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Abstract

The changes that the Affordable Care Act introduced to the US health insurance

market have entirely altered the traditional ratemaking process. Precisely, the cre-

ation of statewide community rating schemes and a guaranteed issue has facilitated

insurance coverage to the high-risk population, leading to massive changes in risk

pool compositions. The implementation of Risk Adjustment has neutralized some

of the consequences of limiting premium variation in the market. However, setting

appropriate rate levels has remained cumbersome due to the uncertainty about the

statewide risk pool. Many insurers, who could not quantify the health risk associ-

ated with the statewide yearly enrollment, had to face unexpectedly high payments

on risk equalization. Natsis (2019) stated that in this environment, the use of tradi-

tional univariate techniques to project statewide health care costs could be potentially

misleading. This thesis proposes a Bayesian approach to reflect important sources of

uncertainty over statewide actuarial estimates. The aggregate loss is modeled with a

novel collective risk model based on a Generalized Beta Prime (GBP) distribution,

accounting for long tail risks and changes in risk pool compositions. The GBP is

presented with a mean-dispersion parametrization, which allows the introduction of

a hierarchical prior specification over the state-specific means. This parameter struc-

ture, responsible of quantifying uncertainty and sharing information among states,

is a cornerstone of the adopted collective risk model. Using the Commercial Health

Care data extract published by the Society of Actuaries (2019), the model is applied

on the Surgical and Transplant service category. The resulting heavy-tailed posteri-

ors of the nationwide service means illustrate the high variation of inpatient medical

costs. Moreover, the posteriors of the statewide aggregate claims remain highly right-

skewed, reflecting the risk of facing sicker populations and high-cost treatments at

individual claim level.
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Resumo

As alterações que o Affordable Care Act introduziu tiveram um impacto significa-

tivo no processo de tarifação de seguros de saúde nos Estados Unidos. De forma mais

precisa, a criação de um sistema de tarifação regulado, e com cobertura garantida,

facilitou o acesso de seguro à população de risco. A inclusão destes indiv́ıduos origi-

nou grandes alterações na composição dos grupos de risco de cada estado. A imple-

mentação da metodologia do Risk Adjustment neutralizou algumas das consequências

de restringir as variações de prémios no mercado. No entanto, a estimativa dos ńıveis

de prémios permaneceu complicada devido à incerteza dos riscos coletivos. Muitas

seguradoras, que não foram capazes de quantificar corretamente o risco de saúde as-

sociado à carteira anual do estado, depararam-se inesperadamente com pagamentos

muito altos do Risk Adjustment. De facto, Natsis (2019) afirmou que a utilização

de técnicas univariadas para projectar os custos médicos neste novo panorama pode

produzir resultados enganadores. Nesta tese propomos uma abordagem bayesiana

ao problema que pretende incorporar as diversas formas de incerteza presentes em

estimativas actuariais ao ńıvel estadual. Implementamos um modelo de risco ino-

vador, baseado na distribuição beta-linha generalizada (BLG), distribuição esta que

é capaz de acomodar caudas pesadas e heterogeneidade na composição dos grupos de

risco. Apresentamos uma parametrização da distribuição BLG baseada na média e na

dispersão, o que permite introduzir uma estrutura paramétrica hierárquica no custo

médio. Esta estrutura de parâmetros é a base do modelo para quantificar a incerteza e

partilhar informações entre diferentes estados. Utilizando um subconjunto dos dados

publicados pela Society of Actuaries em 2019, denominados Commercial Health Care

Data, implementamos o nosso modelo no contexto dos custos associados à categoria

Surgical and Transplant. Mostramos que a variabilidade nos custos médicos hospita-

lares de doentes internados conduz a distribuições das médias nacionais a posteriori

com caudas mais pesadas. Adicionalmente, as distribuições a posteriori dos sinistros

agregados apresentam um enviezamento à direita muito pronunciado, reflectindo a in-

clusão no mercado de indiv́ıduos pouco saudáveis e com custos de tratamentos muito

altos.
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Chapter 1

Introduction

Health insurance markets are one of the most regulated in the US insurance industry

and they are of central interest in public policy. While governments must guarantee

accessibility and affordability of health services, insurers must deal with financial risks

carried by increasing unpredictability of health conditions. In general, a grand part

of the losses is incurred by a small proportion of insureds who represent the highest

health risk, e.g., chronic patients. Furthermore, the costs associated with this group

have great variation among insurers and populations.

Over the past decades, governments have created community rating schemes to

generate cross subsidies between the low-risk and high-risk individuals. Necessarily,

these schemes have been supported by risk equalization programs to avoid market in-

stability (Neuhaus, 1995); some examples are the risk structure compensation (RSC)

in Germany, Risk Equalization Fund (REF) in the Netherlands, and the Risk Equal-

isation Trust Fund (RETF) in Australia. In the US, the Affordable Care Act (ACA)

has imposed a modified community rating scheme and a guaranteed issue in the small

group and individual market segments since 2014. These rules imply that insurers

can only use a predefined set of rating factors for pricing, and they can no longer

deny coverage. In order to mitigate the financial impact of high-risk enrollees moving

between insurers, the federal government created Risk Adjustment.

Traditionally, actuaries would focus on the enrollee population and individual

risk profiles for pricing. However, under the ACA, insurance rates must reflect the

statewide population health status, given that the risk associated to health conditions

is spread to the market pool and equalized among insurers through Risk Adjustment.

In this context, sicker statewide populations may represent a higher utilization of

health care resources, driving insurance rates up. Since its implementation, Risk

Adjustment has been increasingly important in the insurers’ revenues. Two examples

are the closures of Northwell Health CareConnect plans in New York (Livingston,

2017) and HealthyCT in Connecticut (Zorn, 2016), both with significant payments

made to the market pool.
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Generally, one can represent the statewide health care cost with two principal

stochastic components, the frequency of health care utilization and the cost per med-

ical service. Natsis (2019) in collaboration with the Society of Actuaries provided

an extensive univariate analysis for the small group and individual market segments

from the year 2009 to 2015. The small group segment, related to group health in-

surance, has shown a relatively stable frequency and average cost along the years.

However, individual markets were massively altered by the ACA changes introduced

in 2014. These changes allowed a large part of the previously uninsured high-risk pop-

ulation access the health insurance system, leading to unequal changes in statewide

risk compositions. This new mix of risks not only increased the demand on health

care resources but also shifted it to particular medical services.

Furthermore, the costs associated with specific inpatient admissions or treatments

based on new specialty drugs have increased long tail risks for insurers, e.g., admis-

sions due to hemophillia cost 0.15M USD on average (Chen, 2016) and the drug

Zolgensma costs 2.125M USD per patient per year (Rosenberg, 2019), among others.

In this context, the assessment of statewide pools can be a difficult task, primarily

because of the different sources of uncertainty involved in the loss generating process.

In fact, Natsis (2019) stated that, in highly uncertain markets, the use of univariate

techniques to project health care costs can be inaccurate and potentially misleading.

In this thesis, we propose a full Bayesian analysis of statewide collective risks in

ACA small group and individual markets. We consider previous collective risk models

presented by Migon and Moura (2005), Migon and Penna (2006) and Amin and Salem

(2015). However, in our approach, we propose a novel distributional representation

of the conditional aggregate claims, in order to capture the long tail risks, on the one

hand, and the yearly changes on the statewide pool, on the other. From the Bayesian

standpoint, we assume a hierarchical Gamma prior on a rate parameter associated

to the statewide pool. Moreover, we derive the unconditional 3-parameters distri-

bution of the individual claims known as Generalized Beta Prime (GBP). Indeed,

this marginalization allows us to compress an original two-level hierarchical model

into a single-level model and then reparametrize the unconditional target distribu-

tion as a function of its mean and dispersion parameters, similarly to the structure

of a Generalized Linear Model (Ohlsson and Johansson, 2010). The latter is of par-

ticular interest given that we rebuild a hierarchical structure over the state-specific

mean parameters, introducing shrinkage effects among risk pools and recovering a full

probabilistic representation of nationwide costs per service.

Using the Commercial Health Care data extract published by the Society of Ac-

tuaries (2019), we apply our model on the Surgical and Transplant medical service
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breakout, for the small group and individual market segments. We show that the

increasing uncertainty in the individual market segment in 2015 is fully reflected on

the posterior distributions of the nationwide cost per service, resulting in wider cred-

ible intervals compared with the small group segment. However, the uncertainty on

per-member-per-month (PMPM) claim cost posterior predictive distributions varies

significantly among statewide markets in the two segments. It is noteworthy that this

uncertainty is generated from unobservable quantities that are fully specified in the

hierarchical parameter structure.

This thesis is organized as follows. Chapter 2 presents a literature review about the

Bayesian approach in Actuarial Science and the existing work on Bayesian collective

risk assessment in health insurance. Chapter 3 unfolds the Bayesian framework, hier-

archical modeling, and sampling methods. Chapter 4 reviews aggregate loss models

and the development of the novel GBP model. Chapter 5 is devoted to the ACA Risk

Adjustment and the application of the model previously developed. Lastly, Chapter

6 contains the main conclusions and other final thoughts.
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Chapter 2

Literature review

Bayesian methodologies have been implemented in insurance since at least the be-

ginning of the past century. Particularly, in the context of credibility theory, it was

Whitney (1918) who introduced, with the use of inverse probabilities, the general

credibility formula that is widely known today. In his paper, Whitney pursued the

problem of finding the posterior distribution of the real hazard in a workers’ com-

pensation insurance contract, i.e., the probability of death, given the collective and

individual experiences. In his words

The problem of experience rating arises out of the necessity, from the

standpoint of equity to the individual risk, of striking a balance between

class-experience on the one hand and risk experience on the other.

His motivation relied on how to improve individual estimates by using all the

information available; therefore, incorporating the observations from other insurance

contracts that belong to the same class. Under a Bayesian approach, he assumed

that the number of deaths in a single contract follows a Binomial distribution, where

the probability of occurrence follows itself a Normal distribution. A priori, this

parameter, which represented the contract-specific probability of death, was centered

at the class-specific mean. He showed that the resulting individual estimates could

be written as weighted averages between the observed contract-specific and group

proportions.

At the time, Whitney was not able to provide full posterior distributions. However,

he showed how posteriors would look like if the number of deaths was assumed to

follow a Normal distribution, a case where the posterior and the prior are conjugate

distributions. Besides the practical difficulties for numerical integration, this paper

settled the foundation of Bayesian hierarchical modeling in the context of credibility

theory, illustrating how we can borrow information from similar risks through prior

specification.
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A few decades later, Bailey (1950) consolidated the interpretation and notation

of posterior distributions as such in the context of credibility, referring to Laplace’s

Generalization of Bayes’ rule. He extended the Binomial-Normal model proposed by

Whitney to a Binomial-Beta model, and additionally studied the Poisson-Gamma

model. He also introduced linear estimates obtained with a least squares regression

and explored the results for conjugate priors. This field, known as Linear Bayes, was

formally formulated two decades later by Bühlmann and Straub (1970), with succes-

sive development; see, for example Hachemeister (1975), Venter (1985), De Vylder

(1984), Neuhaus (1984), Goldstein and Wooff (2007), among others.

Following Bailey’s work, Mayerson (1964) reinforced the philosophical interpreta-

tion of the Bayesian paradigm as an updating mechanism of beliefs, e.g., considering

the manual rate a priori knowledge. In the Linear Bayes field, he restated previous

results of conjugate distributions, named as exact credibility. A decade later, Jewell

(1974) generalized these results to the exponential family of distributions.

Lindley and Smith (1972) presented a Bayesian hierarchical linear model within a

modern framework. They proposed the current definition of hyperparameters and hy-

perpriors focusing on parameter dependencies. They showed in which circumstances

Bayes estimates can perform better than ordinary least squares in terms of mean

squared error. Additionally, they compared the resulting partial-pooling effect with

a ridge regression.

Jewell (1975) brings this set-up to credibility theory with his paper “The Use of

Collateral Data in Credibility Theory: A Hierarchical Model”. He proved that the

Bühlmann and Straub (1970) model is a special case of hierarchical modeling (two-

level model with “diffuse” priors). Moreover, he asserted that hierarchical models

allow individual risks’ estimates to borrow collateral information from others that

belong to the same cohort; hence, generating partial-pooling at observational level

while collapsing manual rate information at the second level, following also Taylor

(1974). Another significant point, in Jewell’s words, was the following

Thus, in a hierarchical model, we hope to use nationwide statistics, to-

gether with all the data from our portfolio, not only to predict next year’s

fair premium for individual risks, but also to draw inferences about what

kind of a portfolio we have.

It is noteworthy that the work presented in the seventies and eighties goes in line

with a shift of the Bayesian philosophical standpoint as an updating mechanism of

beliefs towards a broad modeling architecture viewed from an hypothetico-deductive

perspective; see, e.g., Gelman and Shalizi (2013). For instance, Lindley and Smith
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(1972) made a comparison of hierarchical models with ridge regression, which relates

prior distributions, or hyperpriors, with regularizing parameters. Furthermore, Jewell

(1975) expressed that prior information is actually not needed for defining manual

rates but a well-specified model configuration that utilizes all the collateral data

available.

Panjer and Willmot (1983) made a point about Bayesian uncertainty models in

collective risk theory, particularly in modeling claim frequency. Meyers and Schenker

(1983) expressed their standpoint about the sources of uncertainty in large insured

groups. Interestingly, they stated

The traditional models used in collective risk theory, such as the general-

ized Poisson distribution, do not allow for uncertainty in estimating the

expected loss. This may be acceptable for the small insured, since the vari-

ance of the losses due to the random nature of the loss process is large

compared to the variance due to the misestimation of the expected loss.

As the insured increases in size, however, the variance due to the mises-

timation of the expected loss will dominate.

Since the eighties, Bayesian hierarchical modeling has been viewed not only as

a framework to cross-inform individual estimates but also reflect different sources

of uncertainties on the representation of observable quantities; therefore, capturing

complex features in the data that traditional models were not able to handle. In

parallel, with the development of advanced sampling algorithms, especially in the

nineties with Markov Chain Monte Carlo (MCMC), full Bayesian analysis became

plausible for high-dimensional model structures. Some of these sampling algorithms

can be found in Geman and Geman (1984), Gelfand and Smith (1990), Gelman et al.

(1992) and Tierney (1994), among others.

Klugman (1991) presented a comprehensive overview of hierarchical modeling.

He reviewed some of the shortfalls of the linear approximation in experience rating,

encouraging actuaries to apply a full Bayesian approach. In addition, he presented

model assessment techniques such as predictive checks. Gelman et al. (2013) presented

a modern Bayesian workflow, consolidating a formal framework to carry on a data

analysis process.

Precisely, Gelman et al. (2015) introduced Stan: a probabilistic language to specify

full Bayesian models. In order to draw samples from the posterior distribution, Stan

utilizes the No-U-Turn-Sampler (NUTS), a variation of Hamiltonian Monte Carlo

(HMC). For the past years, this algorithm has been widely used in several disciplines,

especially to sample from the posterior in multi-dimensional models; an introduction
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can be found in McElreath (2020) and Betancourt (2017). In the actuarial field, Stan

has been used to implement statistical models only by a few authors; see, for example,

Gao et al. (2018), and Gesmann and Morris (2020).

In the context of health insurance, Migon and Moura (2005), Migon and Penna

(2006) and Amin and Salem (2015) presented different variations of Bayesian hierar-

chical collective risk models. Their final goal was to obtain full posterior distributions

of the aggregate losses in a health care plan, segmenting by age band and time pe-

riod. Particularly, a common aspect is that individual claim amounts are modeled as

conditionally independent and identical Gamma distributions, while the dependence

is introduced through a hierarchical Gamma prior on a single rate parameter. In the

context of ACA markets, we find this model structure inadequate to capture yearly

changes in risk composition and increasing long tail risks. On the other hand, the

partial pooling is not fully interpretable given that it is performed over the rate and

shape parameters of the assumed Gamma distribution.

In this thesis, motivated by the aforementioned points, we assign a single hierar-

chical parameter to the yearly statewide population and, sequentially, we marginalize

out such hyperparameter in the individual claim distribution. This procedure leads

to a 3-parameter distribution known as Generalized Beta Prime or Pearson type VI;

see e.g., Venter (1983) and Kupper (1962). This marginalization allows us to, first,

hold the variation introduced by the hierarchical parameter and, second, to propose

a new parametrization based on the mean and a dispersion parameter, similar to the

structure of a Generalized Linear Model (Ohlsson and Johansson, 2010).

Over the past decades, several authors have studied Beta regression models with

a mean parametrization; see, e.g., Ferrari and Cribari-Neto (2004) and Grün et al.

(2011). However, to our knowledge, this set-up has not yet been explored for the

Generalized Beta Prime. Indeed, we show that our parametrization not only improves

the chain trajectories of the HMC-NUTS sampler but also lays the ground for an

interpretable hierarchical structure to cross-inform individual-specific means, make

inference on group mean costs, and tackle exposure imbalance in the data.

Lastly, similarly to Sarabia et al. (2016), we show that the sum of dependent but

identically Generalized Beta Prime distributed claim amounts, with the dependence

following a specific pattern, is also Generalized Beta Prime distributed. Moreover,

we implement this distribution in a collective risk model that we use to process

the Commercial Health Care data (Society of Actuaries, 2019). We obtain relevant

information from the resulting posteriors and, ultimately, we present a framework

that can be extensively used for risk analysis at the present time.
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Chapter 3

Bayesian inference

In parametric statistics, we build probabilistic models to describe the behavior of

observable quantities, generated by a stochastic phenomenon occurring in the world,

and make inference about unobservable quantities of interest (i.e., model parameters).

Normally, we assume a distributional assumption for the observables, while parameter

inference and model predictions differ according to the approach to statistics. Two

important schools are the frequentist, which connects probability to the frequency

of events in large samples, and the Bayesian, whose foundation lays on the use of

probability to quantify uncertainty, whether on observable or unobservable unknowns

(McElreath, 2020).

Under the frequentist approach, we rely on experimental design and sampling

distributions to make inference, and point estimation methods (e.g., maximum like-

lihood) to perform model predictions. On the other hand, the Bayesian paradigm is

based on the application of Bayes’ theorem to infer about model parameters, con-

sidered as unknown random quantities. Moreover, model predictions are represented

with a full probability distribution that reflects parameter uncertainty and is condi-

tional on the observed data; this topic will be discussed in the following section.

In this thesis, we approach the problem of estimating health care costs in ACA

markets within a Bayesian framework. In Chapter 4, we argue that the Bayesian

approach is particularly suited for this problem because of the highly uncertain in-

surance environment, missing or partial information and hierarchically structured

data. Interestingly, one can achieve a complex but meaningful model structure by

using a hierarchical prior specification (Lindley, 1975); this topic will be covered in

Section 3.2. Furthermore, the fit of these models would have not been possible with-

out the exponential gain on computational power in the past years, alongside the

development of advanced sampling algorithms. We conclude this chapter with a brief

introduction to these methods.
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3.1 The Bayesian framework

Considering a parameter vector θ and observable data y = (y1, ..., yn), one can write

the posterior distribution of θ using Laplace generalization of Bayes’ theorem

π(θ|y) =
L(θ|y)π(θ)

L(y)
, (3.1)

where L(θ|y) is a likelihood function of parameters, π(θ) is the prior distribution of

θ and L(y) is the marginal likelihood or probability of the data y. Moreover, since

the latter is a normalizing constant, one can write the posterior distribution up to a

constant of proportionality as

π(θ|y) ∝ L(θ|y)× π(θ). (3.2)

Generally, the form of L(θ|y) depends on a probabilistic assumption made for the

observable quantities y. On the other hand, the prior π(θ) represents our uncertainty

about θ before having observed the data. In practice, there usually are no single

choices for L(θ|y) and π(θ), hence the importance of assessing their adequacy along

the model-building process (Gelman et al., 2013).

The selection of the prior has been the main criticism of the Bayesian approach

for several decades (Efron, 1986). In this thesis, we merely use priors to construct a

meaningful parameter structure that we use to learn from the data, make inference

on unknown quantities of interest (e.g., nationwide means) and reflect parameter

uncertainty on the stochastic representation of a new observation, as introduced next.

Suppose that we are interested in predicting a new observation ỹ, that is condi-

tionally independent of y given θ. Assume that we obtained the posterior distribution

π(θ|y), then we can write the posterior predictive of ỹ as

f(ỹ|y) =

∫
f(ỹ|θ)π(θ|y) dθ, (3.3)

where f(ỹ|θ) is the conditional mass (density) function of a new observation. The

resulting probability distribution can be used not only to provide model predictions

(point estimates), but also to communicate the uncertainty over these, a critical source

of information for decision-making (Berger et al., 2006).

In practice, there exist several actuarial problems that are governed by parameter

uncertainty (Meyers and Schenker, 1983). In fact, in ACA markets, the changes of

enrolment population and the development of new medical treatments significantly

9



increases uncertainty in the estimation process. Therefore, the implementation of

traditional models and consequent statistical inference can be potentially misleading.

As explained in the following section, a hierarchical prior specification can capture

the missing random components, hence affecting the resulting posterior (3.2). This

uncertainty is passed through the model structure, and is ultimately reflected on

model predictions, which are represented by a full probability distribution (3.3).

3.2 Hierarchical models

Hierarchical models have gained great importance in recent years due to their abil-

ity to represent complex data structures. These models have shown a significant

improvement over traditional statistical models in terms of predictive accuracy (Gel-

man, 2006). Generally, one can build hierarchical models by specifying prior distribu-

tions that are conditional on new parameters, or hyperparameters, which have their

own prior distributions, or hyperpriors. Then, one can proceed with the application

of Bayes’ theorem as usual and recover the posterior distribution of all parameters

involved.

This section starts with a simple single-level hierarchical model and continues

with a two-level hierarchical model, both presented in the context of an actuarial

application. To conclude, we introduce the borrowing strength property and the link

with credibility theory.

3.2.1 Single-level hierarchical model

We consider next the actuarial problem of estimating the expected claim cost of a

specific insurance coverage in different areas of a country. Suppose that individual

claim amounts are not observed and we only have summary statistics of the data.

This scenario is typical in insurance given the regulation for data protection. In fact,

the application of this thesis, presented in Chapter 5, is made on statewide aggregate

data and individual claims are not provided.

Let ȳ = (ȳ1, ..., ȳJ) be a vector of conditionally independent observations that

represent the average claim cost for area j = 1, ..., J . We can propose the following

simple model

µj ∼ N(a, b),

ȳj|µj ∼ N(µj, σ
2
j ), j = 1, ..., J,

10



where σ2
j = σ2/nj, being σ2 a known variance parameter and nj the total observed

number of claims in area j, and a, b fixed hyperparameters for the prior π(µj).

Figure 3.1 shows a directed acyclic graph (DAG) of the single-level hierarchical

model presented here. DAGs are graphical representations that illustrate the relation-

ships between the quantities involved in a statistical model. They play an essential

role in hierarchical models due to the high number of parameters usually considered.

Notice that one can visualize in Figure 3.1 two levels of model parameters, however

the second level is composed by fixed quantities a, b, σ, nj.

The posterior of the parameter vector µ = (µ1, ..., µJ) can be written, up to a

constant of proportionality, as

π(µ|y) ∝ L(µ|y)× π(µ), (3.4)

where L(µ|y) is the likelihood function and π(µ) the joint prior. Given the indepen-

dence between parameters, the latter can be denoted as

π(µ) =
J∏
j=1

π(µj). (3.5)

Now consider a new observation ỹj for area j that is conditionally independent of

y given µ. We can denote the posterior predictive of ỹj as

f(ỹj|y) =

∫
f(ỹj|µ)π(µ|y) dµ, (3.6)

where f(ỹj|µ) is the Normal density conditional on the parameter vector and π(µ|y)

yj

µj σj

ba σ nj

Figure 3.1: Single-level hierarchical model DAG. The nodes represent quantities of inter-
est. Square symbols represent known quantities and circles represent stochastic quantities.
Single-arrows describe functional relationship, while double-arrows denote stochastic de-
pendence. Double contour lines indicate observable quantities.
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is the posterior given the observed data y.

Expression (3.6) reflects our uncertainty on model parameters, contained in the

posterior π(µ|y), over the density of a new observation ỹj. In this case, f(ỹj|y) is only

affected by the observations from area j, given the a priori independence between

group-specific means (3.5). Generally, point estimates obtained under a single-level

model are known as unpooled estimates.

3.2.2 Two-level hierarchical model

Suppose now that we relax the assumption of fixed hyperparameters in the priors

π(µj) of the previous example. Instead, we consider that individual means µj are

assumed to follow Normal priors centered at a common hyperparameter ω with known

variance σ2
µ, for j = 1, ..., J . Then, the model can be specified as follows

ω ∼ N(c, d),

µj|ω ∼ N(ω, σ2
µ),

ȳj|µj ∼ N(µj, σ
2
y),

where the vector µ = (µ1, ..., µJ) is now conditional on the hyperparameter ω assumed

to follow a Normal with fixed hyperparameters c, d. Figure 3.2 illustrates the DAG

corresponding to this two-level hierarchical model.

The resulting posterior, up to a constant of proportionality, is

π(µ, ω|y) ∝ L(µ, ω|y)× π(µ, ω), (3.7)

where µ = (µ1, ..., µJ) is a parameter vector of the individual means, L(µ, ω|y) the

likelihood function and π(µ, ω) the joint prior.

In order to visualize the parameter structure, one can write the joint prior as a

chain of dependencies (Kruschke, 2014)

π(µ, ω) = π(µ|ω)π(ω), (3.8)

where π(µ|ω) is the prior distribution of the first-level parameter vector µ conditional

on the second-level hyperparameter ω, whose hyperprior is denoted as π(ω).

Now consider a new observation ỹj for area j that is conditionally independent of
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yj

µj σ2
j

σ2 njσµω

dc

Figure 3.2: Two-level hierarchical model DAG. The nodes represent quantities of inter-
est. Square symbols represent known quantities and circles represent stochastic quantities.
Single-arrows describe functional relationship, while double-arrows denote stochastic de-
pendence. Double contour lines indicate observable quantities.

y given µ and ω. Under this model, we can denote the posterior predictive for ỹj as

f(ỹj|y) =

∫ ∫
f(ỹj|µ, ω)π(µ, ω|y) dωdµ, (3.9)

where f(ỹj|µ, ω) is the Normal density conditional on the parameter vector and

π(µ, ω|y) is the joint posterior given the observed data y.

The probability density function (3.9) reflects our uncertainty about model pa-

rameters over a new observation; therefore, passing the uncertainty from the overall

group mean ω and the group-specific mean µj. In this case, f(ỹj|y) is affected by

the observations from every area j = 1, ..., J , given the a priori dependence among

group-specific means introduced by ω (3.8). This information sharing across groups,

known as the borrowing strength property, is presented in the following section.

3.2.3 Borrowing strength property

Gelman et al. (2007) implemented the two-level hierarchical model presented in the

previous section, except that they assumed an improper prior distribution for ω, that

is a prior proportional to 1 (Gelman et al., 2013). They showed that the posterior

means of µj in this case, conditional on the variance parameters σ2
y and σ2

µ, can be

written as
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µ̂j =
(nj/σ

2
y)ȳj + (1/σ2

µ)ω̂

nj/σ2
y + 1/σ2

µ

, (3.10)

where

ω̂ =

∑J
j=1 ȳj/(σ

2
y/nj + σ2

µ)∑J
j=1 1/(σ2

y/nj + σ2
µ)
. (3.11)

In the context of credibility theory, Jewell (1975) presented 3.10 in the following

form

µ̂j =
nj

nj + σ2
y/σ

2
µ

ȳj +

(
1− nj

nj + σ2
y/σ

2
µ

)
ω̂, (3.12)

that is

µ̂j = Z ȳj + (1− Z) ω̂, (3.13)

where Z represents the credibility factor and ω̂ is the manual rate obtained from all

the data available. As observed in these expressions, posterior means are weighted

averages between group-specific averages and the resulting overall mean from all the

groups. This shrinkage effect towards the overall mean ω̂ is known as partial-pooling

or borrowing strength property.

Particularly, one can see in Expression 3.12 that when the number of observations

for group j increases, the credibility to the data ȳj increases as well. Moreover, a

higher variance among means reduces the factor σ2
y/σ

2
µ, resulting in an increase of the

credibility to the group-specific data as well. In contrast, a high variance σ2
y reduces

the credibility factor Z, consequently assigning more weight to the overall mean. The

exact amount of shrinkage will ultimately depend on how the hierarchical model is

parametrized, priors on variance parameters (σ2
y and σ2

µ), the number of observations

in each group, and the actual variation in the data.

Gelman (2014) discusses the importance of using strong priors in high hierarchical

levels. The reason is founded on the fact that we rarely have very precise informa-

tion at observational level but often have it at a higher hierarchical level, which can

significantly impact the analysis. For instance, in insurance we might not have prior

information about the distribution of individual losses in a small book of business.

However, we might expect that the group-specific mean does not significantly differ

from the overall mean, given similar underwriting conditions. This variation across

sub-populations can be explicitly incorporated in a Bayesian hierarchical model.

In the previous section, we showed how a two-level hierarchical model reflects

parameter uncertainty of a higher-level parameter, ω, over model predictions (3.9).

Moreover, in this section we presented how this model structure allows to borrow

information from all the data available, resulting in group-specific means that are
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weighted averages (3.13). Hierarchical modeling is, therefore, a flexible technique to

combine several quantities in a meaningful structure (see e.g., Figure 5.11, page 42),

capture uncertainty and improve model predictions (Lindley, 1975). However, many

decades had to pass before the computational tools, necessary to implement them in

full generality, were developed. In fact, it was the advent of Markov Chain Monte

Carlo (MCMC) that eventually made this possible. These algorithms are introduced

in the following section.

3.3 Markov Chain Monte Carlo methods

One of the main challenges of the Bayesian approach is the computation of the

marginal likelihood, i.e., the denominator in Bayes’ rule (3.1). In general, this in-

tegral does not have a closed-form expression, so exact posterior inference is not

feasible. One solution to handle this problem is to draw samples from the posterior

distribution in order to get a simulation-based representation of this probability (Kr-

uschke, 2014). There are several methods that have been implemented to achieve this

goal. Particularly, we introduce in this section: Markov Chain Monte Carlo (MCMC)

methods, which includes Hamiltonian Monte Carlo (HMC) and the algorithm used by

Stan: No U-Turn Sampler (NUTS) (Gelman et al., 2015); an extensive introduction

to MCMC methods can be found in Robert and Casella (2013).

Markov Chain Monte Carlo (MCMC) is an algorithm that constructs a Markov

chain, and hence a sequence of correlated draws, to stochastically explore a particular

target distribution. In the long run, the frequencies of the drawn values converge to

the probabilities under the target distribution, i.e., the stationary distribution is the

distribution from which it is desired to obtain samples. In Bayesian inference, the

target is the joint posterior distribution and the state space of the Markov chain

corresponds to the parameter space of our statistical model.

Let {θt}t≥0 be a discrete-time Markov chain on a continuous state space Θ, where

θ represents an unknown parameter in a statistical model. The following equality

holds, as long as E(g(θ)|y) exists

lim
t→∞

1

t

t∑
i=1

g(θt) = E(g(θ)|y). (3.14)

Thus, expectations with respect to the posterior can be calculated by time averaging

the function of interest over realizations from a single chain trajectory. This facilitates

the calculation of posterior predictive distributions and other expectations over the
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parameter space (Smith and Roberts, 1993).

Metropolis et al. (1953) first implemented an MCMC method to approximate in-

tractable integrals in physics, which, a few decades later, was generalized by Hastings

(1970). Briefly, the Metropolis algorithm consists of two steps: first, a parameter

value is proposed using a candidate-generating density, which defines the rule of gen-

erating value proposals in every transition; and second, the action of transitioning to

the proposed value is evaluated according to an acceptance probability, constructed

to guarantee reversibility.

The principal challenge of Hastings (1970) is the definition of the candidate-

generating density. This definition has an impact on the rejection rate and ultimately

on the convergence rate to the stationary distribution. If the proposals are made too

close to the current position, the chain may take a long time to fully explore the

support of the target distribution. On the contrary, if proposals are made far away,

the rejection rate will be high and the chain will not move smoothly, given that at

each rejection the chain stays in the current position.

Hamiltonian Monte Carlo (HMC), an algorithm that was developed by Duane

et al. (1987), proposes a different approach of making proposals. HMC is based on

the construction of a bivariate distribution of the model parameter and an auxiliary

variable called momentum. From this distribution, we obtain a system of differential

equations (Hamiltonian equations) whose approximate solution is used to generate

candidate parameter values. One solution to this system is the leapfrog integrator,

which conserves the volume and guarantees ergodicity (Betancourt, 2017). Basically,

this integrator is used to make steps across level sets of the bivariate distribution for

a given exploration time (tuning parameter). Then, it returns a new momentum and

a candidate parameter value, which is evaluated according to an acceptance-rejection

step as in Hastings (1970).

Therefore, HMC consists on two steps: one deterministic, that depends on how

long the Hamiltonian trajectory is integrated, and one stochastic, following an accep-

tance probability. The novelty feature of HMC is that it performs the exploration by

learning about the shape of the target distribution. This is indeed very convenient

when the volume of the parameter space becomes considerably large, as in high-

dimensional hierarchical models, and the algorithm can make proposals in a more

efficient manner (Betancourt, 2017). However, one of the drawbacks of HMC is the

sophistication required for tuning the auxiliary parameters. If the integration time is

long, the exploration might return to the original place and the chain will not move

smoothly. In addition, if the step size of the leapfrog integrator is large, the approxi-

mation to the equations, and hence the exploration, will be inaccurate. On the other
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hand, when the step size is small the method becomes computationally expensive and

the convergence might be slow.

The No-U-Turn-Sampler (NUTS), recently developed by Hoffman and Gelman

(2014), brings a solution to the drawbacks of HMC. In fact, it proposes a dynamic way

of calibrating the auxiliary parameters, avoiding inefficient exploration of Hamiltonian

trajectories. NUTS can automatically adapt the number of leapfrog steps in each

transition so the chain can move as far as possible without returning to its original

position. This facilitates the exploration in posteriors that present complex curvatures

without the need of re-calibrating the auxiliary parameters. In this thesis, we use

this algorithm, which is implemented by Stan, to sample in our collective risk model.

Then, we mainly focus on the convergence and efficiency of the chains, e.g., with the

assessment of trace plots (Figure B.1 in Appendix B.2).

In previous sections, we explored the Bayesian approach and how hierarchical mod-

els represent parameter uncertainty over the posterior predictive distribution (3.9).

This distribution provides information about the plausibility of future outcomes given

a parameter structure and the observed data. Furthermore, in this section, we pre-

sented advanced sampling algorithms that made the fit of complex high-dimensional

models possible. Next, we provide a theoretical background on aggregate loss mod-

els, a widely explored field in Actuarial Science. Then, using the concepts presented

here and, motivated by the context of the ACA, we present our contributions to the

collective risk theory.

Chapter 4

Aggregate loss models

The study of aggregate loss models has been extensively developed in the literature;

e.g., Panjer (1980), Kaas et al. (2008), Klugman et al. (2012), Dickson (2016). Pre-

cisely, these models are centered on the aggregate loss random variable (i.e., the

total claim amount incurred by a group of policyholders within an exposure period).

This quantity is fundamental for the insurer to define risk management policies (e.g.,

reinsurance), estimate actuarial reserves or calculate capital requirements, among

others. The purpose of this chapter is to build an aggregate loss model associated

with statewide risk pools, and specifically, to certain medical claims where, even at
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state level, the total number might not be significant (e.g., inpatient admissions due

to Musculoskeletal conditions). The Bayesian framework provides a model-building

approach, through hierarchical prior identification, to capture important sources of

uncertainty in the different components of the aggregate loss model.

We start this chapter by presenting the collective risk model, that is, the aggre-

gate loss represented as the sum of N claim amounts where N is itself a random

variable (Klugman et al., 2012). Particularly, we first introduce the traditional com-

pound Poisson model (Embrechts et al., 2013). Migon and Moura (2005) developed

a hierarchical parameter structure in this model to capture extra variation and share

information across different risk groups in a health care plan. This chapter shows

how, by further developing this structure, we can derive the novel Generalized Beta

Prime model, which is indeed a generalization of other models already explored in

the literature.

4.1 Compound Poisson-Gamma

The collective risk model studies the aggregate loss random variable S = X1+...+XN

by separately modeling the number of claims N and the individual claim amount Xj,

for j = 1, ..., N . One of the advantages of assuming a separated model for the number

of claims (or frequencies) and the claim amounts is that we can make inferences about

quantities of interest in each of the components. Then, the uncertainty about these

quantities is ultimately reflected on the posterior predictive of the aggregate loss.

In this section, we first introduce the Bayesian approach with a simple Compound

Poisson model, when only the aggregate claims and number of claims are observed.

Consider s = (s1, ..., sm) conditionally independent observations of aggregate

claims and n = (n1, ..., nm) conditionally independent claim counts, where each pair

(si, ni) represents different outcomes from a risk pool. Then, one can express the

model as follows

Ni|λ ∼ Poisson(λ), (4.1)

Si|Ni = ni, α, β ∼ Gamma(niα, β), (4.2)

where i = 1, ...,m is the observation identifier, Si|N = n, α, β represents the condi-

tional aggregate claims, Ni|λ the number of claims, λ the expected number of claims,

α a shape parameter and β a rate parameter. Furthermore, the number of claims

is usually associated with risk exposure, e.g., the number of member months in the

pool. For now, we leave the exposure out of the analysis.
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The joint density of the conditional aggregate claims and claim counts can be

expressed as

f(si, ni|λ, α, β) =
βniαsniα−1i e−βsi

Γ(niα)

λnie−λ

ni!
. (4.3)

Thus, the likelihood function can be written as

L(λ, α, β|s, n) ∝
m∏
i=1

βniαsniα−1i e−βsi

Γ(niα)
λnie−λ. (4.4)

and the posterior

π(λ, α, β|s, n) ∝
m∏
i=1

βniαsniα−1i e−βsi

Γ(niα)
λnie−λπ(λ, α, β), (4.5)

where π(λ, α, β) represents the joint prior density.

With the implementation of a sampling algorithm on (4.5), one can easily re-

cover samples from the marginal posterior densities π(λ|s, n), π(α|s, n) and π(β|s, n).

Moreover, the aggregate claims posterior predictive for a new observation s̃, that is

conditionally independent of s and n given λ, α and β, is denoted as

f(s̃|s, n) =
∞∑
ñ=0

[∫ ∫ ∫
f(s̃|ñ, α, β)f(ñ|λ)π(λ, α, β|s, n) dλdαdβ

]
, (4.6)

where f(s̃|n, α, β) is the conditional Gamma density, f(ñ|λ) the probability mass

function of the claim counts model, which so far has been assumed to be Poisson

distributed, and π(λ, α, β|s, n) the posterior density of model parameters.

An MCMC sample with I iterations can be represented in a three-columns matrix,

where each column represents a parameter, and each row an iteration. In this case,

HI,3 =


λ(1) α(1) β(1)

λ(2) α(2) β(2)

...
...

...

λ(I) α(I) β(I)

 .

In order to obtain a sample from the aggregate claims posterior predictive, one

should draw from N ∼ Poisson(λ(i)) and successively S|N = n ∼ Gamma(nα(i), β(i))

for i = 1, ..., I.

The single-level hierarchical model presented here (as shown in Section 3.2.1)
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might lead in some contexts to a misrepresentation of the aggregate loss’ variation and

tail (Meyers and Schenker, 1983). Migon and Moura (2005) developed a hierarchical

prior specification for the conditional aggregate claims to fully reflect cost uncertainty

in a small health care plan. We present next their development and, for the purpose

of the section, we consider the number of claims as a known quantity.

4.2 Hierarchical prior specification

One characteristic of the Compound Poisson model presented in the previous section

is that all aggregate claims, for i = 1, ...,m, share the same value of the parameters α

and β. Using the concepts of hierarchical modeling, Migon and Moura (2005) relaxed

such assumption to capture extra variation and share information across risk classes.

Thus, assuming that βi and αi are drawn from Gamma hyperpriors with common

hyperparameters, one can express the model as follows

αi|κ, ζ ∼ Gamma(κ, ζ), (4.7)

βi|γ, θ ∼ Gamma(γ, θ), (4.8)

Si|ni, αi, βi ∼ Gamma(niαi, βi), (4.9)

where ni is the number of claims, αi is a shape parameter now Gamma distributed

with hyperparameters κ and ζ, and βi a rate parameter also Gamma distributed

with hyperparameters γ and θ. Notice that under this model structure Si’s are now

dependent. Implicitly, this model structure implies that the jth individual claim

amount for group i follows a Gamma distribution Xij|αi, βi ∼ Gamma(αi, βi), for

j = 1, ..., ni. Figure 4.1 shows the relationship among parameters for this hierarchical

structure. This model is a special case of the individual risk model, that is, when n is a

known quantity and the individual components are identically distributed (Klugman

et al., 2012).

The hierarchical structure presented here augments the single-level model shown

in the previous section to a two-level model. Although this parameter structure is

reasonable for a small group health care plan, it is not enough to capture important

sources of uncertainty introduced by the ACA in the US health insurance market

(e.g., changes in yearly enrolment). Moreover, the Gamma distributional assumption

for the individual claim amounts is not appropriate due to its light tail (Venter, 1983).

It is the purpose of the next section to propose a reasonable distribution for medical

insurance claims and a meaningful hierarchical structure that can capture parameter

uncertainty.
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θ

Figure 4.1: DAG Individual Risk Model with Gamma distributed individual components.
The nodes represent quantities of interest. Square symbols represent known quantities
and circles represent stochastic quantities. Single-arrows describe functional relationship,
while double-arrows denote stochastic dependence. Double contour lines indicate observable
quantities.

4.3 Derivation of the Generalized Beta Prime dis-

tribution

Over the past years, insurers participating in the US health insurance market have

been exposed to long tail risks, e.g., inpatient admissions due to hemophilia can

cost 0.15M USD per patient per year (Chen, 2016), specialty drugs such as Spin-

raza 0.375M USD and Zolgensma 2.125M USD (Rosenberg, 2019). Furthermore, the

inclusion of previously uninsured population provoked massive changes in risk pool

compositions (KFF, 2019). These dynamics have generated more uncertainty on ag-

gregate claims that cannot be fully captured by existing models in the literature, e.g.,

Migon and Moura (2005), Migon and Penna (2006) and Amin and Salem (2015).

We start the development of our model considering the aggregate claims as in

(4.9) and βi as in (4.8). Next, we marginalize out βi in the density of the aggregate

claims, and hence we compress a two-level hierarchical structure into a single-level

one. This procedure allows us to propose a mean parametrization over a distribution

that holds the variation introduced by the rate hyperparameter βi. Then, we can

construct a hierarchical prior specification over the new parameters, incorporating

parameter uncertainty and introducing partial pooling effects among the means as

we showed in Section 3.2.3.
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The resulting distribution, after marginalizing βi (see Appendix A.1), is a 3-

parameter distribution known as Generalized Beta Prime (GBP) (Dubey, 1970). Its

probability density function is expressed as

f(si|α∗, γ, θ) =
Γ(α∗ + γ)

Γ(α∗)Γ(γ)

1

θ

(si/θ)
α∗−1

(1 + si/θ)α
∗+γ

, (4.10)

where α∗ = niαi and γ > 0 are shape parameters, and θ > 0 is a scale parameter.

Special cases of the GBP are the Pareto distribution (Type II), when α∗ = 1, and

the Beta of the Second Kind, when θ = 1. The GBP introduces flexibility that can

accommodate the distribution for different medical services, an interesting feature for

the application of this thesis. Furthermore, (4.10) could be directly used to model

aggregate claims, however it is one of our goals to create a parametrization that is

suitable for the borrowing strength property. We present next this parametrization.

4.4 Mean-Dispersion parametrization of the Gen-

eralized Beta Prime

This section introduces a mean-dispersion parametrization of the GBP, which is a

cornerstone of the model developed in Chapter 5. In the literature, Ferrari and

Cribari-Neto (2004) and Grün et al. (2011) presented a mean-based parametrization

for the Beta distribution. However, to our knowledge, this has not yet been explored

for the GBP.

Let X be a random variable GBP distributed, X|α, γ, θ ∼ GBP (α, γ, θ), with an

expected value expressed as

E(X|α, γ, θ) =
θα

γ − 1
, γ > 1, (4.11)

and, variance

V (X|α, γ, θ) = E(X|α, γ, θ)2 γ + α− 1

α(γ − 2)
, γ > 2. (4.12)

Then, from (4.12) we can define, similarly to the structure of Generalized Linear

Models (Ohlsson and Johansson, 2010), a dispersion parameter as

φ =
γ + α− 1

α(γ − 2)
, φ > 0. (4.13)

It follows from (4.11) and (4.13), denoting the expected value as µ, that the original
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parameters can be written as

α =
γ − 1

φγ − 2φ− 1
, (4.14)

and

θ = µ(φγ − 2φ− 1). (4.15)

Under this parametrization, one can express X as follows

X|µ, γ, φ ∼ GBP (µ, γ, φ) , µ > 0, γ > 2, φ > 0, (4.16)

where µ is the individual claim amount mean, γ a shape parameter, and φ a dispersion

parameter. Notice that γ > 2 guarantees the existence of the mean and dispersion.

Next section presents the individual risk model for dependent GBP distributed

claim amounts. Once specified, we propose a hierarchical prior specification over the

parameters introduced here.

4.5 Individual Risk Model under dependence

The individual risk model is defined as S = X1 + ...+Xn, where the number of indi-

vidual components n is a known quantity, and in this case, each component represents

a claim amount. This model can be used to specify the conditional aggregate claims

as in (4.9).

The GBP random variable defined in Section 4.3 was obtained with a Compound

Gamma-Gamma. Since the mixing distribution is on the rate parameter, one can

apply the property of scale (rate) parameters (Klugman et al., 2012) to express the

GBP as a ratio of Gamma distributed random variables. Therefore, the aggregate

claims S|α∗, γ, θ ∼ GBP (α∗, γ, θ), whose density function is expressed as (4.10), can

be written as

S = θ
Gα∗

Gγ

. (4.17)

Given that α∗ = nα, one can write the numerator as a sum of n identical and

independent Gamma distributions with shape α

S = θ
G

(1)
α

Gγ

+ ...+ θ
G

(n)
α

Gγ

, (4.18)

where G
(j)
α |α ∼ Gamma(α, 1), for j = 1, ..., n, and Gγ|γ ∼ Gamma(γ, 1) are in-
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dependent random variables with mean equal to α and γ, respectively. Notice that

the individual claim amounts are now GBP distributed Xj|α, γ, θ ∼ GBP (α, γ, θ), for

j = 1, ..., n. The common random variable Gγ|γ in the denominator of each individual

component introduces dependence in the model.

Sarabia et al. (2016) presented the individual risk model for dependent Pareto

distributed individual components, and subsequently derived the distribution of the

sum. Since the Pareto is a special case of the GBP (when α = 1), the individual

risk model (4.17) is also a generalization of the Pareto case. As we argued in Section

4.3, the GBP assumption for the individual components can accommodate a broader

spectrum of insurance claim types.

The parametrization shown in Section 4.4 can be implemented in the individual

risk model presented here. In order to write the original parameters as a function

of the new parameters, following the data structure presented in Section 4.1, it is

required that, for each Si, there is a θi associated. Recalling (4.8), where the pulling

effect is introduced by both hyperparameters γ and θ, now this effect is performed only

by γ. However, with our parametrization we can introduce parameter uncertainty

through the group-specific means. Furthermore, a partial-pooling effect over the

means is created by an overall expected cost random variable, a quantity whose

posterior distribution collapses the information from all the groups. Then, we can

express the aggregate claims as follows

Si|ni, αi, γ, θi ∼ GBP (niαi, γ, θi),

where

niαi =
γ − 1

φiγ − 2φi − 1
,

and

θi = µi(φiγ − 2φi − 1).

Then, we build a hierarchical prior specification on mean parameters

µi|µ, σ2
µ ∼ N(µ, σ2

µ),

where µ and σµ are hyperparameters of the µi’s. Figure 4.2 illustrates the relationship

between parameters under this model structure. This model is a two-level hierarchical

model where individual claim amounts, Xij’s, are now GBP distributed. Additionally,

one could also create a hierarchical prior specification over the dispersion parameters.

Figure 4.3 shows samples from the marginals and joint bivariate posterior distri-

butions of the original parameters in the model developed in Chapter 5, which was
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Figure 4.2: DAG Individual Risk Model with dependent GBP distributed claim amounts.
The nodes represent quantities of interest. Square symbols represent known quantities
and circles represent stochastic quantities. Single-arrows describe functional relationship,
while double-arrows denote stochastic dependence. Double contour lines indicate observable
quantities.

inspired by the development presented here. On the other hand, Figure 4.4 illustrates

samples from the posterior distributions of the model parameters for the new param-

eters, µ, γ and φ. It is noteworthy that the latter parametrization avoids the negative

correlation observed in Figure 4.3. Lastly, the resulting sparse joint parameter space

facilitates the stochastic exploration of the sampling algorithm.

In this chapter, we studied aggregate loss models from a Bayesian standpoint. We

explored the traditional Compound Poisson model and showed the development that

was done by Migon and Moura (2005) on hierarchical prior specification, which was

interestingly performed in the context of a health care plan. Then, we further devel-

oped the conditional aggregate claims leading to a GBP individual risk model under

dependence, which better adapts to the ACA’s context. This model is a generaliza-

tion of models previously studied in Sarabia et al. (2016). Furthermore, we showed

how to build a meaningful hierarchical structure over mean parameters, supported by

a novel mean-dispersion parametrization of the GBP. In the next chapter, we apply

the concepts studied here for the assessment of collective risks under the ACA.
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Figure 4.3: Posterior samples of γ, α and θ for Injury and Poisoning admissions in the Small
Group segment, Arizona (AZ). This figure is a matrix, where the main diagonal represents
the samples from the marginals and the other elements are samples from the joint bivariate
between the parameter on the column and the row.

Figure 4.4: Posterior samples of γ, µ and φ for Injury and Poisoning admissions in the Small
Group segment, Arizona (AZ). This figure is a matrix, where the main diagonal represents
the samples from the marginals and the other elements are samples from the joint bivariate
between the parameter on the column and the row.
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Chapter 5

Collective risk assessment in ACA markets

In a health insurance contract, the insurer accepts the individual’s actuarial risk

related to health care utilization in exchange of a monthly premium. This risk is

associated to demographic factors such as gender and age, existing health conditions,

medical history and so on. Naturally, insurers would tend to use these factors to

obtain fair actuarial premiums, i.e., insurance rates driven by the individual’s ex-

pected health care cost. However, in practice, insurance regulations have restricted

the use of risk factors in order to guarantee affordability and universal access to health

insurance coverage. Thus, in these community rating schemes with unexisting or lim-

ited premium variation, governments implicitly impose cross subsidies from low-risk

inviduals towards the high-risk ones (Pupp, 1981).

In the US, the Affordable Care Act health care reform introduced major changes

to the health insurance market. Since 2014, insurers in individual and small group

markets are no longer allowed to reject customers (or impose extensive waiting periods

in small group insurance), and premiums must be now determined according to a

modified community rating scheme. The rating factors that can be used for pricing are

age, smoking status (both with limits), geographical area, and family size. These new

rules facilitated access to health insurance coverage for high risk individuals, especially

those with pre-existing medical conditions, e.g., one can observe a significant decrease

in the uninsured population by almost 10 million individuals in 2014 (KFF, 2019).

From the insurer’s perspective, covering pre-existing medical conditions imply

extra risk that is not charged individually. Generally, this would induce the insurer

to increase the premium level for all its policyholders, leading to adverse selection and

arbitrage opportunities in the market (Neuhaus, 1995). In order to avoid financial

instability generated by high-risk individuals, the federal government has created a

risk equalization program called Risk Adjustment (Kautter et al., 2014). Next, we

explore the main characteristics of such program.
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5.1 ACA Risk Adjustment

The ACA Risk Adjustment is a budget-neutral methodology used to normalize ex-

pected outcomes from different risk pools. It consists essentially of two steps: first,

a carrier calculates a risk score for the enrollee population using a concurrent model

proposed by the Health and Human Services (HHS) called HHS Hierarchical Condi-

tions Categories (HHS-HCC). Then, the relative score, which represents the actuarial

risk of the pool, is normalized with the market average actuarial risk. Given this

normalization method, there are payer and receiver positions in the market (budget-

neutral). Moreover, the risk that can be charged into premiums, using only age,

geography, family size and smoking status, is also normalized and subtracted from

the group risk score. Finally, the second step is to obtain absolute transfer amounts,

which is achieved by scaling the final risk scores with statewide average premiums.

A simplified version of the transfer formula for a health care plan i is denoted as

Ti =

(
PLRSi∑n

i=1 si × PLRSi
− ARFi∑n

i=1 si × ARFi

)
× P̄s, (5.1)

where Ti is the dollar amount that an insurer cedes/receives for plan i, PLRSi is the

Plan Liability Risk Score, si is the enrollment market share relative to the statewide

total enrollment, n the total number of insurers in the market pool, ARFi (allow-

able rating factor) is the score that can be charged, and P̄s is the statewide average

premium. In practice, the transfer formula considers other factors such as the ge-

ographical area, an induced demand factor and cost sharing, differences that Risk

Adjustment tends to neutralize; the full version of the transfer formula can be found

in Pope et al. (2014).

The subtraction in (5.1) represents the residual (relative) expected health care

cost that is shared by all the insurers in the market, i.e., the risk that is spread to

the statewide risk pool. This cost is associated to medical conditions that insurers

cannot charge individually. The second term, P̄s, the weighted average premium of the

statewide market, transforms the previously calculated relative scores into absolute

transfer values. Then, a negative Ti results in a transfer to other insurers in the state,

while a positive value is translated into a subsidy that the insurer receives from the

others. Since this formula is normalized by all the risk pools within the statewide

enrollment, transfer amounts sum to zero.

The normalizing PLRS in the denominator of (5.1) reflects the health status of

the statewide population participating in the market. This score defines payer and

receiver positions among insurers. For insurers on payer positions, an underestimation
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of this risk score accompanied by low overall premiums, may lead to unexpected high

payments to the market pool. The insurance unit Northwell Health CareConnect,

participant of the small group market in New York, paid 11M to the market pool in

2015 and 112M in 2016 (Livingston, 2017). This generated high financial losses to

the company, driving it to a shutdown.

For insurers participating in individual and small group markets, there are three

sources that can generate a significant financial impact on revenues. The first one

is related to the capacity of the insurer in identifying diagnoses on its own enrollee

population, that is, calculating a PLRS that reflects its own population risks. The

second source is the accuracy of the HHS-HCC model in risk scoring. There have

been several discussions on how to improve this model; see, e.g., Centers for Medicare

and Medicaid Services (2019). The third source, on which we focus in this thesis, is

the collective risk associated to the statewide enrollment.

The assessment of statewide collective risks can ultimately help to understand,

first, the behavior of the market pool PLRS and second, the statewide average pre-

mium, P̄s in (5.1). The market PLRS is affected by the enrollee population, which can

suffer significant changes from year to year, and the average premium is linked to cost

of medical services in the state. One should expect a great variation of PLRS among

different market pools, given the existing differences in enrolment (risk exposure), as

well as of average premiums, due to different cost structures in the states.

In the following section, we show how the Bayesian approach is particularly suited

for this problem because of its ability to explicitly capture different levels of variation,

in addition to handle some particularities of statewide data, e.g., missing or partial

information. Lastly, all the variability is reflected over per-member-per-month cost

estimates, which summarizes the health care cost allocation in each state. Moreover,

full posterior distributions can indeed provide information about the stability of the

statewide market and anticipate adverse outcomes in health care spending at state

level.

5.2 Commercial Health Care Data Extract 2009-

2015

The analysis presented in this chapter is made on the Commercial Health Care data

extract published by the Society of Actuaries (2019) in collaboration with the Health

Care Cost Institute. This data contains information related to health care cost and

utilization in US health insurance markets during the period 2009 to 2015.
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Table 5.1 shows 5 rows of a reduced version of the dataset. The column pool ID is

an identifier for a combination of market segment, state and gender. Unfortunately,

the factor age was not provided. The columns Membermonths, Admits and Cost

represent the exposure, number of inpatient admissions and aggregate claims, respec-

tively. In the following sections, these are denoted as (mtmsgj, ntmsgj, stmsgj) where t

is the year, m market segment, s state, g gender and j service subcategory 2.

Furthermore, the Commercial Health Care (CHC) data extract reaches a granular

level of medical services subcategories, in three different market segments, for twenty-

one states and seven consecutive years, generating a total of 111.380 rows. However,

in a few states with low exposure, especially in individual markets, no outcomes

were provided; see Natsis (2019). The adopted model in Section 5.2.2 is calibrated

for inpatient services at their last subcategory level, which contains more detailed

information about claim types.

Table 5.1: Sample of the Commercial Health Care dataset

Year Pool ID Service Subcat. 1 Subcat. 2 Member months Admits Cost

2009 1 Inpatient Surgical Circulatory 1.205.772 61 2.246.079
2009 1 Inpatient Surgical Digestive 1.205.772 200 2.936.328
2009 1 Inpatient Surgical Injury & Poisoning 1.205.772 121 2.617.554
2009 2 Inpatient Surgical Circulatory 2.933.580 471 17.289.373
2009 2 Inpatient Surgical Digestive 2.933.580 912 14.209.212

5.2.1 Exploratory data analysis

The CHC dataset is mainly divided in three market segments that operate in the

US health system: large group, small group and the individual segment. The first

two are advocated to employer-sponsored insurance, while the latter contains private

insurance offered to individuals or families. The ACA Risk Adjustment, presented in

the previous chapter, is implemented in individual and small group markets, working

independently in each of the states. Therefore, our analysis is centered in these two

segments.

The main variables of the dataset are the following:

• Year: 2009, 2010, 2011, 2012, 2013, 2014 and 2015

• Market segment: Large group, small group and individual

• Gender: Male, Female and All (unidentified gender)
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• State: Arizona, California, Colorado, Connecticut, Florida, Georgia, Illinois,

Indiana, Maryland, Michigan, Minnesota, Missouri, Nevada, New York, Ohio,

Oklahoma, Pennsylvania, Texas, Utah, Virginia, Wisconsin.

• Service category: Inpatient, Outpatient, Pharmaceutical and Professional

• Service subcategory 1: First level of classification depending on service category

• Service subcategory 2: Second level of classification depending on service sub-

category 1.

The number of medical services in subcategories one and two is extensive; a full

description can be found in Natsis (2019). An actuarial indicator to measure the

allocation of health care resources in a state is Allowed PMPM (denoted as P ), defined

as the gross claim cost per-member-per-month 1. Considering the aforementioned

factors, it can be written as

Ptmsgj =
Stmsgj
mtmsg

, (5.2)

where t,m, s, g, j are the year, market, state, gender and service subcategory 2, re-

spectively. The numerator Stmsgj =
∑Ntmsgj

i=1 Xitmsgj represents the aggregate claims,

with Xitmsgj the ith gross incurred claim amount and Ntmsgj the number of medical

events, and mtmsg the exposure measured by member-months. Thus, Ptmsgj repre-

sents the stochastic claim dollar amount per member per month spent on medical

service j by risk pool tmsg. It should be mentioned that group tmsg is exposed to

the utilization of any medical service category, i.e., the exposure of a given risk pool

is the same for all the services.

Furthermore, Allowed PMPM can be expressed as the product of frequency and

severity, which can be obtained by including the number of claims Ntmsgj in (5.2),

Ptmsgj =
Stmsgj
Ntmsgj

× Ntmsgj

mtmsg

, (5.3)

then it follows that

Ptmsgj = CPStmsgj × frtmsgj, (5.4)

where CPStmsgj is the average cost per claim and frtmsgj the frequency of claims for

risk pool tmsg on medical service j.

1In this thesis, claim and medical event (e.g., inpatient admission) are used interchangeably,
although, these terms might have different meanings in other contexts.
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Figure 5.1 shows the evolution of Pm from 2009 to 2015, that were obtained

from {s2009,m/m2009,m, ..., s2015,m/m2015,m}, thus collapsing the cost of every health

care service and risk pools. In the year 2014, as argued in Section 5.1, individual

markets suffered significant changes in benefits and risk compositions. These changes

provoked a massive increase of per-member-per-month costs, as observed in the figure.

Figure 5.2 expands this analysis to the first category level of medical services. The

trend in the individual market segment is explosive in every category during 2014 and

2015, with a slightly higher increase of inpatient services in 2014 compared with the

others. At this point, however, it is not possible to address questions about within-

service variation, which might be generated at a very low service level (e.g., increasing

number of hospitalizations due to circulatory conditions).

Generally, Inpatient, Outpatient, Pharmaceutical or Professional services are sig-

nificantly different from each other. This requires the modeling framework to be

calibrated for each category. The model proposed in this thesis is applied to the

Surgical and Transplant subcategory within inpatient services. Figure 5.3 shows the

breakout at service subcategory two. Insurance costs related to a hospital admission

due to a surgery or transplant are usually higher than other medical services. During

the in-hospital stay, several health care resources are used, e.g., operating rooms,

doctors’ fees, hospital expenses, among others. Given the wide range of medical con-

ditions and their severity, the total cost of a hospital admission may vary significantly

from case to case.

Figure 5.1: Evolution of Allowed PMPM (in USD) and member-months by market segment
for the period 2009 - 2015
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Figure 5.2: Evolution of Allowed PMPM (in USD) by service category for the period 2009
- 2015

Figure 5.4 illustrates the observed Allowed PMPM during the year 2015 in Inpa-

tient services, the first subcategory level. The individual segment shows a higher cost

allocation, especially for Medical and Surgical and Transplant services. This extra

amount is stable across the second-level of service subcategories, as it can be seen

in Figure 5.5. However, when looking at states separately, AllowedPMPM becomes

highly volatile. Figure 5.6 shows this indicator for Surgical and Transplant services

by states. Indiana (IN), Georgia (GA), Florida (FL), California (CA), Wisconsin

(WI), Texas (TX) and New York (NY) show a higher allocated dollar amount in the

individual segment compared with the small group. One reason of these differences is

Inpatient Services Surgical and Transplant

Rehab & Subacute Care

Maternity

Medical

Injury and poisoning

Digestive

Circulatory

Musculoskeletal

Neoplasm

Figure 5.3: Inpatient - Surgical and Transplant breakout. Service category (1st layer),
service subcategory 1 (2nd layer) and service subcategory 2 (3rd layer)
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the significant exposure imbalance present in the CHC dataset; see tables B.1 and B.2

in Appendix B.1. Another driver is essentially the inclusion of previously uninsured

population, which has followed different pace in each of the states. Moreover, the

Medicaid expansion has contributed to increase this variation (KFF, 2019).

Particularly, the increasing number of enrollees with pre-existing conditions re-

shaped the demand of health care services. Since the implementation of a modified

community rating, introduced in Section 5.1, the insurance cost incurred by this group

has been spread to the statewide pool. This has been supported by the Risk Adjust-

ment program, which has partially linked the performance of insurers to the stability

(a) Small Group (b) Individual

Figure 5.4: Allowed PMPM (in USD) for the first-level subcategory of Inpatient services
by market segment in 2015

(a) Small Group (b) Individual

Figure 5.5: Allowed PMPM (in USD) for the second-level subcategory of Surgical and
Transplant services by market segment in 2015
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Figure 5.6: Allowed PMPM (in USD) for Surgical and Transplant in the 21 states by market
segment in 2015

of the market as a whole. The shutdown of Northwell Health CareConnect plans

in New York, with 44 percent of its revenues drained in Risk Adjustment payments

(Livingston, 2017), and the closure of HealthyCT in Connecticut (Zorn, 2016) are

just examples of market instability.

Recalling (5.4), we explore next how the average cost per claim and frequencies

behaved in the period 2009-2015. Figure 5.7 shows the observed CPStmj, collapsing

gender and states information. Furthermore, Figure 5.8 illustrates CPStmsgj, thus

showing the outcomes of different risk pools Male, Female and All in a pre-selected

group of states: Arizona (AZ), Colorado (CO), Florida (FL) and Texas (TX). In this

graph, one can identify different levels of variation in the data: 1) among risk pools

(Male, Female and All) within the same year, market segment, state and service; 2)

across states within the same market segment and service; 3) along the years, within

the same market segment, service and state.
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Figure 5.7: Evolution of the observed cost per admission (CPS) (in USD) by Surgical and
Transplant service subcategory for the period 2009 - 2015

Figure 5.8: Cost per admission (CPS) (in USD) by Surgical and Transplant service subcat-
egory in Arizona (AZ), Colorado (CO), Florida (FL) and Texas (TX) for the period 2009 -
2015. Each circle represents a risk pool for Male, Female or All.
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The first point of variation, collectives within a statewide market in a year, helps to

identify the behavior of the unobservable individual claim costs. A higher uncertainty

among risk pools can be translated in a higher variation at individual claim level.

Moreover, the outcomes of the pools are related to the statewide risk composition

for that year, a feature that the adopted model aims to capture and a critical point

for Risk Adjustment analysis. The second point of variation is explicitly model with

a hierarchical parameter structure, as presented in Section 3.2.2. The last point of

variation, interpreted by the evolution of the costs along the years, is critical to make

out-of-sample analysis. This last point is not addressed in this thesis.

Similarly, Figure 5.9 and 5.10 shows the frequency of admissions per mille member-

months in the individual and small group market segments for t = 2009, ..., 2015,

frtmj and frtmsgj (in thousands) respectively. Frequency of admissions is expected

to be more volatile than CPS given the strong link with the health status of the

population. The massive change of risk composition in the individual market in 2014

is fully reflected in the increasing utilization of medical services. However, this change

was unstable across the states, as previously stated. For example, Texas, a state with

high exposure, presented a slightly decrease in 2015 on Injury and Poisoning in the

individual segment, compared with the increasing overall trend. Moreover, Florida

did not show a drop on Musculoskeletal. In contrast, in the small group segment,

the trends among states are similar. Generally, less representative states show more

unstable trends along the years.

Although Male, Female and All are not identifiable in Figure 5.10, one can observe

a high variation among these risk pools, which implies different patterns of utilization.

In circulatory services, this between-pools variation is higher than in other subcat-

egories for every pre-selected state. However, since the CHC data extract does not

provide information for other important factors such as the age, it is not possible to

identify useful risk patterns.

In this section we reviewed the principal changes in small group and individual

market segments during the period 2009 - 2015. Furthermore, we discussed different

sources of uncertainty and how significant changes may unequally impact statewide

markets. As showed in Figure 5.8 and 5.10, several levels of variations can be identified

before the information is collapsed on the indicator Allowed PMPM. A univariate

analysis of this indicator is useful to visualize trends on health care cost allocation,

as in Natsis (2019), however it does not provide a full perspective of the variation

in different components of the aggregate loss (e.g., frequency and severity). The

objective of this thesis is to quantify this variation and reflect it on statewide Allowed

PMPM posterior distributions.
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Figure 5.9: Evolution of the observed frequency per mille member-months by Surgical and
Transplant service subcategory for the period 2009 - 2015

Figure 5.10: Inpatient frequency per mille member-months by Surgical and Transplant
service subcategory in Arizona (AZ), Colorado (CO), Florida (FL) and Texas (TX) for the
period 2009 - 2015. Each circle represents a risk pool for Male, Female or All.
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5.2.2 Collective Risk Model: Compound Negative Binomial

- Generalized Beta Prime

Let Stsg be the aggregate claims for the risk pool identified with state s, gender g and

year t. Market segment m and service subcategory j are fixed in the model, i.e., same

framework is applied separately for each surgical and transplant service: Circulatory,

Digestive, Injury and poisoning, Musculoskeletal and Neoplasm, in the individual and

small group markets.

Therefore, the collective risk model can be expressed as

Stsg =

Ntsg∑
i=1

Xitsg, (5.5)

where tsg defines the risk pool, Xitsg is the ith gross claim amount per hospital

admission, and Ntsg the total number of admissions.

The model presented next is inspired by the development in Section 4.5. For

the claims counts, we no longer assume a Poisson distribution but rather a Negative

Binomial, similarly to Amin and Salem (2015). This is founded on the low number and

high variation of hospital admissions at the second subcategory level. Our novelty

approach is the development of the GBP claim amount distribution, presented in

Section 4.3, and the mean-dispersion parametrization that was explored in Section

4.4. The model is then specified as follows

Ntsg|δs, βtsg ∼ NB(δs, βtsg), (5.6)

Stsg|Ntsg = ntsg, α
∗
tsg, γts, θts ∼ GBP (α∗tsg, γts, θts), (5.7)

where δs and βtsg represent the shape and rate parameters of the Negative Binomial,

respectively. The other parameters α∗tsg = ntsgαs and γts are shape parameters, and

θts is the scale parameter of the GBP. As shown in Section 4.3 and 4.5, γts and θts

are the shape and rate parameters of the Gamma hyperprior assumed for the rate

parameter, and that was marginalized to obtain the GBP distribution. These common

hyperparameters, within each state and year, aim to capture the dependence between

all individual claims arising from the yearly statewide risk pool.

A convenient parametrization for the rate parameter in (5.6) (Ohlsson and Jo-

hansson, 2010) is expressed as follows

βtsg =
δs

mtsgζs
, ζs > 0, (5.8)
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where mtsg is the exposure based on member-months and ζs is the expected frequency

of admissions in state s. Under this parametrization, a hierarchical structure is built

over ζs,

ζs|ζ, σ2
ζ ∼ Normal(ζ, σ2

ζ ), (5.9)

where ζ represents the nationwide expected frequency in a given market and medical

service, and σ2
ζ is the variance among state-specific frequencies. This prior specifi-

cation introduces partial-pooling effects for statewide expected frequencies towards

the nationwide expectation, which improves the estimates where the information is

scarce (Gelman et al., 2007).

For the aggregate claims component Stsg, we apply the mean-dispersion parametriza-

tion of the GBP introduced in Section 4.5. Therefore,

αtsgntsg =
γts − 1

φsγts − 2φs − 1
, (5.10)

and

θts = µs(φsγts − 2φs − 1). (5.11)

As presented in Section 4.5, we build a hierarchical prior specification for state-

specific means

µs|µ, σ2
µ ∼ Normal(µ, σ2

µ), (5.12)

where µ represents the nationwide expected individual cost in a given market and

medical service, and σ2
µ is the variance among state-specific average costs. This

hierarchical structure introduces the borrowing strength property (explain in Section

3.2.3) among states. This information sharing is performed in each row of Figure 5.8.

Considering the CHC dataset and the observed values {mtsg, ntsg, stsg} for t =

2009, ..., 2015, the likelihood function is defined as

L(δs, βtsg, αtsg, γts, θts | mtsg, ntsg, stsg) =
Z∏
z=1

f(stsg[z]|α∗tsg, γts, θts)× (5.13)

× p(ntsg[z]|δs, βtsg,mtsg[z]), (5.14)

where z = 1, ..., Z is the observation identifier, βtsg, α
∗
tsg = αtsgntsg and θts are the

(transformed) original parameters, f(stsg[z]|α∗tsg, γts, θts) the conditional density of the
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aggregate claims

f(stsg[z]|α∗tsg, γts, θts) =
Γ(α∗tsg + γts)

Γ(α∗tsg)Γ(γts)

1

θts

(stsg[z]/θts)
α∗
tsg−1

(1 + stsg[z]/θts)
α∗
tsg+γts

, (5.15)

and p(ntsg[z]|δs, βtsg,mtsg[z]) the conditional mass probability function of the claim

counts

p(ntsg[z]|δs, βtsg,mtsg[z]) =
Γ(ntsg[z] + δs)

Γ(ntsg[z] + 1)Γ(δs)

(
βtsg

βtsg + 1

)δs ( 1

βtsg + 1

)ntsg[z]
, (5.16)

where mtsg[z] is part of βtsg through the transformation (5.8).

The log-likelihood function is then defined as

l(δs, βtsg, αtsg, γts, θts | mtsg, ntsg, stsg) = C +
Z∑
z=1

− log(B(α∗tsg, γts))− log(θts)+

+ (α∗tsg − 1)× log(stsg[z]/θts)− (α∗tsg + γts) log(1 + stsg[z]/θts) + log(Γ(ntsg[z] + δs))−

− log(Γ(δs)) + δs log

(
βtsg

βtsg + 1

)
+ ntsg[z] log

(
1

βtsg + 1

)
, (5.17)

where C is a constant and

B(α∗tsg, γts) =
Γ(α∗tsg)Γ(γts)

Γ(α∗tsg + γts)

is the Beta function. Appendix C shows, in Stan language, a generic version of

log-likelihood increments for a GBP model (see functions block).

Considering the functions of the transformed parameters (5.8), (5.10) and (5.11),

the joint prior density of model parameters for state s and year t is expressed as

π(δs, ζs, φs, µs, γts, µ, ζ, σµ, σζ) = π(δs, φs, γts, ζs, µs|ζ, σζ , µ, σµ)×
× π(ζ, σζ , µ, σµ), (5.18)

where π(δs, φs, γts, ζs, µs|ζ, σζ , µ, σµ) is a first-level prior conditional on the hyperpa-

rameters ζ, σζ , µ, σµ. Figure 5.11 illustrates the connections between observable quan-

tities, first-level and second-level parameters. The node in the bottom represents the

aggregate claims for risk pool tsg, which is generated by the frequency model on the

left-hand side and the claim amount model on the right-hand side. The underlying

exposure mtsg is treated as a known quantity. This variable could be also modeled as

in Migon and Penna (2006), however it is not in the scope of this thesis. The next

section completes the prior specification with the fixed hyperparameters.
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Figure 5.11: DAG Negative Binomial - Generalized Beta Prime Collective Risk Model with
hierarchical prior structure. The nodes represent quantities of interest. Square symbols rep-
resent known quantities and circles represent stochastic quantities. Single-arrows describe
functional relationship, while double-arrows denote stochastic dependence. Double contour
lines indicate observable quantities.

5.2.3 Prior distributions

Given the parameter structure presented in (5.18), one must specify the corresponding

hyperpriors. In this application, it is not our goal to inform model parameters with

external data, although this could be possible. Then, we use weakly informative

priors that do not have a significant impact on the posterior (Gelman et al., 2013).

For hyperpriors on variance parameters, we follow the proposals made by Gelman

et al. (2006).

Therefore, priors for the frequency model are defined as follows

δs ∼ Cauchy+(0, 1),

ζs|ζ, σζ ∼ Normal+(ζ, σζ),

ζ ∼ Normal+(F̄ r,
sFr
2

),

σζ ∼ Cauchy+(0, sFr),

where F̄ r and sFr are the observed overall frequency and standard deviation, weighted
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by exposure.

Priors for the claim amount model are

φs ∼ Normal+(1, 25), φs > 1,

γts ∼ Normal+(3, 100), γts > 3,

µ̃s ∼ Normal(0, 3),

µ ∼ Normal+( ¯CPS,
sCPS

2
),

σµ ∼ Cauchy+(0, sCPS),

where ¯CPS and sCPS are the observed overall average cost per claim and standard

deviation, weighted by number of claims. A non-centered parametrization is imple-

mented on the means, therefore µs = µ+ σµ ∗ µ̃s. In the Stan code, Appendix C, one

can find the prior specification in the block model.

Originally, the domain restrictions for the shape and dispersion parameters are

γts > 2 and φs > 0, respectively. However, due to stability purposes in the HMC-

NUTS sampling algorithm, we restrict these domains to γts > 3, φs > 1. As shown in

Section 4.5,

α∗ts =
γts − 1

φsγts − 2φs − 1
,

where α∗ts > 0, so it follows that

φs >
1

(γts − 2)
.

For the range of 2 < γts < 3 the sampling is unstable, due to the high values that the

dispersion takes. The restriction of γts > 3 does not significantly affect the inference

since we expect γts to be high.

It is worth mentioning that one could inform mean or variance hyperparameters,

employing information such as the number of insurers in the market or the percentage

of uninsured population, among others. For instance, an inclusion of a high proportion

of previously uninsured population to the system can be incorporated on P (γts), which

leads to higher uncertainty on the aggregate claims and heavier tail. On the other

hand, information about new expensive treatments that were not covered in past

years, and that are offered nationwide, can be considered on P (µ) and P (ζ).
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5.2.4 Posterior predictive sampling

The algorithm used to draw samples from the posterior distribution is the NUTS,

introduced in Section 3.3. Once MCMC samples are obtained for all model param-

eters, we can draw values from the posterior predictive distributions. First, based

on the exposure mtsg, δs and ζs, one can obtain βtsg using the transformation (5.8).

Then draw from the number of admissions posterior predictive Ntsg|δs, βtsg, and se-

quentially, from the aggregate loss Stsg|Ntsg = ntsg, αts, γts, θts (see Figure 5.11), using

the transformations (5.10) and (5.11), and the ratio of Gamma distributions (4.17).

Algorithm 1 summarizes this procedure, which we use to draw samples for every

state. In the Stan code, Appendix C, one can find every parameter transformation in

Transformed parameters and Algorithm 1 in Generated Quantities. The results are

presented in the following section.

Algorithm 1 Drawing samples from the posterior predictive of the aggregate claims

1: input = I, mtsg, ~βtsg, ~δs, ~θts, ~γts, ~αts
2: for i = 1 to I do
3: nrep[i] = Generate Ntsg ∼ NB(δ

(i)
s , β

(i)
tsg)

4: if (nrep[i]==0) then
5: srep[i]=0
6: else
7: g1rng = Generate Gαts ∼ Gamma(α

(i)
ts nrep[i], 1)

8: g2rng = Generate Gγts ∼ Gamma(γ
(i)
ts , 1)

9: srep[i] = θ
(i)
ts

g1rng
g2rng

10: end if
11: end for

5.3 Numerical results

The model presented in the previous sections was fitted for Circulatory, Digestive,

Injury and poisoning, Musculoskeletal and Neoplasm, for individual and small group

markets. The NUTS sampling algorithm had no issues in the exploration of the

posterior distribution for all of the services (e.g., no divergent transitions during the

exploration). Chain trajectories have mixed for all model parameters; e.g., Figure

B.1 in Appendix B.2 illustrates trace plots of hierarchical parameters for Injury and

poisoning in the small group market segment. Figure 5.12 shows aggregate claims

replications (i.e., draws from the posterior predictive distribution) in form of credible

intervals for Neoplasm. Appendix B.2, Section B.2.1 shows the credible intervals for
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the other services in the small group segment, while Section B.2.2 does it for the

individual segment.

In Figure 5.12, one can observe that the model positively replicates the loss process

in almost every state (i.e., observed values are not considerably far from the median),

except for the year 2015 where the model overestimates the aggregate claims (e.g.,

AZ-Arizona). This location issue is mostly coming from the posterior predictive of

the number of claims (see Figure B.3 in Appendix B.2). Furthermore, more volatile

markets show wider credible intervals of the aggregate claims, e.g., in Figure 5.12,

California (CA), Nevada (NV) and New York (NY), or in Figure B.9 and B.11 in

Appendix B.2, the state of New York for 2015. The higher uncertainty has been passed

through the parameter structure shown in Figure 5.11, and it has been generated by:

the posterior predictive of the number of claims and unobservable quantities (e.g,

nationwide parameters). This uncertainty can produce instability in the market and

unexpected Risk Adjustment payments. As we mentioned in Section 5.1, Northwell

Health CareConnect paid 11M to the market pool in 2015 and 112M in 2016 in the

small group market of New York (Livingston, 2017).

Interestingly, we are able not only to pass the uncertainty from unobservable quan-

tities in high hierarchical levels but also to make inferences about these quantities.

These can provide relevant information about health care costs in the nationwide

individual and small group market segments. Figure 5.13 shows posterior histograms

of the samples drawn from the nationwide cost means, µ in the adopted model. The

first insight is that every service in the individual market segment shows a higher

uncertainty on expected mean costs than the small group (i.e., posteriors with heav-

ier tails). Circulatory conditions are, on average, the most expensive in the Surgical

and Transplant subcategory, and they also present, on average, the highest variation

across state-specific means (see Figure B.2 in Appendix B.2).

We previously studied credible intervals of the aggregate claims posterior predic-

tive. However, to make a comparison of allocated costs between states, it is necessary

to show the results in a per-member-per-month basis. Figure 5.14 presents the poste-

riors of Allowed PMPM as expressed in (5.2), and the observed values in every service

for Arizona (AZ), Colorado (CO), Florida (FL) and Texas (TX), for the year 2015.

For most of the services and states, the distribution of per-member-per-month costs

shows a greater skewness in individual markets. Generally, one could say that the

high variation of inpatient services leads to posteriors with heavy tails in most of the

statewide markets. The tail represents potential scenarios triggered from a high-risk

yearly enrollment, resulting in a high number of expensive inpatient admissions.
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Figure 5.12: Neoplasm aggregate claims (in USD) 95% credible intervals and medians (light
blue) in small group markets for the period 2009 to 2015. Observed outcomes (dark blue)
are associated to a risk pool (Male, Female or All).
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Figure 5.13: Posterior samples of µ, representing the Cost Per Service (CPS) (in USD), by
service subcategory for the Small Group and Individual segments in the year 2015

In this chapter, we first reviewed the risk-sharing mechanism that the ACA Risk

Adjustment introduced in individual and small group markets. Then, we motivated

the assessment of statewide collective risks to anticipate the stability of the market

and ultimately the insurer’s relative risk position. In this context, setting appropriate

rate levels is crucial to cover health risks from the state market pool. From their side,

state markets have developed different experiences along the years, first, in terms

of size (risk exposure), and second, in terms of frequencies and costs. In fact, we

showed in this section that the uncertainty of inpatient cost allocation significantly

differs from market to market (Figure 5.14). This strongly motivates the assessment

of statewide collective risks, which are of great importance under the ACA dynamics.
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Figure 5.14: MCMC Posterior predictive densities of Allowed PMPM (in USD) of Surgical
and Transplant in the small group and individual segments for 2015 (AZ-Arizona, CO-
Colorado, FL-Florida and TX-Texas). Observed values for the same year are displayed
below the densities.

Furthermore, we argued that the Bayesian approach is suited to this problem

because of its ability to explicitly quantify uncertainty. It also provides a mechanism

to inform parameters when there is important information not yet reflected in the

data. This could be done by building an a priori dependence structure, as shown in

the diagram 5.11, or by specifying fixed hyperparameters in the hyperpriors (Section

5.2.3). Next, we further describe some other thoughts and state our conclusions.
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Chapter 6

Conclusions

In the first years after the ACA changes were implemented, the uncertainty of statewide

collective risks provoked financial instability in individual and small group markets. In

fact, a group of insurers suffered unexpectedly high losses due to adverse Risk Adjust-

ment positions (Livingston, 2017, Zorn, 2016). In stable environments, the projection

of statewide health care costs has been performed with univariate techniques (Natsis,

2019). However, the increasing uncertainty that the ACA incorporated has called on

advanced modeling techniques.

The framework presented in this thesis aims to quantify important sources of un-

certainty in the estimation of collective risks. We further develop previous works in

the collective risk theory presented by Migon and Moura (2005), Migon and Penna

(2006) and Amin and Salem (2015). We present a novelty distribution for the condi-

tional aggregate claims: a 3-parameter distribution known as Generalized Beta Prime

(GBP). This model is a generalization of the sum of dependent Pareto distributed

claim amounts, presented by Sarabia et al. (2016). We present the GBP based on a

mean-dispersion parametrization, which allows the introduction of a meaningful hier-

archical prior specification. This actually gives flexibility to build prior dependencies

on the mean and dispersion parameters.

Furthermore, we apply the model on a subset of the Commercial Health Care

dataset published by the Society of Actuaries (2019), the Surgical and Transplant

services breakout for the small group and individual market segments. The results pre-

sented here are: credible intervals for the replications of the aggregate claims; MCMC

histograms of the nationwide cost means corresponding to Circulatory, Digestive, In-

jury and poisoning, Musculoskeletal and Neoplasm; full posteriors of the variation of

state-specific means; and finally, posterior predictive distributions of the per-member-

per-month costs in Arizona (AZ), Colorado (CO), Florida (FL) and Texas (TX).

One point for future development is the building of a full probabilistic model

that reaches the statewide per-member-per-month claim cost, considering all medical
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services and the subsequent aggregation. It is worth noting that the flexibility intro-

duced by the GBP can accommodate the distribution shape for other service types.

Additionally, the posteriors of per-member-per-month costs obtained from this model

could be used to predict state average plan liability risk scores (PLRS), and hence

help to anticipate relative Risk Adjustment positions.

Another point for future research is the link between the changes in the uninsured

population or other external variables and the consequent new patterns in health

care utilization. For this, it would be also necessary to account for more demographic

factors such as the age, which is a critical driver of the population health status.

Moreover, additional information with respect to the number of insurers and providers

in statewide markets can be translated into more informative hierarchical priors in

the severity component.

Following the first years of instability in individual and small group markets,

the period from 2017 to 2019 showed signs of recovery and the situation of insurers

improved substantially (Cox et al., 2019). However, in the present year, the COVID-

19 pandemic is again increasing uncertainty in health insurance markets: individuals

are shifting from small or large group markets towards individual markets; there are

new trends in health care utilization and a deferred demand of medical services; and

new treatments and comorbidities are expected to change the cost per medical service.

Furthermore, a proportion of the costs associated to the pandemic are being waived

with federal regulation (Centers for Medicare and Medicaid Services, 2020), putting

pressure on the market pool.

Therefore, the changing patterns in health care utilization and the creation of risk-

sharing rules will require a comprehensive assessment of statewide collective risks.

Our findings can contribute to the development of risk models that take into account

the new dynamics and emerging sources of uncertainty.
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Appendix A

Generalized Beta Prime

A.1 GBP: Compound Gamma-Gamma

Let X follow a Gamma distribution, X|α, β ∼ Gamma(α, β), with shape-rate

parametrization. Let β be a random variable following a Gamma β|γ, θ ∼ Gamma(γ, θ).

Then, the unconditional density, obtained by integrating out β, is

f(x|α, γ, θ) =

∫ +∞

0

f(x|α, β)f(β|γ, θ)dβ

=

∫ +∞

0

βα

Γ(α)
xα−1e−βx

θγ

Γ(γ)
βγ−1e−θβdβ

=
xα−1θγ

Γ(α)Γ(γ)

∫ +∞

0

βαe−βxβγ−1e−θβdβ

=
xα−1θγ

Γ(α)Γ(γ)

∫ +∞

0

βα+γ−1e−β(x+θ)dβ

=
xα−1θγ

Γ(α)Γ(γ)

Γ(α + γ)

(x+ θ)α+γ

∫ +∞

0

βα+γ−1e−β(x+θ)
(x+ θ)α+γ

Γ(α + γ)
dβ

=
Γ(α + γ)

Γ(α)Γ(γ)

xα−1θγ

(x+ θ)α+γ

=
Γ(α + γ)

Γ(α)Γ(γ)

xα−1θγθα

(x+ θ)α+γθα

=
Γ(α + γ)

Γ(α)Γ(γ)

xα−1

(x+θ)α+γθα

θα+γ

=
Γ(α + γ)

Γ(α)Γ(γ)

1

θ

(x/θ)α−1

(1 + x/θ)α+γ

=
1

B(α, γ)

1

θ

(x/θ)α−1

(1 + x/θ)α+γ

where B(α, γ) is the Beta function and f(x|α, γ, θ) has the form of a Generalized Beta

Prime distribution with two shape parameters α and γ, and one scale parameter θ.
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Appendix B

CHC dataset

B.1 Actuarial indicators

Table B.1: Actuarial indicators for Surgical and Transplant in the small group segment by
state in 2015

Market State Cost Membermonths AllowedPMPM

Small Group AZ 112.784.125 3.344.264 33,72

Small Group CA 239.986.579 6.244.710 38,43

Small Group CO 109.776.958 2.622.546 41,86

Small Group CT 52.402.366 1.242.452 42,18

Small Group FL 383.349.882 7.950.252 48,22

Small Group GA 142.876.775 3.965.168 36,03

Small Group IL 191.786.060 4.758.020 40,31

Small Group IN 78.611.725 1.464.040 53,70

Small Group MD 36.490.499 1.128.004 32,35

Small Group MI 41.609.034 1.296.812 32,09

Small Group MN 26.161.217 578.670 45,21

Small Group MO 141.826.801 3.797.928 37,34

Small Group NV 28.073.998 601.494 46,67

Small Group NY 265.944.268 5.821.508 45,68

Small Group OH 165.006.602 3.473.108 47,51

Small Group OK 37.400.485 1.096.248 34,12

Small Group PA 169.143.111 4.195.618 40,31

Small Group TX 441.195.684 10.350.922 42,62

Small Group UT 24.991.474 820.588 30,46

Small Group VA 32.350.093 649.330 49,82

Small Group WI 154.078.862 3.601.648 42,78
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Table B.2: Actuarial indicators for Surgical and Transplant in the individual segment by
state in 2015

Market State Cost Membermonths AllowedPMPM

Individual AZ 36.289.970 1.352.274 26,84

Individual CA 23.143.104 429.744 53,85

Individual CO 34.656.738 856.492 40,46

Individual CT 14.342.149 335.020 42,81

Individual FL 697.964.940 13.094.660 53,30

Individual GA 483.176.256 7.924.618 60,97

Individual IL 25.240.930 833.802 30,27

Individual IN 87.089.660 1.083.470 80,38

Individual MD 23.828.292 580.956 41,02

Individual MI 29.270.790 1.153.222 25,38

Individual MN 5.009.576 117.468 42,65

Individual MO 49.444.802 1.619.952 30,52

Individual NV 11.457.618 341.410 33,56

Individual NY 54.814.035 1.044.810 52,46

Individual OH 61.015.079 1.479.476 41,24

Individual OK 2.908.368 213.862 13,60

Individual PA 83.062.151 2.131.986 38,96

Individual TX 424.891.295 9.140.948 46,48

Individual UT 18.219.719 931.374 19,56

Individual VA 21.556.163 458.498 47,01

Individual WI 36.466.974 745.888 48,89
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B.2 Model outputs

Figure B.1: Chains trajectories of ζ, µ, σµ and σζ for the Injury and Poisoning model in
the small group segment

Figure B.2: MCMC Posterior densities of σµ (in USD) for each Surgical and Transplant
service in the small group and individual market segments
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Figure B.3: Neoplasm claim counts 95% credible intervals and medians (light blue) in small
group markets for the period 2009 to 2015. Observed outcomes (dark blue) are associated
to a risk pool (Male, Female or All).

55



B.2.1 Small group

Figure B.4: Circulatory aggregate claims (in USD) 95% credible intervals and medians
(light blue) in small group markets for the period 2009 to 2015. Observed outcomes (dark
blue) are associated to a risk pool (Male, Female or All).
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Figure B.5: Digestive aggregate claims (in USD) 95% credible intervals and medians (light
blue) in small group markets for the period 2009 to 2015. Observed outcomes (dark blue)
are associated to a risk pool (Male, Female or All).
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Figure B.6: Injury and Poisoning aggregate claims (in USD) 95% credible intervals and
medians (light blue) in small group markets for the period 2009 to 2015. Observed outcomes
(dark blue) are associated to a risk pool (Male, Female or All).
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Figure B.7: Musculoskeletal aggregate claims (in USD) 95% credible intervals and medians
(light blue) in small group markets for the period 2009 to 2015. Observed outcomes (dark
blue) are associated to a risk pool (Male, Female or All).
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B.2.2 Individual

Figure B.8: Circulatory aggregate claims (in USD) 95% credible intervals and medians
(light blue) in individual markets for the period 2009 to 2015. Observed outcomes (dark
blue) are associated to a risk pool (Male, Female or All).

60



Figure B.9: Digestive aggregate claims (in USD) 95% credible intervals and medians (light
blue) in individual markets for the period 2009 to 2015. Observed outcomes (dark blue) are
associated to a risk pool (Male, Female or All).
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Figure B.10: Injury and Poisoning aggregate claims (in USD) 95% credible intervals and
medians (light blue) in individual markets for the period 2009 to 2015. Observed outcomes
(dark blue) are associated to a risk pool (Male, Female or All).
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Figure B.11: Musculoskeletal aggregate claims (in USD) 95% credible intervals and medians
(light blue) in individual markets for the period 2009 to 2015. Observed outcomes (dark
blue) are associated to a risk pool (Male, Female or All).
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Figure B.12: Neoplasm aggregate claims (in USD) 95% credible intervals and medians (light
blue) in individual markets for the period 2009 to 2015. Observed outcomes (dark blue) are
associated to a risk pool (Male, Female or All).
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Appendix C

Stan code

functions{

real beta_prime_2_lpdf(real y, real alpha, real gamma,real theta){

real ylpdf = -lbeta(alpha,gamma) - log(theta);

ylpdf += (alpha - 1)*log(y/theta);

ylpdf += -(alpha + gamma)*log1p(y/theta);

return ylpdf;

}

}

data {

int<lower=0> N; //number of observations

int<lower=0> K; //number of states

int<lower=0> M; //number of gamma ts

int<lower=0> J; //ts from 2014

vector<lower=0>[N] S_tsg; //Aggregate loss of group tsg (response variable)

int N_tsg[N]; //Total number of claims for group tsg

vector<lower=0>[N] n_tsg ; //Auxiliar

vector<lower=0>[N] m_tsg ; //membermonths

vector<lower=0>[K] m_s2015 ; //membermonths 2015

matrix[N,K] design_matrix_1; //design matrix state on level 1

matrix[N,M] design_matrix_2; //design matrix year:state on level 1

matrix[M,K] design_matrix_3; //design matrix state on level 2

real<lower=0> wfreq; //observed weighted frequency

real<lower=0> wsdfreq; //observed weighted std of frequency

real<lower=0> wmCPS; // observed weighted CPS

real<lower=0> wsdCPS; // observed weighted std of CPS

}

parameters {

//parameters for S_tsg

vector<lower=3>[M] gamma_ts;

vector<lower=1>[K] phi_s;

vector[K] mu_tilde;

real<lower=0> mu;

real<lower=0> sigma_mu;

65



//parameters N_tsg

vector<lower=0>[K] delta_s;

vector<lower=0>[K] zeta_s;

real<lower=0> sigma_zeta;

real<lower=0> zeta;

}

transformed parameters {

vector<lower=0>[K] mu_s= rep_vector(mu,K) + rep_vector(sigma_mu,K) .* mu_tilde;

vector<lower=0>[M] mu_index_2= design_matrix_3* mu_s;

vector<lower=1>[M] phi_index_2= design_matrix_3* phi_s;

vector<lower=0>[M] alpha_ts = (gamma_ts -1) ./ (phi_index_2 .* gamma_ts - 2 *

↪→ phi_index_2 - 1);

vector<lower=0>[M] theta_ts = mu_index_2 .* (phi_index_2 .* gamma_ts - 2 *

↪→ phi_index_2 - 1);

vector<lower=0>[N] theta_index=design_matrix_2* theta_ts;

vector<lower=3>[N] gamma_index=design_matrix_2* gamma_ts;

vector<lower=0>[N] alpha_index=design_matrix_2* alpha_ts;

}

model {

//prior specification

target += normal_lpdf(phi_s|1,25);

target += normal_lpdf(mu_tilde|0,3);

target += normal_lpdf(mu|wmCPS,wsdCPS/2);

target += cauchy_lpdf(sigma_mu|0,wsdCPS);

target += normal_lpdf(gamma_ts|3,100);

target += cauchy_lpdf(delta_s|0,1);

target += cauchy_lpdf(sigma_zeta|0,wsdfreq);

target += normal_lpdf(zeta|wfreq,wsdfreq/2);

target += normal_lpdf(zeta_s|zeta,sigma_zeta);

//target density

for(i in 1:N)

target += beta_prime_2_lpdf(S_tsg[i] | alpha_index[i] * n_tsg[i],gamma_index[i],

↪→ theta_index[i]) ;
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target += neg_binomial_lpmf(N_tsg | design_matrix_1* delta_s ,design_matrix_1 *

↪→ delta_s ./ (m_tsg .* (design_matrix_1 * zeta_s))) ;

}

generated quantities{

real srep[N];

int nrep[N] = neg_binomial_rng(design_matrix_1* delta_s,design_matrix_1 *

↪→ delta_s ./ (m_tsg .* (design_matrix_1 * zeta_s)));

real srep2015[K];

int nrep2015[K] = neg_binomial_rng(delta_s, delta_s ./ (m_s2015 .* zeta_s) );

for (i in 1:N){

if (nrep[i]==0)

srep[i]=0;

else

srep[i] = theta_index[i] * gamma_rng( alpha_index[i] * nrep[i], 1) / gamma_rng(

↪→ gamma_index[i], 1);

}

for (i in 1:K){

if (nrep2015[i]==0)

srep2015[i]=0;

else

srep2015[i] = theta_index[J+i] * gamma_rng( alpha_index[J+i] * nrep2015[i], 1) /

gamma_rng( gamma_ts[J+i], 1);

}

}
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