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Abstract

This dissertation aims to generalize a result on the exponential stability of trivial solutions
of stochastic differential equations driven by the fractional Brownian motion by Garrido-
Atienza et al. to non-trivial solutions in the scalar case. Notions on fractional calculus are
presented, as well as the definition and main properties of the fractional Brownian mo-
tion. Subsequently the framework for SDEs driven by fractional Brownian motion with
a pathwise approach is characterized along with some existence and uniqueness results.
The result on stability is then applied to the fractional Vasicek model for interest rates.

Keywords: fractional calculus, fractional Brownian motion, generalized Riemann-Stieltjes
integral, exponential stability.
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Chapter 1

Introduction

Since the Black and Scholes model was developed by Black, Scholes and Merton
in the 1970’s, it has been broadly applied in financial markets. However the Brownian
motion, random source in the the Black and Scholes model, does not fit the empirical fi-
nancial data. Indeed Brownian motion’s increments are independent, characteristic which
is contrary to the "long range dependency" or "long memory" financial instruments exhibit
when statistically analyzed. To answer to this problem, in the late 1990’s (for example
[NR02], [Zäh98]) researchers started to study the consequences of replacing the Brow-
nian motion with one of its generalizations: the fractional Brownian motion. This more
general stochastic process bears some fundamental common properties when compared
to the Brownian motion, however its main advantage is that for a suitable choice of Hurst
index (parameter that fully characterizes the fractional Brownian motion) this new source
of randomness features dependent increments thereby aligning with the long memory that
financial instruments display. Some criticism arose regarding pricing models that used the
fractional Brownian motion, either because financial interpretation was lost ([BH05]) or
because arbitrage issues were encountered ([Rog97]), consequently slowing down the re-
search that applied the fractional Brownian motion in finance. However during the past
decade stochastic volatility ([IS10], [Fuk17]) and interest rate models ([HLW14])) with
fractional Brownian motion appeared in several papers.

This dissertation is mainly motivated by the work of Garrido-Atienza et al. in [GANS18].
This paper consists on establishing conditions that stochastic differential equations driven
by a stochastic process with Hölder continuous paths (as it is the case for fractional Brow-
nian motions) must satisfy in order to assure local exponential stability of a trivial, i.e.

zero, solution. The original result of this dissertation, delineated in theorem (3.6), con-
sists on generalizing [GANS18]’s result to non-trivial solutions in the scalar case.
To arrive at this result, as the fractional Brownian motion loses the semi-martingale prop-
erty that the standard Brownian motion had, a different kind of stochastic calculus has
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to be formally established. Indeed one cannot use Itô’s lemma when dealing with the
fractional Brownian motion, instead a pathwise approach will be adopted: the Riemann-
Stieltjes integral defined by Young in [You36] and its generalization by Zähle in [Zäh98].
As this later integral is defined with the help fractional derivatives, i.e. derivatives of non-
integer order, a review on fractional calculus will be our starting point.

This work is structured in three chapters. Notions and definitions of fractional calculus
are introduced in the first chapter. Immediately followed by the definition and main prop-
erties of the fractional Brownian motion, pointing out the correlations of its increments
and its "long-range" dependence structure, the maintenance of the process’ self-similarity
but the loss of semi-martingale property, and finally the Hölder regularity of its sample
paths. In the next chapter, a pathwise concept to define integrals with respect to fractional
Brownian motion is outlined, before describing stochastic differential equations driven by
fractional Brownian motion and some existence and uniqueness results. At the end of this
chapter, the stability matter is tackled where we present existing results and finish with
this dissertation’s original result and proof. Finally, in the last chapter we will apply the
previously established results to a fractional Vasicek interest rate model used by Hao et

al., [HLW14]), to price credit default swaps.

2



Chapter 2

Fractional Brownian Motion

2.1 Preliminaries - Fractional Calculus

Fractional calculus allows one to compute integrals and derivatives of a non-integer
order. The term fractional can be misleading as the order of integration must not be a
fraction, i.e. a rational number, indeed it can take any real value. In order to introduce
smoothly this notion, let us first recall the idea of the multiple integral of order n.

Inf(x) :=

∫ x

a

∫ x0

a

∫ x1

a

. . .

∫ xn−2

a

f(xn−1)dxn−1dxn−2 . . . dx0, for all x ∈]a, b[ (2.1)

where n ∈ N, a ∈ R, b ≤ ∞ and the function f is locally integrable in the interval [a, b[.
With a simple proof by induction, one can prove that,

Inf(x) =
1

(n− 1)!

∫ x

a

(x− ξ)n−1f(ξ)dξ (2.2)

The idea behind the generalization of these integrals to a non-integer order is the use
of the Gamma function, Γ 1, instead of the factorial term.
Following the same structure as in [MG00] ’s lecture notes, we will define two concep-
tualizations of fractional integrals, a continuous and a discrete. The continuous formula-
tion is based on integral operators, as for the discrete, it uses sums and finite differences
schemes and can be very useful when one needs numerical approaches to problems based
on factional calculus.

1The Gamma function, Γ, is defined, for all z ∈ C such that Re(z) > 0, by: Γ(z) =
∫∞

0
xz−1e−xdx.

The fact that Γ(z + 1) = zΓ(z) (proved by integration by parts), implies ∀n ∈ N,Γ(n+ 1) = n!.
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2.1. Preliminaries - Fractional Calculus

2.1.1 Riemann-Liouville Fractional Calculus - Continuous Approach

Definition 2.1. Let α ∈ R+∗, a ∈ R, b ≤ ∞,

Let f a real valued function in L1([a, b[),

for x ∈]a, b[, we define the Abel-Riemann fractional integrals of order α,

Iαa+f(x) :=
1

Γ(α)

∫ x

a

(x− ξ)α−1f(ξ)dξ (2.3)

Iαb−f(x) :=
1

Γ(α)

∫ b

x

(ξ − x)α−1f(ξ)dξ (2.4)

Furthermore, we define the set Iαa+(Lp) as the class of functions that can be represented

as an integral of order α of some function g in Lp (i.e. such that
( ∫ b

a
|g(t)|pdt

)1/p
<∞).

Fractional integrals do not always have a closed formula, as it is not always possible
to find an anti-derivative to the function ξ 7→ (x − ξ)α−1f(ξ). Let us, nonetheless see a
simple example.

Example 2.1. Integral of order α of the power function of order k.

Iαtk =
1

Γ(α)

∫ t

0

(t− τ)α−1τ kdτ

=
tα+k

Γ(α)

∫ 1

0

(1− τ)α−1τ kdτ

=
tα+k

Γ(α)
B(k + 1, α)

=
tα+k

Γ(α)

Γ(k + 1)Γ(α)

Γ(α + k + 1)

=
Γ(k + 1)

Γ(α + k + 1)
tα+k

In futures sections of our work it will be important to use the fact that these fractional
integral operators commute and that there is a generalization of the law of exponents
known for integer order integral operators.

Proposition 2.1. Let a real valued function f ∈ L1([a, b[),

If α > 0 and β > 0, then:

Iαa+I
β
a+f(x) = Iα+βa+ f(x) , for all x ∈]a, b[ (2.5)
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Chapter 2. Fractional Brownian Motion

Proof. By definition, for x ∈]a, b[,

Iαa+I
β
a+f(x) =

1

Γ(α)

∫ x

a

(x− ξ)α−1
(
Iβa+f(ξ)

)
dξ

=
1

Γ(α)

∫ x

a

(x− ξ)α−1 1

Γ(β)

∫ ξ

a

(ξ − ψ)β−1f(ψ)dψdξ

=
1

Γ(α)

1

Γ(β)

∫ x

a

f(ψ)
[ ∫ x

ψ

(x− ξ)α−1(ξ − ψ)β−1dξ
]
dψ

=
1

Γ(α)

1

Γ(β)

∫ x

a

f(ψ)
[ ∫ 1

0

(x− ψ − u(x− ψ))α−1(u(x− ψ))β−1(x− ψ)du]dψ

=
1

Γ(α)

1

Γ(β)

∫ x

a

f(ψ)
[ ∫ 1

0

(x− ψ)α−1(1− u)α−1(u(x− ψ))β−1(x− ψ)du]dψ

=
1

Γ(α)

1

Γ(β)

∫ x

a

f(ψ)
[
(x− ψ)α+β−1

∫ 1

0

(1− u)α−1uβ−1du]dψ

=
1

Γ(α)

1

Γ(β)

∫ x

a

f(ψ)
[
(x− ψ)α+β−1B(α, β)]dψ2

=
1

Γ(α)

1

Γ(β)

∫ x

a

f(ψ)
[
(x− ψ)α+β−1

Γ(α)Γ(β)

Γ(α + β)

]
dψ

=
1

Γ(α + β)

∫ x

a

(x− ψ)α+β−1f(ψ)dψ

Iαa+I
β
a+f(x) = Iα+βa+ f(x)

Remark 2.1. Using definition 2.1, one can define the fractional derivative of order α

operator Dα, for α > 0 and n ∈ N such that n− 1 < α ≤ n,

Dα
a+ = DnIn−αa+ , for x ∈]a, b[

Dα
b− = (−1)nDnIn−αa+ , for x ∈]a, b[

Where the operator Dn denotes the usual derivative of order n, Dnf(x) := dn

dxn
f(x) for

all x ∈]a, b[.

One cannot however generalize proposition 2.1 to the fractional derivative operator, as it

is proved in [Pod99] section 2.3.6.

A similar definition for fractional integrals in an interval with infinite bounds can also

2B stands for Beta function defined for all (α, β) ∈ (R∗+)2 by B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx.

Considering the Laplace transform of B, one we can show, cf [Pod99], that for all (α, β) ∈ (R∗+)2,
B(α, β) = Γ(α)Γ(β)

Γ(α+β) .
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2.1. Preliminaries - Fractional Calculus

be useful in some financial applications where there is no time constraint. Such approach
was proposed by Liouville and Weyl.

Definition 2.2. Let α ∈ R+∗, a ∈ R, b ≤ ∞,

Let f a real valued function in L1(]−∞, b[) and well behaved in −∞,

for x ∈]−∞, b[, we define the Liouville fractional integral of order α,

Iα+f(x) :=
1

Γ(α)

∫ x

−∞
(x− ξ)α−1f(ξ)dξ (2.6)

Let g a real valued function in L1(]a,+∞[) and well behaved in +∞,

for x ∈]a,+∞[, we define the Weyl fractional integral of order α,

Iα−g(x) :=
1

Γ(α)

∫ +∞

x

(ξ − x)α−1f(ξ)dξ (2.7)

2.1.2 Grünwald- Letnikov Fractional Calculus - Discrete Approach

The Grunwald-Letnikov’s approach is based on a generalization of the definition of
derivative.
Recalling that, for a real valued differentiable function f ,

D1
tf(t) :=

df

dt
(t) = lim

h→0

f(t)− f(t− h)

h

One can apply this formula twice, 3 times, ..., n times, and:

Dn
t f(t) :=

dnf

dtn
(t) = lim

h→0

∑n
r=0(−1)r

(
n
r

)
f(t− rh)

hn

Generalizing it to a non integer order, we have:

Definition 2.3. For α ∈ R, the Grunwald-Letnikov fractional derivative/integral of order

α of a function f is defined by:

Dα
t f(t) = lim

h→0

∑m
r=0(−1)r

(
α
r

)
f(t− rh)

hα
(2.8)

where m is such that mh = t, and the generalized binomial coefficients are, for α ∈ R
and r ∈ N, defined by: (

α

r

)
=
α(α− 1)...(α− r + 1)

r(r − 1)...1

6



Chapter 2. Fractional Brownian Motion

Under certain conditions on the function being differentiated, the definitions proposed
by Riemann-Liouville and Grunwald-Letnikov coincide. Podlubny, [Pod99], proved the
following theorem in section 2.3.7.

Theorem 2.1. If a function f is n − 1 times continuously differentiable in an interval

[0, T ] and f (n−1) is integrable in the same interval,

then for 0 < α < n the Grunwald-Letnikov and Riemann-Liouville fractional derivative

coincide.

We have:

Dα
t f(t) = Dα

t f(t) =
m−1∑
j=0

f (j)(0)tj−p

Γ(1 + j − p)
+

1

Γ(m− p)

∫ t

0

f (m)(τ)

(t− τ)p−m+1
dτ (2.9)

where m ∈ N such that m− 1 ≤ p < m.

2.2 Definitions and Important Properties

Whenever needed we will consider the probability space (Ω,F ,P), equipped with an
increasing filtration.

2.2.1 Fractional Brownian Motion

In this section we introduce the fractional Brownian motion, a generalization of the
standard Brownian motion, as well as some basic properties that will be useful when
defining and manipulating stochastic integrals and differential equations with respect to a
fractional Brownian motion. We refer [BHØZ08] for further details to any curious reader.

Definition 2.4. Let H ∈]0, 1[,

The stochastic process (BH
t )t≥0 is a continuous, Gaussian process of zero mean, with the

following covariance function:

E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ R+ (2.10)

(BH
t )t≥0 is called Fractional Brownian Motion of Hurst index H, throughout this disser-

tation we shall use the abbreviation FBM (and if needed FBMH).

Remark 2.2.

– BH
0 = 0 for all 0 < H < 1,

– E[BH
t ] = 0 for all 0 < H < 1 and t ≥ 0.

– When H = 1
2
, the FBM 1

2
is simply the standard Brownian motion.
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2.2. Definitions and Important Properties

2.2.2 Increments and Long-range Dependence

One of the main reasons to introduce the FBM to financial models, replacing the
standard Brownian motion, is the fact that FBM exhibits some sort of long-term memory
when H > 1/2, which is indeed a characteristic we find when statistically analyzing
realizations of financial instruments.

Proposition 2.2. Here is a non exaustive list of results regarding FBM’s increments.

1. A FBM has stationary increments, i.e. for s > 0, BH
t+s −BH

s
d∼ BH

t .

2. (B
1
2
t )t≥0 has independent increments.

3. When H 6= 1
2
, (BH

t )t≥0 its increments have the following covariance function:

ρ(n) := E[(BH
t+h −BH

t )(BH
s+h −BH

s )] =
1

2
h2H((n+ 1)2H + (n− 1)2H − 2n2H),

(2.11)
where n is such that: t− s = nh.

(a) For H > 1
2
, (BH

t )t≥0 has positively correlated increments.

(b) For H < 1
2
, (BH

t )t≥0 has negatively correlated increments.

Proof.

1. Let s > 0, to simplify notations let the process X , Xt = BH
t+s −BH

s for all t ≥ 0.
As BH is a Gaussian process, so is X . Furthermore, E(Xt) = E(BH

t+s − BH
s ) = 0

since E(BH
t ) = 0. To conclude, we only need to show that covariance function of

process X can be reduced to formula (2.10).

E(XtXu) = E
(

(BH
t+s −BH

s )(BH
u+s −BH

s )
)

= E(BH
t+sB

H
u+s)− E(BH

t+sB
H
s )− E(BH

u+sB
H
s ) + E(BH

s B
H
s )

=
1

2

(
(t+ s)2H + (u+ s)2H − |t− u|2H

− [(t+ s)2H + s2H − t2H + (u+ s)2H + s2H − u2H ] + 2s2H
)

=
1

2

(
t2H + u2H − |t− u|2H

)
E(XtXu) = E(BH

t B
H
u )

8



Chapter 2. Fractional Brownian Motion

2. and 3. Let n ∈ N and h ∈ R such that t− s = nh, and suppose t > s,

ρ(n) = E[(BH
t+h −BH

t )(BH
s+h −BH

s )]

=
1

2

(
(t+ h)2H + (s+ h)2H − |t− s|2H

− [(t+ h)2H + s2H − |t+ h− s|2H + (s+ h)2H + t2H − |t− s− h|2H ]

+ t2H + s2H − |t− s|2H
)

=
1

2

(
− 2(nh)2H + (nh+ h)2H + (nh− h)2H

)
ρ(n) =

1

2
h2H((n+ 1)2H + (n− 1)2H − 2n2H).

The function ρ is the null iff H = 1/2, thus proving 2.
Furthermore 3.(a) and 3.(b) follow from the fact limn→∞

ρ(n)
h2HH(2H−1)n2H−2 = 1.

When it comes to long-range dependence, there are different definitions, we will fol-
low both Biagini et al. (2000) and Taqqu (2003)’s main approach in [BHØZ08] and
[Taq13].

Definition 2.5. Let (Xn)n∈N a stationary stochastic process,

(Xn)n∈N is said to have long-range dependence if its covariance function, ρ(n), is such

that:

∃c ∈ R, ∃a ∈]0, 1[ : lim
n→∞

ρ(n)

cn−a
= 1

From this definition of long-range dependence, we can deduce that a process that has
long-range dependence verifies:

lim
n→0

ρ(n) = 0, with however
∞∑
n=1

ρ(n) =∞.

Let us now see what we can say about FBM’s increments, when its Hurst index is
bigger than 1/2.

Proposition 2.3. If H > 1
2
, then (BH

t )t≥0’s increments have long-range dependence.

Proof. Denoting Xn = BH
n −BH

n−1, (Xn)n∈N is a stationary process and we have:

ρ(n) =
1

2
((n+ 1)2H + (n− 1)2H − 2n2H)

Therefore,

lim
n→∞

ρ(n)

H(2H − 1)n2H−2 = 1

9



2.2. Definitions and Important Properties

As H > 1
2
, the term 2H − 2 will be bigger than −1, implying that the series of general

term ρ(n) diverges, even if the covariance function’s limit is zero.

2.2.3 Self-similarity

Unlike many properties that are lost when the Hurst index of the FBM is different
from 1

2
, (BH

t )t≥0 keeps the well-known self-similarity property of the standard Brownian
motion. Let us first recall its definition and some vocabulary.

Definition 2.6. A process (Xt) ∈ (Rn)R
+
, n ∈ N is said to be self-similar if:

∀a > 0,∃b > 0 : (Xat)t≥0
d∼ (bXt)t≥0

Vocabulary 2.1. Following the notations of the definition above,

- H such that b = aH is called Hurst index, X is said to be self-similar of index H .

- D = 1
H

is called statistical fractal dimension of the process X .

Proposition 2.4. Let 0 < H < 1, (BH
t )t≥0 is self-similar with Hurst index H.

Proof. Let a > 0, t, s ≥ 0,

E[BH
atB

H
as] =

1

2

(
(at)2H + (as)2H − |at− as|2H

)
=

1

2
a2H
(
t2H + s2H − |t− s|2H

)
= a2HE[BH

t B
H
s ]

= E
[
(aHBH

t )(aHBH
s )
]

Furthermore, (BH
at)t ≥ 0 is Gaussian and E[BH

at ] = 0. Therefore (BH
at)t≥0

d∼ (bBH
t )t≥0

where b = aH .

2.2.4 Mandelbrot-van Ness’ Integral Representation

An important characteristic the FBM has, that can also be seen as a alternative way of
defining it, is the fact it can be represented through a stochastic integral w.r.t. the standard
Brownian motion Bt. This was first exploited by Mandelbrot and van Ness in [MvN68],
considered to be pioneers in doing research concerning the fractional Brownian motion.

10



Chapter 2. Fractional Brownian Motion

Theorem 2.2. The stochastic process( 1

C(H)

∫
R

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
dBs

)
t∈R

(2.12)

with the constantC(H) depending only onH ,C(H) :=
√∫∞

0

(
(1 + s)H−

1
2 − sH− 1

2

)2
ds+ 1

2H
,

is the fractional Brownian motion with Hurst index H .

An elegant and simple proof for this theorem can be found in [Nua06b]. Nualart starts
by giving arguments on the regularity of the integrated function in (2.12), thus justifying
the existence of this Itô integral implying (2.12) is a Gaussian process. Than, the author
computes the expected value of (2.12) squared and its increment squared to arrive at a
formula for a covariance function and compares the result with the fractional Brownian
motion, concluding (2.12) is in fact FBM with Hurst index H.

2.2.5 Hölder Continuity

Even if FBM’s sample paths are not differentiable (as proved in [BHØZ08] proposi-
tion 1.7.1), one of the characteristics of the FBM, that will prove to be fundamental when
dealing with stochastic differential equations driven by a FBM, is the fact that the FBM
has a version whose paths are Hölder continuous with probability one.

Let us first recall what it means to be Hölder continuous.

Definition 2.7. Let α ∈]0, 1], T ≥ 0.

A function f : [0, T ] → R is said to be α-Hölder continuous, or Hölder continuous of

order α, if:

∃M > 0,∀s, t ∈ [0, T ], |f(t)− f(s)| ≤M |t− s|α

We denote Cα the space of α-Hölder continuous functions, equipped with the following

norm,

||f ||α = sup
0≤t≤T

|f(t)|+ sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)α

Theorem 2.3. Let 0 < H < 1, FBMH has a version with α-Hölder continuous paths,

for all α < H .

Proof. Let us first recall the Kolmogorov criterion:
Considering the process (Xt)t≥0, if there are M,a and b positive constants such that:
E
(
|Xt−Xs|a

)
≤M |t−s|1+b, thenX has a version with d-Hölder continuous trajectories

as long as d < b
a
.

11



2.2. Definitions and Important Properties

Since BH is self-similar and its increments are stationary, we have:

E
(
|BH

t −BH
s |α
)

= E
(
|BH
|t−s||α

)
= E(|BH

1 |α
)
|t− s|αH ,

therefore from the Kolmogorov criterion FBMH has a version with d-Hölder continuous
paths, for all d < αH

α
= H .

2.2.6 Loss of Semi-martingale Property

In order to establish results regarding the fact that FBM is no longer a semi-martingale
when H 6= 1/2, let us first introduce the definition of p-variation in the sense of [Gue08].

Definition 2.8. Let a stochastic process (ut)t≥0, consider the interval [0, T ] and the set of

uniform partitions of the type : {0 = tn0 < tn1 < · · · < tnn = T} for n ∈ N, with tni = i
n
T

for all i = 0, ..., n. The p-variation of u in the interval [0, T ], with respect to this set of

partitions, is defined by:

V p(u) := lim
n→∞

n−1∑
i=0

|utni+1
− utni |

p (2.13)

In [Che01], Cheridito proves that when p = 1
H

, V 1/H(BH) = E[|BH
1 |1/H ]. This result

will prove to be useful when considering the case p > 1
H

.

Theorem 2.4. The p-variation in the sense of the previous definition of a FBM in the

interval [0, T ] is: V p(BH) =

∞, p < 1/H

0, p > 1/H

Proof.

– Case p < 1/H:
Let us consider the interval [0, T ] with T > 0, and let n ∈ N,

n−1∑
i=0

(
BH

i+1
n
T
−BH

i
n
T

)p d∼
n−1∑
i=0

(T
n

)pH(
BH
i+1 −BH

i

)p
, as the FBM is a self-similar process

d∼
(T
n

)pH n−1∑
i=0

(
BH

1

)p
, as FBM’s increments are stationary

=
T pH

npH−1

(
BH

1

)p
As p < 1/H this will diverge in L1.

12



Chapter 2. Fractional Brownian Motion

– Case p > 1/H:
Let ε > 0, as p > 1/H we denote p = 1/H + ε.

V p(BH) = lim
n→∞

n−1∑
i=0

(
|BH

i+1
n
T
−BH

i
n
T
|
)p

= lim
n→∞

n−1∑
i=0

(
|BH

i+1
n
T
−BH

i
n
T
|
)1/H+ε

= lim
n→∞

n−1∑
i=0

(
|BH

i+1
n
T
−BH

i
n
T
|
)1/H(

|BH
i+1
n
T
−BH

i
n
T
|
)ε

≤ lim
n→∞

sup
i={0,...,n}

(
|BH

i+1
n
T
−BH

i
n
T
|
)ε

︸ ︷︷ ︸
→0, FBM sample paths are continuous

n−1∑
i=0

(
|BH

i+1
n
T
−BH

i
n
T
|
)1/H

︸ ︷︷ ︸
→E[|BH

1 |1/H ]

V p(BH) = 0

Remark 2.3. The previous result on FBM’s p-variation can be applied to its quadratic

variation: V 2(BH) =

∞, H < 1/2

0, H > 1/2

Theorem 2.5. The FBM is a semi-martingale only in the case H = 1
2
.

Proof. - Sketch -

It is a well know result that the classical Brownian Motion is a semi-martingale. One
method to prove this theorem, that can be found in [Sot03], is to consider two cases,
H < 1/2 and H > 1/2.

• For H < 1/2, the previous proposition states that the FBM has infinite quadratic
variation. Therefore it can not be a semi-martingale.

• For H > 1/2, it is assumed BH is a semi-martingale to later arrive at a contradic-
tion.
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Chapter 3

Stochastic Differential Equations driven
by Fractional Brownian Motion, H>1/2

3.1 Pathwise Integrals with respect to FBM

In the last section of chapter 2, two important results were established: FBM is not
a semi-martingale when H 6= 1/2 which means that classical Itô calculus can not be
used when defining stochastic integrals w.r.t. FBM with a Hurst index different from
1/2; however FBM does have, for every Hurst index, a version whose paths are α-Hölder
continuous, for every α < H . This last property will be fundamental when defining the
Riemann-Stieltjes stochastic integral and later the generalized Riemann-Stieltjes stochas-
tic integral developed by Zähle, [Zäh98].

3.1.1 Riemann-Stieltjes integral

In 1936 [You36], Young defined the Riemann-Stieltjes integral.

Definition 3.1. Let [a, b] an interval, and π = {t0 = a < t1 < · · · < ti < ti+1 < · · · <
tn=b} a partition of this interval. The Riemann-Stieltjes integral is defined by :

(RS)

∫ b

a

f(t)dg(t) := lim
|π|→0

n∑
i=0

f(ti)
(
g(ti+1)− g(ti)

)
(3.1)

In the same paper, Young gives conditions on the functions f and g for the existence
of the Riemann-Stieltjes integral.

Theorem 3.1. With the notations of the previous definition, the Riemann-Stieltjes integral

(RS)

∫ b

a

f(t)dg(t)

14



Chapter 3. SDE driven by Fractional Brownian Motion, H>1/2

exist when Vp(f) <∞, Vq(g) <∞ and g is continuous, with 1
p

+ 1
q
> 1.

The following corollary consists in applying the previous theorem to the FBM.

Corollary 3.1. Let (ut)t≥0 a stochastic process,

If the process u has α-Hölder continuous trajectories, such that α > 1−H ,

Then, the Riemann-Stieltjes integral w.r.t. BH ,

(RS)

∫ t

0

usdB
H
s (3.2)

is well defined for every t > 0.

Proof. As BH has a version whose trajectories are λ-Hölder continuous for all λ < H ,
V1/λ(B

H) <∞. The same happens with u, we have V1/α(u) <∞.
To finish we just need to verify that α + λ > 1.
Indeed, the differences H − λ and α− (1−H) are both positive by assumption, we just
need to choose a λ close enough to H such that α− (1−H) > H−λ which will directly
imply what is needed : α + λ > 1.

3.1.2 Generalized Riemann-Stieltjes integral

Inspired by the fact that (3.1) becomes
∫ b
a
f(t)g′(t)dt when function g is C1, Zähle

([Zäh98]) wanted to generalize this idea for a less regular g in order to still have a closed-
formula to compute or estimate these integrals. If g′ cannot exists but for some positive
α, D1−αg is well defined in the sense of chapter 2. Asking "less" from g as to be, in some
sense, compensated by a stronger regularity of function f .

Definition 3.2. Let f ∈ Iαa+(Lp), g ∈ I1−αb− (Lq), with 0 ≤ α ≤ 1 and such that 1
p

+ 1
q
≤ 1,

the generalized Riemann-Stieltjes is defined as :

(Z)

∫ b

a

f(t)dg(t) = (−1)α
∫ b

a

Dα
a+fa+(t)D1−α

b− gb−(t)dt+f(a+)(g(b−)−g(a+)) (3.3)

where f(a+) = limε→0+ f(a+ ε), g(b−) = limε→0+ g(b− ε),

and fa+(t) := χ(a,b)(t)(f(t)− f(a+)), gb−(t) := χ(a,b)(t)(g(t)− g(b−)).

Zähle, [Zäh98], proves this definition is both correct and independent of the choice of
α in the interval [0, 1]. The proof consists in taking the definition with an order α′ = α+β

and arriving to the definition with the order α, mainly thanks to the composition formula
for fractional integrals presented in the second chapter (proposition 2.1).
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3.2. Existence and Uniqueness Results

After having applied this integral to several types of functions f , starting with the
simple case of an indicator function, then to step functions, as it is usual in the construction
of an integral; Zähle proves the following theorem, connecting this integral to Young’s
Riemann-Stieltjes integral.

Theorem 3.2. If f ∈ Cλ, g ∈ Cµ with λ+ µ > 1,

Then,

(Z)

∫ b

a

f(t)dg(t) = (RS)

∫ b

a

f(t)dg(t) (3.4)

The final important result from [Zäh98], that will prove to be crucial in the final section
of chapter 3, gives us a change of variable formula for (Z)-type integrals. Its proof can
be found in p350.

Theorem 3.3. Let f ∈ Cλ and F ∈ C1(R, (a, b)), such that F ′1(f(.), .) ∈ Cµ with

λ+ µ > 1.

F (f(t), t)− F (f(a), a) =

∫ t

a

F ′1(f(s), s)df(s) +

∫ t

a

F ′2(f(s), s)ds (3.5)

where F ′1 is the partial derivative of F wrt its first variable, and F ′2 to its second variable.

3.2 Existence and Uniqueness Results

In several financial applications, instruments are modeled with the help of some dif-
ferential equation that describes the evolution of either a price, an interest rate, a volatility,
etc. In this section we will introduce stochastic differential equations whose randomness
will come from the FBM, contrary to what we might be used to where the randomness
comes from the standard Brownian motion. We shall start with a definition of such equa-
tion as well as what it means to be a solution.

Definition 3.3. Let H > 1/2, consider the interval [0, T ] with T > 0. The following

stochastic differential equation:

dut = b(t, ut)dt+ σ(t, ut)dB
H
t (3.6)

admits a pathwise solution (ut)0≤t≤T given that for almost every trajectory both b and σ

are C0 in [0, T ], the generalized Riemann-Stieltjes integral
∫ t
0
σ(s, us)dB

H
s is well defined

for t ∈]0, T ], and we have for every s ≤ t in [0, T ]:

ut = us +

∫ t

s

b(r, ur)dr +

∫ t

s

σ(r, ur)dB
H
r

16



Chapter 3. SDE driven by Fractional Brownian Motion, H>1/2

In this section we shall consider the following integral equation,

ut = u0 +

∫ t

0

b(s, us)ds+

∫ t

0

σ(s, us)dB
H
s (3.7)

Before presenting, Nualart and Răşcanu’s existence and uniqueness theorem, devel-
oped in [NR02], let us recall that:

– u0 is a random variable,

– BH’s Hurst index H is bigger than 1/2,

– b, σ : Ω× [0, T ]× R→ R are measurable functions,

– We define, for α ∈]1 −H, 1/2[, the Sobolev space Wα,∞
0 the space of measurable

functions f : [0, T ]→ R such that

||f ||α,∞ := sup
t∈[0,T ]

(
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds
)
<∞

Remark 3.1. In [NR02], it is proved that for ε > 0, Cα+ε ⊂ Wα,∞
0 ⊂ Cα−ε

The following existence and uniqueness theorem, as other theorems of this kind, has
some expected hypothesis on the regularity of the coefficients σ and b, such as local or
global Hölder continuity and Lipschitz conditions in both time and space variables.

Theorem 3.4. If the following conditions are satisfied, for almost all trajectories in Ω,

1. Function σ : [0, T ]× R→ R is differentiable in space, such that:

(a) ∃M > 0,∀u, v ∈ R,∀t ∈ [0, T ],

|σ(t, u)− σ(t, v)| ≤M |u− v|

(b) ∃d ∈] 1
H
− 1, 1], ∀U ∈ R+,∃MU > 0,∀t ∈ [0, T ],(

|u| ≤ U ∧ |v| ≤ U
)

=⇒ |∂σ
∂u

(t, u)− ∂σ
∂u

(t, v)| ≤MU |u− v|d

(c) ∃a > 1−H,∃N > 0,∀u ∈ R,∀t, s ∈ [0, T ],

|σ(t, u)− σ(s, u)|+ |∂σ
∂u

(t, u)− ∂σ
∂u

(s, u)| ≤ N |t− s|a

2. Function b : [0, T ]× R→ R is such that:

(a) ∀U ∈ R+,∃MU > 0,∀t ∈ [0, T ],(
|u| ≤ U ∧ |v| ≤ U

)
=⇒ |b(t, u)− b(t, v)| ≤MU |u− v|
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3.3. Stability

(b) ∃p ≥ 2, ∃b0 : [0, T ]→ R ∈ LP ,∃A > 0,∀u ∈ R,∀t ∈ [0, T ],

|b(t, u)| ≤ A|u|+ b0(t)

Then, denoting a0 = min(1
2
, a, d

1+d
), there exists a unique measurable function

u ∈ Wα,∞
0 that verifies equation 3.7, where α ∈]1−H, a0[ and p ≥ 1/α.

Furthermore the solution of equation 3.7 is (1− α)-Hölder continuous.

Nualart and Răşcanu, [NR02], prove this theorem with the help of a result regarding
an analogous deterministic differential equation (theorem 5.1 in [NR02]) based on tech-
nical existence lemmas outside of the scope of this master thesis.

As the conditions presented in the previous theorem are rather complex and can some-
times be hard to verify, we shall present a less general version of theorem 3.4 that can be
used in practical examples in a quicker and simpler way.

Corollary 3.2. Consider equation 3.7,

If:

– Function σ : [0, T ] × R → R is C2 in both variables and ∂uσ, ∂2uσ and ∂t∂uσ are

bounded.

– Function b : [0, T ]× R→ R is C1 in the space variable, and

∃p ≥ 2,∃b0 : [0, T ]→ R ∈ LP ,∃A > 0, ∀u ∈ R,∀t ∈ [0, T ], |b(t, u)| ≤ A|u|+b0(t)

Then, there exists a unique measurable function u ∈ Wα,∞
0 that verifies equation 3.7,

where α ∈]1−H, 1/2[. This solution will also be (1− α)-Hölder continuous.

Proof. The facts that ∂uσ, ∂2uσ and ∂t∂uσ are bounded respectively imply hypothesis
1.(a), 1.(b) and 1.(c) in theorem 3.4 hold, with constants d and a both equal to 1. As for
conditions 2., they come directly from what is assumed regarding function b.

3.3 Stability

Let us consider the following stochastic differential equation,

dyt = F (yt)dt+G(yt)dB
H
t (3.8)

A result on global exponential stability of the trivial (zero) solution of equation (3.8)
was developed by Garrido-Atienza et al. in [GANS18]. The authors suppose that the
function G is linear and that F verifies for all x: F (x) = −λ.x+ f(x), where λ > 0 and
such that it exists constant δ < λ with |f(x)| ≤ δ|x|.

18



Chapter 3. SDE driven by Fractional Brownian Motion, H>1/2

In this same paper, the authors proved under what conditions equation (3.8)’s solution
is locally exponentially zero stable and with which rate. Let us first recall the definition of
such stability to later present Garrido-Atienza et al.’s main result (proved in [GANS18]
in the multidimensional case but only presented here in the scalar case).

Definition 3.4. A solution, xt, of equation (3.8) is said to be locally exponentially zero

stable with rate r, if there is a neighborhood, V , of zero where:

x0 ∈ V =⇒ lim
t→∞

ert|xt| = 0.

Theorem 3.5. Consider equation (3.8),

Suppose:

– F,G ∈ C2 with bounded derivatives in a neighborhood of zero,

– F (0) = 0 and G(0) = 0,

– G′(0) = 0,

– There is λ > 0 such that F ′(0) < −λ.

Then, the trivial solution of equation 3.8 is locally exponentially zero stable with rate r

for every r verifying r < − ln(ε+ e−λ) for every ε ∈]0, 1− e−λ[.

We wish now to build an original result, inspired by [GANS18] results displayed
above, that gives conditions on functions F and G that will ensure local exponential sta-
bility but of a non-trivial solution of equation (3.8).

We consider yt a non-trivial solution of this equation, our goal is to introduce a small
perturbation to the solution y, here denoted u, and to understand what conditions the func-
tions F and G must satisfy to establish local exponential stability of yt.
Let us first define such form of stability.

Definition 3.5. A solution, yt, of equation (3.8) is said to be locally exponentially stable,

if for any other solution xt:

sup
t≥0
|yt − xt| < 1 =⇒ lim

t→∞

1

t
ln |yt − xt| < 0

Theorem 3.6. Consider equation (3.8), and yt a non-trivial solution.

Suppose:

– F is twice differentiable and its second derivative is limited. Let δ := ||F ′′||C0
1.

1||f ||C0 = supx |f(x)|
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3.3. Stability

– G is an affine function.

If δ < lim supt→∞
1
t

∫ t
0
λ(s)ds, where the function λ is such that λ(t) = −F ′(yt), then

the solution yt is locally exponentially stable.

Proof. Let xt = yt + ut, suppose xt is also a solution of (3.8). We have,

dxt = dyt + dut = F (yt)dt+G(yt)dB
H
t + dut,

and
dxt = F (yt + ut)dt+G(yt + ut)dB

H
t .

So, denoting G(x) = γx+ c for all x, ut satisfies the following,

dut = [F (yt + ut)− F (yt)]dt+ γutdB
H
t

Let us now focus our attention on the drift coefficient.

F (yt + ut)− F (yt) =

∫ 1

0

F ′(yt + sut)ds.ut, fundamental theorem of calculus,

=

∫ 1

0

F ′(yt + sut)ds.ut + (F ′(yt)− F ′(yt))ut

= F ′(yt)︸ ︷︷ ︸
=−λ(t)

ut +

∫ 1

0

(F ′(yt + sut)− F ′(yt))ds.ut

= −λ(t)ut +

∫ 1

0

∫ 1

0

F ′′(yt + ηsut)dη.sutds.ut

= −λ(t)ut +

∫ 1

0

∫ 1

0

F ′′(yt + ηsut)dη.sds.u
2
t︸ ︷︷ ︸

:=f(ut,t)

.

So, dut = [−λ(t)ut + f(ut, t)]dt+ γutdB
H
t .

From the condition on F ′′, we can deduce that |f(ut, t)| ≤ 1
2
δ|ut|2. Furthermore, as the

perturbation ut is supposed to be small we have |ut|2 ≤ |ut|. Therefore:

|f(ut, t)| ≤
1

2
δ|ut|, for every t.

Let us now consider the following change of variable: vt = e
∫ t λ(s)dsut := g(ut, t). From

theorem 3.3 we have that g(ub, b)− g(ua, a) =
∫ b
a
g′u(us, s)dus +

∫ b
a
g′t(us, s)ds.

Here g′u(ut, t) = e
∫ t λ(s)ds and g′t(ut, t) = λ(t)e

∫ t λ(s)dsut.
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Chapter 3. SDE driven by Fractional Brownian Motion, H>1/2

So,

dvt =g′t(ut, t)dt+ g′u(ut, t)dut

=λ(t)e
∫ t λ(s)dsutdt+ e

∫ t λ(s)ds
(

[−λ(t)ut + f(ut, t)]dt+ γutdB
H
t

)
dvt =e

∫ t λ(s)dsf(e−
∫ t λ(s)dsvt, t)dt+ γvtdB

H
t

Denoting b(vt, t) := e
∫ t λ(s)dsf(e−

∫ t λ(s)dsvt, t), vt follows the differential equation:

dvt = b(vt, t)dt+ γvtdB
H
t (3.9)

We can now preform the Doss transform, [Dos77], to the process vt. It can be written as

vt = h(Dt, B
H
t ), where h andD are such that :

 ∂
∂y
h(x, y) = γh(x, y);h(x, 0) = x

dDt = e−γB
H
t b(Dte

γBH
t , t)dt;D0 = u0

This implies that h(x, y) = xeγy, so vt = Dte
γBH

t .
Let us now focus our attention in Dt. We shall denote rt := |Dt|2. As Dt verifies

dDt = e−γB
H
t b(Dte

γBH
t , t)dt = e−γB

H
t +

∫ t λ(s)dsf(e−
∫ t λ(s)ds+γBH

t Dt, t)dt, we have:

drt =2Dte
−γBH

t +
∫ t λ(s)dsf(e−

∫ t λ(s)ds+γBH
t Dt, t)dt

≤2Dte
−γBH

t +
∫ t λ(s)ds1

2
δ|e−

∫ t λ(s)ds+γBH
t Dt|dt

≤δ|Dt|2dt

drt ≤δrtdt

By Grönwald’s lemma, drt ≤ δrtdt implies that rt ≤ r0e
δt. Therefore, since

ut = e−
∫ t λ(s)dsvt and vt = Dte

γBH
t we can deduce that:

|ut| ≤ |u0|eγB
H
t +δt−

∫ t
0 λ(s)ds (3.10)

From [Mao97], we know the process (ut) is exponentially stable if lim supt→∞
1
t

ln |ut| <
0. Here:

1

t
ln |ut| ≤

1

t

(
γBH

t + δt−
∫ t

0

λ(s)ds+ ln |u0|
)

In [Nua06a], Nualart shows, using the Borel-Cantelli Lemma, that limt→∞
|BH

t |
t

= 0 for
almost all trajectories. Therefore in order to assure exponential stability we must have:

δ <
1

t
lim sup
t→∞

∫ t

0

λ(s)ds
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Chapter 4

Application to Fractional Vasicek
Interest Rate Model

In [HLW14], Hao et al. develop a model to price credit default swaps, also known as
CDS, based on a fractional Vasicek model for the interest rate.

Since their conception in 1994 by JP Morgan Chase investment bank, CDS have been
enormously popular in financial markets. A credit default swap is a financial derivative
used to hedge credit risk, its buyer transfers the risk of a loan or bond default to the seller
in exchange for periodical premia. After the subprime financial crisis in 2008, where CDS
played an important role, a need for better and more realistic models to price these swaps
was clear.

Since credit default swaps are highly sensitive to interest rate fluctuations, an accurate
model to describe interest rates’ evolution will have a positive impact in CDS’ pricing
model. Hao et al. introduced the fractional Vasicek model to describe interest rate evolu-
tion in time.

drt = k(ρ− rt)dt+ σdBH
t (4.1)

Where:

– (rt)t≥0 is the stochastic process that represents the interest rate,

– ρ is the long-term interest rate,

– k is the speed at which the interest rate reverses to the long-term value, 0 < k < 1,

– σ is the interest rate volatility,

– BH is a fractional Brownian motion, with 1/2 < H < 1.
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Chapter 4. Application to Fractional Vasicek Interest Rate Model

The authors present a closed-form solution for equation (4.1):

rt = ρ+ (r0 − ρ)e−kt + σe−kt
∫ t

0

eksdBH
s (4.2)

However, since the integral w.r.t. the FBM in [HLW14] is defined in the Wick sense and
not pathwise, we must show caution and verify if (4.2) is still a solution of (4.1) when
considering

∫ t
0
ektdBH

t as a generalized Riemann-Stieltjes integral.

Proof.

drt = d
(
ρ+ (r0 − ρ)e−kt + σe−kt

∫ t

0

eksdBH
s

)
=
(
− k(r0 − ρ)e−kt − kσe−ktekt

∫ t

0

eksdBH
s

)
dt+ σe−ktektdBH

t

=
(
− k(r0 − ρ)e−kt − kσ

∫ t

0

eksdBH
s

)
dt+ σdBH

t

= k
(
ρ− [ρ+ (r0 − ρ)e−kt + σ

∫ t

0

eksdBH
s ]︸ ︷︷ ︸

=rt

)
dt+ σdBH

t

drt = k(ρ− rt)dt+ σdBH
t

The stochastic process (rt) given by (4.2) is a Gaussian process, let us compute its
expected value and variation to fully characterize the interest rate process.

E[rt] = E[ρ+ (r0 − ρ)e−kt + σe−kt
∫ t

0

eksdBH
s ]

= ρ+ (r0 − ρ)e−kt + σe−ktE[

∫ t

0

eksdBH
s ]

= ρ+ (r0 − ρ)e−kt + 0, because we can write this integral as in (3.1) and we know

the expected value of FBM increments is equal to zero.

E[rt] = ρ+ (r0 − ρ)e−kt
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Chapter 4. Application to Fractional Vasicek Interest Rate Model

V ar(rt) = E[(rt − E[rt])
2]

= (σe−kt)2E[(

∫ t

0

eksdBH
s )2]

= (σe−kt)2E[(ektBH
t − k

∫ t

0

eksBH
s ds)

2], by formula (3.3)

= (σe−kt)2E[e2kt(BH
t )2 + k2(

∫ t

0

eksBH
s ds)

2 − 2kektBH
t

∫ t

0

eksBH
s ds]

= (σe−kt)2
(
e2ktt2H + k2E[(

∫ t

0

eksBH
s ds)

2]− 2kekt
∫ t

0

eksE[BH
t B

H
s ]ds

)
= (σe−kt)2

(
e2ktt2H + k2E[(

∫ t

0

eksBH
s ds)(

∫ t

0

ekrBH
r dr)]− 2kekt

∫ t

0

eksE[BH
t B

H
s ]ds

)
= (σe−kt)2

(
e2ktt2H + k2(

∫ t

0

∫ s

0

ek(s+r)E[BH
s B

H
r ]drds)− 2kekt

∫ t

0

eksE[BH
t B

H
s ]ds

)
V ar(rt) = (σe−kt)2

[
e2ktt2H +

1

2
k2(

∫ t

0

∫ s

0

ek(s+r)
(
s2H + r2H − |s− r|2H

)
drds)

− kekt
∫ t

0

eks
(
t2H + s2H − |t− s|2H

)
ds
]

The solution (4.2) is obviously a non-trivial one, and thanks to theorem 3.6 we can
examine whether it is locally exponential stable. With the notations of theorem 3.6 we
have:

F (x) = k(ρ− x), x ∈ R

λ(x) = −F ′(x) = k, x ∈ R

δ = F ′′(x) = 0, x ∈ R

As lim sup
t→∞

1

t

∫ t

0

λ(s)ds = k is positive by definition, we verify condition δ < lim sup
t→∞

1

t

∫ t

0

λ(s)ds.

Therefore solution (4.2) is locally exponentially stable.
The fact that this solution exhibits local exponential stability gives us more confidence

in this model. Indeed interest rates can suffer small changes that are not explained by the
model nor expected. Therefore, this result on stability ensures that even if with these
unexpected perturbations, the solution will still behave correctly and will not "explode",
instead it will converge to the original solution at an exponential rate.
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Chapter 5

Conclusion

In this dissertation we generalized a result on the exponential stability of a trivial
solution of a stochastic differential equation driven by fractional Brownian motion (in
[GANS18]) to a non-trivial solution in the scalar case. In the last chapter we applied this
result to the fractional Vaiscek model for interest rate and showed that its solution, which
is non-trivial, is locally exponentially stable. In order to establish theorem (3.6), we first
had to study the most important properties of the fractional Brownian motion. Even if
the family of fractional Brownian motions kept the known self-similarity property of the
standard Brownian motion, it lost the ability to be decomposed into a local martingale and
adapted process. i.e. to be a semi-martingale, when H 6= 1/2. With this loss, the classical
stochastic calculus based on the Itô lemma used for computing stochastic integrals w.r.t.

the standard Brownian motion could no longer be applied to the fractional Brownian mo-
tion. Nevertheless, because FBM’s sample paths are α-Hölder continuous for α < H , we
are able to define the pathwise Riemann-Stieltjes integral ([You36]) and the generalized
Riemann-Stieltjes intregral ([Zäh98]) w.r.t. the fractional Brownian motion. Having a
clear and structured theoretical framework for stochastic differential equations driven by
the FBM, we were able to present some existence and uniqueness results and to finally
arrive at our main goal: the establishment of a result on the local exponential stability a
of non-trivial solutions. The importance of this result resides in the fact that in every phe-
nomenon described by a mathematical model, or equation, there are always perturbations
and changes that are not explained by the model nor expected, hence the stability of so-
lutions ensures that the "perturbed" solution will converge to the original one. Moreover
the fact that we can now apply this result to non-trivial solutions is highly meaningful, as
in financial mathematical models we are not usually interested in studying a zero solution
(or a constant solution), but a non-trivial one.

It is important to emphasize that our result on exponential stability of non-trivial so-
lutions only considers the scalar case, therefore it would be interesting to focus future
research in the multi-dimensional case.
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