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Abstract 

 

There are two possible ways of interpreting the seemingly stochastic nature 

of financial markets: the Efficient Market Hypothesis (EMH) and a set of stylized 

facts that drive the behavior of the markets. We show evidence for some of the 

stylized facts such as memory-like phenomena in price volatility in the short term, 

a power-law behavior and non-linear dependencies on the returns. 

Given this, we construct a model of the market using Markov chains. Then, 

we develop an algorithm that can be generalized for any N-symbol alphabet and 

K-length Markov chain. Using this tool, we are able to show that it’s, at least, 

always better than a completely random model such as a Random Walk. The 

code is written in MATLAB and maintained in GitHub. 

 

Keywords: Markov chains, financial markets, process reconstruction, financial 

forecasting 

 

JEL Codes: C63, G17 
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1. Introduction 

 

The financial markets are seemingly stochastic, but there are two major and 

different ways of interpreting such property. On one hand, we can believe in a set 

of stylized facts — that is, an empirical finding that is true more often than not — 

about the markets and their behavior. On the other hand, we can believe in the 

Efficient Market Hypothesis (EMH) and that it’s impossible to beat financial 

markets due to their absolute knowledge of available information. 

The literature is vast and support is widely distributed among each 

perspective. We can point some popular stylized facts identified (Cont, 2001) 

about financial assets such as the existence of memory-like phenomena in price 

volatility, power-law behavior in returns, correlations between returns of distinct 

companies and non-linear dependencies on the returns. 

The EMH can assume the form of one of its three variants (Fama, Efficient 

Capital Markets: A Review of Theory and Empirical Work, 1970): weak, semi-

strong and strong, but all share the claim that market efficiency causes the prices 

on traded assets to incorporate all publicly available past information. As a result, 

the assets are traded at their fair value and it’s impossible to take advantage of 

market flaws either through undervalued assets, inflated prices or timing 

mechanisms. 

There has been work made that contributes to both ends of the question, 

supporting the apparent efficiency of markets under linear statistical tests and 

failure to outperform the markets by practitioners while providing evidence for 

non-linear forecasting methods to achieve above average returns (Sewell, 2012). 
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This and the existence of stylized facts seem to contradict the lack of structure 

in financial markets. In fact, we can think of them as complex systems altogether 

in that they meet most, if not all, of the required criteria: memory and feedback, 

non-stationarity, a multitude of interacting agents with adaptation and evolution 

exhibiting extreme behavior — remaining far from equilibrium, being a single 

realization and an open system with the environment (Johnson, Jefferies, & Hui, 

2003). 

The financial markets can be seen as an example of a complex adaptive 

system and are certainly one of the most complex structures known with a very 

unique and distinct property: their building blocks — the agents — are intelligent 

beings. Investors are quick to react and are always searching for the best 

possible outcome. 

In order to achieve better than average risk-adjusted returns, the agents try a 

variety of tools that they have at their disposal. Borrowing from many different 

disciplines, we have available a multitude of tools that have been designed to 

study the structure of complex systems whose emergent behavior cannot be 

reduced to the study of its parts separately. Traditionally, this has been applied 

in the natural physical sciences, but has since been adopted by many areas such 

as biology, sociology and, of course, economics. 

One of the available tools for the study of stochastic processes is modelling 

the underlying dynamics as a Markov chain. This can be applied to Markov 

processes which are stochastic processes satisfying the Markovian — or 

memoryless — property. That is, the future states depend on the history (of 

states) only through the current state (Serfozo, 2009). A Markov process 
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becomes a Markov chain if it has a discrete state space. Continuous processes 

can also be reduced to Markov chains if we can describe the time as a countable 

state space. 

The purpose of modelling a process is not only to describe its past and 

understand its current behavior, but also to try and get some insight into its 

possible future path. One can argue that for as long as markets have existed, 

there have been those who tried to beat them. Though arbitrage, insider 

information and other methods may be valid for some markets, they aren’t for the 

financial markets as such advantages are so readily resolved that they can be 

considered practically inexistent. One must then try to get advantage in a different 

way, for example, by trying to predict the future price of a given asset and thus 

contrive a strategy to achieve a profit. 

Admittedly, the stock market does not meet the criteria of complete 

independence of present price movements from past ones, but these influences 

are arguably so small that they fail to be useful to an investor (Malkiel, 1973). 

This fact renders buy-and-hold strategies useless. Thus, one can argue in favor 

of the Random Walk Hypothesis (RWH) and that price evolution is due to an 

unpredictable random walk consistent with the EMH. 

The prediction methods can be characterized as one of three larger 

categories that may overlap: fundamental analysis, technical analysis and data 

mining technologies. Fundamental analysis is concerned with the intrinsic value 

of a stock and studies that intrinsic value, including the performance of the 

company behind the stock and the overall economy. Technical — or chart — 

analysis, on the other hand, evaluates market statistics and tries to identify 
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patterns in the data. Finally, data mining technologies borrow the power of 

computers and techniques from other fields such as Artificial Neural Networks 

(ANN) and Genetic Algorithms (GA). We can include the tools from complex 

theory in this set, such as the Markov Chain model. 

In a 1993 letter to the Shareholders of Berkshire Hathaway Inc., Warren Buffet 

quoted the American economist Ben Graham as "In the short-run, the market is 

a voting machine — reflecting a voter-registration test that requires only money, 

not intelligence or emotional stability — but in the long-run, the market is a 

weighing machine" (Buffett, 1993). What he means is that emotions control the 

short-run while a company’s assets and profits control the long-run. We can see 

one example of this when Twitter mood can be used to predict up and down 

movements in the closing values of the Dow Jones Industrial Average (DJIA) with 

an accuracy of 86.7% (Bollen, Mao, & Zeng, 2011). Even though the short-run is 

very volatile, the long-run follows a more stable path and, at least in comparison, 

more predictable. 

The main source of both information and motivation for this work is the paper 

presented in reference (Vilela Mendes, Lima, & Araújo, 2002) in which the 

authors develop a market reconstruction procedure based on the market 

fluctuations. They conclude that it’s a short-memory process with a small long-

memory component which suggests that chains with complete connections and 

summable decays are an appropriate model for it. I intend to further validate some 

of their results using more data points and an improved algorithm that should not 

only be general, but also readily available and easy to adapt to different study 

cases. 
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More specifically, my main contribution relies in the following: 

1. Confirmation of previous results 

2. Development of a general algorithm for N-symbol and K-length Markov 

chains 

3. Forecasting real prices from the forecasted returns 

Markov chains have been shown to reproduce most of the stylized facts that 

we know about daily series of returns (Bulla & Bulla, 2006). They have been used 

as well in an attempt to capture more accurately the evolution of a risky asset (Xi 

& Mamon, 2011), to study the high frequency price dynamics of traded stocks 

(D'Amico & Petroni, 2012) and to predict loan defaults on credit (Vojtekova, 

2013). In (Stadnik, 2014) they attempt to find an appropriate mathematical 

description of the financial market distributions based on Markov chains and in 

(Xi, Peng, & Qin, 2016) they make use of the model under Monte Carlo to 

estimate the leverage effect in financial time series. 

In this work, I will present a general algorithm to calculate the Markov (or 

transition) matrices not only in two dimensions (𝑖# × 𝑖%) as is the case when only 

the previous day is considered in the calculations, but also in 𝑛 dimensions which 

will produce Markov tensors instead with size (𝑖# × 𝑖% × …× 𝑖)) as in the case 

when lengths of 𝐾 previous days are considered. The algorithm was written in 

MATLAB, stored and maintained in an online public repository that also provides 

version control (GitHub). This is also fully documented for an easier 

understanding of the written code. The permanent URL is: 

https://github.com/joaocarmo/market-reconstruction/ 
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The data source is the historical prices obtained from the Yahoo! Finance 

website for different companies and indexes. This choice allows for easy 

replications and adaptations of the current work by anyone willing as both the 

data source and the code are provided without barriers and on demand to the 

public. I intend to create and provide a framework that is available for easy 

replication and adaptable to future works while providing a replication study of 

previous research. 

The results will be presented, whenever possible, compared with the ones 

obtained in reference (Vilela Mendes, Lima, & Araújo, 2002). Not all the results 

of that paper are replicated in this work and some of the results here have not 

been tried previously. 

In the following chapters, I will present a brief look into the stochastic nature 

of the financial markets and the basics of Markov chains, a detailed description 

of the algorithm implemented and the results obtained. 

 

2. The stochastic nature of the financial markets 

 

Developing and testing models for the behavior of financial markets has been 

the interest of many economists, mathematicians and even physicists for years. 

In spite of their advances, actual market practitioners employ mostly one of two 

approaches available to predict stock prices: chartist theories and the intrinsic 

value analysis. 

The chartist theories are based on the assumption that there are price 

patterns in the history of a stock price that can be analyzed. Identifying such 
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patterns in the past allows the recognition of situations in the future that are likely 

to occur. Dow theory is an example of this method (Malkiel, 1973). 

The intrinsic value analysis, on the other hand, assumes that a stock always 

has an intrinsic value or equilibrium price which depends on the company itself 

and the economy as a whole. By studying the micro and macroeconomic 

variables surrounding the stock, an analyst can infer how much the price of the 

stocks differs from its intrinsic value. 

Both approaches are contested by (Fama, Random Walks in Stock Market 

Prices, 1965) and do not have academic relevance. Other theories such as the 

Theory of Random Walks have stronger support from the empirical evidence. 

This is a theory in which prices evolve according to a random walk which renders 

its prediction attempts useless. A random walk is a stochastic process and it 

describes a path constructed from a succession of random steps through a 

mathematical relationship in which the next value depends on the previous one. 

Many random walks have a corresponding representation as Markov chains. 

 

2.1. The market as a random walk 

 

The RWH is a popular theory stating that stock market prices are unable to 

be predicted and thus evolve according to a random walk. This is a consequence 

of the EMH in which future prices cannot be forecasted based on past 

performance. In order words, it has the Markov property or memorylessness and 

any time series which satisfies the Markov property is also a Markov process. 
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Thus, we can say that random walks are one example of a Markov process. This 

idea was originally proposed in (Bachelier, 1900). 

We can construct a simple one-dimensional random walk to model the stock 

market by following these rules: 

1. Every day, the price is decided by a coin toss 

2. The coin is unbiased, so the chances of both heads and tails are equal 

3. If it’s heads, the price goes up by one unit 

4. If it’s tails, the price goes down by one unit 

 

Let 𝑃(𝑢) be the probability of flipping heads and 𝑃(𝑑) the probability of flipping 

tails, we have that 𝑃(𝑢) = 𝑃(𝑑) = 0.5, 𝑃(𝑢) + 𝑃(𝑑) = 1 and the price evolution is 

given by eq. (1). 

 𝑝5 = 6𝑝57# + 1, ℎ𝑒𝑎𝑑𝑠
𝑝57# − 1, 𝑡𝑎𝑖𝑙𝑠  (1) 

 

We can see that the expected value is constant 𝐸[𝑝5] = 𝑃(𝑢)(𝑝57# + 1) +

𝑃(𝑑)(𝑝57# − 1) = 𝑝57# and the real value just circles back and forth around the 

starting value 𝑝C. The probability distribution for 𝑝5 follows a normal distribution 

with 𝜇 = 𝑝C and 𝜎 = 0.5√𝑡, where 𝑡 is the number of days. 

In figure 1, we can clearly see that as we increase the number of steps, the 

graphical representation of 𝑝(𝑡) grows in similarity with the real stock market. 
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(a) (b) 

  

(c) (d) 

Figure 1: A graphical representation of a random walk process with (a) 50, (b) 

100, (c) 1 000 and (d) 10 000 steps 

 

2.2. The random walk as a Markov chain 

 

We can model the previous example as a Markov chain using only the 

following simple rules: 

1. Each day the price must change 

2. The price has equal probability of going up or down 

3. The change in price is one unit 
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The price at any given time depends only on the price of the previous period 

and a certain probability. Given the current state of the system, it must move to a 

new state and it has equal probability of going to one of two possible new states. 

In one, the price goes up and in the other the price goes down (figure 2). 

 

Figure 2: Transition diagram for a coin toss as a Markov chain 

 

Let P(𝑖|𝑗) = 𝑝J,K be the probability of going from state 𝑗 to the state 𝑖, where 

𝑖, 𝑗 ∈ 𝑆 = {𝑠𝑡𝑎𝑟𝑡, 𝑢𝑝, 𝑑𝑜𝑤𝑛} = {0, 𝑢, 𝑑}. We also know that 𝑝J,K = 0.5 when 𝑖 ≠ 0 

because there is an equal probability of going in either direction regardless of 

what came before and you can’t go back to the start. We can write the transition 

matrix as: 
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𝑃 = T
𝑃(𝑑|𝑑) 𝑃(𝑑|0) 𝑃(𝑑|𝑢)
𝑃(0|𝑑) 𝑃(0|0) 𝑃(0|𝑢)
𝑃(𝑢|𝑑) 𝑃(𝑢|0) 𝑃(𝑢|𝑢)

U = V
0.5 0 0.5
0.5 0 0.5
0.5 0 0.5

W 

And it follows that the transition probability from any state 𝑗 to any other state 

𝑖 is 1 or ∑ 𝑝J,K = 1Y
JZC . 

 

 

2.3. What are Markov chains? 

 

Markov chains, named after the Russian mathematician Andrei Markov, are 

mathematical systems that loop between all possible states within a state space 

𝑆 = {𝑠#, 𝑠%, … , 𝑠)}. From each given state 𝑠J, there is a well-defined probability of 

jumping into a different state 𝑠K. These probabilities can be arranged into a matrix 

called the transition matrix 𝑃 (or stochastic matrix). 

We can construct the transition matrix by adding each state within the state 

space as a row and as a column. This means that each element (𝑖, 𝑗) of the matrix 

describes the probability of transitioning from the column state 𝑖 to the row state 

𝑗. In other words, we have the conditional probability 𝑃(𝑖|𝑗) = 𝑝J,K. This will be a 

square matrix with dimensions 𝑆 × 𝑆. 

More formally, a Markov chain is a set of random variables {𝑋5} with 𝑡 ∈ ℕC in 

which the future is independent from the past, i.e. 𝑃(𝑋5|𝑋C, 𝑋#, … , 𝑋57#) =

𝑃(𝑋5|𝑋57#). This is called the memorylessness property. 

 

2.4. Modeling the market as a Markov chain 
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Considering the approach in (Vilela Mendes, Lima, & Araújo, 2002), we will 

model the market as a Markov chain using the simplest case which can later be 

easily expanded as needed. We start by considering a 3-symbol alphabet Σ =

{𝑑, 0, 𝑢} = {−1, 0,1} and consider the 1-day return rate 𝑟(𝑡, 1) given by eq. (2) for 

the prices 𝑝(𝑡) when we have 𝑛 = 1. 

 𝑟(𝑡, 𝑛) = log𝑝(𝑡 + 𝑛) − log𝑝(𝑡) (2) 

 

Let 〈𝑟(𝑡, 𝑛)〉 be the average value of 𝑟(𝑡, 𝑛) and 𝜎) be the n-day standard 

deviation given by eq. (3) and eq. (4), respectively. 

 〈𝑟(𝑡, 𝑛)〉 =
1
𝑁d𝑟(𝑡, 𝑛)

e

5ZC

 (3) 

 

 𝜎) = f〈g𝑟(𝑡, 𝑛)h
%
− 〈𝑟(𝑡, 𝑛)〉%〉 (4) 

 

We can construct a chain 𝑆 of discrete events 𝑠J ∈ Σ based on the function 

(5), where 𝑟 = 𝑟(𝑡, 1) is the 1-day return rate for a given moment 𝑡. 

 𝑠J(𝑟) = i
−1, −𝜎 > (𝑟 − 〈𝑟〉)
0, 𝜎 ≥ (𝑟 − 〈𝑟〉) ≥ −𝜎
1, (𝑟 − 〈𝑟〉) > 𝜎

 (5) 

 

Using this coding, we can translate the real valued function 𝑟(𝑡) into a discrete 

sequence of states 𝑆 = {𝑠C, 𝑠#,… , 𝑠e} using the alphabet Σ: price goes down (-1), 

price stays the same (0) and price goes up (1). Notice the sequence below: 

𝑆C = {0, 0, 1, 1, 1, −1, 0, 0, 0, 1, 1, 1,−1, 1, 0,−1, −1,… } 
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The sequence 𝑆C means that, for 𝑟C(𝑡), the price stayed the same (within a 2𝜎 

margin) for the first two days (𝑠C = 𝑠# = 0), then it went up during the next three 

days in a row (𝑠% = 𝑠m = 𝑠n = 1) and then it came down (𝑠o = −1) before 

stabilizing during the following three days (𝑠p = 𝑠q = 𝑠r = 0), and so on. 

The transition matrix for this chain will be constructed using the possible states 

within the state space (which is the alphabet Σ): 

𝑃 = T
𝑃(𝑑|𝑑) 𝑃(𝑑|0) 𝑃(𝑑|𝑢)
𝑃(0|𝑑) 𝑃(0|0) 𝑃(0|𝑢)
𝑃(𝑢|𝑑) 𝑃(𝑢|0) 𝑃(𝑢|𝑢)

U = T
𝑃(−1|−1) 𝑃(−1|0) 𝑃(−1|1)
𝑃(0|−1) 𝑃(0|0) 𝑃(0|1)
𝑃(1|−1) 𝑃(1|0) 𝑃(1|1)

U 

Where 𝑃(𝑖|𝑗) = 𝑝J,K is the conditional probability of going from the state 𝑗 to 𝑖 

and is calculated based on the observed sequence 𝑆 according to eq. (6) with 𝑛J,K 

being the number of times the sequence {𝑖, 𝑗} has occurred in the 𝑁 − 1 possible 

occurrences of a pair. 

 𝑃(𝑖|𝑗) =
𝑛J,K
𝑁 − 1 (6) 

 

2.5. Forecasting the next value 

 

We can start the reconstruction process after we’ve calculated successfully 

the transition matrix 𝑃 and we’ll store the information in a new sequence 𝑆∗ =

{𝑠C∗, 𝑠#∗, … , 𝑠e∗ }. To determine each 𝑠Jt#∗  we need to follow the following steps: 

1. Set 𝑠C∗ = 𝑠C 

2. Read the value 𝑠J from the original sequence 𝑆 

3. Select its corresponding column 𝑃(∗ |𝑠J) 

4. Throw a uniformly distributed random number 𝜀 ∈ [0, 1] 
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5. Set 𝑠Jt#∗ = 𝑓(𝜀, 𝑠J) 

Where the function 𝑓(𝑥, 𝑠#) is built using 𝑃(∗ |𝑠J) according to eq. (7). 

 𝑓(𝑥, 𝑠J) = i
−1, 𝑥 < 𝑃(−1|𝑠J)
0, 𝑃(−1|𝑠J) ≤ 𝑥 < 𝑃(0|𝑠J)
1, 𝑥 ≥ 𝑃(1|𝑠J)

 (7) 

2.6. Calculating the error 

 

After obtaining the new sequence 𝑆∗, we can compare it with the original 𝑆 

sequence and calculate the error according to eq. (8). 

 𝑒𝑟𝑟 = zd(𝑠5 − 𝑠5∗)%
e

5ZC

 (8) 

 

2.7. Using an N-symbol alphabet 

 

We can increase the alphabet Σ in order to obtain a more fine-grained 

specification of the movements in 𝑝(𝑡). This can be seen as analogous to 

converting an analog signal to a digital one. We can imagine a sinusoidal wave, 

such as an electric signal coming from a microphone, which gets converted to a 

binary sequence. We could record only up and down movements or we could try 

and record every value in between. This increase in detail allows for a better 

reconstruction of the signal later on. 

For a symmetric alphabet centered around 0, we need an odd total number of 

symbols available. We can then use the range: 

Σ = {−𝛽,−𝛽 + 1, … , −1, 0, 1,… , 𝛽 − 1, 𝛽} 
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Where 𝛽 = e7#
%

 and the chain 𝑆 of discrete events 𝑠J ∈ Σ is constructed using 

eq. (9). 

 𝑠J(𝑟) =

⎩
⎪
⎨

⎪
⎧
−𝛽	, −𝜎 > (𝑟 − 〈𝑟〉)

⋮
0,

𝜎
𝛽 ≥

(𝑟 − 〈𝑟〉) ≥ −
𝜎
𝛽

⋮
𝛽, (𝑟 − 〈𝑟〉) > 𝜎

 (9) 

 

The transition matrix 𝑃 will always be a square 𝑁 × 𝑁 matrix: 

𝑃 =

⎣
⎢
⎢
⎢
⎡ 𝑃(−𝛽|−𝛽) 𝑃(−𝛽|−𝛽 + 1) ⋯ 𝑃(−𝛽|𝛽 − 1) 𝑃(−𝛽|𝛽)
𝑃(−𝛽 + 1|−𝛽) 𝑃(−𝛽 + 1|−𝛽 + 1) ⋯ 𝑃(−𝛽 + 1|𝛽 − 1) 𝑃(−𝛽 + 1|𝛽)

⋮ ⋮ ⋱ ⋮ ⋮
𝑃(𝛽 − 1|−𝛽) 𝑃(𝛽 − 1|−𝛽 + 1) ⋯ 𝑃(𝛽 − 1|𝛽 − 1) 𝑃(𝛽 − 1|𝛽)
𝑃(𝛽|−𝛽) 𝑃(𝛽|−𝛽 + 1) ⋯ 𝑃(𝛽|𝛽 − 1) 𝑃(𝛽|𝛽) ⎦

⎥
⎥
⎥
⎤

 

 

2.8. Using a K-length Markov chain 

 

In the previous pages, we’ve been always assuming that the adjacent 

possible states to any given present state are always a function of the immediate 

past value. That is, given that the previous value is 𝑢, then all the possible states 

are given by the column 𝑢 in the transition matrix. We’ve kept 𝑢 as a single value 

up until now — a 1-length Markov chain — but that doesn’t have to be so. In fact, 

we can construct any K-length Markov chain process as long as the data permits 

it — that is, the sequence exists. 

In figure 3 it’s represented a 𝐾 = 1 length Markov chain with a 3-symbol 

alphabet Σ = {−1, 0, 1} and its respective transition probabilities that make up the 

transition matrix 𝑃. 
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In a very general way, we could construct any K-length Markov chain with a 

N-symbol alphabet. But we’ll construct a simpler 2-length Markov chain with the 

same 3-symbol alphabet we’ve used previously and then generalize it to any 

length 𝐾. 

 

Figure 3: A three state Markov chain 

 

Under these conditions, our state space is now: 

S = {−1 − 1,−10,0 − 1,−11, 1 − 1, 00, 01, 10, 11} 

Where {−1 − 1} means two consecutive days where the price went down and 

so on. This should no longer be described by a transition matrix, but by 3 × 3 × 3 

transition tensor 𝑇: 

𝑇J,K,7# = T
𝑃(−1|−1 − 1) 𝑃(−1|0 − 1) 𝑃(−1|1 − 1)
𝑃(0|−1 − 1) 𝑃(0|0 − 1) 𝑃(0|1 − 1)
𝑃(1|−1 − 1) 𝑃(1|0 − 1) 𝑃(1|1 − 1)

U 

𝑇J,K,C = T
𝑃(−1|−10) 𝑃(−1|00) 𝑃(−1|10)
𝑃(0|−10) 𝑃(0|00) 𝑃(0|10)
𝑃(1|−10) 𝑃(1|00) 𝑃(1|10)

U 
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𝑇J,K,# = T
𝑃(−1|−11) 𝑃(−1|01) 𝑃(−1|11)
𝑃(0|−11) 𝑃(0|01) 𝑃(0|11)
𝑃(1|−11) 𝑃(1|01) 𝑃(1|11)

U 

 

Where 𝑃(𝑖|𝑗𝑘) = 𝑇J,K,� is the conditional probability of getting 𝑖 given {𝑗𝑘} ∈ S 

and 𝑖, 𝑗, 𝑘 ∈ Σ. So, in general, we can build any 𝑁�t# transition tensor 𝑇 where 

each cell is given by eq. (10). 

 𝑇J�,J�,…,J��� = 𝑃(𝑖#|𝑖% … 𝑖�t#) (10) 

 

And we know that the sequence {𝑖% … 𝑖�t#} ∈ S and 𝑖� ∈ Σ, the N-symbol 

alphabet. We should notice that as K grows larger, the number of occurrences of 

the sequence {𝑖% … 𝑖�t#} in the data diminishes and it may happen that, for some 

K, the sequence does not occur at all in which case we have that 𝑃(∗ |𝑖% … 𝑖�t#) 

is 0. If this happens, we shall consider the first sequence {𝑖% … 𝑖�} with 𝑧 < 𝐾 + 1 

that satisfies 𝑃(∗ |𝑖% … 𝑖�) > 0 starting with 𝑧 = 𝐾 and reducing one at a time. 

 

3. Empirical Data 

 

The data source for this work is the historical data provided by Yahoo! 

Finance. We used the adjusted close price adjusted for both dividends and splits. 

For the main text, we chose the prices for International Business Machines 

Corporation (IBM) — NYSE. For the appendix, we chose Facebook, Inc. (FB) — 

NasdaqGS and Alphabet Inc. (GOOG) — NasdaqGS. 

The data is accessible through https://finance.yahoo.com, searching for the 

company in question and then selecting “Historical Data.” We can download the 
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raw data in a comma-separated file (CSV) that contains 7 columns of information. 

We use the first one for the date and the sixth for the adjusted close price. 

 

4. Testing the stationarity of the process 

 

A stationary process is stochastic process which has the property that the 

mean, variance and autocorrelation structure do not change over time. White 

noise is a good example of a stationary process. Stationarity, for our purposes, 

means a seemingly flat series without trend and periodic fluctuations and with 

constant variance and autocorrelation structure over time. 

We will use the most recent data from Yahoo! Finance and MATLAB to try 

and reproduce the stationarity tests in (Vilela Mendes, Lima, & Araújo, 2002) 

using the same 1-day market fluctuation data. In order to make a successful 

application of the statistical mechanics tools to these signals, two conditions 

should be fulfilled: 

1. The process generating the data has some underlying stationarity as 

defined previously 

2. The presented time sequence is a typical sample of the process 

 

We shall process the data in a way that is consistent with the first condition 

while the analysis of different data sources (different stocks, currencies or 

indexes) should suffice for the second. This is easily done with the MATLAB code 

supplied in this work and because the results are everywhere similar, we will 
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focus our analysis only in the International Business Machines (IBM) stock’s daily 

closing price. Results for other data sources are available in the appendix. 

 

Figure 4: IBM’s stock daily closing price over time and polynomial fit 

 

In figure 4 we can see the historical price evolution 𝑝(𝑡) for IBM’s stock and 

its corresponding 3rd degree polynomial fit 𝑞(𝑡). In figure 5a, we have removed 

the trend by applying eq. (11). We can see that even though the trend is gone, 

we still need to rescale the data. The rescaling is done by applying eq. (12) and 

we obtain the results in figure 5b. Now, the data looks much more like figure 1. 

 𝑝̅(𝑡) = 𝑝(𝑡) − 𝑞(𝑡) (11) 

 
𝑥(𝑡) = 𝑝̅(𝑡)

〈𝑝(𝑡)〉
𝑞(𝑡)  

(12) 

   



 

 20 

  

(a) (b) 

Figure 5: The (a) detrended and (b) rescaled prices 

 

In figure 6, we can see the 1-day returns over time according to eq. (2) and 

the dynamics of 1-day plotted as 𝑟(𝑡, 1) vs. 𝑟(𝑡 + 1, 1) returns as a central core of 

small fluctuations with an outer aura of larger fluctuations. 

 

  

(a) (b) 

Figure 6: The (a) 1-day returns and (b) the dynamics of 1-day returns 
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The figure 7 shows a strong variation in time of the 10-day window volatility 

as defined in eq. (4) which seems to indicate that the process is not locally 

stationary, but may be asymptotically stationary. 

 

  

(a) (b) 

Figure 7: A (a) 10-day sliding window of the historical price volatility and (b) 

the accumulated volatility 

 

Some other important statistical indicators can also be computed: 

i. The maximum of 𝑟(𝑡, 𝑛) over 𝑡 

 𝛿(𝑛) = max
5
{𝑟(𝑡, 𝑛)} (13) 

ii. The moments of the distribution of |𝑟(𝑡, 𝑛)| 

 𝑆�(𝑛) = 〈|𝑟(𝑡, 𝑛)|�〉 (14) 

iii. Within a certain range, satisfying 

 𝑆�(𝑛)	~	𝑛�(�) (15) 

 

In the figures 8 and 9 we have represented 𝛿(𝑛), 𝑆�(𝑛) and 𝜒(𝑞) and the same 

conclusions as in (Vilela Mendes, Lima, & Araújo, 2002) can be observed. We 
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can find an expression for 𝜒(𝑞) by rearranging eq. (15) and filling it with eq. (14) 

to obtain 𝜒(𝑞) = 𝑞 ¡¢£|¤(5,))|
¡¢£ )

. 

 

  

(a) (b) 

Figure 8: The plots of (a) the maximum 𝛿(𝑛) with 𝑛 from 1 to 1 000 and (b) 

the moments 𝑆�(𝑛) with 𝑞 from 1 to 8 from top to bottom 

 

In a nutshell, we can conclude from these statistical indicators that: 

a. 𝛿(𝑛) is log-concave and probably asymptotically constant for large 𝑟 

b. 𝑆�(𝑛) is an increasing log-concave function allowing a power law 

approximation 

c. 𝜒(𝑞) is an increasing concave function of 𝑞 

 

As we can see from figure 8.a, by increasing the time range considered we 

also get an increase in the maximum value for the returns in that given time range 

and the tendency is log-concave. From figure 8.b, we see that the lines on the 

graph given by eq. (14) could be approximated through eq. (15). 
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Figure 9: The scaling exponent 𝜒(𝑞) 

 

These conclusions are shared by turbulence data drawing a similarity 

between hydrodynamic turbulence and market fluctuations although with different 

numerical values. We should also note that 𝜒(1) ≈ 0.5 which makes the signal 

uncorrelated for 𝑛 ≥ 2. We can further confirm this through the correlation 

between 1-day returns and its absolute value with eq. (16) and eq. (17). 

 𝐶(𝑟(𝑡, 1), 𝑇) = 〈𝑟(𝑡 + 𝑇, 1)𝑟(𝑡, 1)〉 (16) 

 𝐶(|𝑟(𝑡, 1)|, 𝑇) = 〈|𝑟(𝑡 + 𝑇, 1)||𝑟(𝑡, 1)|〉 (17) 

 

As we can see in figure 10, the returns are uncorrelated for 𝑇 ≥ 2 with the 

correlation function remaining at the noise level. 
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Figure 10: Correlations of 𝑟(𝑡, 1) and |𝑟(𝑟, 1)| 

 

5. Reconstructing the process 

 

In order to reconstruct the process, we perform the following steps in order: 

1. Get the stock value prices 𝑝(𝑡) 

2. Calculate the 1-day returns 𝑟(𝑡, 1) 

3. Calculate the average 〈𝑟(𝑡, 1)〉 and standard deviation 𝜎 

4. Choose an N-symbol alphabet Σ, ideally 𝑁 ≥ 3 and odd 

5. Determine the coded sequence 𝑆 with 𝑠J ∈ Σ 

6. Split the sequence 𝑆 = {𝑠#,… , 𝑠e} in half into 𝑆# and 𝑆% such that 𝑆 =

𝑆# ∪ 𝑆%, 𝑆# = {𝑠#, … , 𝑠¨} and 𝑆% = {𝑠¨t#,… , 𝑠e} with 𝑚 = ªe
%
« where ⌊𝑥⌋ 

is the floor function 
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7. Use the first half 𝑆# to calculate the transition matrix 𝑃 

8. Use the second half 𝑆% and the transition matrix 𝑃 to forecast 𝑆%∗ 

 

After obtaining the forecast, we need something to compare it to. 

Simultaneously, we construct a randomly generated sequence 𝑅 with the same 

length as 𝑆%∗ but with each element 𝑟J ∈ Σ generated at random from a uniform 

distribution. The error is calculated for both sequences 𝑆%∗ and 𝑅 according to eq. 

(8) and we can compare how using the transition matrix 𝑃 performs against a 

completely random process. 

 

The process to determine both 𝑆%∗ and 𝑅 is as follows. 

1. Read the value 𝑠J ∈ 𝑆% 

2. Extract the corresponding column 𝑃(∗ |𝑠J) from the transition matrix 

3. Throw a random number 𝜀 from the uniform distribution 𝑢(0, 1) 

4. Set 𝑠J∗ = min
±
{𝑥 ∈ Σ:	𝜀 ≤ 𝑃(𝑥|𝑠J)} 

5. Set 𝑟J to a random element of Σ 

 

Taking the total of 500 simulations as represented in figure 11, we were able 

to obtain for a 3-symbol 1-length Markov process an error of 𝑒# and for a 

completely random process an error of 𝑒%. 

𝑒# = 0.35106 

𝑒% = 0.66646 
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Figure 11: Comparison of the error obtaining in using the Markov process vs. 

a random process 

 

The transition matrix obtained was: 

𝑃 = V
0.1391 0.0832 0.1308
0.7202 0.8190 0.7425
0.1407 0.0978 0.1267

W 

Results show that it’s much more likely for the price to remain constant within 

one standard deviation than to go either up or down by more than one standard 

deviation. 

We used the first half of the sequence 𝑆# to construct the transition matrix 

which helped us in forecasting 𝑆%∗, that is the past predicting the future. We could 

also have inverted the process in order to obtain the future predicting the past. 

This is easily achievable by using the second half sequence 𝑆% to construct the 

transition matrix and proceed exactly as before to obtain 𝑆#∗. 
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Another thing that we can do is reverse the process in order to obtain the 

predicted prices 𝑝∗(𝑡) from the returns forecast sequence 𝑆%∗. The results can be 

observed in figure 12. We can observe that, even though the forecast (red) may 

not align with the actual prices (blue), it’s almost always performs better than a 

completely random forecast (yellow), especially in the long run. 

  

(a) (b) 

  

(c) (d) 

Figure 12: Different runs of the reverse process to reconstruct the prices from 

the forecasted returns 

 

Since the results can vary greatly with each run, we can do a Monte Carlo 

simulation to observe the underlying tendency as in figure 13. For a total of 500 
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simulations, we observe clearly that the Markov forecast is closer to the actual 

price than the random one and the difference grows larger in time. 

 

Figure 13: A Monte Carlo simulation for the reverse Markov process 

 

5.1. Increasing N and K 

 

We can use a more generalized algorithm to perform the previous Markov 

reconstruction using a N-symbol and K-length Markov chain. We did a 

computation for a 5-symbol alphabet with K ranging from 2 to 8 with 10 

simulations each and the average errors according to (8) are presented in figure 

14. We can observe once again that the error with a randomly generated 

sequence is greater than using the Markov chain process. We also observe that 

the error initially decreases with increased lengths for the chain, but for 𝐾 ≥ 5 it 
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increases again. One explanation might be that for 𝐾 ≤ 4 there are enough K-

length chains in the data, but longer chains might be rarer. 

 

Figure 14: Average error for K-length Markov chain simulations 

 

5.2. Reverse the Markov coding process 

 

The results in figures 12 and 13 were obtained by doing a reverse coding 

process in order to obtain the price values 𝑝∗(𝑡) from the forecasted sequence 

𝑆∗. We can find the predicted returns 𝑟∗(𝑡) by applying eq. (18) to each 𝑠J∗ ∈ 𝑆∗. 

 𝑟J∗ = 〈𝑟(𝑡, 1)〉 +
2𝜎¤
𝑁 − 1 𝑠J

∗ (18) 

 

Where 〈𝑟(𝑡, 1)〉 and 𝜎¤ are the mean and standard deviation of the 1-day 

returns 𝑟(𝑡, 1), 𝑁 is the number of symbols in the alphabet and 𝑠J∗ ∈ Σ. Then, we 
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simply need to use eq. (19) in order to obtain the predicted prices from the 

predicted returns. 

 𝑝J∗ = 𝑝J7#∗ 𝑒¤̧∗ (19) 

 

6. The algorithm for the transition matrix 

 

The algorithm we used is general and can be used to calculate the transition 

tensor for any N-symbol and K-length Markov chain. Let’s start with the simplest 

3-symbol and 1-length case with the transition matrix 𝑃. We have the sequence 

𝑆 = {𝑠#, … , 𝑠e} which contains the coded returns 𝑟(𝑡) for the prices 𝑝(𝑡) using an 

alphabet Σ = {−1, 0, 1} such that 𝑠J ∈ Σ. 

 

Figure 15: Graphical representation of an array 

 

We also need to define what an array data structure is. More commonly known 

as simply an array, it’s a collection of elements each of which identified by an 

array index or key. The simplest one-dimensional array is similar to a vector. We 

can use an array to store our sequence 𝑆, for example, and we reference each 

element 𝑠J by its index number 𝑖 as in figure 15. If 𝐴 is our array, then 𝐴[𝑚] = 𝑠¨. 

An array can also be referenced by a keyword, e.g. 𝐴[𝑜𝑛𝑒] = 𝑠#, or we can have 

a multidimensional array in which indexes are also arrays. We are going to make 

use of the latter to build our transition tensor 𝑇. 



 

 31 

The algorithm simply counts the number of times a given sequence occurs 

and divide that by the total number of sequences counted. In order to achieve 

that, we use arrays in which the indexes are the sequences themselves and add 

one unit every time they come up. 

We’re going to need two multidimensional arrays 𝐴 and 𝐵 and we’ll store the 

frequency of occurrence for each unique sequence in 𝐴 and the total sequence 

count in 𝐵. We need to read subsets 𝑋» of 𝑆 with a length of 𝐾 + 1 one at a time 

in sequence. In this case, we have 𝑋# = {𝑠#, 𝑠%}, 𝑋% = {𝑠%, 𝑠m}, …, 𝑋)7# =

{𝑠)7#, 𝑠)}. We also need the subset 𝑌» of 𝑋» which is simply 𝑋» with the last 

element removed. For example, 𝑌# = {𝑠#}, 𝑌% = {𝑠%}, …, 𝑌)7# = {𝑠)7#}. 

 

Figure 16: Graphical representation of the algorithm 
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Then, we can use 𝑋» and 𝑌» as indexes for 𝐴 and 𝐵, respectively, and every 

time they occur we add one unit to its current value. At each occurrence of 𝜒», 

we have 𝐴[𝑋»]5 = 𝐴[𝑋»]57# + 1 and 𝐵[𝑌»]5 = 𝐵[𝑌»]57# + 1 as in figure 16. 

Let #{𝑤} be the number of times the element 𝑤 of Σ appears in the sequence 

𝑆, we have that 𝐴 is equivalent to an 𝑁 ×𝑁 matrix and 𝐵 to an 𝑁 × 1 vector: 

𝐴 = T
#{−1, −1} #{0, −1} #{1, −1}
#{−1, 0} #{0, 0} #{1, 0}
#{−1, 1} #{0, 1} #{1, 1}

U 

𝐵 = T
#{−1}
#{0}
#{1}

U 

To build our transition matrix 𝑃, we simply need to extract each 𝑁 × 1 column 

from 𝐴 and divide each element by the respective element of 𝐵: 

𝑃 = T
𝑃(−1|−1) 𝑃(−1|0) 𝑃(−1|1)
𝑃(0|−1) 𝑃(0|0) 𝑃(0|1)
𝑃(1|−1) 𝑃(1|0) 𝑃(1|1)

U =

⎣
⎢
⎢
⎢
⎢
⎢
⎡#
{−1, −1}
#{−1}

#{0, −1}
#{0}

#{1, −1}
#{1}

#{−1, 0}
#{−1}

#{0, −1}
#{0}

#{1, −1}
#{1}

#{−1, 1}
#{−1}

#{0, −1}
#{0}

#{1, −1}
#{1} ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

And this can be generalized to build the transition tensor 𝑇 for any N-symbol 

K-length Markov chain. 

 

7. Conclusion 

 

The financial markets are apparently random as we have seen in the similarity 

between figures 1 and 5 where the former shows a completely random and the 

latter a real stock market. 
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We have shown evidence for some of the stylized facts about the financial 

markets such as the existence of memory-like phenomena in price volatility in the 

short term from the accumulated volatility in figure 7 and the correlations in figure 

10, a power-law behavior and non-linear dependencies on the returns in figure 8. 

This comes in contrast with the EMH. 

Given the observed facts, we modelled the market using Markov chains as 

they are memoryless and dependent only on the current state of affairs. That is, 

the bulk of the fluctuations appear to be a short-term process with a small long-

memory component. These might, in turn, be responsible for the larger 

fluctuations in returns. 

We have shown, as seen in figures 11 through 14 that the reconstruction of 

the market process from the Markov transition matrix is, at the very least, always 

better than the completely random process when comparing both to the actual 

data. 

If we’re to believe Warren Buffet in that the emotions control de short-run, then 

we are correct in assuming that given the present state of affairs people ought to 

behave in a certain way. That is, people behave predictably with some probability 

given the status quo. Thus, the implemented Markov chain is a good tool in that 

it takes the present state and weighs it against similar states in the past in order 

to obtain the transition probabilities for all possible outcomes. 

We have seen that for every day, there is a certain probability of the price of 

an asset to remain the same, go up or go down. The probabilities for each event 

are conditional on past behavior, assuming that the next price movement 
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depends only on the present state of affairs where the past weighs in on the 

transition probabilities. 

Thus, we’ve built an algorithm that takes all of this into account and is as 

general as it can be. In its simplest way, we can say that the price remains the 

same if it doesn’t vary more than one standard deviation either up or down. If it 

exceeds this, then we consider an upwards or downwards movement, 

respectively. Our algorithm takes into account that we might want to refine this 

interval, instead of diving it in 3 possibilities, we can do it for 𝑁 ≥ 3 possible 

outcomes. 

After we concluded our analysis using a Markov chain of length 1, we decided 

to generalize that for any K-length sequence. Thus, instead of taking into account 

only the 𝑛 − 1 day when building the transition matrices, we consider the whole 

sequence of events in the 𝑛 − 𝐾 days before. 

As a last comment, we can interpret the transition matrices as a measure of 

market sentiment, the overall attitude of investors towards a particular asset. If 

people follow their emotions and there is a higher probability of the price to go 

up, then we can say market sentiment is bearish. Otherwise, we’d say market 

sentiment is bullish. 

There are some market sentiment indicators available such as the CBOE 

Volatility Index (VIX), 52-week High/Low Sentiment Ratio, Bullish Percentage, 

50-day moving average and 200-day moving average. An improvement of the 

current work could be to incorporate some of these measures into the algorithm. 

It becomes important as the agents operating in the markets are 

fundamentally human and not emotionless highly intelligent beings or econs, 
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according to the 2017 Nobel laureate Robert Thaler. As he explains in reference 

(Thaler, 2015), there is no reason why certain dates, e.g. anniversaries, football 

matches, etc., should matter more than others in the point of view of an econ but 

we know they do and it reflects on the markets, e.g. as a significant decline after 

football losses (Edmans, Garcia, & Norli, 2007). 

The model presented here is available in GitHub for scrutiny and improvement 

and ready to be applied to any data source. A general model for any N-symbol 

and K-length Markov chain was developed as an improvement to the work 

presented in reference (Vilela Mendes, Lima, & Araújo, 2002). The same process 

used to obtain the results presented here have been replicated for Facebook (FB) 

and Google (GOOG) and are presented in the appendix. 
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9. Appendix 

 

Some of the same techniques from this work are replicated here for different 

companies: Facebook (FB) on the left and Google (GOOG) on the right. 

 

  

(a) (b) 

Figure A.1: (a) Facebook’s and (b) Google’s stock daily closing price over 

time and polynomial fit 

 

  

(a) (b) 

Figure A.2: Rescaled prices for (a) Facebook and (b) Google 

 



 

 40 

  

(a) (b) 

Figure A.3: Historical returns for (a) Facebook and (b) Google 

 

  

(a) (b) 

Figure A.4: Historical volatility for (a) Facebook and (b) Google 
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(a) (b) 

Figure A.5: Accumulated volatility for (a) Facebook and (b) Google 

 

  

(a) (b) 

Figure A.6: The plots of the maximum 𝛿(𝑛) with 𝑛 from 1 to 1 000 for (a) 

Facebook and (b) Google 
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(a) (b) 

Figure A.7: The plots of the moments 𝑆�(𝑛) with 𝑞 from 1 to 8 from top to 

bottom for (a) Facebook and (b) Google 

 

  

(a) (b) 

Figure A.7: The scaling exponent 𝜒(𝑞) for (a) Facebook and (b) Google 
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(a) (b) 

Figure A.8: Correlations of 𝑟(𝑡, 1) and |𝑟(𝑟, 1)| for (a) Facebook and (b) 

Google 

 

  

(a) (b) 

Figure A.9: Comparison of the error obtaining in using the Markov process vs. 

a random process for (a) Facebook and (b) Google 
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(a) (b) 

Figure A.10: Average error for K-length Markov chain simulations for (a) 

Facebook and (b) Google 

 

 


