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Abstract:

This paper explores the optimal portfolio problem using option-implied distributions
when the underlying price process is assumed to be driven by an exponential Lévy
process. In particular, the application is carried out using an Exponentially Tempered
Stable jump-diffusion process as the martingale component of the log stock price, and
the investor’s preferences are assumed subject to a CRRA utility function. One month
risk-neutral densities are extracted from option prices by using a transform pricing
method and are subsequently transformed to the risk-adjusted, or real-world density
via a model preserving minimal entropy transform which importantly maintains the
parameterization of the Lévy process. A stochastic optimal control result is then used
to construct a portfolio consisting of a risky and risk-free asset which is rebalanced on a
monthly basis. It is found that the portfolios formed using option-implied expectations
under the Lévy market assumption, which are flexible enough to capture the higher
moments of the implied distribution, are far more robust to left-tail market risks and
offer statistically significant improvements to risk-adjusted performance when investor
risk aversion is low, however this diminishes as risk aversion increases.

Keywords: Lévy Processes, Option Pricing, Stochastic Optimal Control, Portfolio Optimization



Resumo:

Este artigo explora o problema do portfélio ideal usando distribuicées implicitas na
opcao quando o processo de preco subjacente é assumido como sendo conduzido por
um processo exponencial de Lévy. Em particular, a aplicacao é levada a cabo usando
um processo de difusao de salto Estavel Exponencialmente Temperado como o componente
martingale do preco das accoes de log, e as preferéncias do investidor sdo assumidas
sujeitas a uma funcio de utilidade CRRA. Densidades de um més neutras ao risco sao
extraidas dos precos das opc¢oes usando um método de precificaciao por transformacio

e sao subsequentemente transformadas na densidade ajustada ao risco ou no mundo
real por meio de um modelo preservando a entropia minima que mantém a parametrizacao
do processo Lévy. Um resultado de controle otimizado estocastico é entao usado para
construir um portfélio que consiste em um ativo de risco e sem risco, que é reequilibrado
mensalmente. Descobriu-se que os portfélios formados usando as expectativas implicitas
na opcio sob a hipétese de mercado Lévy, que sio flexiveis o suficiente para capturar

os momentos mais altos da distribuicao implicita, sio muito mais robustos aos riscos

de cauda esquerda e oferecem melhorias estatisticamente significativas ao desempenho
ajustado ao risco quando a aversao ao risco do investidor é baixa, porém isso diminui

a medida que aumenta a aversio ao risco.

Palavras-chave: Processos Lévy, Preco de Opgio, Controle Otimo Estocéstico, Otimizacio de Portfélio
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1 Introduction

1.1 Motivations

This paper undertakes a study of the fundamental optimal asset allocation problem in finance and extends
the current literature by assessing the (simulated) empirical performance of a dynamic strategy which
relies on signals generated from extracting information from option prices under an exponential Lévy
market assumption. The paper builds mainly off of the results and methodology of [37], which showed
that portfolio performance could be improved by using implied forward-looking rather than historical
distributions, and [32] and [58], where a number of results were derived for the optimal control strategy
of exponential Lévy processes. Given that the parameterizations of Lévy processes used in financial
modeling (including in particular the Exponentially Tempered Stable process used throughout this study)
have economic interpretations and are supposed to offer improvements over the more simple classical
models, forward-looking estimates of the parameters could reasonably be expected to improve realized
portfolio performance within a framework which incorporates this information. The goal is thus to
investigate whether a number of rather esoteric results in stochastic processes, option pricing, and optimal
stochastic control together have any value in a quite simple and implementable investment strategy. In
essence, the objective of the research was to replicate the broader result of [37], but whereas there the
authors used a non-parametric approach to extract the implied distributions, here a parametric approach
(i.e. an option pricing model) is used to model the distribution implied in option prices.

1.2 Literature Review

The extensive literature regarding multi-period portfolio selection was catalyzed by the seminal papers
of Mossin [54], Samuelson [63], and Merton [51] in the 1960s. By applying the ideas of dynamic
programming and stochastic optimal control to the portfolio selection problem, with these papers emerged
an exchange of fundamental concepts in engineering to navigating the financial decision making process.
But perhaps it was the widely known paper of Fischer Black and Myron Scholes, "The Pricing of
Options and Corporate Liabilities" [8], that truly kicked off the love affair of finance and mathematics.
The shortcomings of the Black-Scholes model, however, became all too apparent, particularly in the
aftermath of the events of October 19th, 1987, now known as "Black Monday," which saw a permanent
regime change in the implied volatility structure that the Black-Scholes model simply could not handle.
In [46] much of the current framework for using Lévy processes for price modeling was first developed
with the Variance Gamma (VG) process, although the idea of modeling prices with infinite activity and
discontinuities had already been considered years earlier in [49], [60], [59], and [9]. Since the Variance
Gamma process, a number of additional Lévy processes have been proposed to more realistically capture
stylized facts of the markets, perhaps the most popular being the Hyperbolic process of [22], the Normal
Inverse Gaussian process of [3], the CGMY process of [12], the Kou process of [38], and the Meixner
process of [67]. This study involves the merging of the optimal portfolio selection literature and the
literature on Lévy processes in finance within a systematic investment strategy. The problem of optimizing
a portfolio with Lévy drivers was first solved using the dynamic programming approach in [6] and [24].



In [32], the problem was also solved using the alternative martingale method approach, and this remains
a seminal reference herein due to the clarity of the notation and results (the solutions are identical,
as they should be, between the two approaches). As mentioned in the introduction, more recently,
in [58], the optimal portfolio problem was studied in more depth numerically for exponential Lévy
processes under CRRA utility. However, this paper only considered the problem cross-sectionally, that
is it compared optimal portfolios under the jump assumption to the pure diffusion assumption using a
single Lévy process parameterization/calibration and studied the implications. We pick up where this
study left off, inspired, as mentioned above, by [37] and analyze the problem across time and investigate
the performance of a periodically rebalanced strategy.

1.3 Organization of Paper

The rest of the paper is organized as follows. Section 2 is a review of foundational definitions and
theorems important in formulating and understanding the results of later sections. Section 3 details
the Exponentially Tempered Stable Lévy process, including the application to financial markets and
an important result regarding transformations between the risk-neutral and real-world parameterization.
Section 4 derives a suitable Hamilton-Jacobi-Bellman (HJB) equation for the optimal investment problem,
and is solved assuming the solution for the portfolio proportions lies within the interior of a set of
admissible controls and the investor’s preferences are subject to the logarithmic and power HARA-type
utility functions. Section 5 is a review of the Carr-Madan transform option pricing methodology. Section
6 presents the main results of the paper, where the topics of previous sections are brought together to
create and backtest an investable strategy involving a simple portfolio consisting of a risky and risk-free
asset rebalanced on a monthly basis.

2 Lévy Processes

2.1 Basic Definitions and Theorems

This chapter presents a number of foundational definitions and theorems regarding Lévy processes. The
intent is for this text to be sufficiently self-contained that one need not consult a myriad of external
sources. Nevertheless, a full treatment of the theory could never be condensed (nor is it at all the point
of the paper) to a few pages, and should the reader desire a more extensive, yet largely introductory
treatment, [1], [19], and [66] are recommended. What follows is mainly sourced from these texts. We
begin by simply defining a Lévy process.

Definition 2.1 (Lévy Process) A real valued and adapted stochastic process L = {L;,t > 0} defined on
the probability space (2, F,P) is called a Lévy process if it possesses the following properties:

1. Lo =0 (a.s).

2. L has independent and stationary increments, i.e., Ly — Lg is independent of Fs for any s < t and
Ly — Lg has the same law as L;_.

3. L is stochastically continuous, i.e., Vt € [0,T],¢ > 0 : limg_,; P(|Ly — Ls|> €) = 0.



More simply, a Lévy process can be thought of as the continuous-time analog of a random walk. Every
Lévy process can be associated with an infinitely divisible distribution, defined as follows.

Definition 2.2 (Infinitely Divisible Distribution) The distribution of a random variable X is infinitely
divisible if and only if for all n € N there exists a random variable X /™) such that

ox(u) = (xa/m(u)", 2.1

where ¢x (u) is the characteristic function of X and ¢ /m) is the characteristic function of X (1/n),
Equivalently, the probability distribution is infinitely divisible if there exists a convolution n-th root for
eachn € N.

A necessary and sufficient condition for an infinitely divisible distribution is the Lévy Khintchine formula,
which generalizes the characteristic function for all Lévy processes as follows.

Theorem 2.3 (Lévy-Khintchine Representation) A random variable is infinitely divisible if and only if
there exists a triplet (p, 02, v) where i € R, 0 € ]Rar and v is a positive sigma-finite measure on R, such
that the characteristic function is given by

dx(u) = ™), 2.2)

where 1)(u) is the characteristic exponent, given by the expression
Y(u) = ipu — 502u2 + /(e =1 —iuz X {|z|<1}(@))v(dz), (2.3)

R
and X A(x) denotes the indicator function, defined as
1 ifzeA

x) = ’ 2.4
Xa@) {0 ifx ¢ A. @9

Since every Lévy process is associated to an infinitely divisible distribution, the characteristic function
can also be expressed as

L, (u) = ™), 2.5)
where L = {L;,t > 0} is the Lévy process associated with the triplet (11, o2, v/). The positive measure
v is referred to as the Lévy measure of L, which must satisfy certain properties given in the following
definition.

Definition 2.4 (Lévy Measure, Paths, and Moment Properties)
The Lévy measure of L, denoted v, must satisfy the following properties:

{1.) v{0} =0

. (2.6)
2.)  Jg(IAz?*)v(dz) < oo, where AN B := min(A, B)

The Lévy measure gives the expected number of jumps of a certain size per unit of time. The following
properties describe a Lévy process and its measure on a given bounded nontrivial interval:



e If v(R) = oo then infinitely many small jumps occur. The Lévy process is said to have infinite
activity. 2.7)
e If ¥(R) < oo then a.a. paths have a finite number of jumps. The Lévy process is said to have finite
activity. (2.8)
e Let L be a Lévy process with Lévy triplet (1,02, v). If 02 = 0 and Jiuj<alzlv(dz) < oo, then
a.a. paths have finite variation. If 02 # 0 or f|x‘<1]a:\u(dx) = 00, then a.a. paths have infinite

variation. 2.9

While the path variation properties above are seen to be only related to the small jumps and/or the
Brownian motion components, the moment properties depend on the large jumps in the following way:

e [; has finite moment of order p if and only if

/ |z|Pr(dx) < oo. (2.10)
|z[>1

e L, has finite exponential moment of order p (i.e. E[eP*t] < 00) if and only if
/ eP*v(dr) < oo. (2.11)
|z|>1

The class of stable distributions is an important subclass of infinitely divisible distributions. As the
name suggests, the Lévy process we will focus on later in this paper, the Exponentially Tempered Stable
process, incorporates exponential decay or "tempering" terms into the Lévy measure of an a-stable
random variable, presented in the following theorem (for proof, see [64]).

Theorem 2.5 (Lévy Measure of a—Stable Random Variable) If X is a stable random variable, that is
there exists sequences {c,,n € N}, {d,,n € N}, ¢, > 0 such that a linear combination of independent

copies X1+ ... + X, 4 cn X + dy, then
1. Whena =2, X ~ N(u, A).

2. Whena #2, A=0, and

sdr  if x>0
v(dx) = . ] , where c1,co > 0 and ¢1 + co > 0. (2.12)
mﬁdw ifr <0

It can be shown that if X is stable, then ¢, = ona with o a constant in the interval (0,2]. The
parameter « is called the stability index and is meaningful in characterizing the tails of the distribution.
An important feature of stable laws is the existence of polynomial or "fat" tails when @ # 2. Thus, for
a < 2, the distribution has an infinite variance, and furthermore has an undefined mean or expected value
for a < 1. As shown above, the case when a = 2 is the normal distribution, and thus the tails decay
exponentially and do not exhibit "fatness."



An important structural property of Lévy densities is monotonicity, and we will require that the Lévy
processes we work with have completely monotone jumps. Recall that a function f : (0,00) — R
is said to be completely monotone if it possesses derivatives f(™(z) and (—1)"f™(z) > 0 for all
n =0,1,2... and x > 0. That is, derivatives of the same order have the same sign and are alternating in
sign. A completely monotone Lévy density structurally relates arrival rates of large jump sizes to smaller
jump sizes. Intuitively, we should expect that large jumps occur less frequently than small jumps. A
well known necessary and sufficient condition for a function to be completely monotone is given in the
following theorem.

Theorem 2.6 (Bernstein’s Theorem) A function f is completely monotone if and only if it is the Laplace
transform of some non-negative measure v,

flx) = /000 e “v(da). (2.13)

Put another way, complete monotonicity asserts that for differentiable densities the derivative is negative
for positive jumps and positive for negative jumps. This leads us to the following definition, taken from
[29].

Definition 2.7 (Completely Monotone Jumps) The process X has completely monotone jumps if its
Lévy measure is absolutely continuous with density f decreasing exponentially when © — +00 and such
that f(x) and f(—x) are completely monotone.

The concept of completely monotone jumps is perhaps best grasped by a visual inspection of the density
of a Lévy measure. The figures below, from [31], plot the Lévy measures of two processes known
as the Variance Gamma (left) and the Linear Gamma (right) processes with varying parameters (the
specifics of these processes are not important). The size of the jump, z, corresponds to the horizontal
axis and the number of jumps corresponds to the vertical axis. One sees that for negative jumps, we
have monotonically increasing functions with a positive derivative and relatively more small jumps than
large, and for positive jumps, monotonically decreasing functions with a negative derivative, but also
with relatively more small jumps than large.

e U
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Finally, since many, if not most, Lévy processes do not have explicitly known probability densities, we
are in general confined to work with the characteristic function, so it is helpful to recall the relationship
between these functions.

Theorem 2.8 (Probability Density and Characteristic Function Bijection) Let ¢ x (u) be the characteristic
function of some real-valued random variable. Then, there exists a bijection between the probability
distribution and the characteristic function. That is, two distinct probability distributions never share the

same characteristic function. Since the characteristic function is the Fourier transform, denoted F, of

the law f,

ox(u) = Flfw = [ e, .14
the probability density function can be recovered by a Fourier inversion of the characteristic function,
— 1 > —tux
f@) = 7 ox @) = 5 [ ox(ud @.15)

where ¢x (u) denotes the characteristic function of x evaluated at .

2.2 Ito Calculus for Lévy Processes

Theorem 2.9 (The 1-dimensional It6 Formula) Suppose X, is a Lévy-type stochastic integral of the
form

dX; = pedt + o dWy + / g(t, 2)N(dt,dz), (2.16)
R

where

N(dt,dz) —v(dz)dt if|z|< R

N(dt, dz) ilel> R,

for some R € [0, 0] and Wy is a standard Wiener process.

Let f € C*(R?) and define Y; = f(t, X;). ThenY; is again a Lévy-type stochastic integral and

N(dt,dz) = { (2.17)

2
d}/t = 68{@’ Xt)dt + gi(t, Xt)[,utdt + Utth] + ;U?gl:};(t, Xt)dt
0
[ X (02) - 10 Xe) 62 S X )
lz|<R x

+/R{f(t, X,- +g(t,2)) — f(t, X,-)}N(dt,dz), (2.18)

and

IfR=0, then N = N everywhere

IfR = oo, then N = N everywhere.
N is the so-called Poisson random measure, or a family of Poisson distributed random variables, with N
being the centered or "compensated" Poisson random measure in which the additional term is the quantity
which must be subtracted from N in order to obtain a martingale. A more comprehensive treatment of
these random measures can be found in [19].



2.3 Stochastic Exponential Lévy Processes

Consider a one-dimensional process L = {L;,t > 0}, which is a solution of the stochastic differential
equation (SDE)
dLy = Ly-d Xy, (2.19)

where X is a Lévy-type stochastic integral of the form

dXt = ,utdt + O'tth + /

|z|<1

g(t, 2)N(dt,dz) + / w(t, 2)N(dt,dz), (2.20)
2|1

where a tilde denotes a compensated Poisson integral (importantly a martingale), which has the decomposition

/ g(t, 2)N(dt,dz) = / g(t,z)N(dt,dz) — / g(t, z)v(dz)dt. (2.21)
A A A
The solution of (2.19) is the "stochastic exponential" or the "Doléans-Dade exponential,"
_ _ SN | _AX,
Ly = Ex(t) = exp{ Xy — o7} (14+ AXs)e . (2.22)
2 0<s<t

For financial applications, we will require that (to avoid negative prices)
inf{AX;,t >0} > -1 as. (2.23)
An alternative form for (2.22) is
Ex(t) = 30, (2.24)
where

1
dSx(t) = (e — iaf)dt + o dWy + / log(1 4+ w(t, z))N(dt,dz)
|21>1

+ / log(1 + g(t,2))N(dt,dz) + / (log(1+ g(t,2)) — g(t,2))v(dz)dt. (2.25)
lz|<1 |z|<1

2.3.1 Relation Between Ordinary and Stochastic Exponentials

An important relation exists between stochastic and ordinary exponentials. Lévy models and their
associated triplets are usually presented in the literature assuming ordinary exponential form, i.e. .S; =
Soelt for the stock price. However, as we have just seen the popular geometric type stochastic differential
of equation (2.19) leads to a stochastic exponential type solution. Fortunately, there is a clear relation
between these formulations, given by the following theorem from [19]:

Theorem 2.10 If L is a Lévy process with characteristic triplet (p, 0%, v), then Er(t) = 1) where L,
is a Lévy process with characteristic triplet (u1, a%, v1), given by

vp=vof™ f(z)=log(l+ux),



p = p— 50%+ [pllog(l + z) — z]v(dz),
o1 =o. (2.26)

Conversely, there exists a Lévy process Lo with characteristic triplet (uz, a%, v9) such that there exists
ekt = &, (t), where

vp=vogt, gl@)=e" -1,

po = p+ 302+ [pl(e® — 1) — z]v(dz),

o9 = 0. (2.27)

2.4 Exponential Lévy Stock Price Processes, EMMs, and Esscher Transforms

As was just briefly noted, exponential Lévy process can be suitable models for stock prices, given by
S, = Spelt, (2.28)

where
Ly = X, + it. (2.29)

That is, the Lévy process X is taken as the martingale component of the log-stock price process.
However, the Lévy process itself will have an associated drift, and therefore we must make an appropriate
adjustment. Rather than evaluating each Lévy process individually and compensating for the drift, the
martingale condition can be satisfied by compensating for

E[el], (2.30)

which is simply the characteristic function evaluated at —:z. Accordingly, we add a mean-correction term
to the drift of the exponential price process, given by

w = —log[¢(—1)], (2.31)

where ¢(+) is the characteristic function of the Lévy process. The final form of the price process is thus
given by
Sy = Spelttet, (2.32)

The mean-correcting measure can be employed such that the discounted price Sy =e S, isa martingale.
Following [66], the procedure is:

1) Estimate the parameters of the process by some suitable method

2) Change the drift term of the old process, call it some fi;4, in such a way that

Hnew = Hold + 7 — IOg[(b(_Z)] (2.33)



Exchanging finer for pgq in the Lévy process implies the discounted price S’t =e S, isa martingale.
Still, it is important to note that this equivalent martingale measure is not unique in most cases involving
Lévy processes. We must therefore have a criterion to reduce the class of possible measures QQ to an
appropriate subset and then obtain a unique equivalent measure QQ,. Consider the Radon-Nikodym

dQu,
2= Nalt) 234

The measure Q,, is called the Esscher transform of P by the martingale ,,, given by

derivative

N (t) = exp(—uX; + tp(u)). (2.35)

Significant results related to the Exponentially Tempered Stable process will be given in the next section.
The important take-away here is the intuitive notion that the Esscher transform is such that the measure
Q. minimizes the relative entropy (or "Kullback-Leibler distance") H (Q|P) between the measures Q
and P. The relative entropy H (Q|P) is given by

H(Q|P) = E® [log (2%)] =EF [‘Zg log <‘$>} , (2.36)

and thus the measure Q,, is such that

H(Q,|P) = min{E@ [log <‘§§)] } = min{EP [flg log (fgﬂ } (2.37)

A full treatment of this concept and a proof of the minimization of the relative entropy by Q,, can be
found in [16].

3 The Exponentially Tempered Stable (ETS) Processes

The Lévy process used throughout the paper is the Exponentially Tempered Stable (hereafter ETS)
process. The ETS process ([36] and [10]) is in fact just the CGMY process popularized in [12] with
a generalization of one parameter based on the sign of the random variable (equivalently, the CGMY
process is a special case of the ETS process). In fact, most, if not all, of the results presented below
are easily understood if one is familiar first with the CGMY process, and [12] is the main reference for
the mathematics presented herein. Later, in for instance [39], another special case known as Bilateral
Gamma was studied. The tempered stable process has found many uses outside the field of finance, such
as dynamical systems and fluid dynamics ([68], [69]). It is a popular model of turbulence in the physical
sciences, where it is known more commonly as Truncated Lévy Flight ([50]). In a rather interesting
application, the process has been shown, in for instance [72] and [73], to explain foraging behavior, and
in [70] it was shown that great white sharks abandon a Brownian motion hunting pattern in favor of a
Lévy flight as nearby prey becomes scarce. This has led to what is known as the Lévy Flight Foraging
Hypothesis, which states that, as in [73], "since Lévy flights optimize random searches, biological
organisms must have therefore evolved to exploit Lévy flights." But alas, we must now continue with
the banalities of the financial applications.



3.1 Parameters, Properties, and Characteristic Function

The ETS process is a pure jump Lévy process with parameters Ay, A_, 5+, S— and «, with Lévy triplet
(u, 02, v) given by:

_ b+f‘x|§1l‘l/(dl’) ifa<l1
P S avldn) — Aal(—a)(857) + —A_al(~a)(8°7) ifa e (1,2),
=0,
(@) =2 T2yt )‘—(WX:U<O- (3.0)

where A, A_, B4+, f— > 0 and o < 2. The condition o < 2 ensures that the Lévy density will integrate
22 around 0. As the name suggests, the ETS process and a stable process with stability index a € (0, 2)
have similar Lévy measures, but importantly the measure of the ETS process includes the additional
exponential "tempering" factors. Because of this exponential tempering within the Lévy measure, the
distribution has finite moments of all orders (see Definition 2.4), and the large jumps do not require
truncation. The parameters of the ETS process play an important role in capturing various desirable
aspects in a stochastic process with applications to financial problems. The parameters A and A_
can be seen as a measure of the overall level of activity of the process and, all else equal (and only
considering movements greater than some arbitrarily chosen small value), the aggregate activity level
may be calibrated through movements in A4 and A_. The parameters 3, and (_, respectively, control
the rate of exponential decay on the right and left of the Lévy density, allowing for the construction of
a skewed distribution. For example, if S_ < [ the exponential tempering factor for negative values
of the random variable is inducing slower decay than the positive factor and thus we have a left-skewed
distribution, which is consistent with the risk-neutral distribution typically implied from option prices.
In the special case where 5_ = [, the Lévy measure is symmetric, although non-normal distributions
can still be generated through the parameters Ay and A_, which provide control over the kurtosis of
the random variable. Finally, the parameter o describes the behavior of the Lévy density near zero,
and is useful in characterizing the fine structure of the stochastic process. Note that the case when
a = 0 is the (generalized) Variance Gamma process of [45]. The relationship of the moments of the
ETS random variable to the parameters are perhaps most easily grasped by considering the closed form
expressions, and these are therefore given below in Theorem 3.1. It is clear from these equations that the
variance, skewness, and kurtosis of the ETS random variable are all positively related to Ay, A_ and «
and negatively related to S_ and 5 (more specifically, negative skewness is inversely related to S_ and
positive skewness is inversely related to 84, and, all else equal, overall skewness is positively related to
B— — B+). Additionally, the main properties of the ETS process, that is, its monotonicity (recall Theorem
(2.6)), level of activity, and its variation may be defined by the value of parameter «, and this follows in
Theorem 3.2 (for proof see [12]).

Theorem 3.1 (Higher Moments of the ETS Process) The variance, skewness, and kurtosis of the ETS
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process, considering t = 1, are given by (for Proof see Appendix A):

Variance = \4I'(2 — «) <21_a> + AT (2—-0a) <21_a>, (3.2)
By B
AT (3 —a) </ﬁ1°‘> A_T'(3—a) <B31°'>
Skewness = Variance>/? - Variance®/? ' (3-3)
. MT(4—a) <54+1a> A T(4—a) <541a>
Kurtosis =3+ Variance? + Variance? ’ (34)

Theorem 3.2 (Process Properties and Ranges for the Parameter o) The ETS process
e has a completely monotone Lévy density for a > —1;

e is a process of infinite activity for o > 0; and

e is a process of infinite variation for o > 1 3.5)

Importantly, even though the ETS process as presented to this point is a pure jump process with no
Brownian motion component, the infinite activity property afforded by setting o > 0 can still capture
small market fluctuations in the absence of a Brownian motion. Still, an orthogonal diffusion component
can be added to improve the fine structure of the stock price process, resulting in a so-called "jump-diffusion”
process. Although the probability density function of the ETS process is not explicitly known, the
characteristic function of the ETS density admits a rather simple form, and is given in the following
definition. For ease of notation, the vector v = {A4, A, B, B+, a} will be used to denote the ETS
parameters for the rest of the paper.

Theorem 3.3 (ETS Characteristic Function) The characteristic function of the ETS random variable
is given by (for Proof see Appendix B):

drTs(u,t; V) = exp(tA D(—a)[(By — iu)® — 5] + tA_T(—a)[(B- + iu)* — 5°]). (3.6)

The relatively straightforward characteristic function of the ETS process lends the pricing problem well
to solutions via methods which directly relate the characteristic function to the option price such as
transform methods which will be elaborated in a later section.

3.1.1 Statistical (Real-World) and Risk Neutral Price Processes

The ETS model for the stock price process takes an ETS random variable Xgrg as the martingale
component of the log stock price, making the statistical price process

Sy = So - exp|(p + w)t + Xprs(t; V)], (3.7)
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where 1 is the mean rate of return on the stock and w is the mean-correction term detailed in section 2.4,
given here by

w = —log(¢prs(—1)) = —Ap - T(=a)[(By = 1) = BF] = A - T(=a)[(B- + )" = 52].  (3.8)

We can also consider the following "extended" or jump-diffusion model which adds an orthogonal
diffusion component,
Xprs, (t; V', n) = Xprs(t; V) +nWi, (3.9)

with W, a standard Wiener process independent of X g7g. The price process of this extended model is
Sy = So - expl(p +w — n?/2)t + Xprs, (t; V1)) (3.10)

Integral to subsequent sections, the characteristic function for the logarithm of the stock price under this
extended model is given by (for Proof see Appendix C):

Fin(sy) (u, 1) = EF[e™0)]
= exp(iu{In(So) + (n+w —1°/2)t}) - pprs(u; V) - exp(—n*u?/2).  (3.11)

As an important corollary to the statistical price process above, the risk-neutral price process, which will
later be calibrated from option market data, replaces the asset-specific drift p with the risk-free rate r,
yielding 3

Sy = So-expl(r + & — 7 /2)t + Xprs, (t; V1), (3.12)

with tildes denoting the parameters are now set under the risk-neutral measure. In this context, the
characteristic function of log returns becomes, by the same logic that led to equation (3.11),

éln(St)(uy t) _ EQ [eiuln(St)]
exp(iu{In(Sp) + (r + @ — 7/2)t}) - pprs(u; V) - exp(—7*u?/2), (3.13)
with

&= —log(¢prs(—i)) = —Np -T(~&)[(Fr — ) — A = X -T(=@)[(A- + D% - A% (3.14)

3.1.2 Minimal Entropy Martingale Measure of the ETS Process

The Esscher transform concept introduced in section 2.4 can be specialized to the ETS process, affording
an important result to a later part of this study. First, consider the following proposition from [35]:

Proposition 3.4 Suppose X, 0 <t < T is the ETS process with parameters (V) under P and the ETS
process with parameters (7) under Q. Then P and Q are equivalent for all t > 0 if and only if « = ¢,

Ay =Apand A\_ = A_.
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This proposition is further built upon in [34] as follows. Consider again the characteristic exponent of
the ETS process,

Yers(u; V) = AT (=) (B4 —iu)® = B + AT (=) [(B= + iu)* — B2)]. (3.15)

Along with Proposition 3.4, we have the following:

Theorem 3.5 (EMM Conditions for the ETS Model) Assume S;, 0 < t < T is the real:world ETS
stock price process with parameters (V' , 1) under the measure P, and with parameters (¥, (r — q))
under the measure Q. Then Q is an EMM of P if and only if o« = &, Ay = )\~+, A=\, and

r—q-— wETS(_Z.; )Urv A*a B~7> B:rv 04) = u—= wETS(_Z.; 7) (316)
Choosing some 0, —3_ < 0 < B4, we have

r—q—prs(—i; Ay, Ay B + 0,84 — 0,0) = p— Yers(—i; V). (3.17)

However, this martingale measure is not yet unique, in the sense that it does not guarantee the minimal
entropy. Accordingly, we recall the Esscher transform concept and consider a "model preserving minimal
entropy martingale measure," so-called in [34], given by

H(QuIP) = H(Qy g, |P) = min{H(QIP)|Q € EMM(P)}, (3.18)

where Q € EMM(P) denotes that the EMM condition of equation (3.17) is satisfied, and the relative
entropy of the ETS process can be expressed explicitly by (for Proof see Appendix D):

H(QIP) = tA;T(—a)((a — DA — aB B + 69)
FOAT(—a)((a— DA —af_f """+ 5%). (3.19)

4 Stochastic Optimal Control of Exponential Lévy Processes

4.1 The Dynamic Programming Principle

The dynamic programming principle was greatly advanced by Richard Bellman and his groundbreaking
work in the 1950s (see [4] and [5]), although the idea had already been foreshadowed in works such as
[74] and [75]. Bellman’s breakthrough involved casting the value of a decision problem as an expectation
of the initial value of some state variables (defined shortly) and the value of the choices to be made
subsequently throughout the horizon of the decision problem. In a discrete time setting, a dynamic
optimization problem is broken up into a sequence of discrete subproblems which are recursively optimized
via backward induction, that is beginning with the last subsequence. The essential aspect of these
problems, known as Bellman equations, is the necessary condition brought about by the Principle of
Optimality, which roughly states,
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Given an optimal sequence of decisions or choices, each subsequence must also be optimal.

Considering the "decision problem" to be that of a one-dimensional portfolio strategy (i.e. a single
risky asset and without consumption), the investor’s goal could be thought of as maximizing terminal or
end-of-period wealth,

E°[U(XF)|X; = a, 4.1)

where U (+) denotes some applicable investor utility function and [P denotes the problem is set under the
objective or real-world probability measure. The variable of which it is necessary to know the current
value, or current state, is conveniently referred to as the state variable, here denoted x. The variables
chosen at any given point in time are known as the control variables, and here our control variable is 7,
the weight of the portfolio to be invested in the risky asset. Assuming the state process or variable z is
driven by a stochastic process, equation (4.1) is known as a stochastic optimal control problem. We now
move on to solving this equation via dynamic programming, importantly in continuous time (that is, by
splitting the problem into an infinite number of subsequences), leading to a partial differential equation
(PDE) known as the Hamilton-Jacobi-Bellman (HJB) equation. The control problem is then equivalent
to finding the solution to the HIB equation.

4.2 Derivation of Hamilton-Jacobi-Bellman (HJB) Equation

A statement of the problem and a general HIB for Lévy processes will be derived before moving on to
specializing the equation to an exponential Lévy process with a CRRA investor utility function.
Consider as above the control problem to maximize

Ef,[U(X7)], (4.2)

where the notation
Etz[] = E[|X; = z].

We consider also the dynamics

dX[ = p(t, X[, m)dt + o(t, X[, m)dW; + / g(t, X7—, 2, )Ny(dt,dz), Xo=xz>0, 4.3)
R
with u(t, z, ) and o(t, z, ) functions possibly depending on ¢, =, and 7, and g(t, X[, z, w) a function
possibly depending on ¢, x, 7, and also the jump size z. The value function is defined by
J(t,x,7) = By [U(XF)]. (44)

The optimal value function is defined by

V(t,z) = sup{J(t,z,7)}. (4.5)
mell

Now assume two strategies
Strategy 1. Use the optimal control law 7
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Strategy 2. Use the control law o
with

s,y) = {ﬂ(s,y), s € [t,t+h] (4.6)

7(s,y), s€(t+hT].

Expected utility for strategy 1. This is trivially J (¢, x,7) = V (¢, x) since 7« was defined as the optimal
control law.

Expected utility for strategy 2. As presented in [7], a stylized interpretation of this strategy is that after
falling asleep at time ¢, you wake up and realize that the state process has moved to point x. You deal
as best you can with these circumstances by maximizing your utility over the remaining time, given that
you now are starting at time ¢ + h in the state x. So, in the time interval (¢ + h, T'], since by definition
we will use the optimal control law in this time period, we have

J(t,x, ) = EF[V(t+h, XT,)]. (4.7)
Now we’ll compare the two strategies, and since by definition strategy 1 is optimal, we have
V(t,z) > By [V(t+h, X[ (4.8)
From It&’s formula in Theorem 2.9, we have

t+h v t+h 1%
V(t+h, X[ ,) =V(t ) —I—/ {E(S,X;r) + A"V (s, XT)}ds + / %(S,X;r)ades
t t

t+h ~
-I-/t /R{V(S,Xs_ +9(s,X_,z,m) = V(s,X)}N(ds,dz)

(s, X ) }v(d2)ds,
“4.9)

t+h 1%
+ / /{V(37X;r + g(S,X;r,,Z,W)) - V(37X;r*) - 9(37X§;7z77r)%
t R

with 5 52
T T . 1 2 s _
A —,u(t,XS,ﬂ')&C—l—QU (t,XS,Tr)@x2. (4.10)

Applying the expectation operator, the dIW, and N (ds,dz) terms will drop out (as martingales by
definition), and when we plug the result into equation (4.8) we obtain

t+h
Vita) > BV (a) + [ {50 (5. XE) + ATV (5, XT) s
t

t+h v
[ V6T gl XT m) = Vs, XT) = (s, XT ) G (5, X )i (d2)as
t R
4.11)

15



—

t+h
B[ | (G XD + ATV (s X)) s

+ /{V(S,X;r +9(s, X, z,m) = V(s,X-) — g(s,X;r,z,ﬂ)g‘x/(s,X;r)}ys(dz)ds ] <o0.
R

(4.12)

Now divide by h, move h within the expectation, and let & tend to zero (so, this is where we incorporate
the infinite subproblem, or continuous time assumption). By the fundamental theorem of integral calculus
we obtain

P ATV ()t [ (Vb bg(tn, 2 m) =V (6