}$ e α uma constante.

Daqui resulta

$$\mu_x = \alpha e^{\beta x}$$
.

3 Fragilidade

3.1 Fragilidade e Mortalidade

A heterogeneidade é tradicionalmente classificada como sendo simultaneamente oriunda de fatores de risco não observáveis e fatores de risco observáveis, como por exemplo a idade e o género. As diferenças observáveis nas características do ambiente de vida, como as condições de saúde e higiene, a poluição ou a densidade populacional são alguns dos fatores que levam à existência de tábuas de mortalidade diferenciadas por áreas geográficas, (Olivieri, 2006).

Para a introdução da heterogeneidade numa dada população toma-se a variável "fragilidade", com o propósito de captar os fatores de risco não observáveis, e consequentemente não evidenciados nas tábuas de mortalidade comuns.

Admita-se que o nível de fragilidade de cada pessoa é determinado à nascença e não se altera com a idade. Note-se contudo que dois indivíduos com a mesma fragilidade não são idênticos, ou seja, não terão de morrer no mesmo momento.

Assente neste pressuposto, seja $\mu(x,t,z)$ a força de mortalidade de um indivíduo de idade x com fragilidade z, no instante de tempo t. De acordo com o modelo multiplicativo de (Vaupel, Manton, & Stallard, 1979), a força de mortalidade é então

$$\mu(x,t,z) = z.\,\mu(x,t,1)$$
. (3.1)

Um indivíduo com fragilidade 1 (z=1) considera-se um indivíduo *standard* (designado daqui em diante como base), com força de mortalidade $\mu(x,t,1)$. Caso seja conveniente é possível adaptar o modelo (3.1) de forma a considerar para fragilidade base valores diferentes de 1, ver (Olivieri, 2006).

A fragilidade z assume valores não negativos, representando a maior ou menor suscetibilidade de um indivíduo morrer, comparativamente a um base. Indivíduos com uma fragilidade mais alta têm uma probabilidade mais elevada de falecer em idades jovens.

Apesar de se supor que a fragilidade é constante para cada indivíduo ao longo da sua vida, note-se que este pressuposto parece ser adequado do ponto de vista genético, mas pode não o ser do ponto de vista dos fatores ambientais, visto estes não serem constantes ao longo do tempo, (Olivieri, 2006). Contudo, a consideração de uma

fragilidade volátil implicaria um modelo mais complexo, necessitando de mais informação (Vaupel, Manton, & Stallard, 1979). Seguindo a literatura existente, adota-se assim a hipótese da fragilidade constante.

É possível deduzir alguns resultados importantes envolvendo a função sobrevivência, recorrendo a (2.3). Conclui-se então, que a função de sobrevivência de um indivíduo com idade x, no instante t com fragilidade z, escrita como S(x,t,z) é igual à função sobrevivência de um indivíduo base elevada ao expoente z,

$$S(x,t,z) = S(x,t,1)^z.$$

A partir desta equação e admitindo, como mera ilustração, que S(x,t,1)=0.5 para um dado x e t, pode afirmar-se que um indivíduo com fragilidade 2 tem 25% de hipóteses de sobreviver da idade x até à idade x+t, e um indivíduo com fragilidade 4 tem probabilidade 0.0625 de chegar à idade x+t.

Para simplificação de notação, daqui em diante, leia-se $\mu(x,t,z)$ como $\mu_x(z)$ e $\mu(x,t,1)$ como $\mu_x(1)$. Desta forma, a equação (3.1) passa a ser

$$\mu_x(z) = z.\,\mu_x(1)$$
 (3.2)

3.2 Modelos de Fragilidade

Para uma dada população ou grupo de indivíduos, considere-se a fragilidade z como uma variável aleatória, (Vaupel, Manton, & Stallard, 1979), associada à idade x e com função densidade $f(z_x)$. Então, a média da fragilidade é

$$\bar{z}_x = \int_0^\infty z_x f(z_x) dz.$$

Atendendo a (3.2), resulta que a força de mortalidade é também uma variável aleatória, seja μ_x . Para o grupo, a média da força de mortalidade vem

$$\bar{\mu}_{x} = \bar{z}_{x}\mu_{x}(1). \tag{3.3}$$

Apesar de a fragilidade individual ser constante ao longo do tempo, a distribuição associada à fragilidade do grupo não o é, devido ao facto de ocorrerem mortes ao longo dos anos, (Olivieri, 2006). No grupo a média da fragilidade diminui com a idade, pelo facto de indivíduos com uma maior fragilidade tenderem a morrer primeiro, (Vaupel, Manton, & Stallard, 1979).

Nas populações concretas, é necessário definir a distribuição associada à fragilidade assim como a função utilizada para a força de mortalidade base. Seguindo (Su & Sherris, 2012), os modelos Gama e Inversa Gaussiana serão aplicados neste

trabalho, assim como a função de mortalidade de Gompertz, para o pressuposto da força de mortalidade base, isto é, $\mu_x(1)=\alpha e^{\beta x}$.

3.2.1 Modelo Gama

Nesta abordagem, admite-se que a fragilidade z do grupo segue uma distribuição Gama com parâmetro de forma k e parâmetro de escala λ (Vaupel, Manton, & Stallard, 1979) e (Hougaard, 1982). A função Gama é escolhida para modelar a fragilidade porque, para além de ser simples, é bastante versátil e conforma-se a um grande número de situações. Assim, à nascença, a variável z tem função densidade

$$f(z_0) = \frac{\lambda^k}{\Gamma(k)} z_0^{k-1} e^{-\lambda z_0}, \ z_0 > 0, \lambda > 0, k > 0,$$

a que corresponde a média

$$\bar{z}_0 = \frac{k}{\lambda},\tag{3.4}$$

a variância $\sigma_{z_0}^2 = \frac{k}{\lambda^2}$ e o coeficiente de variação $CV_{z_0} = \frac{1}{\sqrt{k}}$.

Em geral aceita-se que à nascença a força de mortalidade do *grupo* é igual à do indivíduo base, isto é, à nascença tem-se $\bar{z}_0 = 1$, uma hipótese adequada, segundo (Vaupel, Manton, & Stallard, 1979). Daqui resulta $k = \lambda$, ver (Engelman, 2011).

Uma propriedade importante da distribuição Gama, demonstrada em (Vaupel, Manton, & Stallard, 1979) é que, ao considerar a função densidade da fragilidade à idade x, o valor do parâmetro k não se altera com a idade, sendo o mesmo que à nascença e o parâmetro de escala passa a ser dado por $\lambda(x) = \lambda + H(x)$, onde H(x) é a hazard rate, ou seja, $H(x) = \int_0^x \mu_s \, ds$.

Tem-se assim que a fragilidade à idade x, para x positivo, tem distribuição dada por

$$f(z_x) = \frac{(\lambda(x))^k}{\Gamma(k)} z_x^{k-1} e^{-\lambda(x)z_x}, \ z_x > 0, \lambda > 0, k > 0,$$

sendo a média $\bar{z}_x = \frac{k}{\lambda(x)}$, a variância $\sigma_{z_x}^2 = \frac{k}{(\lambda(x))^2}$ e o coeficiente de variação $CV_{z_x} = \frac{1}{\sqrt{k}}$.

Também se verifica que a média pode ser escrita $\bar{z}_x = \frac{\bar{z}_0 k}{k + \bar{z}_0 H(x)}$, pela equação (3.4), onde \bar{z}_0 é a média da fragilidade do grupo à nascença. Para k=1 tem-se $\bar{z}_x = \frac{\bar{z}_0}{1 + \bar{z}_0 H(x)}$, onde se pode observar que a média da fragilidade é inversamente proporcional à *hazard rate* do grupo. De notar ainda, que o coeficiente de variação é constante e não se altera com a idade.

A heterogeneidade pode ser analisada através do parâmetro k, pois valores inferiores para este parâmetro levam a valores de variância e de coeficiente de variação mais elevados, sugerindo heterogeneidade.

Para determinar a distribuição associada à força de mortalidade, note-se a relação entre esta e a fragilidade, ver (3.2). Nesse sentido usando a propriedade de escalonamento da função Gama, isto é, se $Y \sim Gama(k, \lambda)$, então $aY \sim Gama(k, \frac{\lambda}{a})$, (ver (Klugman, Panjer, & Willmot, 2008), com as devidas adaptações), a função de densidade da força de mortalidade do grupo na idade x vem

$$f(\mu_x) = \frac{\left(\frac{\lambda(x)}{\mu_x}\right)^k}{\Gamma(k)} (\mu_x)^{k-1} e^{-\frac{\lambda(x)}{\mu_x(1)}\mu_x}, \quad \mu_x > 0, \lambda > 0, k > 0.$$
 (3.5)

Ou seja, a força de mortalidade segue também uma Gama, $\mu_x \sim Gama\left(k, \frac{\lambda(x)}{\mu_x(1)}\right)$.

3.2.2 Modelo Inversa Gaussiana

Considerando $z_0 \sim IG(\delta, \theta)$ e seguindo a metodologia usada na apresentação do Modelo Gama, no caso da Inversa Gaussiana, à nascença, a função densidade vem

$$f(z_0) = \left(\frac{\delta}{\pi}\right)^{\frac{1}{2}} e^{\sqrt{4\delta\theta}} z_0^{-\frac{3}{2}} e^{-\theta z_0 - \frac{\delta}{z_0}}, \ z_0 > 0, \delta > 0, \theta > 0.$$

Donde resulta que a média à idade 0 é

$$\bar{z}_0 = \left(\frac{\delta}{\theta}\right)^{\frac{1}{2}},\tag{3.6}$$

a variância é $\sigma_{z_0}^2=\frac{1}{2}\sqrt{\frac{\delta}{\theta^3}}$ e o coeficiente de variação é $CV_{z_0}=\left(4\delta\theta\right)^{-\frac{1}{4}}$.

Assumindo $\bar{z}_0=1$ na equação (3.6), e de forma semelhante ao visto para a função Gama, vem $\delta=\theta$.

Similar também à função Gama é a dedução da distribuição de fragilidade para os sobreviventes de idade x; conclui-se que $z_x \sim IG(\delta, \theta(x))$, com $\theta(x) = \theta + H(x)$,

$$f(z_x) = \left(\frac{\delta}{\pi}\right)^{\frac{1}{2}} e^{\sqrt{4\delta\theta(x)}} z_x^{-\frac{3}{2}} e^{-\theta(x)z_x - \frac{\delta}{z_x}}, \quad z_x > 0, \delta > 0, \theta > 0.$$
 (3.7)

A média é

$$\bar{z}_{x} = \left(\frac{\delta}{\theta(x)}\right)^{\frac{1}{2}},\tag{3.8}$$

a variância é

$$\sigma_{z_x}^2 = \frac{1}{2} \sqrt{\frac{\delta}{\left(\theta(x)\right)^3}},\tag{3.9}$$

e o coeficiente de variação é $CV_{z_x} = (4\delta\theta(x))^{-\frac{1}{4}}$.

Pela análise da média, observa-se que esta decresce com a idade, ocorrendo o mesmo com a variância. O coeficiente de variação, ao contrário do que acontece com a função Gama, depende da idade considerada.

À semelhança do concluído para o modelo anterior, a heterogeneidade pode ser analisada recorrendo ao parâmetro δ .

Quanto à força de mortalidade segue uma $IG\left(\mu_{x}(1)\delta;\frac{\theta(x)}{\mu_{x}(1)}\right)$, o que resulta diretamente da propriedade: Se $Y \sim IG(\delta,\theta)$, então $aY \sim IG\left(a\delta,\frac{\theta}{a}\right)$, ver (Klugman, Panjer, & Willmot, 2008). Assim a função de densidade da força de mortalidade vem

$$f(\mu_x) = \left(\frac{\mu_x(1)\delta}{\pi}\right)^{\frac{1}{2}} e^{\sqrt{4\delta\theta(x)}} \mu_x^{-\frac{3}{2}} e^{-\frac{\theta(x)}{\mu_x(1)}\mu_x - \frac{\mu_x(1)\delta}{z}}, \ \mu_x > 0, \delta > 0, \theta > 0.$$
 (3.10)

Note-se que outras funções podem ser propostas no âmbito dos modelos de fragilidade, como o Modelo Poisson Composto, o Modelo Log-Normal e o Modelo Weibull, ver (Butt & Haberman, 2004) e (Wienke, 2010).

3.3 Metodologia de Estimação

Tendo em conta as funções apresentadas, (3.5) e (3.10), é necessário estimar os parâmetros da força de mortalidade base, α e β , e os parâmetros associados à introdução da fragilidade.

No caso da função Gama, só é necessário estimar o parâmetro k, devido à sua igualdade com o parâmetro λ , resultante de (3.4) e de se admitir $\bar{z}_0=1$, ver (Engelman, 2011). A função distribuição (3.5) pode ser simplificada, $\mu_x \sim Gama\left(k, \frac{\lambda(x)}{\mu_x(1)}\right)$, onde $\lambda(x)=k+H(x)$.

De forma semelhante, na função Inversa Gaussiana, devido à igualdade dos parâmetros δ e θ , concluída anteriormente, é necessária apenas a estimação do parâmetro δ . Assim, $\mu_x \sim IG\left(\mu_x(1)\delta, \frac{\theta(x)}{\mu_x(1)}\right)$, com $\theta(x) = \delta + H(x)$.

Conhecendo a forma da distribuição da força de mortalidade, pode admitir-se a força de mortalidade observada como uma amostra da população de dimensão E_x , (Su & Sherris, 2012). A única informação disponível sobre a força de mortalidade observada provém da taxa central de mortalidade (2.6), podendo esta ser usada para uma estimativa da força de mortalidade, nas idades inteiras.

A força de mortalidade à idade x (μ_x) é uma variável aleatória com média $E[\mu_x]$ e variância $Var[\mu_x]$. Sendo observável e sendo as taxas de mortalidade independentes, é possível recolher amostras casuais e aplicar o Teorema do Limite Central. Assim, tem-se que a média da amostra é uma variável aleatória, represente-se por $\hat{\mu}_x$, com distribuição aproximadamente normal, de média $E[\mu_x]$ e variância $\frac{Var[\mu_x]}{E_x}$.

Seguindo ainda (Su & Sherris, 2012), recorre-se ao método da Máxima Verosimilhança. Note-se que é possível utilizar outras abordagens para a estimação dos parâmetros (Engelman, 2011).

Nos pontos seguintes são apresentadas as especificações para cada modelo mencionado, Gama e Inversa Gaussiana. Para, meramente, proceder a alguma forma de aferição e comparação da qualidade relativa dos dois ajustamentos, calcula-se o coeficiente de determinação, equação (3.11) - (ver (Su & Sherris, 2011)).

$$R^2 = 1 - \frac{SSE}{SST} \tag{3.11}$$

3.3.1 Modelo Gama

Para a função Gama a média e a variância da força de mortalidade são dadas pelas seguintes expressões, usando os elementos fornecidos em 3.2.1

$$E[\mu_x] = \frac{\mu_x(1)k}{k + H(x)} = \frac{\alpha e^{\beta x} k}{k + \int_0^x \alpha e^{\beta s} ds},$$

$$Var[\mu_x] = \frac{\left(\mu_x(1)\right)^2 k}{\left(k + H(x)\right)^2} = \frac{\left(\alpha e^{\beta x}\right)^2 k}{\left(k + \int_0^x \alpha e^{\beta s} ds\right)^2}.$$

Daqui se conclui que,

$$E[\hat{\mu}_x] = E[\mu_x] = \frac{\alpha e^{\beta x} k}{k + \int_0^x \alpha e^{\beta s} ds},$$
(3.12)

$$Var[\hat{\mu}_x] = \frac{Var[\mu_x]}{E_x} = \frac{\left(\alpha e^{\beta x}\right)^2 k}{E_x \left(k + \int_0^x \alpha e^{\beta s} ds\right)^2}.$$
 (3.13)

O logaritmo da função de Verosimilhança vem

$$\log L(\hat{\mu}_{x}|E_{x}, k, \mu_{x}(1)) = \sum_{x} \left\{ -\frac{1}{2} [\log(\sigma^{2}) + \log(2\pi)] - \frac{(\hat{\mu}_{x} - \mu)^{2}}{2\sigma^{2}} \right\}, \quad (3.14)$$

onde $\mu = E[\hat{\mu}_x]$ é dada pela equação (3.12) e $\sigma^2 = Var[\hat{\mu}_x]$, é dada pela equação (3.13).

Consequentemente, para a estimação dos parâmetros α , β e k, é necessária a maximização da função (3.14). Para este efeito pode recorrer-se a diversos softwares, como por exemplo o Excel, utilizando a ferramenta Solver, ou o software R.

3.3.2 Modelo Inversa Gaussiana

Replicando o procedimento atrás apresentado, obtêm-se os seguintes resultados para a média e variância da força de mortalidade, considerando a função Inversa Gaussiana:

$$E[\mu_x] = \mu_x(1) \left(\frac{\delta}{\delta + H(x)}\right)^{\frac{1}{2}} = \alpha e^{\beta x} \left(\frac{\delta}{\delta + \int_0^x \alpha e^{\beta s} ds}\right)^{\frac{1}{2}},$$

$$Var[\mu_x] = \frac{\left(\mu_x(1)\right)^2}{2} \left(\frac{\delta}{\left(\delta + H(x)\right)^3}\right)^{\frac{1}{2}} = \frac{\left(\alpha e^{\beta x}\right)^2}{2} \left(\frac{\delta}{\left(\delta + \int_0^x \alpha e^{\beta s} ds\right)^3}\right)^{\frac{1}{2}}.$$

Tomando a amostra,

$$E[\hat{\mu}_x] = E[\mu_x] = \alpha e^{\beta x} \left(\frac{\delta}{\delta + \int_0^x \alpha e^{\beta s} ds} \right)^{\frac{1}{2}}, \tag{3.15}$$

$$Var[\hat{\mu}_x] = \frac{Var[\mu_x]}{E_x} = \frac{\left(\alpha e^{\beta x}\right)^2}{2E_x} \left(\frac{\delta}{\left(\delta + \int_0^x \alpha e^{\beta s} ds\right)^3}\right)^{\frac{1}{2}}.$$
 (3.16)

O logaritmo da função de Verosimilhança é naturalmente muito semelhante a (3.14),

$$\log L(\hat{\mu}_{x}|E_{x}, \delta, \mu_{x}(1)) = \sum_{x} \left\{ -\frac{1}{2} \left[\log(\sigma^{2}) + \log(2\pi) \right] - \frac{(\hat{\mu}_{x} - \mu)^{2}}{2\sigma^{2}} \right\}, \quad (3.17)$$

com μ e σ^2 a média e variância da amostra, dadas respetivamente pelas equações (3.15) e (3.16). Para a estimação dos parâmetros α , β e δ é necessária a maximização da função (3.17). Para este efeito, tal como apresentado no Modelo Gama, pode recorrer-se a diversos *softwares*.

4 Aplicação à População Portuguesa

Como explicado, (Su & Sherris, 2012) é a fonte que motivou este estudo: tentar investigar a existência de heterogeneidade nas populações à beira da reforma em Portugal e os seus potenciais efeitos no mercado das anuidades, à semelhança do que foi feito para a população australiana.

4.1 Dados

Tal como (Su & Sherris, 2012) recorreu-se à base de dados HMD (Shkolnikov, Barbieri, & Wilmoth, 2015), ver Anexo A. Os dados disponíveis por coortes (grupos), para a população portuguesa, são a taxa central de mortalidade, m_x , e o número de indivíduos expostos ao risco, E_x , ambos necessários para a estimação, como descrito no capítulo anterior.

Optou-se pelo uso de dados referentes aos anos de 1950 e 1960, pelo facto de os indivíduos nascidos no ano de 1950 serem, hoje em dia, reformados ou próximos da reforma, em comparação com uma geração nascida uma década depois.

Para uma análise inicial da população calculou-se a probabilidade de morte, q_x , recorrendo à equação (2.7), assumindo uma distribuição uniforme das mortes ao longo do ano (UDD), ver (Dickson, Hardy, & Waters, 2009). Apresentam-se resultados para ambos os géneros e anos em estudo na *Figura 4.1*.

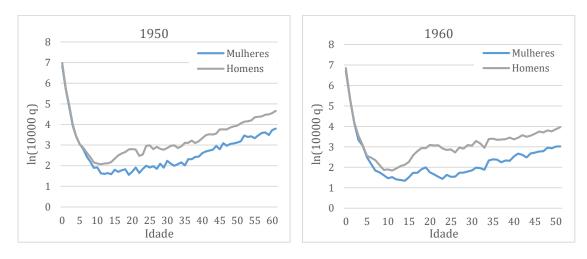


Figura 4.1 Probabilidades de morte observadas para as gerações de 1950 e 1960

Note-se que, quando os valores são diminutos, nos gráficos são apresentados sob a forma de logaritmo, para uma melhor visualização das oscilações nos dados.

Como se sabe, para todas as idades, a probabilidade de morte nos homens é superior à das mulheres. Em ambos os géneros e nos anos de referência esta probabilidade tem uma tendência crescente, com exceção das idades mais precoces, como é habitual. A mortalidade "adolescente" é mais acentuada na geração de 60.

Analisando os dois gráficos da *Figura 4.1* e comparando a probabilidade de morte por género em cada um dos anos, 1950 e 1960, não parece haver alterações significativas nestas probabilidades.

Nos gráficos da *Figura 4.2* pode ser observada a força de mortalidade de homens e mulheres, comparando cada ano em estudo. As idades estudadas iniciam-se aos 30 anos, pelo facto de a lei de Gompertz ser crescente e só se adequar a indivíduos adultos, (Olivieri, 2006).

Em teoria, a força de mortalidade deve tender a ser inferior em anos mais recentes, devido a vários fatores, como por exemplo, os desenvolvimentos na área da medicina ou os avanços na ciência e na alimentação, (Garcia & Simões, 2010). Nos gráficos da *Figura 4.2* pode verificar-se que este pressuposto se adequa, uma vez que a força de mortalidade é, em geral, inferior em 1960 quando comparada com a de 1950.

Examinando os dois gráficos seguintes, a força de mortalidade das mulheres, como era esperado pela análise dos gráficos da *Figura 4.1*, é inferior à do género masculino.

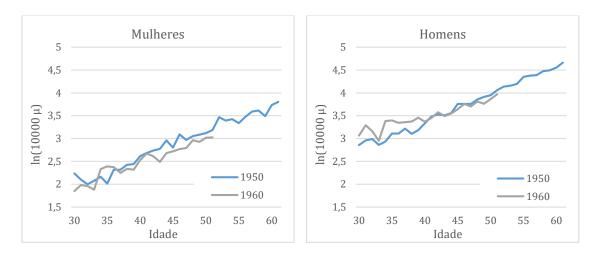


Figura 4.2 Força de mortalidade observada para cada género comparando os anos em estudo

4.2 Força de Mortalidade

4.2.1 Estimação dos Parâmetros

Na maximização das funções de verosimilhança, (3.14) e (3.17), utilizou-se o Excel, recorrendo à ferramenta *Solver*.

Partindo de uma proposta inicial para os parâmetros em estudo, α , β e k, no caso de ser considerada a função Gama, e α , β e δ , se considerada a função Inversa Gaussiana, começou por se calcular a média e a variância da amostra para cada idade, recorrendo respetivamente às equações (3.12) e (3.13) para a Gama, e às equações (3.15) e (3.16) para a Inversa Gaussiana.

No cálculo da média e variância, para a função cumulativa da força de mortalidade, H(x), e pelo facto de os dados utilizados serem discretos, utilizou-se o método indicado em (Olivieri, 2006).

A *Tabela 4.1* apresenta os resultados da estimação e recorrendo à equação (3.11), apresenta-se também o valor obtido para o coeficiente de determinação.

	1950		19	60
	Mulheres	Homens	Mulheres	Homens
Gama				
k	0,045940	0,176975	0,012723	0,008701
α	0,000035	0,000126	6,585E-06	2,687E-10
β	0,102511	0,085675	0,162301	0,549858
log Máxima Verosimilhança	-601,71	-1 336,63	54,11	-95,89
R ²	0,9325	0,9691	0,8871	0,3424
Inversa Gaussiana				
δ	0,000106	0,000055	0,000027	0,000056
α	0,005276	0,002734	0,006730	0,091790
β	0,122035	0,116378	0,108155	0,080406
log Máxima Verosimilhança	-55,50	88,18	49,22	-208,71
R^2	0,9641	0,9936	0,9422	0,9142

Tabela 4.1 Parâmetros estimados para os modelos de fragilidade

Estimados os parâmetros, pode calcule-se a média da força de mortalidade por cada idade, recorrendo às equações (3.12) e (3.15), consoante a função em estudo. Nos gráficos da *Figura 4.3* apresenta-se as comparações entre a força de mortalidade observada e as médias estimadas para cada modelo consoante a coorte em estudo.

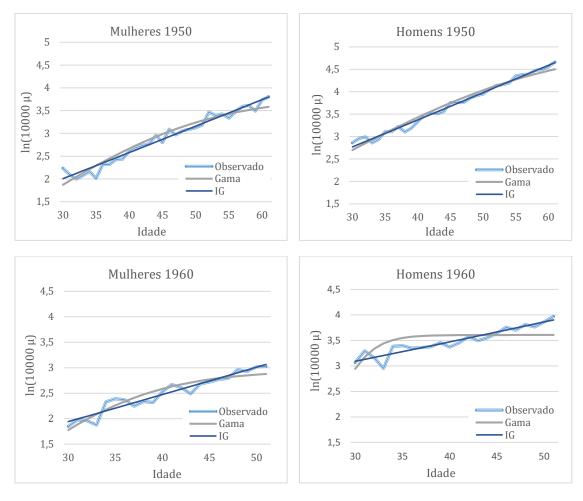


Figura 4.3 Média da força de mortalidade estimada versus força de mortalidade observada

Pela análise da *Figura 4.3* e dos coeficientes de determinação presentes na *Tabela 4.1*, as estimações mostram ajustar-se aos dados observados. É possível verificar que a função Inversa Gaussiana (que obtêm valores de R^2 superiores a 90%) ajusta melhor os dados. Nos homens da geração de 60 a função Gama não tem uma boa aderência, como se pode verificar tanto pela análise do gráfico, como notando que esta tem um coeficiente de determinação baixo.

Outras conclusões importantes são que, em regra, as estimações se adequam mais no ano de 1950. Este facto pode ser explicado pela existência de mais uma década de dados utilizados na estimação. Embora isto, a função Inversa Gaussiana não mostra ser afetada, apresentando um bom ajustamento aos dados em ambas as gerações. É interessante realçar que estes resultados, em geral, se assemelham aos obtidos por (Su & Sherris, 2012).

4.2.2 Previsão da Força de Mortalidade Futura

Como a fragilidade é uma variável não observada, não há nenhuma indicação de qual será a melhor função para o seu estudo de uma forma empírica. No entanto, e pelas estimações efetuadas, analisando os gráficos da *Figura 4.3*, e os coeficientes de determinação da *Tabela 4.1*, a função Inversa Gaussiana mostra ajustar-se melhor aos dados. Por essa razão será utilizada para a previsão da força de mortalidade futura e restantes cálculos futuros.

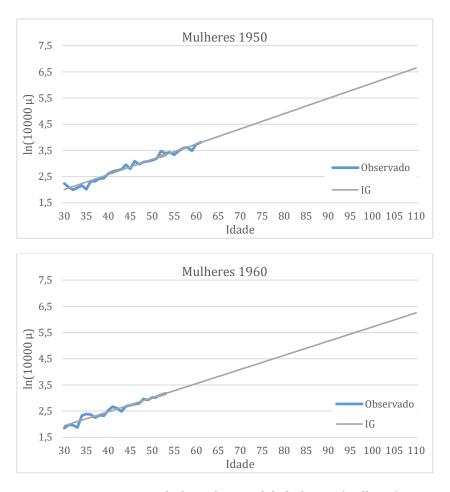


Figura 4.4 Previsão da força de mortalidade futura, (mulheres)

Na *Figura 4.4* podem ser observados os gráficos respeitantes à estimação da média da força de mortalidade para as idades futuras, nos anos de 1950 e 1960, para o género feminino, admitindo como idade limite 110 anos. A mesma abordagem pode ser efetuada para o género masculino, cujos gráficos se encontram a seguir, *Figura 4.5*.

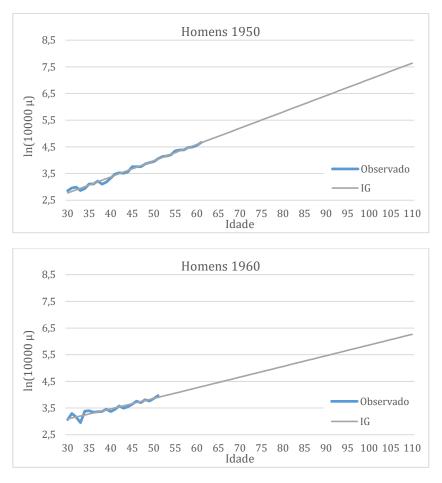


Figura 4.5 Previsão da força de mortalidade futura, (homens)

Necessariamente a força de mortalidade para os anos futuros está de acordo com a lei de Gompertz, que assume uma força de mortalidade crescente. Comparando os dois gráficos presentes na *Figura 4.4*, para as mulheres e na *Figura 4.5*, para os homens, também se constata que, a força de mortalidade tende a ser ligeiramente mais reduzida para a geração de 1960. Sendo esta redução mais acentuada no caso masculino.

4.3 Análise da Heterogeneidade

Nos modelos de fragilidade a heterogeneidade pode ser medida pela dispersão da distribuição associada à fragilidade (Su & Sherris, 2012), isto é, quanto mais dispersa a distribuição, maior a heterogeneidade existente. Analisando a distribuição, pode então concluir-se que um valor inferior do parâmetro de forma (parâmetro δ na função Inversa Gaussiana) implica uma maior heterogeneidade na população.

Observando a *Tabela 4.1* pode verificar-se que o parâmetro δ , assume um valor baixo, ou seja, a heterogeneidade é significativa na população portuguesa. A análise dos gráficos da *Figura 4.6* referentes à distribuição da fragilidade utilizando a função Inversa Gaussiana, ver (3.7), permite confirmar esta conclusão.

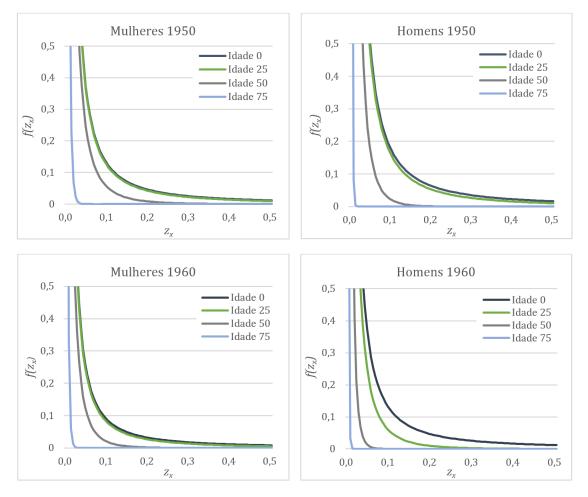


Figura 4.6 Distribuição da fragilidade nas diferentes idades

A Distribuição de fragilidade mostra ser enviesada à direita. À nascença, os gráficos da *Figura 4.6* revelam a existência de uma maior variabilidade na fragilidade, assim como na idade 25. Para estas idades a maioria dos indivíduos revela ter uma baixa fragilidade, no entanto, a distribuição apresenta uma cauda longa à direita. Com o aumento da idade, a seleção natural dos indivíduos afeta a heterogeneidade, no sentido de a diminuir. Ou seja, os indivíduos mais frágeis tendem a falecer mais cedo, como consequência, a maioria dos indivíduos sobreviventes, por exemplo na casa dos 75 anos, tendem a ter um valor de fragilidade próximo de zero.

A média da fragilidade é afetada pela seleção natural dos indivíduos, diminuindo com a idade. A *Tabela 4.2* apresenta os valores da média, para os anos e coortes em estudo ao longo das várias idades, ver equação (3.8), com $\bar{z}_0 = 1$.

	Mulhe	eres	Homens		
Idade	1950	1960	1950	1960	
0	1,000000	1,000000	1,000000	1,000000	
1	0,096594	0,043211	0,096450	0,017138	
25	0,011218	0,005374	0,010651	0,002689	
50	0,002558	0,001351	0,002270	0,000929	
65	0,001068	0,000599	0,000908	0,000505	
80	0,000446	0,000266	0,000364	0,000276	
100	0,000139	0,000090	0,000107	0,000123	

Tabela 4.2 Média estimada da fragilidade ao longo dos anos

A média da fragilidade apresenta uma tendência decrescente. Nos homens a seleção dos indivíduos acontece numa idade mais precoce, em comparação com o género feminino. Este, em geral, mostra ter uma média de fragilidade maior. As mulheres mais frágeis mostram não falecer tão precocemente como os homens com maior fragilidade. Dentro do género masculino os homens de 1960 revelam ser os que têm uma seleção natural mais precoce.

Por outro lado, o ano de 1960 apresenta uma heterogeneidade menor comparativamente a 1950; a média da fragilidade é sempre inferior em 1960, tendo valores que oscilam menos entre si a partir da idade 25. Este facto pode ser explicado, por exemplo, pelo aumento dos cuidados de saúde de uma década para a outra, o que leva a uma fragilidade inferior.

Continuando a explorar a *Tabela 4.2*, na idade 50 as diferenças já não revelam ser tão evidentes na comparação dos anos em estudo, como na idade 25. Entre os 80 e os 100 anos a média da fragilidade tende a estabilizar, próxima de zero. Nestas idades os indivíduos com uma maior fragilidade por norma já faleceram, e os efeitos da fragilidade, em si, já não se fazem sentir.

	Mulheres		Homens		
Idade	1950	1960	1950	1960	
0	95,630528	137,062916	68,839046	94,328183	
1	2,870922	1,231133	2,062009	0,211633	
25	0,113626	0,053991	0,075674	0,013152	
50	0,012374	0,006804	0,007447	0,002671	
65	0,003336	0,002010	0,001884	0,001072	
80	0,000900	0,000595	0,000477	0,000433	
100	0,000157	0,000118	0,000077	0,000129	

Tabela 4.3 Desvio padrão estimado da fragilidade ao longo dos anos

Na *Tabela 4.3*, ver *(3.9)*, apresenta-se o desvio padrão da fragilidade para ambos os géneros e anos ao longo da idade. Pode observar-se que o desvio padrão da fragilidade diminui ao longo da idade. Na idade 0 o desvio padrão é bastante acentuado (conforme concluído pela *Figura 4.6*), o que resulta das particularidades associadas ao nascimento; à idade 1 estas "anomalias" já estão praticamente eliminadas. O desvio padrão na idade 25 é ainda acentuado, nomeadamente em 1950, confirmando as conclusões feitas pela análise da média da fragilidade, *Tabela 4.2*.

Em resumo da análise da *Tabela 4.2* e da *Tabela 4.3*, conclui-se que a heterogeneidade é mais evidente em idades mais precoces, tendendo a diminuir com o avançar da idade. Devendo-se esta situação à seleção natural dos indivíduos ocorrer em idades mais prematuras. Ou seja, a população torna-se mais homogénea com o avançar da idade. Esta conclusão coincide com a do estudo realizado por (Hougaard, 1982).

As probabilidades de morte q_x podem ser calculadas para uma análise da fragilidade. Sabendo que os dados são discretos e consequentemente a força de mortalidade é constante para cada idade, assumindo o valor da média, é possível proceder ao cálculo das probabilidades de sobrevivência p_x , ver (2.3). Posteriormente, pela equação (2.1), obtêm-se as probabilidades de morte esperadas para as coortes em estudo, disponíveis no Anexo B.

Para fins de ilustração e de estudo do comportamento da mortalidade entre indivíduos com diferentes fragilidades, na *Figura 4.7* são apresentadas, para além das probabilidades de morte estimadas para as coortes da população em análise, as probabilidades de morte utilizando médias de fragilidade predefinidas. Isto é, utiliza-se a metodologia aplicada para estimar os $q_x's$ de ambos os géneros, mas considera-se que \bar{z}_x é fixo e predefinido na equação (3.3). Assim se obtêm as probabilidades de morte para indivíduos com uma dada fragilidade.

Na *Figura 4.7* apresentam-se as probabilidades de morte. A amarelo podem observar-se as probabilidades para as coortes em estudo, considerando cada género como um todo, tomando para o cálculo a média estimada da fragilidade em cada idade. As restantes linhas, de diversas cores, dizem respeito às probabilidades de morte calculadas admitindo que \bar{z}_x assume o valor indicado na legenda de cada gráfico. Por exemplo, a linha a cinzento representa a probabilidade de morte para um indivíduo com fragilidade 0,01.

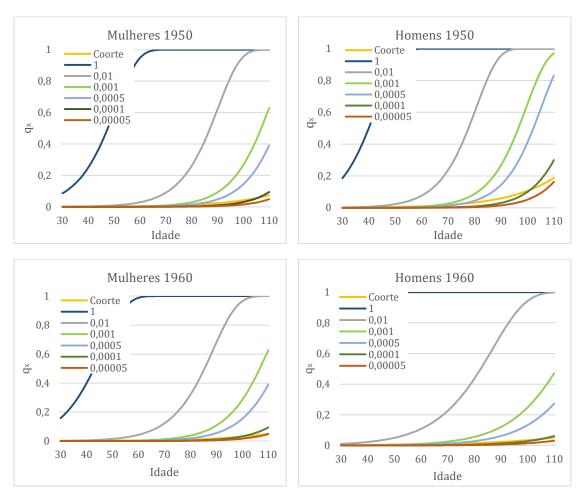


Figura 4.7 Probabilidades de morte com diferentes fragilidades

Pela análise da *Figura 4.7* verifica-se que, para indivíduos com fragilidades mais elevadas, a probabilidade de morte aumenta, como esperado, sendo o contrário também válido. A verdade é que a existência na população de indivíduos com diferentes fragilidades é fonte de heterogeneidade. As probabilidades de morte para cada coorte são em geral baixas, embora aumentem com a idade, tendo a si associadas uma fragilidade relativamente baixa, visto as curvas das probabilidades de morte mais semelhantes às coortes consideradas, serem, em geral, as de indivíduos com fragilidades de 0,0001 e 0,00005. Também agora, se chega a conclusões semelhantes às de (Su & Sherris, 2012), para a população australiana.

5 Aplicação Atuarial

A aplicação atuarial da heterogeneidade pode ser muito diversificada, devido à influência desta nas tábuas de mortalidade, utilizadas sobretudo no ramo Vida e Pensões da atividade seguradora, mas também nos seguros de Saúde e de Acidentes.

Uma renda, ou anuidade, é uma sucessão de pagamentos equidistantes no tempo. Existem diferentes tipos de anuidades, podendo ser vitalícias ou temporárias, antecipadas ou postecipadas, anuais ou fracionadas, entre outras. As rendas sobre a vida humana são essenciais nos cálculos atuariais para produtos de seguros e no cálculo de provisões nos planos de pensões (consultar (Dickson, Hardy, & Waters, 2009) ou (Garcia & Simões, 2010), para um estudo mais detalhado).

5.1 Valor Atuarial de uma Pensão à Idade de Reforma

Considere-se uma renda financeira sobre a vida humana, anual, vitalícia e antecipada, à taxa de juro i. O respetivo Valor Atual Esperado (ou Valor Atuarial - VA) é

$$\ddot{a}_x = 1 + vp_x + v^2 {}_{2}p_x + \dots = \sum_{k=0}^{\infty} v^k {}_{k}p_x,$$

$$com \quad v = \frac{1}{1+i}.$$
(5.1)

De todas as anuidades que se podem considerar, há uma que se destaca: a chamada renda vitalícia que começa a ser paga quando o beneficiário perfaz 65 anos, sendo todos os pagamentos anuais de valor 1 e cujo VA se representa por \ddot{a}_{65} . O especial interesse, resulta do facto de 65 anos ter sido até há pouco tempo considerada a "idade normal de reforma". Contudo, esta é atualmente condicionada pela esperança média de vida, ver (Decreto-Lei n.º167-E/2013, 31 de dezembro de 2013), e os termos anuais normalmente não são constantes. Contudo, \ddot{a}_{65} continua a ser uma anuidade de referência pelo seu simbolismo. Por essa razão, a renda em causa vai ser utilizada para ilustrar os efeitos da inclusão explícita da heterogeneidade, via fragilidade, no modelo de mortalidade aplicado.

Para tal, é necessário obter primeiramente uma tábua de mortalidade heterogénea. Recorrendo às probabilidades de sobrevivência obtidas no Capítulo 4 e assumindo uma população total de 100 000, para cada género à idade 0, constrói-se tábua de mortalidade heterogénea, ver (2.5), disponível no Anexo B, para 1950. Escolheu-se a população nascida no ano de 1950, pelo facto de atualmente ser uma população com 65 anos de idade. Os resultados para a anuidade em causa são apresentados na *Tabela 5.1*, ver (5.1).

Embora se apresente resultados diferenciados por género, atualmente não é permitida essa discriminação nos cálculos respeitantes a seguros (Lei n.º 9/2015, 11 de Fevereiro 2015). Por essa razão, e para efeitos de comparação, são apresentados resultados para ambos os géneros mas também para a população total, seguindo as metodologias já enunciadas. À semelhança do apresentado para cada género, os dados consultados da HMD para a população total estão disponíveis no Anexo A, e os resultados obtidos encontram-se no Anexo B.

(1)	(2)	(3)	(4)	(5)	(6)
Fragilidade	Média da Coorte	0,0001	0,0005	0,001	0,01
Mulheres					
\ddot{a}_{65}	23,83	27,65	21,95	18,76	8,25
%		51%	81%	93%	99%
Homens					
ä ₆₅	18,45	23,89	16,81	13,61	4,71
%		27%	69%	87%	98%
Total					
\ddot{a}_{65}	20,93	25,86	19,17	15,93	6,14
%		36%	75%	90%	99%

Tabela 5.1 ä₆₅ para as várias fragilidades

Na *Tabela 5.1* encontram-se os Valores Atuariais das anuidades vitalícias antecipadas, aos 65 anos, recorrendo à tábua de mortalidade heterogénea com uma taxa de juro de 2%. A coluna (2) diz respeito aos dois géneros e ao total da população, e considerou-se para o cálculo o valor médio estimado para a fragilidade em cada idade. Nas colunas (3) a (6), e para efeitos de ilustração, são apresentados os valores atuais correspondentes, quando se considera sucessivamente indivíduos com fragilidades de 0,0001, 0,0005, 0,001 e de 0,01, à semelhança da abordagem apresentada na *Figura 4.7*.

Figuram ainda, na *Tabela 5.1*, as percentagens de população com determinadas fragilidades nos grupos considerados. Ou seja, por exemplo, para o género feminino 51% das pessoas têm fragilidade estimada inferior ou igual a 0,0001. Estas

percentagens são cumulativas, ou seja, no grupo feminino há 81% de mulheres com fragilidade estimada inferior ou igual a 0,0005, na qual já está inserida a percentagem de fragilidade menor ou igual a 0,0001, correspondente a 51%.

Conclusões mais significativas:

- (i) As rendas sobre vidas femininas têm sempre VA superiores às dos homens, como se esperava;
- (ii) Nos homens, cerca de 27% são mais robustos (têm uma fragilidade menor), elevando o VA da renda para 23,89. Nas mulheres, esta percentagem está acima de 50%, tendo um VA associado da anuidade de 27,65;
- (iii) Os indivíduos mais frágeis (cerca de 7%) no grupo das mulheres têm rendas com VA na ordem dos 18,76. No caso dos homens, a percentagem é aproximadamente 11%, e o VA é 13,61. Embora à partida se saiba que há vidas que vão durar mais do que a média e outras menos, esta associação com a fragilidade/heterogeneidade da população não deixa de ser muito expressiva.

5.2 População em Geral, Tábua Convencional vs. Tábua Heterogénea

Nesta secção, volta a calcular-se \ddot{a}_{65} , mas agora tomando as tábuas mais recentes disponibilizadas pelo INE (Instituto Nacional de Estatistica, 2015), relativas ao período entre 2011-2013. Os valores para ambos os géneros e para a população total encontram-se no Anexo C. Assumindo a taxa técnica de juro de 2%, os resultados estão na Tabela 5.2.

	Mulheres	Homens	Total
\ddot{a}_{65}	17,04	14,69	16,02

Tabela 5.2 ä₆₅ para as tábuas portuguesas

É imediato que os VA agora obtidos diferem substancialmente, apresentando um valor inferior, dos calculados na secção anterior, *Tabela 5.1*, onde se integrou explicitamente a heterogeneidade da população.

Fazendo as comparações possíveis com a *Tabela 5.1*, é como se as tábuas do INE estivessem associadas a uma população em que a fragilidade média se aproxima de 0,001. Ou seja, os valores agora apresentados na *Tabela 5.2* são próximos dos obtidos para apenas cerca de 10% da população aqui em estudo (aproximadamente 7% no caso das mulheres e 13% no caso dos homens), o que é um claro indício de

alguma insuficiência. A população nascida em 1950 é mais robusta, contudo as comparações, como é evidente, têm que ser feitas com os cuidados devidos.

5.3 Fundos de Pensões, Tábua Convencional vs. Tábua Heterogénea

Em Portugal, uma das tábuas de mortalidade estáticas mais utilizada na área de fundos de pensões, para o cálculo das responsabilidades com benefícios de velhice, atribuídos aos trabalhadores pelas empresas, é a tábua de mortalidade francesa TV88/90 (ver Anexo *D*). Neste ponto repete-se o exercício anterior com a tábua TV88/90 e a mesma taxa técnica de juro de 2%.

Vem $\ddot{a}_{65}=16,41$, VA não muito diferente do calculado com a tábua do INE, *Tabela 5.2*, e que implica, em termos dos fundos de pensões, que por cada euro de benefício anual atribuído, o valor atual esperado desse benefício aos 65 anos é 16,41 euros, sendo esta a provisão que a empresa deve garantir no seu fundo para um indivíduo nestas condições. Se, por exemplo, a pensão anual for de 12 000, a provisão no momento da reforma deve ser igual a 196 920 euros.

A questão é que 16,41 euros é um VA muito inferior aos 20,93 euros que resultam da aplicação da tábua com heterogeneidade, e que no exemplo em análise corresponderiam a uma provisão de 251 160 euros (de 285 960 para as mulheres e 221 400 para os homens, caso se fizesse a separação por géneros).

Utilizando a população total para análise, e de forma semelhante ao concluído antes, a anuidade agora calculada mostra ser igual ou superior à obtida utilizando a heterogeneidade, em aproximadamente 10% da população. No caso das mulheres, apenas para as fragilidades mais elevadas se obtêm VA inferiores ao calculado pela tábua TV88/90, bastante distanciado da fragilidade média no grupo feminino. Para os homens, as diferenças são mais atenuadas.

O facto de a tábua TV88/90 ser desajustada, mais no que se refere às mulheres, indicia que a tábua TV88/90, que não é recente, deixou de conter os acréscimos na esperança média de vida das portuguesas. Ou seja, os indivíduos têm-se tornado menos frágeis, chegando a idades cada vez mais avançadas. A tábua TV88/90, por ser uma tábua estática, não tem em conta o ano em que cada indivíduo nasceu, nem a heterogeneidade associada a cada ano e a cada género.

5.4 Seguros de Vida, Tábua Convencional vs. Tábua Heterogénea

Uma das tábuas frequentemente utilizadas em seguradoras com produtos vida é a tábua de mortalidade suíça, GRF95 (ver Anexo *E*). Esta tábua é utilizada, nomeadamente, no cálculo do prémio que o segurado tem a pagar inicialmente para usufruir de uma renda vitalícia. Neste ponto repete-se o exercício anterior com a tábua GRF95 e a mesma taxa técnica de juro de 2%.

Vem $\ddot{a}_{65}=20,80$, que é um VA bastante próximo dos 20,93 calculados com a tábua heterogénea, e superior às tábuas convencionais apresentadas nas secções anteriores. A tábua GRF95, apesar de ser uma tábua de mortalidade estática, considera uma esperança média de vida superior às outras tábuas já estudadas e, assim sendo, entre as tábuas apresentadas para comparação, é a que melhor se aproxima da experiência de mortalidade da coorte formada pelos portugueses que nasceram em 1950 e se encontram agora à beira da reforma.

6 Conclusão

O objetivo maior deste trabalho consistiu no estudo da população portuguesa no que diz respeito à sua homogeneidade/heterogeneidade, no seguimento do trabalho de (Vaupel, Manton, & Stallard, 1979) e, sobretudo, no estudo mais recentemente de (Su & Sherris, 2012). Estes autores baseiam as suas abordagens na heterogeneidade das populações naquilo que consideram a fragilidade dos indivíduos.

A fragilidade não é diretamente observável, sendo considerada geralmente como uma variável qualitativa (Hougaard, 1982). Contudo, a análise da fragilidade tem significativa importância no mercado atuarial, devido ao seu impacto nas áreas de seguros, planos de pensões, provisões de vida e nas provisões matemáticas de acidentes de trabalho, em não-vida, entre outros.

Acompanhando de forma adaptada a metodologia de (Su & Sherris, 2012) foram aplicados os modelos de fragilidade aos dados retirados da HMD para a população portuguesa, referente aos anos de 1950 e 1960, de modo a modelar a força de mortalidade, integrando a heterogeneidade existente na população. Para a implementação dos modelos de fragilidade consideraram-se duas possibilidades: a função Gama e à função Inversa Gaussiana. Concluiu-se que, para o ano de 1960, o modelo Gama não se ajusta aos dados, sendo por este motivo abandonado. (Su & Sherris, 2012) chegaram a idêntica conclusão, para a população australiana (aliás, no essencial, existe grande paralelismo entre as duas populações).

Ajustado o modelo, tornou-se claro que existe heterogeneidade na população portuguesa, principalmente em idades mais precoces, onde o desvio padrão da fragilidade é elevado. Todavia, com a seleção natural dos indivíduos, em idades mais avançadas o desvio padrão reduz significativamente e a população vai gradualmente tornando-se mais homogénea. Pode observar-se que, em geral, a seleção natural dos indivíduos do género masculino ocorre em idades mais baixas, ou seja, a evidência mostra que as mulheres são, em geral, mais resistentes do que os homens e por essa razão têm uma esperança de vida mais elevada.

Procurando estudar os efeitos da heterogeneidade no mercado das anuidades e também no âmbito dos fundos de pensões e dos seguros de vida, desenvolveram-se algumas comparações entre a tábua resultante do estudo da heterogeneidade e algumas tábuas em uso na prática das companhias seguradoras e sociedades gestoras. Para tal, utilizou-se como "medida" de comparação o Valor Atuarial de \ddot{a}_{65} .

Em primeiro lugar, concluiu-se que as tábuas portuguesas disponíveis pelo INE, relativas ao período 2011-2013, com informação descriminada por género, não serão tão adequadas, no sentido em que os Valores Atuais da anuidade são substancialmente inferiores aos obtidos com as tábuas que incluem a heterogeneidade. Naturalmente, alguma reserva é necessária nas conclusões, pois estas tábuas heterogéneas foram construídas para o grupo nascido em 1950 e os cálculos incidem sobre as pessoas que têm agora 65 anos, que já deram provas de alguma "robustez", tanto homens como mulheres.

A comparação com a tábua TV88/90, regularmente utilizada nos cálculos de provisões para planos de pensões, leva a conclusões do mesmo teor, muito embora se observe um melhor ajustamento para os homens. Esta é, claramente, uma situação que merece alguma reflexão pelos perigos que evidência. Claro que o risco de longevidade há já algum tempo que tem sido fonte de preocupação e esta é mais uma forma de o desvendar.

A comparação com a tábua GRF95, habitualmente utilizada em seguradoras com produtos vida, já é muito satisfatória, pois os valores obtidos em muito se assemelham aos observados no contexto de heterogeneidade. Esta tábua mostra ser mais gravosa que as anteriores, ajustando-se por esse motivo aos dados estimados, que preveem uma fragilidade reduzida em idades mais avançadas.

Em síntese, pode concluir-se que a heterogeneidade tem impacto na população portuguesa e, assim sendo, deveria ser considerada na prática do mercado. No caso dos planos de pensões, esse impacto traduz-se no aumento das responsabilidades das empresas que assumem benefícios de velhice com os seus trabalhadores. Noutras áreas, como o ramo vida, em seguradoras com produtos de rendas vitalícias, o impacto traduz-se num aumento da provisão. Numa futura análise seria interessante a continuação do estudo dos modelos de fragilidade aplicados a carteiras de seguradoras, de modo a estudar a heterogeneidade na população segurada.

A literatura existente fornece muitos tópicos que poderiam igualmente ser tentados para a população portuguesa em trabalhos futuros. São exemplos a modelação da fragilidade recorrendo a modelos lineares generalizados (Butt & Haberman, 2004), ou a utilização da função Weibull nos modelos de fragilidade (Vaupel, Manto, & Stallard, 1986), ou ainda a consideração de que a força de mortalidade base segue a lei de Gompertz-Makeham, como assumido em (Vaupel & Missov, 2014), em vez da lei de Gompertz.

Por último, seria também interessante tentar aplicar o modelo *Markov ageing*, proposto por Lin e Liu em 2007 e também aplicado por (Su & Sherris, 2012), que permite uma análise completa em idades mais precoces, sendo um modelo ainda pouco explorado.

Bibliografia

- Bowers, N. L., Gerber, H. U., Hickman, J. C., James, D. A., & Nesbitt, C. J. (1997). *Actuarial Mathematics* (2ª ed.). Schaumburg, Illinois: The Society of Actuaries.
- Butt, Z., & Haberman, S. (2004). Application of Frailty-Based Mortality Models Using Generalized Linear Models. Em *Astin Bulletin* (Vol. 34 No.1, pp. 175-197).
- Dickson, D. C., Hardy, M. R., & Waters, H. R. (2009). *Actuarial Mathematics for life contingent risks*. Cambridge University Press.
- Engelman, M. (2011). *Frailty in Transition: Variation and Vulnerability in Aging Populations.* University of Chicago.
- Garcia, J. A., & Simões, O. A. (2010). *Matemática Actuarial Vida e Pensões.* Edições Almedina.
- Hougaard, P. (1982). *Life Table Methods for Heterogeneous Populations.* Copenhaga: Statistical Research Unit.
- Instituto Nacional de Estatistica. (2015). Obtido de http://www.ine.pt
- Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2008). *Loss Models: From Data To Decisions* (3^a ed.). Hoboken, New Jersey: John Wiley & Sons.
- Missov, T. I. (2013). Gamma-Gompertz Life Expectancy at Birth. Em *Demographic Research* (Vol. 28 Artigo 9, pp. 259-270). Alemanha.
- Olivieri, A. (2006). Heterogeneity in Survival Models, Applications to Pensions and Life Annuities. Em *Belgian Actuarial Bulletin* (Vol. 6 No.1, pp. 23-39).
- Perryman, F. S. (1914). International Actuarial Notation. Em *Proceedings of the Casualty Actuarial Society* (Vol. XXXVI, pp. 123-131).
- Shkolnikov, V., Barbieri, M., & Wilmoth, J. (2015). *The Human Mortality Database*. Obtido de http://www.mortality.org
- Su, S., & Sherris, M. (2011). *Heterogeneity of Australian Population Mortality and Implications for a Viable Life Annuity Market.* Sydney, Australia: The Institute of Actuaries of Australia.

- Su, S., & Sherris, M. (2012). Heterogeneity of Australian population mortality and implications for a viable annuity market. Em *Insurance: Mathematics and Economics* 51 (pp. 322-332).
- Vaupel, J. W., & Missov, T. I. (2014). Unobserved Population Heterogeneity: A Review of Formal Relationship. Em *Demographic Research* (Vol. 31 Article 22, pp. 659-686).
- Vaupel, J. W., Manto, K. G., & Stallard, E. (1986). Alternative Models for the Heterogeneity of Mortality Risks Among the Aged. Em *Journal of the AmericanStatistical Association* (Vol. 81 No. 395).
- Vaupel, J. W., Manton, G. K., & Stallard, E. (1979). The Impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality. Em *Demography* (Vol. 3, pp. 439-454).
- Wienke, A. (2010). *Frailty Models in Survival Analysis.* Chapman & Hall/CRC Biostatistics Series.

Legislação

- Decreto-Lei n.º167-E/2013. (31 de dezembro de 2013). Diário da República, $1^{\underline{a}}$ série $N.^{\underline{o}}$ 253, 7056-(366).
- Lei n.º 9/2015. (11 de Fevereiro 2015). *Diário da República, 1ª série N.º 29*, 806.

Anexos

A. Base de Dados

1950				E_{x}			
Idade	Mulheres	Homens	Total	Idade	Mulheres	Homens	Total
0	86 323,53	91 431,68	177 755,21	31	66 224,77	65 349,20	131 573,97
1	81 997,09	86 028,61	168 025,70	32	66 361,52	65 329,81	131 691,34
2	80 842,10	84 560,13	165 402,23	33	66 503,28	65 314,09	131 817,37
3	80 731,16	84 218,65	164 949,81	34	66 635,04	65 307,04	131 942,08
4	81 003,43	84 325,14	165 328,58	35	66 772,79	65 278,32	132 051,11
5	81 391,62	84 571,74	165 963,36	36	66 906,55	65 240,93	132 147,48
6	81 832,95	84 865,43	166 698,38	37	67 027,31	65 197,21	132 224,52
7	82 312,54	85 186,17	167 498,71	38	67 143,73	65 148,16	132 291,89
8	82 824,60	85 545,27	168 369,87	39	67 257,49	65 109,11	132 366,59
9	83 353,71	85 917,58	169 271,29	40	67 361,91	65 047,05	132 408,96
10	83 829,30	86 210,36	170 039,66	41	67 458,33	64 958,67	132 417,00
11	82 899,60	84 425,49	167 325,09	42	67 369,33	64 732,00	132 101,33
12	81 976,29	82 643,64	164 619,93	43	67 379,33	64 631,67	132 011,00
13	81 053,73	80 859,11	161 912,84	44	67 437,33	64 614,00	132 051,33
14	80 131,73	79 075,28	159 207,01	45	67 518,67	64 599,67	132 118,33
15	79 206,41	77 285,86	156 492,27	46	67 624,33	64 582,00	132 206,33
16	78 282,41	75 485,54	153 767,95	47	67 775,00	64 614,33	132 389,33
17	77 356,80	73 674,01	151 030,81	48	67 864,00	64 648,00	132 512,00
18	76 430,15	71 857,20	148 287,36	49	68 061,00	64 714,33	132 775,33
19	75 506,30	70 032,95	145 539,25	50	68 383,67	64 762,00	133 145,67
20	74 591,66	68 268,98	142 860,64	51	68 498,33	64 770,33	133 268,67
21	73 762,14	67 980,83	141 742,97	52	68 600,00	64 627,33	133 227,33
22	72 936,90	67 711,47	140 648,37	53	68 595,67	64 402,33	132 998,00
23	72 112,64	67 455,59	139 568,23	54	68 570,00	64 148,00	132 718,00
24	71 282,95	67 173,95	138 456,90	55	68 565,00	63 850,63	132 415,63
25	70 450,07	66 863,95	137 314,02	56	68 549,00	63 525,01	132 074,01
26	69 618,71	66 568,42	136 187,13	57	68 563,00	63 211,67	131 774,67
27	68 790,14	66 276,72	135 066,86	58	68 567,67	62 881,98	131 449,65
28	67 960,10	65 987,75	133 947,85	59	68 601,99	62 538,34	131 140,33
29	67 127,67	65 703,88	132 831,55	60	68 644,01	62 219,01	130 863,02
30	66 293,73	65 416,38	131 710,11	61	68 372,67	61 652,67	130 025,34

Tabela A.1 Tábua geracional portuguesa de 1950, referente ao número de expostos ao risco

1950				m_{χ}			
Idade	Mulheres	Homens	Total	Idade	Mulheres	Homens	Total
0	0,098404	0,113562	0,106201	31	0,000815	0,001928	0,001368
1	0,030736	0,031686	0,031223	32	0,000738	0,001990	0,001359
2	0,012480	0,013770	0,013140	33	0,000797	0,001745	0,001267
3	0,005125	0,005445	0,005288	34	0,000870	0,001883	0,001372
4	0,003055	0,003086	0,003071	35	0,000749	0,002237	0,001484
5	0,002099	0,002090	0,002094	36	0,001016	0,002238	0,001619
6	0,001670	0,001770	0,001721	37	0,001015	0,002500	0,001747
7	0,001158	0,001399	0,001281	38	0,001132	0,002226	0,001671
8	0,000900	0,001123	0,001013	39	0,001145	0,002411	0,001768
9	0,000667	0,000865	0,000767	40	0,001366	0,002798	0,002069
10	0,000683	0,000823	0,000754	41	0,001468	0,003248	0,002341
11	0,000512	0,000791	0,000653	42	0,001544	0,003399	0,002453
12	0,000498	0,000821	0,000660	43	0,001603	0,003342	0,002454
13	0,000515	0,000826	0,000671	44	0,001928	0,003513	0,002703
14	0,000489	0,000882	0,000684	45	0,001644	0,004288	0,002937
15	0,000607	0,001039	0,000820	46	0,002203	0,004289	0,003222
16	0,000548	0,001223	0,000879	47	0,001948	0,004287	0,003089
17	0,000593	0,001342	0,000958	48	0,002122	0,004733	0,003396
18	0,000620	0,001443	0,001019	49	0,002189	0,005007	0,003562
19	0,000475	0,001631	0,001032	50	0,002267	0,005188	0,003688
20	0,000553	0,001659	0,001082	51	0,002423	0,005790	0,004059
21	0,000679	0,001617	0,001129	52	0,003207	0,006251	0,004684
22	0,000518	0,001195	0,000844	53	0,002974	0,006397	0,004632
23	0,000632	0,001272	0,000941	54	0,003077	0,006656	0,004807
24	0,000739	0,001953	0,001328	55	0,002815	0,007754	0,005197
25	0,000676	0,001975	0,001308	56	0,003224	0,007968	0,005506
26	0,000720	0,001657	0,001178	57	0,003618	0,008055	0,005746
27	0,000636	0,001839	0,001227	58	0,003719	0,008781	0,006141
28	0,000817	0,001683	0,001243	59	0,003280	0,008942	0,005980
29	0,000673	0,001609	0,001136	60	0,004182	0,009502	0,006711
30	0,000935	0,001743	0,001336	61	0,004490	0,010594	0,007384

 $Tabela~A.2~T\'abua~geracional~portuguesa~de~1950, referente~\`a~taxa~central~de~mortalidade$

1960				E_{χ}			
Idade	Mulheres	Homens	Total	Idade	Mulheres	Homens	Total
0	91 797,07	98 148,03	189 945,10	26	76 688,18	76 606,88	153 295,06
1	87 368,31	92 543,81	179 912,11	27	75 983,28	75 655,38	151 638,65
2	86 260,55	91 102,23	177 362,78	28	75 271,70	74 696,20	149 967,90
3	85 849,29	90 386,71	176 236,00	29	74 561,80	73 727,02	148 288,82
4	85 601,61	89 862,60	175 464,20	30	73 848,90	72 749,18	146 598,08
5	85 435,91	89 437,29	174 873,20	31	73 132,00	71 757,67	144 889,67
6	85 314,79	89 057,54	174 372,33	32	73 202,33	71 599,67	144 802,00
7	85 222,84	88 686,00	173 908,84	33	73 427,00	71 707,33	145 134,33
8	85 140,52	88 335,15	173 475,67	34	73 781,00	71 960,00	145 741,00
9	85 066,18	88 000,39	173 066,57	35	74 157,33	72 257,00	146 414,33
10	84 981,62	87 666,85	172 648,47	36	74 581,00	72 596,00	147 177,00
11	84 572,74	87 180,15	171 752,89	37	75 026,33	72 984,33	148 010,67
12	84 166,82	86 692,87	170 859,68	38	75 319,67	73 331,00	148 650,67
13	83 764,06	86 199,95	169 964,00	39	75 754,00	73 782,33	149 536,33
14	83 361,30	85 702,41	169 063,71	40	76 472,33	74 375,33	150 847,67
15	82 956,56	85 196,48	168 153,04	41	76 796,67	74 704,00	151 500,67
16	82 545,21	84 669,92	167 215,13	42	77 124,33	74 781,00	151 905,33
17	82 129,34	84 119,03	166 248,36	43	77 333,33	74 785,33	152 118,67
18	81 709,81	83 540,64	165 250,45	44	77 462,00	74 723,67	152 185,67
19	81 284,74	82 956,24	164 240,97	45	77 579,67	74 651,64	152 231,31
20	80 858,82	82 355,19	163 214,01	46	77 708,33	74 559,35	152 267,68
21	80 207,02	81 438,43	161 645,45	47	77 868,33	74 498,34	152 366,67
22	79 502,44	80 443,59	159 946,03	48	78 016,33	74 423,65	152 439,99
23	78 800,54	79 466,41	158 266,95	49	78 162,33	74 347,34	152 509,67
24	78 097,31	78 502,90	156 600,21	50	78 289,34	74 247,01	152 536,35
25	77 392,41	77 552,06	154 944,47	51	78 097,67	73 620,67	151 718,34

Tabela A.3 Tábua geracional portuguesa de 1960, referente ao número de expostos ao risco

1960				m_{χ}			
Idade	Mulheres	Homens	Total	Idade	Mulheres	Homens	Total
0	0,084939	0,099249	0,092333	26	0,000469	0,001527	0,000998
1	0,020283	0,020564	0,020428	27	0,000566	0,001943	0,001253
2	0,006297	0,006489	0,006396	28	0,000571	0,001847	0,001207
3	0,002784	0,003450	0,003125	29	0,000604	0,002184	0,001389
4	0,002133	0,002196	0,002165	30	0,000636	0,002144	0,001385
5	0,001206	0,001298	0,001253	31	0,000725	0,002690	0,001698
6	0,000871	0,001178	0,001028	32	0,000710	0,002360	0,001526
7	0,000631	0,001047	0,000843	33	0,000654	0,001911	0,001275
8	0,000579	0,000831	0,000708	34	0,001030	0,002946	0,001976
9	0,000503	0,000652	0,000579	35	0,001092	0,002989	0,002028
10	0,000434	0,000666	0,000552	36	0,001073	0,002838	0,001943
11	0,000458	0,000630	0,000545	37	0,000946	0,002877	0,001899
12	0,000409	0,000699	0,000556	38	0,001036	0,002918	0,001964
13	0,000398	0,000788	0,000595	39	0,001016	0,003171	0,002080
14	0,000382	0,000839	0,000614	40	0,001255	0,002904	0,002068
15	0,000455	0,000966	0,000714	41	0,001445	0,003146	0,002284
16	0,000566	0,001332	0,000954	42	0,001361	0,003570	0,002449
17	0,000564	0,001626	0,001101	43	0,001203	0,003289	0,002229
18	0,000670	0,001894	0,001288	44	0,001459	0,003479	0,002451
19	0,000738	0,001890	0,001320	45	0,001521	0,003819	0,002648
20	0,000581	0,002210	0,001403	46	0,001596	0,004280	0,002910
21	0,000524	0,002161	0,001349	47	0,001631	0,004055	0,002816
22	0,000465	0,002175	0,001325	48	0,001936	0,004516	0,003196
23	0,000419	0,001862	0,001144	49	0,001868	0,004306	0,003057
24	0,000512	0,001732	0,001124	50	0,002044	0,004756	0,003364
25	0,000465	0,001779	0,001123	51	0,002062	0,005285	0,003626

Tabela A.4 Tábua geracional portuguesa de 1960, referente à taxa central de mortalidade

B. Tábua de Mortalidade com Heterogeneidade

Idade	q_x	l_x	Idade	q_x	l_x	Idade	q_x	l_x
0	0,002730	100 000	37	0,001109	98 009	74	0,009457	85 183
1	0,000297	99 727	38	0,001175	97 900	75	0,010020	84 377
2	0,000264	99 697	39	0,001245	97 785	76	0,010617	83 532
3	0,000250	99 671	40	0,001319	97 663	77	0,011250	82 645
4	0,000243	99 646	41	0,001397	97 534	78	0,011920	81 715
5	0,000241	99 622	42	0,001480	97 398	79	0,012629	80 741
6	0,000243	99 598	43	0,001568	97 254	80	0,013381	79 721
7	0,000247	99 574	44	0,001661	97 101	81	0,014177	78 654
8	0,000253	99 549	45	0,001760	96 940	82	0,015020	77 539
9	0,000261	99 524	46	0,001865	96 769	83	0,015912	76 375
10	0,000270	99 498	47	0,001976	96 589	84	0,016858	75 160
11	0,000280	99 471	48	0,002094	96 398	85	0,017858	73 893
12	0,000292	99 443	49	0,002219	96 196	86	0,018918	72 573
13	0,000304	99 414	50	0,002351	95 983	87	0,020040	71 200
14	0,000318	99 384	51	0,002492	95 757	88	0,021228	69 773
15	0,000334	99 352	52	0,002640	95 519	89	0,022485	68 292
16	0,000350	99 319	53	0,002798	95 266	90	0,023816	66 756
17	0,000368	99 284	54	0,002965	95 000	91	0,025225	65 166
18	0,000387	99 248	55	0,003142	94 718	92	0,026716	63 523
19	0,000407	99 210	56	0,003330	94 420	93	0,028294	61 826
20	0,000429	99 169	57	0,003529	94 106	94	0,029964	60 076
21	0,000453	99 127	58	0,003740	93 774	95	0,031730	58 276
22	0,000478	99 082	59	0,003963	93 423	96	0,033599	56 427
23	0,000504	99 034	60	0,004200	93 053	97	0,035576	54 531
24	0,000532	98 984	61	0,004451	92 662	98	0,037667	52 591
25	0,000563	98 932	62	0,004717	92 250	99	0,039878	50 610
26	0,000595	98 876	63	0,004998	91 815	100	0,042216	48 592
27	0,000629	98 817	64	0,005297	91 356	101	0,044688	46 541
28	0,000665	98 755	65	0,005613	90 872	102	0,047301	44 461
29	0,000703	98 690	66	0,005948	90 362	103	0,050063	42 358
30	0,000744	98 620	67	0,006303	89 824	104	0,052982	40 237
31	0,000787	98 547	68	0,006680	89 258	105	0,056065	38 105
32	0,000833	98 469	69	0,007078	88 662	106	0,059323	35 969
33	0,000882	98 387	70	0,007501	88 034	107	0,062763	33 835
34	0,000934	98 300	71	0,007948	87 374	108	0,066396	31 712
35	0,000989	98 208	72	0,008422	86 680	109	0,070231	29 606
36	0,001048	98 111	73	0,008924	85 950	110	0,074279	27 527

Tabela B.1 q_x e l_x (mulheres) para o ano do 1950, com inclusão de heterogeneidade

Idade	q_x	l_x	Idade	q_x	l_x	Idade	q_x	l_x
0	0,005262	100 000	37	0,002427	95 912	74	0,022851	69 013
1	0,000575	99 474	38	0,002578	95 679	75	0,024271	67 436
2	0,000514	99 417	39	0,002738	95 433	76	0,025778	65 800
3	0,000488	99 365	40	0,002909	95 171	77	0,027377	64 103
4	0,000477	99 317	41	0,003090	94 894	78	0,029074	62 348
5	0,000475	99 270	42	0,003283	94 601	79	0,030875	60 536
6	0,000481	99 222	43	0,003489	94 291	80	0,032785	58 667
7	0,000490	99 175	44	0,003707	93 962	81	0,034811	56 743
8	0,000504	99 126	45	0,003939	93 613	82	0,036960	54 768
9	0,000521	99 076	46	0,004185	93 245	83	0,039240	52 744
10	0,000541	99 025	47	0,004447	92 854	84	0,041656	50 674
11	0,000564	98 971	48	0,004725	92 441	85	0,044218	48 563
12	0,000589	98 915	49	0,005021	92 005	86	0,046934	46 416
13	0,000617	98 857	50	0,005335	91 543	87	0,049812	44 237
14	0,000648	98 796	51	0,005669	91 054	88	0,052862	42 034
15	0,000681	98 732	52	0,006025	90 538	89	0,056093	39 812
16	0,000718	98 665	53	0,006402	89 993	90	0,059515	37 579
17	0,000756	98 594	54	0,006803	89 416	91	0,063138	35 342
18	0,000798	98 519	55	0,007229	88 808	92	0,066975	33 111
19	0,000843	98 440	56	0,007681	88 166	93	0,071035	30 893
20	0,000891	98 357	57	0,008162	87 489	94	0,075332	28 699
21	0,000943	98 270	58	0,008673	86 775	95	0,079877	26 537
22	0,000998	98 177	59	0,009216	86 022	96	0,084684	24 417
23	0,001057	98 079	60	0,009792	85 230	97	0,089766	22 349
24	0,001120	97 975	61	0,010405	84 395	98	0,095136	20 343
25	0,001187	97 866	62	0,011056	83 517	99	0,100810	18 408
26	0,001258	97 750	63	0,011747	82 594	100	0,106802	16 552
27	0,001335	97 627	64	0,012481	81 623	101	0,113126	14 784
28	0,001416	97 496	65	0,013261	80 605	102	0,119800	13 112
29	0,001502	97 358	66	0,014089	79 536	103	0,126838	11 541
30	0,001594	97 212	67	0,014968	78 415	104	0,134258	10 077
31	0,001692	97 057	68	0,015902	77 241	105	0,142075	8 724
32	0,001796	96 893	69	0,016894	76 013	106	0,150307	7 485
33	0,001907	96 719	70	0,017947	74 729	107	0,158970	6 360
34	0,002025	96 534	71	0,019065	73 388	108	0,168082	5 349
35	0,002151	96 339	72	0,020253	71 989	109	0,177658	4 450
36	0,002285	96 132	73	0,021513	70 531	110	0,187716	3 659

Tabela B.2 q_x e l_x (homens) para o ano do 1950, com inclusão de heterogeneidade

Idade	q_x	l_x	Idade	q_x	l_x	Idade	q_x	l_x
0	0,004109	100 000	37	0,001763	96 924	74	0,015674	77 038
1	0,000448	99 589	38	0,001869	96 753	75	0,016625	75 831
2	0,000400	99 545	39	0,001982	96 572	76	0,017633	74 570
3	0,000378	99 505	40	0,002103	96 381	77	0,018702	73 255
4	0,000369	99 467	41	0,002230	96 178	78	0,019835	71 885
5	0,000367	99 430	42	0,002366	95 964	79	0,021036	70 459
6	0,000370	99 394	43	0,002509	95 737	80	0,022309	68 977
7	0,000377	99 357	44	0,002662	95 496	81	0,023657	67 438
8	0,000386	99 320	45	0,002824	95 242	82	0,025087	65 843
9	0,000399	99 281	46	0,002996	94 973	83	0,026601	64 191
10	0,000413	99 242	47	0,003178	94 689	84	0,028206	62 484
11	0,000429	99 201	48	0,003371	94 388	85	0,029906	60 721
12	0,000448	99 158	49	0,003577	94 070	86	0,031706	58 905
13	0,000468	99 114	50	0,003795	93 733	87	0,033614	57 038
14	0,000491	99 067	51	0,004026	93 377	88	0,035633	55 120
15	0,000515	99 019	52	0,004271	93 002	89	0,037772	53 156
16	0,000541	98 968	53	0,004532	92 604	90	0,040037	51 149
17	0,000569	98 914	54	0,004808	92 185	91	0,042434	49 101
18	0,000600	98 858	55	0,005101	91 741	92	0,044971	47 017
19	0,000632	98 799	56	0,005412	91 273	93	0,047657	44 903
20	0,000667	98 736	57	0,005742	90 780	94	0,050498	42 763
21	0,000704	98 670	58	0,006092	90 258	95	0,053504	40 603
22	0,000744	98 601	59	0,006463	89 708	96	0,056684	38 431
23	0,000787	98 528	60	0,006857	89 129	97	0,060046	36 253
24	0,000832	98 450	61	0,007274	88 518	98	0,063601	34 076
25	0,000880	98 368	62	0,007718	87 874	99	0,067359	31 908
26	0,000931	98 282	63	0,008188	87 196	100	0,071331	29 759
27	0,000986	98 190	64	0,008686	86 482	101	0,075527	27 636
28	0,001044	98 093	65	0,009215	85 730	102	0,079959	25 549
29	0,001106	97 991	66	0,009776	84 940	103	0,084639	23 506
30	0,001172	97 882	67	0,010371	84 110	104	0,089579	21 517
31	0,001242	97 768	68	0,011002	83 238	105	0,094792	19 589
32	0,001316	97 646	69	0,011671	82 322	106	0,100292	17 732
33	0,001395	97 518	70	0,012381	81 361	107	0,106092	15 954
34	0,001479	97 382	71	0,013133	80 354	108	0,112206	14 261
35	0,001568	97 238	72	0,013931	79 299	109	0,118649	12 661
36	0,001662	97 085	73	0,014777	78 194	110	0,125434	11 159

Tabela B.3 q_x e l_x da população total nascida em 1950, com inclusão de heterogeneidade

C. Tábua Portuguesa

Idade	l_x	Idade	l_x	Idade	l_x
0	100 000	34	99 159	68	91 014
1	99 726	35	99 121	69	90 268
2	99 706	36	99 075	70	89 453
3	99 684	37	99 025	71	88 621
4	99 672	38	98 969	72	87 624
5	99 663	39	98 905	73	86 549
6	99 654	40	98 833	74	85 318
7	99 647	41	98 760	75	83 893
8	99 638	42	98 678	76	82 338
9	99 627	43	98 585	77	80 546
10	99 618	44	98 480	78	78 650
11	99 607	45	98 362	79	76 472
12	99 597	46	98 236	80	74 041
13	99 592	47	98 100	81	71 271
14	99 586	48	97 938	82	68 098
15	99 576	49	97 771	83	64 413
16	99 562	50	97 601	84	60 123
17	99 552	51	97 390	85	55 240
18	99 535	52	97 186	86	49 857
19	99 520	53	96 996	87	44 138
20	99 506	54	96 749	88	38 237
21	99 486	55	96 508	89	32 334
22	99 469	56	96 246	90	26 607
23	99 449	57	95 972	91	21 180
24	99 432	58	95 680	92	16 286
25	99 410	59	95 356	93	12 045
26	99 384	60	95 031	94	8 528
27	99 364	61	94 675	95	5 750
28	99 339	62	94 258	96	3 671
29	99 310	63	93 834	97	2 206
30	99 285	64	93 381	98	1 238
31	99 254	65	92 849	99	645
32	99 224	66	92 305	100	308
33	99 193	67	91 707		

Tabela C.1 Número de sobreviventes da tábua portuguesa 2011-2013, (mulheres)

Idade	l_x	Idade	l_x	Idade	l_x
0	100 000	34	98 414	68	79 680
1	99 656	35	98 313	69	78 241
2	99 627	36	98 210	70	76 689
3	99 608	37	98 103	71	74 969
4	99 594	38	97 990	72	73 276
5	99 583	39	97 858	73	71 497
6	99 571	40	97 693	74	69 439
7	99 565	41	97 532	75	67 211
8	99 555	42	97 333	76	64 777
9	99 544	43	97 111	77	62 296
10	99 536	44	96 871	78	59 617
11	99 525	45	96 608	79	56 711
12	99 517	46	96 304	80	53 718
13	99 509	47	95 971	81	50 460
14	99 498	48	95 629	82	46 967
15	99 481	49	95 245	83	43 151
16	99 456	50	94 838	84	38 947
17	99 424	51	94 374	85	34 412
18	99 408	52	93 868	86	29 681
19	99 367	53	93 287	87	24 975
20	99 326	54	92 715	88	20 452
21	99 281	55	92 082	89	16 261
22	99 222	56	91 433	90	12 514
23	99 156	57	90 717	91	9 260
24	99 103	58	89 946	92	6 584
25	99 043	59	89 175	93	4 479
26	98 982	60	88 337	94	2 901
27	98 927	61	87 468	95	1 779
28	98 865	62	86 550	96	1 028
29	98 799	63	85 565	97	556
30	98 734	64	84 573	98	279
31	98 660	65	83 439	99	130
32	98 591	66	82 246	100	55
33	98 516	67	80 983		

Tabela C.2 Número de sobreviventes da tábua portuguesa 2011-2013, (homens)

Idade	l_x	Idade	l_x	Idade	l_x
0	100 000	34	98 786	68	85 463
1	99 690	35	98 717	69	84 385
2	99 665	36	98 644	70	83 213
3	99 644	37	98 565	71	81 950
4	99 631	38	98 482	72	80 616
5	99 621	39	98 385	73	79 199
6	99 611	40	98 268	74	77 568
7	99 604	41	98 152	75	75 754
8	99 595	42	98 013	76	73 775
9	99 584	43	97 857	77	71 653
10	99 576	44	97 686	78	69 384
11	99 564	45	97 496	79	66 862
12	99 556	46	97 284	80	64 169
13	99 549	47	97 052	81	61 192
14	99 540	48	96 802	82	57 974
15	99 527	49	96 530	83	54 469
16	99 507	50	96 245	84	50 504
17	99 486	51	95 910	85	46 045
18	99 469	52	95 559	86	41 073
19	99 441	53	95 177	87	35 863
20	99 413	54	94 771	88	30 567
21	99 380	55	94 338	89	25 378
22	99 342	56	93 886	90	20 462
23	99 299	57	93 395	91	15 922
24	99 264	58	92 869	92	11 946
25	99 223	59	92 326	93	8 605
26	99 180	60	91 750	94	5 923
27	99 142	61	91 145	95	3 876
28	99 099	62	90 482	96	2 397
29	99 052	63	89 779	97	1 392
30	99 006	64	89 059	98	754
31	98 954	65	88 231	99	378
32	98 905	66	87 371	100	174
33	98 853	67	86 451		

Tabela C.3 Número de sobreviventes da tábua portuguesa 2011-2013, para a população total

D. Tábua TV88/90

Idade	l_x	Idade	l_x	Idade	l_x
0	100 000	37	97 851	74	78 880
1	99 352	38	97 753	75	77 104
2	99 294	39	97 648	76	75 136
3	99 261	40	97 534	77	72 951
4	99 236	41	97 413	78	70 597
5	99 214	42	97 282	79	67 952
6	99 194	43	97 138	80	65 043
7	99 177	44	96 981	81	61 852
8	99 161	45	96 810	82	58 379
9	99 145	46	96 622	83	54 614
10	99 129	47	96 424	84	50 825
11	99 112	48	96 218	85	46 455
12	99 096	49	95 995	86	42 130
13	99 081	50	95 752	87	37 738
14	99 062	51	95 488	88	33 340
15	99 041	52	95 202	89	28 980
16	99 018	53	94 892	90	24 739
17	98 989	54	94 560	91	20 704
18	98 955	55	94 215	92	16 959
19	98 913	56	93 848	93	13 580
20	98 869	57	93 447	94	10 636
21	98 823	58	93 014	95	8 118
22	98 778	59	92 545	96	6 057
23	98 734	60	92 050	97	4 378
24	98 689	61	91 523	98	3 096
25	98 640	62	90 954	99	2 184
26	98 590	63	90 343	100	1 479
27	98 537	64	89 887	101	961
28	98 482	65	88 978	102	599
29	98 428	66	88 226	103	358
30	98 371	67	87 409	104	205
31	98 310	68	86 513	105	113
32	98 247	69	85 522	106	59
33	98 182	70	84 440	107	30
34	98 111	71	83 251	108	14
35	98 031	72	81 936	109	6
36	97 942	73	80 484	110	2

Tabela D.1 Número de sobreviventes em cada idade da tábua TV88/90

E. Tábua GRF95

Idade	l_x	Idade	l_x	Idade	l_x
15	100 000	52	96 937	89	58 912
16	99 968	53	96 749	90	55 787
17	99 936	54	96 549	91	52 572
18	99 904	55	96 337	92	49 301
19	99 872	56	96 112	93	46 008
20	99 839	57	95 872	94	42 712
21	99 806	58	95 615	95	39 426
22	99 772	59	95 339	96	36 156
23	99 736	60	95 043	97	32 913
24	99 696	61	94 726	98	29 719
25	99 654	62	94 385	99	26 601
26	99 609	63	94 023	100	23 583
27	99 560	64	93 635	101	20 693
28	99 509	65	93 216	102	17 957
29	99 455	66	92 758	103	15 399
30	99 397	67	92 253	104	13 038
31	99 337	68	91 692	105	10 890
32	99 272	69	91 069	106	8 965
33	99 204	70	90 379	107	7 267
34	99 132	71	89 620	108	5 795
35	99 055	72	88 790	109	4 541
36	98 974	73	87 889	110	3 494
37	98 889	74	86 917	111	2 635
38	98 798	75	85 878	112	1 947
39	98 702	76	84 772	113	1 407
40	98 600	77	83 596	114	993
41	98 493	78	82 342	115	684
42	98 381	79	80 995	116	459
43	98 265	80	79 540	117	299
44	98 143	81	77 956	118	190
45	98 016	82	76 222	119	116
46	97 884	83	74 318	120	69
47	97 745	84	72 226	121	40
48	97 600	85	69 936	122	22
49	97 446	86	67 447	123	12
50	97 285	87	64 768	124	6
51	97 116	88	61 915	125	3

Tabela E.1 Número de sobreviventes em cada idade da tábua GRF95