
 

 

 
MASTER 

ACTUARIAL SCIENCE 
 
 
 

MASTER FINAL WORK 

PROJECT 
 
 
 
 
INVESTMENT STRATEGIES OF A NON-LIFE INSURANCE COMPANY 

UNDER SOLVENCY II 
 
 
 
 
MARIANA DA COSTA FERREIRA 

 
 
 

 
 
 
 
 
 

OCTOBER-2016 



 

 

 
MASTER IN 

ACTUARIAL SCIENCE 
 
 
 

MASTER FINAL WORK 

PROJECT 
 
 
 
 
INVESTMENT STRATEGIES OF A NON-LIFE INSURANCE COMPANY 

UNDER SOLVENCY II 
 
 
 
MARIANA DA COSTA FERREIRA 
 
 
 
SUPERVISION: 

RAQUEL M. GASPAR 
PAULO MARTINS SILVA 

 
 
 
 

OCTOBER-2016 



Abstract

On this study we develop a portfolio investment optimization process for a non-life

insurance company, where capital requirement is calculated using the standard formula

defined by Solvency II. The optimization aims to find the minimum solvency capital

requirements for market risk and, simultaneously, maximize portfolio returns. The op-

timal investment strategy set is obtained using a multi-objective optimization process.

To analyse the performance of the portfolio and the capital at risk, we compute the

return on risk adjusted capital (RoRAC), that is the expected profit over the Solvency

II market capital charge. Results show that is possible to define a set of investment

strategies under Solvency II regime that accomplish the objectives on return and capital

requirements.

Keywords: Portfolio optimization, Solvency II, market risk, performance measure,

RoRAC.



Resumo

Neste trabalho é feita a otimização da carteira de uma empresa de seguros não vida,

que utiliza a fórmula standard definida no regime de Solvência II para calcular os req-

uisitos de capital, com o objetivo de encontrar a alocação dos ativos financeiros que

minimizam o risco de mercado e, simultaneamente, maximizam o retorno da carteira. A

solução é obtida a partir de um processo de otimização multi-objetivo. Para analisar o

desempenho da carteira e o risco do capital investido, calculamos a rentabilidade ajus-

tada ao risco (RoRAC), que é o rácio entre o retorno esperado e o valor de Solvência

II relativo ao risco de mercado. Os resultados mostram que é possível definir uma es-

tratégia de investimento no regime de Solvência II que permita atingir os objetivos em

retorno e requisitos de capital.

Palavras-chave: Otimização de carteira , Solvência II , risco de mercado , medida

de desempenho carteira , RoRAC .
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1 Introduction

The 2007-2008 financial crisis highlighted the need to review the European supervi-

sory model and to develop a project that would deeply and comprehensively review the

regulatory and supervisory framework of the European insurance sector - Solvency II.

Since 1st January 2016, insurance companies are required to hold eligible own funds for

their solvency capital requirements. Solvency II framework is made with three pillars.

The first pillar, covers the quantitative requirements and ensures that over a one year

period the probability of ruin is bellow 0.5% by the computation of solvency capital

requirements with a standard formula provided by the regulator, considering a VaR of

99.5%. The valuation of assets and liabilities under the Solvency II regime is set on a

mark-to-market basis. The requirements for insurer’s governance and risk management

system are determined on pillar two and third pillar is about transparency and disclosure.

The standard formula defines capital requirements based on various risk modules and

respective sub-modules, market risk being a major contribution to this value (Ratings

(2011)). The market risk module is calculated by applying stress factors to the different

sub-modules and the different capital requirements, linked to the respective shocks, are

then aggregated by a correlation matrix.

The most common way to find the optimal portfolio is using the mean-variance theory

(Markowitz (1952)). However, to insurance companies that have to match the difference

between assets and liabilities, with regulatory capital, there is a need to go further.
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1 Introduction

On the literature there are studies that analyse the impact of the implementation of

Solvency II to asset managers (Heckel et al. (2012), Ratings (2011)). More specific pa-

pers study the impact of the market risk standard formula on investment strategies, as

in Fischer and Schlütter (2012), that analyse the impact that standard formula equity

risk calibration has on the allocation of assets to equity class and on an investment

strategy of a shareholder-value-maximizing insurance company. Braun, Schmeiser, and

Schreiber (2015b) investigate an optimization of the asset allocation, in the context of

portfolio theory, for an insurance company that comply with the market risk capital

requirements of Solvency II. These authors (Braun, Schmeiser, and Schreiber (2015a))

also analyse the standard formula for the market risk and propose to find the optimal

portfolio, under Solvency II regime, by maximizing the RoRAC. Bruneau and Mankai

(2012) do not consider the standard formula of Solvency II, but instead an internal model

to find, simultaneously, the optimal investment portfolio for a non-life insurance com-

pany, by maximizing the RoRAC, and also by subjecting it to a global zero-conditional

value-at-risk (CVaR) constraint. Concerning multi-objective portfolio optimisation, we

consider the works of Duan (2007) and Steuer, Qi, and Hirschberger (2005), where they

maximize returns and minimize risks. More specifically to non-life insurance compa-

nies, Jarraya and Bouri (2013) developed a model that integrates simulation approach

with a multi-objective particle swarm optimization algorithm to find the optimal asset

allocation which maximizes the shareholders expected utility and technical efficiency.

Furthermore, Kaucic and Daris (2015) introduce a multi-objective stochastic optimiza-

tion program for chance-constrained portfolio selection problems. At the best of our

knowledge we use a new assessment approach on the combination of SCR and expected

returns by performing a multi-objective process to find the optimal portfolio selection.

Since the SCR core is risk based and it does not take into account returns, which

2



1 Introduction

is the main point for portfolio optimisation targets, this study focus on an investment

strategy that considers both objectives. The optimization of the investments of an in-

surance company, while considering the computation of solvency capital requirements, is

of extreme relevance, because there is a direct link with portfolio composition in terms

of asset classes, maturity, ratings and concentration. Unlike Solvency I, where capital

requirements were a fixed percentage of the liabilities and independent of the insurer’s

asset allocation, now the regulatory capital must cover the difference between assets

and liabilities. Consequently, SCR is very sensitive to asset related risks. We create a

bi-objective problem, where our objective functions are the expected profit of the port-

folio and the solvency capital requirements for market risk. We find the pareto curve

between the two objectives, by changing the amount invested in each asset, and the

respective pareto optimal solution to define the more advantageous investment strategy

according to an initial allocation of asset classes.

The structure of this study is as follows. On section 2 we make an introduction to

multi-objective optimization and the evolutionary algorithm used to solve the problem

- Non-dominated Sorting Genetic Algorithm-II (NSGA-II). On section 3 we present the

data and the methodology applied to find a more profitable investment strategy to a

non-life insurance company. Section 4 analysis several allocation per asset sub-classes

strategies following the works of Heckel et al. (2012), Ratings (2011) and Haslip (2011)

and discusses the results of the multi-objective problem (MOP), that is reformulate as

five distinct models, to overcome some restraints of NSGA-II. Lastly, section 5, states

the conclusions and some limitations, as well as the new areas of future research.

3



2 Multi-objective Optimization

Multi-objective optimization is a process that involves at least two objective functions,

usually conflicting in nature, at the same time. In mathematical terms, a multi-objective

problem (MOP) can be formulated as:

minimize f(x) = (f1(x), ..., fm(x))T , m ≥ 2

subject to x ∈ X
(2.1)

where x = (x1, ..., xn)T ∈ Rn represents the decision, or design, vector and X is the

feasible decision space, that is defined by some constraint functions. The objective, or

criterion space is defined as the image of X as the set:

Y = {f(x) ∈ Rm | x ∈ X} (2.2)

If some objective function is to be maximized it is equivalent to minimize its negative.

For a MOP there is not, in general, one global solution that simultaneously satisfies all

the objectives, so it is necessary to define an optimal point, able to consider the tradeoffs

among the different objectives.

Definition 1 A point x∗ ∈ X is called Pareto optimal to a multiple-objective problem

if and only if does not exist another point x ∈ X such that:

∀i ∈ {1, ..., m} : fi(x) ≤ fi(x∗) and ∃j ∈ {1, ..., m} : fj(x) < fj(x∗). (2.3)

4



2 Multi-objective Optimization

The image of x∗ in Y,i.e, f(x∗) = (f1(x∗), ..., fm(x∗))T , is called a Pareto optimal (ob-

jective) vector and x∗ is a non dominated point.

Definition 2 If x1, x2 ∈ X and f(x1) ≤ f(x2), we say x1 dominates x2 and f(x1)

dominates f(x2).

The set of Pareto optimal objective vectors forms the so-called Pareto, or efficient,

front (PF) and the set with all Pareto points is the Pareto set (PS). Since PS represents

optimal solutions to the MOP, it means that this solutions cannot be improved in any

of the objective functions without deteriorating at least one of the other objectives, and

PF results in being a subset of the boundary of the objective set.

Definition 3 The set of all efficient solutions x∗ ∈ X is denoted XE and is called the

Pareto set. The set of all nondominated points y∗ = f(x∗) ∈ Y is denoted YN and is

called the Pareto front.

The range of values which can be attained by nondominated points are given by ideal

and nadir points, defined as the lower and upper bounds of the PF.

Definition 4 1. The point yI = (yI
1 , ..., yI

m) is called the ideal point of the multicriteria

optimization problem and is given by

yI
k := min

∀x∈XE

fk(x) = min
∀y∈YN

yk (2.4)

2. The point yN = (yN
1 , ..., yN

m) is called the nadir point of the multicriteria optimization

problem and is given by

yN
k := max

∀x∈XE

fk(x) = max
∀y∈YN

yk (2.5)

5



2 Multi-objective Optimization

2.1 Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm II (NSGA-II), introduced by Deb et al.

(2002), is an evolutionary algorithm that produces a set of the Pareto optimal solutions

in one run. Has three principal components: elitist principle, emphasizes non-dominated

solutions and explicit diversity preserving mechanism.

The NSGA-II procedure starts by creating a random population Pt, of size N, and for

each solution a in this population a value of the number of solutions that dominates it

is created and is computed a set with all solutions dominated by a. For each solution is

assigned a rank. Crossover and mutation operators are applied to this parent population

Figure 1: NSGA-II algorithm

to create a new pool of descendants Qt, of size N , which are mixed with the parents

population. This enlarged pool Rt, with size 2N , is sorted into non-dominated fronts by

descent order, where Pareto front has rank 0 and the individuals that are dominated, only

by the ones with rank r have rank r +1. Since the count of the non-dominated solutions

from the fronts F1, F2, F3, ..., Fl exceeds N , some of the lower ranked non-dominated

6



2 Multi-objective Optimization

solutions from the last front have to be reject, then is applied the elitism method by

adding a crowding distance to each solution to generate the next population Pt+1. This

distance, consider as being the density of individuals neighbouring a particular individual

a, is computed as the perimeter of the hypercube where the vertices are the nearby

individuals to a. The crowding distance sorting assures diversity in the population and

explores the fitness landscape. The new population Pt+1 suffers crossover and mutation

to create a new descend population Qt+1, of size N and the NSGA-II algorithm is

repeated until the number of generations is reached.

The set of solutions are in the first front of the final population and the optimal

solution is the one with a lower rank, or having the same rank, the best solution is the

one that is located in a less crowded region. The smallest and largest function values

are the boundary solutions and are attributed an infinite distance.

7



3 Data and Methodology

In this section, we discuss the data collection as well as the procedure followed to

optimize the investments of an insurance company. As a starting point we define the

base scenario with an investment portfolio at the end of year 2015 and assess the solvency

market capital requirements and the portfolio returns. The optimization process takes

into account the maximization of the portfolio return to a minimization on the capital

requirements.

3.1 Data Description

We consider the already built portfolio for a Non-life Insurance Company, that is

composed with eight asset classes with a taxonomy set by the complementary identifi-

cation code (CIC): cash and deposits, collateralised securities, corporate bonds, equity,

government bonds, investment funds, mortgages and loans and property.

Considering the detailed information on investment funds, it is possible to apply the

look-through approach to disaggregate all stocks and apply granular risk calculations.

Consistent with the Solvency II regime, the valuation of assets is at market value and

although there are no constraints on investments, due to the prudent person rule, all

investments should be limited to assets and instruments whose risks can be properly

identified, measured, monitored, managed, controlled and reported.

8



3 Data and Methodology

Table 1: Asset classes of the portfolio

Asset Classes

Cash and Deposits Corporate Bonds Collateralised Securities Equity

Government Bonds Investment Funds Mortgage and Loans Property

We have a total of 3535 assets and a total amount of investment of €339.26 millions.

Our initial allocation is 7.85% for cash and deposits, 0.73% for collateralised securities,

20.76% for corporate bonds, 13.39% for equity, 29.38% for government bonds, 1.56% for

investment funds, 1.32% for mortgage and loans and 25.28% for property.

Collateralised securities (1%)

Cash and Deposits
8%

Equity

13%

Corporate bonds

21%

Property

25%

Investment Funds (2%)
Mortgage and Loans (1%)

Government bonds

29%

Figure 2: Alocation of the amount invested in each asset class

The data set for each asset includes an ID code, a description, the issuer group, the as-

set class, the total amount in Euro, the currency of investment, settlement date,maturity

date, coupon rate, coupon frequency, CIC, basis and the rating. Liabilities are fixed and

we consider the risk-free interest rate term structures provided by EIOPA (EIOPA 2016).

Considering the Delegated Acts of October 10th (Parliament and Union (2009)), on

9



3 Data and Methodology

the calculation of solvency capital requirements, equities have been separated in two

types: type 1 are the equities listed in regulated markets in the countries which are

members of the European Economic Area (EEA) or the Organisation for Economic Co-

operation and Development (OECD) and type 2 are the equities listed in stock exchanges

in countries which are not member of the EEA or the OECD, equities which are not

listed, commodities and other alternative investments. The asset class of property has

been divided into land and buildings (includes properties, plants and equipments held

for own use and others than for own use) and real estate investment funds.

The assumption on expected returns of asset classes have been given by a consulting

company and to map the classes of Solvency II (when different) we split it into sub-

classes. On government bonds we consider the bonds issued by less developed countries

as emerging market debt1 and the others we divide by maturity: index-linked euro gov-

ernment (<5 years), fixed interest euro government (<5 years) and fixed interest euro

government (<10 years). Collateralised securities, mortgage and loans are considered

as euro corporate bonds (>10 years) in our study. The equities that are not listed in a

stock exchange and have CIC XL and XT are classified as private equities, the eurozone

equities are issued by the countries from the Eurozone and all others are classified as

global equities. Investment funds are split into hedge funds, commodities and short

duration global funds (remaining funds). At last, corporate bonds are divided into euro

corporate bonds (>10 years), that have maturity greater than ten years and are traded

in Euro, and absolute return bonds that includes all others.

1Bonds issued by South Africa, Brazil, Czech Republic, Greece, Mexico, Argentina, Hungary, Bulgaria
and Indonesia

10



3 Data and Methodology

Asset Classes Sub-asset Classes Returns

Cash and Deposits Cash and Deposits 0.86%

Collateralised securities Euro corporate bonds (>10 years) 1.41%

Corporate bonds
Euro corporate bonds (>10 years) 1.41%

Absolute return bonds 3.00%

Equity

Eurozone equities 6.60%

Global equities 6.60%

Private equities 8.90%

Government bonds

Emerging market debt 6.45%

Index-linked euro government 0.86%

Fixed interest euro government (>5 years) 0.86%

Fixed interest euro government (>10 years) 0.86%

Investment funds

Hedge funds 4.86%

Short duration global bond funds 2.36%

Commodities 1.86%

Mortgages and loans Euro corporate bonds (>10 years) 1.41%

Property Property 4.13%

Table 2: Expected returns of the asset classes (over 1 year horizon)

The allocations, according to the mapping between asset classes and sub-classes, are

now 18.47% on absolute return bonds, 7.58% on cash, 0.15% on emerging market debt,

4.34% on euro corporate bonds (>10years), 0.91% on eurozone equities, 0.25% on fixed

interest euro government bonds (>10years), 0.37% fixed interest euro government bonds

(>5years), 5.69% on global equities, 1.06% on hedge funds, 28.61% on index-linked euro

government, 6.79% on private equity, 25.28% on property, 0.42% on short duration global

bonds and 0.07% on commodities.

11



3 Data and Methodology

Absolute Return Bonds

18%

Cash

8%

Eurozone equities (1%)
Global Equities

6%

Hedge Funds (1%)

Index-Linked euro government
29%

Private Equity

7%

Euro Corporate Bonds (>10yrs)

4%
Property

25%

Others (2%)

Figure 3: Alocation of the amount invested in each sub-asset class

We can then divide the total assets of the portfolio per sub-asset class.

Property

Euro Corporate Bonds
Absolute Return Bonds

Eurozone Equities
Global Equities
Private Equities

Emerging Market debt
Index-Linked euro Government

Fixed Interest euro Government >5 years
Fixed Interest euro Government >10 years

Hedge funds
Short Duration global Bond Funds

Commodities

Cash
137

279
676

295
1 810

26
20
71

36
30

1
8
1

144

Figure 4: Number of assets per asset sub-class
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3 Data and Methodology

3.2 Methodology

3.2.1 Optimization Problem

Based on the assets chosen in each asset class shown on Table 1, we have a portfolio

with a certain amount invested in each asset:

x = (x1, x2, ..., xn), (3.1)

with vector x being the weight of each asset and n the number of assets in the portfolio.

The total amount of investment should be divided amongst the n assets as

n∑
i=1

xi = 1 (3.2)

We can add other constraints by excluding short sales due to difficulties involved in

shorting most of the asset types as well as to simplify the calculus:

xi ≥ 0 (3.3)

Then, considering a bi-objective problem, that takes into account, simultaneously, the

capital level for a non-life insurance company and the optimal investment portfolio on

returns, we can state our objective function as:


maximize E[P ]

minimize SCRMarket

(3.4)

3.2.2 Expected Profit

Having the weight invested in each sub-asset class, wi, and the respective returns, ri,

we calculate the expected profit as follow:

13



3 Data and Methodology

E[P ] =
∑

i

wi.ri (3.5)

3.2.3 Market Risk Standard Formula

With the introduction of Solvency II, insurance companies were provided with a stan-

dard formula for different risk types to calculate their solvency capital requirements

(SCR), which is calibrated using the Value-at-Risk (Var) of the basic own funds (BOF)

subject to a confidence level of 99.5 percent over a one year period (see Parliament and

Union 2015).This study focus on the market risk module, which is a very relevant risk

category in the insurance industry. European insurers are a major investor in Europe’s

financial markets and market risk represents a relevant percentage of their solvency

capital requirements (Ratings 2011).

Market risk module reflects the risk arising from the level or volatility of market

prices of financial instruments which have an impact upon the level of the BOF of the

undertaking. BOF is defined, mainly, as the difference between assets and liabilities on

the economic balance sheet.

Market risk

Interest rate Equity Property Spread Currency Concentration

Figure 5: Market risk module and respective sub-modules.

Assets and liabilities are interest rate sensitive and upward and downward shocks of

the interest rate term structure may have a detrimental influence on the BOF, creating

a loss to the undertaking. The capital requirement for interest rate risk is calculated as

(see Parliament and Union 2015):

14



3 Data and Methodology

Interestup = ∆BOF |up and Interestdown = ∆BOF |down (3.6)

The stress factors are applied to the basic risk-free interest rates as follows:

∆rup
t = rt(1 + sup

t )− rt and ∆rdown
t = rt(1 + sdown

t )− rt (3.7)

with sup
t and sdown

t being the interest rate shocks for up and down scenario and rt being

the basic risk-free rate for maturity t.

Equity risk arises from the risk of changes in the market prices of equities. All assets

and liabilities whose value is sensitive to modifications in equities prices is exposed,

but this sub-module only covers a downward stress scenario. The computation of this

risk was based on the "standard" approach, with a symmetric adjustment mechanism

(SAM), as (see Parliament and Union 2015):

Equity =
√
Equity2

1 + Equity2
2 + 2× 75%× Equity2

1Equity2
2,

Equityi = max (∆ BOF | equity shocki; 0).
(3.8)

with i ∈ {1, 2} and equity shocki being an instantaneous increase in the value of equities

classified as type 1 by 39% plus a SAM and being an instantaneous decrease in the

value of equities classified as type 2 by 49% plus a SAM . This symmetric adjustment

mechanism allows the equity shock to move within an interval of 10% on either side of

the underlying standard equity stress.

The third sub-module, property risk, is the result of sensitiveness of assets, liabilities

and financial investments to the level or volatility of market prices of properties (see

Parliament and Union 2015):

Property = max ( ∆BOF | property shock; 0), (3.9)

15



3 Data and Methodology

where property shock represents a decrease in the value of properties by 25%.

Changes in the credit worthiness of the issuers of the securities held in the insurer’s

investment portfolio, that will be reflected in changes on the underlying credit spread,

creates the spread risk (see Parliament and Union 2015):

Spread = Spreadbonds + Spreadsecurisation + Spreadderivatives. (3.10)

We do not consider the capital requirements for securisations and derivatives because

of the available data.

Spreadbonds = max ( ∆BOF | spread shock on bonds; 0),

spread shock on bonds =
∑

i

MVidurationiF
up(ratingi),

(3.11)

where MV is the market value of asset i ∈ {1, ..., n}, F up(ratingi) is a function of the

credit quality step of asset i and duration is the associated duration of asset i.

When investors are exposed to assets denominated in foreign currencies, face the risk

of an adverse movement in the exchange rate of the denominate currency in relation to

the base currency, known as currency risk (see Parliament and Union 2015):

Currencyup = max ( ∆BOF | currency upward schock; 0),

Currencydown = max ( ∆BOF | currency downward schock; 0),
(3.12)

with currency upward and downward shock being an instantaneous increase and an

instantaneous decrease, respectively, of 25% of the value of the currency invested against

the local currency.

Concentration risk is originated by an increased exposure to specific counterparties

and extents to assets considered in the equity, spread and property risk and exclude

assets covered by the counterparty default risk (see Parliament and Union 2015):
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3 Data and Methodology

Concentration =
√∑

i

Conc2
i , (3.13)

where Conci is the risk charge for exposures to counterparty i and is defined as:

Conci = ∆BOF | concentration downward shock,

concentration downward shock = XSi × gi,

XSi = max (0; Ei − CTi × Assets),

(3.14)

with XSi being the excess exposure to counterparty i, Ei denoting the exposure at

default to counterparty i, CTi denoting the relative concentration threshold applicable

to counterparty i and gi being a reduction factor.

Then the total capital requirement for market risk is a combination of all the above

sub-risks using a correlation matrix (see Parliament and Union 2015 ):

SCRmarket =
√∑

i,j

Corri,jSCRiSCRj, (3.15)

where i, j ∈ {interest, equity, property, spread, currency, concentration} and Corri,j

denotes the correlation matrix entry for the pair of risks (i, j).

3.2.4 Return on Risk-adjusted Capital

An insurance company is subject to different investment risks and with the introduc-

tion of Solvency II the losses derived from these risks shall be absorbed by a certain

amount of capital. The capital charges are calculated with the standard formula pro-

vided by the regulator. Although there are a lot of performance measures, the focus of

this study is the Return on Risk-adjusted Capital, because the aim is to evaluate invest-

ments based on the capital at risk and also due to the fact that RoRAC is adequate to

compare portfolios with different levels of risk or different risk profiles.
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3 Data and Methodology

In RoRAC the capital is adjusted for risk and yields a financial analysis from the

relationship between the expected profit and the risk capital necessary to achieve this

profit (Matten and Warburg (1996)):

RoRAC = E[P ]
SCRmarket

, (3.16)

the SCRmarket in the denominator causes an implicit risk-adjustment of the profit.
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4 Results

Considering the initial composition of a portfolio of a stylized Non-Life Insurance

company we compute the values of the SCRmarket, E[P ] and RoRAC.

Table 3: Solvency capital requirements for the market risk and expected profit in mil-
lions, and return on risk-adjusted capital of the initial portfolio

Risk i SCRi

Market €48.36

Interest rate €7.08

Equity €14.22

Property €19.96

Spread €6.24

Currency €1.34

Concentration €30.51

E[P] €1.72

RoRAC 0.036

We start by testing three investment strategies, changing the percentage in each asset

class, to define a set of qualitative possibilities to improve the designing of an investment

policy and without loss of generality, we allocate on sub-asset classes with higher returns.

Following the ideia of Heckel et al. (2012), we start by changing the allocation to 31%

on cash and 69% on equity. The next case, based on Ratings (2011), we set 45% on
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4 Results

absolute return bonds, 45% on emerging market debt, 7% on equity and 3% on property.

At last, as in Haslip (2011), we allocate our portfolio 61% on absolute return bonds, 5%

on equity, 20% on emerging market debt, 4% on hedge funds and 10% on property.

Cash

31%

Equity

69%

(a) 1st case

Absolute Return Bonds

45%

Emerging Market Debt

45%
Equity (7%)
Property (3%)

(b) 2nd case

Absolute Return Bonds

61%

Emerging Market Debt

20%
Hedge Funds (4%)
Property (10%)
Equity (5%)

(c) 3rd case

Figure 6: Alocation of the amount invested in each sub-asset class for the three discrete
cases

The results of this three allocations are as follow.

Table 4: Solvency capital requirements for the market risk and expected profit in mil-
lions, and return on risk-adjusted capital for the three discrete cases

1st case 2nd case 3rd case

Risk i SCRi SCRi SCRi

Market €68.08 €60.13 €46.89

Interest rate €9.23 €40.73 €12.60

Equity €51.50 €5.55 €7.81

Property €0 €2.37 €7.89

Spread €3.27 €24.99 €20.38

Currency €13.66 €1.39 €0.99

Concentration €31.79 €30.89 €31.38

E[P] €14.65 €6.66 €4.90

RoRAC 0.215 0.111 0.105

This discrete testing procedure indicates that there is room for implementing a dif-

ferent investment strategy. On the 3rd case it becomes clear that by using a different

20



4 Results

asset allocation is possible to lower the capital at risk and to improve the returns of the

company. Thus it is possible to set quantitative hypothesis to define a more profitable

investment strategy.

Using SolveXL software (Savić, Bicik, and Morley (2011)) to implement the multi-

objective optimization on the initial portfolio, described on section 3, we can obtain a

set of optimal asset allocation strategies.

A genetic algorithm (GA) maintains a large population of candidate solutions and each

population is generated from its predecessor. Given that a GA is a stochastic search

method, is difficult for the solutions to satisfy equality constraints (Reid (1996)) and due

to the complexity of the computations of the SCRmarket, on all following approaches

we do not impose a total investment restriction. Instead, we handle this restriction

by reformulating the initial MOP, but we always maximize the expected profit of the

portfolio and minimize the capital requirements for market risk.

We bound the investment in each asset by €0 and €10 millions. We subject it to

be higher than 0, since we are not considering short sales due to difficulties associated

with short selling most of the asset classes and the legal restrictions faced by insurance

companies in the regulated markets. The upper bound is a mandatory input of SolveXL

and although there are not a maximum limit value to be invest in each asset, we choose

€10 millions to not expose too much the portfolio to the concentration risk and to

insure an investment diversification among all 3535 assets. Our population of solutions

is 50, which is kept to select, mutate and crossover. By applying NSGA-II, we have

the Pareto front, set of non-dominated solutions with rank 0 - optimal solutions for

the optimization process. Although the preferable solution, among the obtained set, is

located in a less crowded region, we choose the solutions that fit best the interests of the

insurance company - first, an investment amount on the interval of €339 millions and,

second, the smaller value for the SRCmarket.
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First we consider the initial MOP without any constraint.


max E[P ]

min SCRmarket

(4.1)

After having the set of optimal solutions, we normalize the weight of each asset,

dividing by their total sum. This way we fulfil the initial restriction that the total

amount available must be invested.

AC55,000,000

AC60,000,000

AC65,000,000

AC70,000,000

AC75,000,000
AC5,000,000

AC10,000,000

AC15,000,000

AC20,000,000

SCRMarket

E
[P

]

Figure 7: Pareto front for the 1st run

On the above figure, we have the Pareto optimal solutions for problem (4.1), where

weights are normalized and the investment amount is, for all points, equal to €339.26

millions. On Figure 7, the values for the SCRmarket have had a significant increase

compared with the initial value of €48.36 millions. Because we want to minimize the

capital requirements for the market risk, the only solution to be consider is the strategy

with the lower SCRmarket.

Table 5: Result for the 1st run - investment, SCRmarket and profit in millions

Investment SCRmarket Profit RoRAC

€339.26 €56.36 €6.25 0.1109
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From these procedure on, it would not be possible to normalize the weights of assets

due to the nature of the optimization problem reformulations. Therefore, we have differ-

ent investment amounts and we consider the expected profit and the investment amount

as dependent values of the SRCmarket.

Since the values obtained, on problem (4.1), for the SCRmarket are higher than our

initial values, we make some adjustment to the MOP by subjecting the SCRmarket to

a risk target - be less than €48 millions. This leads to low investment amounts, with

the higher amount being just €195.55 millions. Consequently, we increase the inequality

constraint to €60 millions, to get higher values of investment.



max E[P ]

min SCRmarket

s.t. SCRmarket < 60000000

(4.2)
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Figure 8: Pareto front for the 2nd run

From the analysis of Figure 8, where the solutions for the optimization problem (4.2)

are presented, and taking into consideration that our investment amount should be on

the region of the initial value the company was investing, we just consider the strategy

with the higher investment amount.
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Table 6: Result for the 2nd run - investment, SCRmarket and profit in millions

Investment SCRmarket Profit RoRAC

€295.34 €58.04 €13.44 0.2316

To improve our investment strategy, we set higher figures for the investment amount,

and introduce a new objective function - maximize the investment. To avoid that the

solutions surpassed too much the initial amount, we impose a cap to this function of

€400 millions. Also, we add a restriction for the SCRmarket to be less than €48 millions.



max E[P ]

min SCRmarket

max Investment

s.t. Investment < 400000000

SCRmarket < 48000000

(4.3)
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Figure 9: Pareto front for the 3rd run

The solutions for the problem (4.3), on Figure 9, are selected from the strategies with

a value of investment closer to the starting point.
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Table 7: Results for the 3rd run - investment, SCRmarket and profit in millions

Investment SCRmarket Profit RoRAC

€330.65 €43.32 €5.38 0.1241

€343.18 €46.83 €5.67 0.1212

As can be seen on Figure 9, the risk target is limiting our solution space and the

problem does not achieve the maximum value for the investment given the inequality

constraint, therefore we increase the risk target to SCRmarket less than €55 millions.



max E[P ]

min SCRmarket

max Investment

s.t. Investment < 400000000

SCRmarket < 55000000

(4.4)
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Figure 10: Pareto front for the 5th run

Again, the solutions on Figure 10, are selected from the ones which investment amount

is closer to €339.26 millions.
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Table 8: Results for the 5th run - investment, SCRmarket and profit in millions

Investment SCRmarket Profit RoRAC

€337.69 €49.78 €7.06 0.1419

€345.26 €47.97 €6.49 0.1353

Figures 7-10 suggests that there is an increasing, almost linear, relation between the

SCRmarket, the expected profit and the investment value. As the amount of investment

increases, so are the variables for return and capital at risk. By imposing different

constraints and adding an objective function it is possible to have different investment

strategies that meet our objectives and that represent an improvement for the company.

There are solutions where the SCRmarket has really low values, as can be seen on

Figure 8-10, but they are not worth to mention since it represents also low values of

investment1. For an insurance company that has an amount available to invest in a

portfolio, investing less would mean that the difference would be anyway invested in cash,

what could increase others risks of the standard formula, for example the counterparty

risk.

We can resume our solutions to a set with six investment strategies.

Table 9: Summary of the optimal solutions - investment, SCRmarket and profit in millions

Investment Strategy Set

Strategy no. Investment SCRmarket Profit RoRAC

1 €339.26 €56.36 €6.25 0.1109

2 €295.34 €58.04 €13.44 0.2316

3 €330.65 €43.32 €5.38 0.1241

4 €343.18 €46.83 €5.67 0.1212

5 €337.69 €49.78 €7.06 0.1419

6 €345.26 €47.97 €6.49 0.1353
1Investments are funding the liabilities of an insurance company
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A RoRAC greater than one implies that the expected profit exceeds the market risk

capital. In other words, per Euro risk capital a profit above one has been obtained.

On Table 9, the highest RoRAC equals to 0.2316, meaning that per Euro risk capital a

profit of 0.2316€ is achieved. The strategy number 2 grants more expected return of the

portfolio for a less value of capital at risk, but it increases the capital requirements for the

market risk at almost €10 millions and the expected profit at almost €12 millions. Also,

by implementing this strategy the company would not invest the whole amount what

implies an increase on other risks of the SCR. The second highest RoRAC is 0.1419 for

strategy number 5, where we have a slightly increase of the SCRmarket and a substantial

increase of the profits, compared to the initial values.

In view of improving the financial position of the company, studying an allocation

to minimize the market risk and to maximize the return, we do not consider strategy

number 1. Thence, it has the lowest RoRAC and as can be noted on Table 9, there are

strategies with a lower value of the SCRmarket and similar profit. Strategies number 3,

4 and 6 yield a result lower than the initial strategy for the SCRmarket and an increase

of the profit.

For the company to choose one of this investment strategies, should be taken into

account the internal specifications of the company and its investment profile. First of

all, must be considered that for all five strategies the investment value is different from

the initial. When this difference is positive, it should be studied whether it is possible,

or not, to transfer more money to be invested in the portfolio. When this difference

is negative, the amount is anyway invested in cash, so it should be studied the impact

this has on the remaining risks of the standard formula. To the strategies in which

the SCRmarket is greater than the initial, which implies an increase in the SCR , it is

necessary to examine whether the company has the possibility of increasing the value

of this fund that is intended to absorb future losses although it is possible to increase
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the net income from investment returns. In addition to that, with the introduction of

Solvency II , insurance companies must monitor, at all time, their solvency ratio which

should be greater than 100% , ie, to put into practice the specified above strategies

is necessary that the available capital funds the solvency capital requirement. A good

strategy is to have a higher level for the solvency value, for example 150% , since it

demonstrates the healthy financial situation of the company and because it is seen as a

better protection against adverse events. At last, it depends on the weight given to each

variable by the insurer, if it is more critical to reduce the SRCmarket and not as much

important to have an higher expected profit or higher RoRAC.

Figure 11 plots the allocations per sub-asset class of the five investment strategies

considered. First, we notice that most portion of amount investment is allocated to

Global Equities and Absolute Return Bonds. This can be explained by the fact that

these sub-classes are composed by more assets and due to the reason that they have an

higher rate of return comparing with the inital strategy. Investing a substantial amount

in these two asset sub-classes allows a diversified investment policy, since they represent

a large share of our portfolio (71%). On strategy number 2, there is a higher exposure to

global equities, which justifies the amount for the SCRmarket, because we are increasing

the exposure to equity risk, and the wide boost in the expected profit, since this sub-class

has an higher return compared to absolute return bonds. A comparison between the

initial allocation of the portfolio, Figure 3, shows that an investment strategy goes by

reducing the exposure to the sub-classes Property and Index-Linked Euro Government.
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Global equities
83%

Absolute Return Bonds (9%)
Others2 (8%)

(a) Strategy no. 2

Absolute Return Bonds

35%

Euro Corporate bonds (>10 years) (7%)
Eurozone Equities (4%)

Fixed Interest euro govt Bonds (>10years) (4%)

Global equities

43% Index-Linked euro govts (AS) (3%)

Others3 (8%)

(b) Strategy no. 3

Global equities
41%

Absolute Return Bonds
41%

Euro Corporate bonds (>10 years) (9%)
Others4 (9%)

(c) Strategy no. 4

Absolute Return Bonds

33%

Global equities

52%

Cash (5%)
Others5 (5%)
Euro Corporate bonds (>10 years) (5%)

(d) Strategy no. 5

Absolute Return Bonds
37%

Euro Corporate bonds (>10 years) (6%)
Fixed Interest euro govt Bonds (>10years) (3%)

Global equities
47% Others6 (4%)

Eurozone Equities (3%)

(e) Strategy no. 6

Figure 11: Alocation of the amount invested in each sub-asset class for the five strategies

1Euro Corporate Bonds (>10 years) (2%), Eurozone Equities (2%), Index-Linked Euro Government
(1%), Fixed Interest Euro Government Bonds (>10 years) (1%), Cash (1%), Others (1%)

2Property (2%), Eurozone Equities (2%), Fixed Interest Euro Government Bonds (>5 years) (1%),
Cash (1%), Emerging Market Debt (2%)

3Eurozone Equities (2%), Index-Linked Euro Government (2%), Fixed Interest Euro Government
Bonds (>5 years) (1%), Fixed Interest Euro Government Bonds (>10 years) (2%), Cash (2%)

4Eurozone Equities (1%), Index-Linked Euro Government (1%), Fixed Interest Euro Government
Bonds (>10 years) (1%), Property (3%)

5Index-Linked Euro Government (1%), Fixed Interest Euro Government Bonds (>5 years) (2%), Cash
(1%)
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5 Conclusions

In this paper we propose an approach to define an investment strategy for a stylized

non-life insurance company. The procedure involves multi-objective optimization, to

generate a set of investment strategies. We propose four problems to solve jointly for

the optimal capital requirement and its optimal portfolio expected profit. Given equality

constraints are hard to satisfy for a GA, we do not consider the restriction that the sum

of the weighs invested must sum 1, but different reformulations of the initial problem.

Each model is constructed based on the MOP to maximize the E[P ] and minimize

the SCRmarket. We begin by consider the initial optimization problem without any

constraint and we normalize the weigh of each asset to comply with the restriction that

all the available amount must be invested. Based on the results, we then consider the

problem with a restriction for the SCRmarket value. The nature of the new optimization

impossible the use of normalization, the same for the next two models. To overcome the

difficulties of the investment amount we add another objective function - maximize the

investment amount. For this models, we also consider a risk target for the SRCmarket,

with different values, choose according to the results obtain.

The results show that it is possible to define a strategy considering the new regime for

insurance companies, as it is obtained a set with five alternative investment strategies.

We found that to improve the initial investment strategy, the exposure to the sub-

classes of Propriety and Index-Linked Euro Government should be reduced, in return

for a strategy with more focus on Absolute Return Bonds and Global Equities.
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5 Conclusions

Under Solvency II, when splitting the assets by the CIC there are fifteen categories,

and our study only contemplate eight classes. Therefore, future studies should include:

Structured Notes, Futures, Call Options, Put Options, Swaps, Forwards and Credit

Derivatives. Also, remaining risks of the standard formula use to compute the capital

requirements of the company must be taken into account in setting the optimal SCR.

A limitation to our study is the use of NSGA-II, since the optimal solutions obtained

with this algorithm may not be Pareto optimal. We can only guarantee that none of the

solutions generated dominates the others.
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