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Abstract

This thesis is concerned with a pricing model of renewable energy certificates. We

study a stochastic model based on a system of forward-backward stochastic differential

equations with two stochastic factors. The forward processes are the accumulated re-

newable energy certificates and the renewable energy production rate, while the back-

ward process is the certificate’s price. This setting allows us to derive a non-linear

partial differential equation for the price. The first step in finding a numerical solution

for that equation is its linearization via a duality algorithm. To solve the obtained

linearized problem, we then use a characteristics scheme in time with finite differences

discretization. Finally, the convergence of the algorithm is checked, alongside its ap-

plication to a real world problem and an analysis of the equation’s sensitivity to its

parameters.

Keywords: Renewable Energy Certificates; Forward Backward Stochastic Differ-

ential Equations; Non-Linear Partial Differential Equations; Characteristics Scheme;

Environmental Quantitative Finance.

JEL Codes: C60; C61; C63; C65; C69.
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Chapter 1

Introduction

Last year, the globe watched unprecedented news: we are now more than 8 billion

(United Nations, 2022). The developments of mankind over the past decades have

been unparalleled, and that is not just measured by population size. According to the

World Bank, approximately 1.4 billion people have been lifted out of the $2.15 per day

poverty line in the past three decades (World Bank, 2023).

As an immediate result, energy consumption has risen across the world. On the

supply side, the International Energy Agency estimated in 2021 that the world’s main

energy source is oil, as it composes more than 30% of the global share of total energy

supply. Coal and natural gas are the close second and third on the list, respectively.

Renewable energy accounts to less than 15% of the current energy supply, and OECD

countries’ efforts to cut back on the usage of coal have been outweighed by a heavily

coal-dependent China. However, there is a general trend to adopt renewable sources

of energy with the production of, for example, hydroelectricity, wind electricity, and

solar photovoltaic electricity (International Energy Agency, 2021).

The problem with non-renewable energy exceeds its inevitable end; it is also pollu-

tant. Since the Industrial Revolution, as a by-product of the aforementioned economic

success, the concentrations of greenhouse gases have increased due to human activi-

ties. Because of the implications of global warming, world leaders came together and, in

1997, the Kyoto Protocol was adopted. The main objective of the Kyoto Protocol was

to address climate change by reducing the emission of greenhouse gases that contribute

to global warming. It was initially signed by 192 countries, but the United States

(USA), the world’s largest emitter of greenhouse gases, never ratified the agreement.

Canada withdrew from the protocol in 2012, and Russia, Japan, and New Zealand did

not participate in the second commitment period. Nevertheless, the agreement estab-
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2 Pricing Renewable Energy Certificates

lished a carbon trading system that allows countries that have exceeded their targets

to purchase emissions credits from other countries that have reduced their emissions

below their targets (United Nations, 1997).

To comply with this goal, the European Union (EU) established an Emissions

Trading System (ETS) in 2005. It has led to emission reductions and increases in clean

innovation without losing competitiveness and thus carbon markets were implemented

worldwide (Chassagneux et al., 2017). Over the past decade, pricing mechanisms of

carbon permits have been studied. Namely, Forward-Backward Stochastic Differential

Equations (FBSDEs) are introduced in pricing models in Carmona et al. (2012); a

similar model is used in Howison and Schwarz (2012) and the focus is on the Partial

Differential Equation (PDE) representation.

Another relevant tool to implement green policies is the use of Renewable Energy

Certificates (RECs), often called Green Certificates (GCs) in Europe. These are es-

pecially useful in the USA, where there is no national carbon market. Nevertheless,

REC markets are also emerging in Europe due to the challenges that arise from an

oversupplied European carbon market, and are well established in Australia and India

(Coulon et al., 2015). Instead of a cap-and-trade system such as the EU ETS, RECs

provide a market-based alternative. When renewable energy generators fulfil specific

criteria, they obtain a REC for a designated unit, usually 1 MWh of renewable elec-

tricity generated. This REC can be sold to a Load-Serving Entity (LSE) that must

meet an annual target for procuring a certain percentage of renewable electricity. If

that entity fails to fulfil this quota, they incur a penalty known as the Alternative

Compliance Payment (ACP) (Baamonde-Seoane et al., 2021). In this way, RECs can

be quite useful in the companies’ investment strategies. On one hand, buyers can cover

their requirements of generating green energy by purchasing RECs instead of making

a big investment to produce green energy themselves; on the other hand, sellers can

finance their renewable energy installations by selling RECs (Baamonde-Seoane et al.,

2021).

Academic studies on REC markets are more recent than research on cap-and-trade

systems for carbon markets (Coulon et al., 2015). While there are similarities, carbon

and REC markets exhibit some differences, namely on the source of uncertainty and

the regulator’s stipulations. In REC markets, uncertainty comes from the certificate

supply driven by energy generation processes whereas in carbon markets it arises from

allowance demand. Besides that, in the former case the regulator determines demand

(requirement) rather than supply (cap) (Baamonde-Seoane et al., 2021).
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In this thesis, we assume that the price of these certificates depends on two stochas-

tic factors: the accumulated RECs and the renewable energy production rate. So, a

coupled system of FBSDEs to value RECs is proposed and the associated PDE is de-

rived. As it will be shown, the PDE we derive is a convection-diffusion equation, which

are widely used in Mathematical Finance as they model, for instance, the behaviour

of one-factor option pricing problems (Duffy, 2006). However, the PDE shows some

intricacies, as it is nonlinear (more precisely, semilinear) and degenerate.

The PDE’s non-linearity will be tackled following the work by Baamonde-Seoane

et al. (2021). The semilinear term is written in terms of a maximal monotone operator

that introduces a nonlinear system which is solved by a fixed point iteration.

To address the fact that the PDE is degenerate, we also follow the work of Baamonde-

Seoane et al. (2021) and consider it as a limit case of a convection-dominated problem.

These problems are common in fluid dynamics applications and impact the stability of

numerical schemes. A good review of convection-dominated problems can be found in

the review article by Cockburn and Shu (2001). The authors highlight that finite dif-

ference methods are only first-order accurate when the solution is smooth and generate

spurious oscillations around the discontinuities which impact in a non-trivial way the

convergence of the method due to the non-linear nature of the equation. The inaccu-

racy of finite difference methods in convection-dominated problems is also mentioned

in Duffy (2006). To overcome such difficulties, we will use a semi-Lagrangian numeri-

cal scheme proposed by Baamonde-Seoane et al. (2021), which is especially suited for

convection-dominated problems.

To achieve the goals here proposed, this thesis is structured as follows: after this

introduction, Chapter 2 presents the stochastic model for RECs pricing. The numerical

method to solve the PDE that arises from that model is presented in Chapter 3, whose

results are shown in Chapter 4. In the fourth chapter we will also perform a sensitivity

analysis of the parameters in the model that have a real-world interpretation. Lastly,

we summarize the results.





Chapter 2

A Framework to Model the Price of

Renewable Energy Certificates

In this Chapter, we introduce the mathematical framework and the stochastic mod-

els that allow us to price RECs. First, we mathematically define the market in which

we will operate. We also see how regulatory measures enable a clear determination of

the certificate’s price at compliance date. Secondly, we demonstrate how the arbitrage-

free price of a REC appears as the solution to a PDE, after following the approach of

using a coupled system of FBSDEs.

2.1 Market Setup

We consider a finite time horizon [t0, T ], where T ∈ [t0,∞). To simplify our initial

setup, we identify T as the single compliance date, but we later introduce multiple com-

pliance periods. Following the setting of Schwarz (2012), let (Ω,F , (Ft)t∈[t0,T ],P) be a

filtered probability space satisfying all the usual assumptions. Note that (Ft)t∈[t0,T ] is

generated by a standard Brownian motion (Wt)t∈[t0,T ] and P is the real-world measure.

We also work under the principle of no arbitrage. Then, by the First Fundamental

Theorem of Asset Pricing (see, for example, Björk (2020, chap. 11)), there exists a

equivalent martingale measure (EMM) Q. Then, it is a matter of choosing the appro-

priate EMM (we refer the reader to Cont and Tankov (2003) for a detailed explanation).

However, the local mean rate of return of any derivative price process is the risk-free

interest rate under a EMM, which is our foremost concern.

5



6 Pricing Renewable Energy Certificates

2.2 Derivation of a Pricing Equation

To model the price of a REC we assume it is a stochastic process, which is denoted

at time t by Pt. Following the work of Baamonde-Seoane et al. (2021), we assume it

depends on two stochastic factors whose values are known at an initial time t0: the

renewable energy generation rate and the accumulated number of certificates, denoted

by Gt and Bt, respectively.

The renewable energy generation rate is mainly driven by weather patterns and

the construction of new infrastructure. Moreover, the basic and classical model for

temperature dynamics is the Ornstein-Uhlenbeck (OU) model (Benth et al., 2008).

This is basically a mean-reverting autoregressive model with lag 1 in continuous time.

The exponential of an OU process is also the classical stochastic model for the spot

dynamics of commodity prices, introduced by Schwartz (1997). The fact that it is a

mean-reverting and strictly positive process makes it a good candidate to model the

renewable energy generation rate. So, we take Gt = exp
(
G̃t

)
, where G̃t is an OU

process that satisfies the following forward SDE:

G̃t = g0 +

∫ t

t0

αg

(
f(s) +

βg
αg
Ps − G̃s

)
ds+

∫ t

t0

σg dW 0
s , for t ∈ [t0, T ]. (2.1)

Note that W 0
t is a standard Ft-adapted Q-Brownian motion and g0 ∈ R. Moreover,

we take a constant volatility σg and the drift features a mean reversion speed αg and a

parameter, βg, that controls the feedback from the REC price. It captures the tendency

to install new renewable energy production infrastructure when REC prices are high.

This is an immediate feedback, as discussed and compared with lagged feedbacks in

Coulon et al. (2015). The authors argue that although a lagged feedback is more

reasonable since building the aforementioned infrastructure takes time, an immediate

feedback preserves the main features of the model and simplifies computations.

The drift also includes a deterministic function f , which is a linear combination of

sine and cosine functions to represent the influence of weather on REC prices. The idea

of a deterministic function to add seasonality that represents the influence of weather

conditions to the model is also considered in Coulon et al. (2015). It has the following

form:

f(t) = a1 sin(4πt) + a2 cos(4πt) + a3 sin(2πt) + a4 cos(2πt), (2.2)
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where the coefficients ai ∈ R, i ∈ {1, 2, 3, 4}. This will be the function that is incorpo-

rated into our model.

As for the accumulated number of RECs, it is simply the sum in continuous time

of the renewable energy generation rate:

Bt =

∫ t

t0

Gs ds , for t ∈ [t0, T ]. (2.3)

Since accumulation is measured from the start of the compliance period, we have

Bt0 = 0. Moreover, Bt is a non-decreasing process, which makes sense intuitively

because it is a cumulative quantity.

2.2.1 Single Compliance Period

From a financial point of view, it is clear that in a one-period market the value of the

certificate at the time of compliance can only take two values: in case the entity fails

to comply with the requirements, the certificate price is equal to the ACP; otherwise,

in the event of compliance, it is equal to zero. Let πT be the ACP at compliance time.

Therefore,

PT := ψ(BT ) = πT1[0,RT )(BT ). (2.4)

Under the principle of no arbitrage, the discounted REC price is a martingale

under a risk-neutral measure Q. As mentioned before, that measure exists but it is

not necessarily unique because we do not assume the market is complete to keep it as

general as possible. However, the local mean rate of return of the REC price process is

the risk-free interest rate under a EMM. Therefore, we choose a measure Q that checks

this condition, and the price of the certificate at time t is uniquely determined by

discounting the conditional expectation of its terminal value (see, for example, Björk

(2020)). Thus, for t ∈ [t0, T ] and considering a constant risk-free interest rate r,

Pt = e−r(T−t)EQ [ψ(BT ) | Ft] . (2.5)

After this step, we make use of the Martingale Representation Theorem to get the

following expression for the price process:

Pt = πT1[0,RT )(BT )− r
∫ T

t

Ps ds−
∫ T

t

Z0
s dW 0

s , (2.6)
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where Z0
t is some unique, Ft-adapted and square integrable process. We refer the

reader to the Appendix for the details of this derivation.

Recalling equations (2.1), (2.3), and (2.6), we conclude that the REC pricing prob-

lem consists on the following system of FBSDEs for t ∈ [t0, T ], written in differential

form:


dG̃t = αg

(
f(t) + βg

αg
Pt − G̃t

)
dt+ σg dW 0

t , G̃t0 = g0,

dBt = exp
(
G̃t

)
dt , Bt0 = 0,

dP t = rPt dt+ Z0
t dW 0

t , PT = πT1[0,RT ) (BT ) .

(2.7)

This system of equations resembles those considered to price carbon emission al-

lowances in Howison and Schwarz (2012), Schwarz (2012), and Bento (2022). We

highlight that the result of existence and uniqueness of a solution presented in Schwarz

(2012) is extended in Bento (2022) for cases where the drift coefficient of the first for-

ward SDE depends explicitly on time, which is the case in (2.7). However, the system

in (2.7) is more complex, as the first forward SDE is coupled with the backward SDE,

which is not the case in the equations considered to price carbon allowances by the

aforementioned authors. Therefore, it is not trivial to use the ideas in Bento (2022) to

arrive at a similar result for our system of FBSDEs.

Nevertheless, we assume that a solution for (2.7) exists, as in Baamonde-Seoane

et al. (2021). Following the authors’ computations (which are fully undertaken and

explained in the Appendix), we arrive at the PDE for the price function P = P (t, B, G̃)

associated to the system in (2.7):

L1[P ] =

[
∂

∂t
+

1

2
σ2
g

∂2

∂G̃2
+ αg

(
f(t) +

βg
αg
P − G̃

)
∂

∂G̃
+ exp

(
G̃
) ∂

∂B
− r
]
P = 0.

(2.8)

Recalling that the REC value at maturity is given by (2.4) in a single compliance

period, then we can define a final value problem joining the previous PDE with the

terminal condition

P (T,BT , G̃T ) = πT1[0,RT )(BT ). (2.9)
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2.2.2 Multiple Compliance Periods

The results presented in the previous subsection can be extended to an arbitrary

number of periods, as in Baamonde-Seoane et al. (2021) and in Schwarz (2012). To

address this case, let γ be the number of life years of the REC, i.e., the number of

years since it was issued for which it is still valid to be considered for compliance.

At maturity T , the price of the certificate is still equal to the payoff defined in

(2.4). However, at each compliance date Ti, i = 1, . . . , γ − 1, we must impose a jump

condition. At compliance date, the LSE either does not have a sufficient number of

RECs and incurs in an ACP, or the number of RECs is greater than the requirement

and the LSE uses them.

Let Ri and πi be, respectively, the requirement and the ACP at time Ti. Moreover,

let T+
i be the time instant immediately after Ti. The REC value at the compliance

date Ti, i = 1, . . . , γ − 1 is

P (Ti, B, G̃) = max
[
πi1[0,Ri)(B), P

(
T+
i ,max(B −Ri, 0), G̃

)]
. (2.10)

Notice that equations (2.8) and (2.10) define a sequence of linked final value prob-

lems that is solved for each i = γ − 1, . . . , 1.





Chapter 3

Numerical Method

In the previous Chapter, we have posed the final value problems to price RECs

according to our model in both the single and multiple period cases. Since there are

no analytical solutions for these problems, in this Chapter we revamp the numerical

scheme and algorithm presented in Baamonde-Seoane et al. (2021) to approximate

them.

First, notice that the natural domain to define the PDE (2.8) is (t0, T )× R+ × R.

However, the numerical solution requires a bounded domain, so it must be truncated.

Moreover, the boundaries must be chosen in a way that the solution’s accuracy is

not affected in a region of financial interest. This is a common approach in option

pricing problems and known as introducing a “far-field condition” (Duffy, 2006). In this

Chapter, we establish the boundaries of the truncated domain and impose appropriate

conditions at those spatial boundaries.

Secondly, we highlight the intricacies of the PDE (2.8). It is semilinear because the

coefficient of the first order derivative with respect to G̃ depends on P (the dependent

variable), and it is also degenerate. To address the nonlinear term, in Baamonde-

Seoane et al. (2021) the authors write it in terms of a maximal monotone operator and

then apply a duality method. As for the degeneracy of the PDE (2.8), we think of it

as a limit case of a convection-dominated problem. This makes it suitable to apply

a semi-Lagrangian numerical scheme, where we simultaneously discretize the terms of

the first order derivatives with respect to time and to B. Together with a Crank-

Nicolson scheme, this method will result in a system of equations that must be solved

at each time step. Therefore, a fixed point algorithm to tackle the resulting system is

also presented in this Chapter.

11



12 Pricing Renewable Energy Certificates

3.1 Treating the Nonlinear Convective Term

In Baamonde-Seoane et al. (2021), the authors treat the nonlinear convective term

with the Bermúdez-Moreno algorithm (see Bermúdez and Moreno (1981)), which per-

forms a Yosida regularization of a maximal monotone operator.

This technique was also used in Arregui et al. (2005), but the nonlinear term is on

the diffusion part. We introduce the maximal monotone operator:

m(P ) =

0, if P < 0,

P 2, if P ≥ 0.
(3.1)

So, we can write the PDE (2.8) in terms of the maximal monotone operator

(Baamonde-Seoane et al., 2021):

∂P

∂t
+
σ2
g

2

∂2P

∂G̃2
+ αg

(
f(t)− G̃

) ∂P
∂G̃

+
βg
2

∂m(P )

∂G̃
+ exp

(
G̃
)∂P
∂B
− rP = 0. (3.2)

We also introduce θ, an additional unknown, based on the duality technique devel-

oped in Bermúdez and Moreno (1981):

θ = (m− ωI)(P ), (3.3)

where ω ∈ R+ is a constant parameter and I is the identity operator.

Let λ be another parameter such that λω < 1. The Yosida approximation mω
λ

of the operator mω = m − ωI appears by using the Bermúdez-Moreno lemma from

Bermúdez and Moreno (1981), as we can get the equivalence

θ = (m− ωI)(P ) ⇐⇒ θ = mω
λ(P + λθ). (3.4)

As for the choice of the parameter λ, the optimal choice for convergence with the

same nonlinear term but in the diffusion part was found in Arregui et al. (2008) to

be given by λ = 1/2ω. With this choice, the Yosida approximation can be computed

(Arregui et al., 2005):

mω
λ

(
P +

θ

2ω

)
=

−θ − 2ωP, if P + θ/2ω ≤ 0,

θ + 2ωP + ω2 − ω
√

4θ + 8ωP + ω2, if P + θ/2ω ≥ 0.
(3.5)

Now, we introduce the linear differential operator
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L2[P ] =

[
∂

∂t
+
σ2
g

2

∂2

∂G̃2
+ αg

(
f(t)− G̃

) ∂

∂G̃
+
βgω

2

∂

∂G̃
+ exp

(
G̃
) ∂

∂B
− r
]
P (3.6)

and see that we can write (3.2) in an equivalent form (Baamonde-Seoane et al., 2021):

L2[P ] = −βg
2

∂θ

∂G̃
. (3.7)

Recalling the equivalence stated in (3.4), the PDE (3.7) is coupled with the non-

linear equation

θ = mω
λ(P + λθ). (3.8)

Clearly, equations (3.7) and (3.8) constitute a nonlinear system. As we mentioned

before, we will solve it following the work of Baamonde-Seoane et al. (2021) by us-

ing a fixed point iteration, which we will describe in a forthcoming subchapter after

discretizing the problem.

3.2 Domain Truncation and Boundary Conditions

As we mentioned before, we must consider a bounded domain in order to apply a

numerical scheme to solve the PDE (2.8) with the terminal conditions presented in the

previous Chapter.

Recalling that γ is the number of life years of the REC, we can rewrite the initial

domain of the PDE (2.8) as Ω̄∗ = (T−γ, T )×R+×R. Now, let b̂, ḡ ∈ R be large enough

numbers and consider the truncated bounded domain Ω̄ = (T −γ, T )× (0, b̂)× (−ḡ, ḡ).

We further introduce the change of variables

B̂ =
B

b̂
, Ĝ =

G̃+ ḡ

ĝ
, (3.9)

with ĝ = 2ḡ. Under the new variables (t, B̂, Ĝ), we finally have the truncated domain

Ω∗ = (T − γ, T )× (0, 1)× (0, 1) where we will apply a numerical scheme.

This change of variables clearly impacts the way the PDE (3.7) is written. To see

this, we introduce a more convenient notation for the variables:

y0 = t, y1 = B̂, y2 = Ĝ, (3.10)

and define the following sets:
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Ω∗ =
2∏
i=0

(
yi, ȳi

)
, Γ∗ = ∂Ω∗,

Γ∗,−i =
{
y ∈ Γ∗ : yi = yi

}
, Γ∗,+i = {y ∈ Γ∗ : yi = ȳi} , i = 0, 1, 2.

(3.11)

The operator presented in (3.6) can be rewritten in the following form (please check

the Appendix for the details of the derivation):

L2[P ] =
2∑

i,j=0

aij
∂2P

∂yi∂yj
+

2∑
i=0

bi
∂P

∂yi
− rP, in Ω∗, (3.12)

where

A = (aij) =


0 0 0

0 0 0

0 0
σ2
g

2ĝ2

 ,

~b = (bi) =


1

1

b̂
exp (y2ĝ − ḡ)

αg

ĝ

(
f (y0)− (y2ĝ − ḡ) + βgω

2αg

)
 .

Following the work of Baamonde-Seoane et al. (2021) and Olĕınik and Radkevič

(1973), we impose Neumann boundary conditions at the following spatial boundaries:

∂P

∂y1

= 0, on Γ∗,+1 ,

∂P

∂y2

= 0, on Γ∗,−2 ∪ Γ∗,+2 ,

(3.13)

as well as the final condition as in (2.9) at the boundary y0 = T in the single period

case. In the multiple period case, the condition (2.10) is analogously applied but at

the time boundaries y0 = Ti.

3.3 Defining the Numerical Method

As mentioned before, here we revisit the numerical method introduced in Baamonde-

Seoane et al. (2021). The first step is to appropriately discretize the PDE (3.7). We

will do so at the same time as we introduce the numerical scheme because the reason-

ing behind the proposed discretization becomes very intuitive. Then, we devote our

attention to the numerical solution of the system defined by (3.7) and (3.8).
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3.3.1 Domain Discretization and Finite Differences Scheme

We focus on the linear differential operator (3.6) that is used in (3.7) to define the

pricing PDE. That operator is degenerate and to choose an appropriate discretization

scheme, we consider it as a limit case of a convection-dominated problem. These are

covered, for example, in Douglas and Russell (1982). In this paper, the authors combine

finite difference methods with the method of characteristics to address convection-

dominated PDEs. We will apply that idea to our case.

We start by considering a change of the time variable: τ = T − t. This way, τ

represents the time to compliance date and the PDE (3.7) is defined equivalently in

the domain Ω̃ = (0, γ)× (0, 1)× (0, 1).

Then, we revisit the so-called upwind method. It is used in fluid mechanics for

equations similar to (3.7), that is, with diffusive and convective terms and dependent

on time, and utilized in an option pricing context in Vázquez (1998). According to the

author, the departure point of this method is the concept of total derivative, which is

here defined by:

DP

Dτ
=
∂P

∂τ
− 1

b̂
exp
(
Ĝĝ − ḡ

)∂P
∂B̂

. (3.14)

It represents the total (or material) derivative in the direction B̂ associated to the

one-dimensional velocity field

v = −1

b̂
exp
(
Ĝĝ − ḡ

)
,

which does not depend on B̂ but clearly depends on Ĝ.

With the total derivative defined, we notice that we can group the remaining terms

in the PDE (3.7) and define another differential operator in terms of the variables B̂

and Ĝ, using the L2 operator in the form (3.12):

AP =
σ2
g

2ĝ2

∂2P

∂Ĝ2
+
αg
ĝ

(
f(T − τ)− (Ĝĝ − ḡ) +

βgω

2αg

)
∂P

∂Ĝ
+
βg
2ĝ

∂θ

∂Ĝ
− rP. (3.15)

That way, in this set of variables and in the domain Ω̃, the pricing PDE (3.7) is

equivalently represented as

DP

Dτ
−AP = 0. (3.16)
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While the total derivative is in the direction B̂, the differential operator A is in the

direction Ĝ. It contains convective, diffusive, and reactive terms; in fact, the diffusive

and reactive terms are similar to those that appear in the Black-Scholes PDE.

Moreover, and most importantly, the PDE (3.16) splits the differential operator in

the PDE (3.7). This is the cornerstone of the numerical scheme here proposed.

We use a characteristics (or semi-Lagrangian) scheme to discretize in time the term

of the total derivative. This is, again, common in fluid dynamics and other convection-

dominated problems (Douglas and Russell, 1982). In such cases, the characteristic lines

are the trajectories followed by fluid particles as they move through a flow field. These

lines are solutions to the Ordinary Differential Equations (ODEs) that describe the

motion of individual fluid particles. So, we perform a finite difference discretization of

the time derivative along the characteristic lines, as in Baamonde-Seoane et al. (2021)

and detailed in Douglas and Russell (1982).

To do so, we set a total number of time points NT > 0 and a time step ∆τ = γ/NT .

Thus, we have a uniform time mesh {τn = n∆τ}, n = 0, 1, . . . , NT . At each time step,

we know the trajectory χ(s) of a particle subject to the velocity field v through the

point (τn+1, B̂) must satisfy the initial value ODE

dχ

ds
(s) = −1

b̂
exp
(
Ĝĝ − ḡ

)
, χ(τn+1) = B̂. (3.17)

The solution to this problem is exact and known:

χ(s) = B̂ +
1

b̂
(τn+1 − s) exp

(
Ĝĝ − ḡ

)
. (3.18)

Let χn = χ(τn) be the position at the time node τn of the point placed at
(
B̂, Ĝ

)
at time τn+1 and moving according to the velocity field v. Then,

χn(B̂, Ĝ) = B̂ +
∆τ

b̂
exp
(
Ĝĝ − ḡ

)
. (3.19)

Again, we highlight that this position is invariant in the direction Ĝ, because the

velocity field is in the direction B̂ only. So, we can approximate the total derivative:

DP

Dτ

(
τn+1, B̂, Ĝ

)
≈
P
(
τn+1, B̂, Ĝ

)
− P

(
τn, χn(B̂, Ĝ), Ĝ

)
∆τ

. (3.20)

For the differential operator AP term, we use a Crank-Nicolson scheme, which is a

very popular numerical scheme in quantitative finance (see, for example, Duffy (2006)).

After applying it, the following equation is obtained:
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P n+1 − P n ◦ χn

∆τ
−

σ2
g

4ĝ2

[
∂2P n+1

∂Ĝ2
+
∂2 (P n ◦ χn)

∂Ĝ2

]
− αg

2ĝ

(
f(T − τn+1)− (Ĝĝ − ḡ) +

βgω

2αg

)
∂P n+1

∂Ĝ

− αg
2ĝ

(
f(T − τn)− (Ĝĝ − ḡ) +

βgω

2αg

)
∂ (P n ◦ χn)

∂Ĝ

+
r

2

[
P n+1 + (P n ◦ χn)

]
=
βg
4ĝ

[
∂θn+1

∂Ĝ
+
∂θn

∂Ĝ

]
.

(3.21)

To simplify the notation, we have denoted P
(
τn, χn(B̂, Ĝ), Ĝ

)
as P n ◦ χn.

Notice that we have still not carried out the discretization of the variables B̂ and

Ĝ. That is crucial to describe the fully discretized algorithm, but also to compute the

terms P n ◦ χn in (3.21).

Analogously to the time mesh, we introduce uniform finite differences spatial meshes.

Let NB̂ and NĜ be the number of spatial steps in directions B̂ and Ĝ, respectively.

Moreover, let ∆B̂ and ∆Ĝ be the spatial steps corresponding to those variables. Re-

calling that the domain where the PDE (3.16) is defined is Ω̃, we have ∆B̂ = 1/NB̂ and

∆Ĝ = 1/NĜ. So, a generic node of the time-space mesh is represented as (τn, B̂i, Ĝj) =

(n∆τ, i∆B̂, j∆Ĝ) for indices n = 0, 1, . . . , NT , i = 0, 1, . . . , NB̂ and j = 0, 1, . . . , NĜ.

By (3.20), it is clear that P n ◦ χn must be evaluated at each time step. Unlike

Baamonde-Seoane et al. (2021), who use biquadratic interpolation, we compute those

terms using a linear interpolation from price values at the finite-difference mesh points,

as in Vázquez (1998). This is done mainly for simplicity and consistency reasons. First,

since the velocity field v is only in the direction B̂, a biquadratic interpolation would

degenerate into a quadratic interpolation, as the trajectory of a point starting at mesh

node (τn, B̂i, Ĝj) would only suffer changes in the second coordinate. Secondly, a

quadratic interpolation formula requires three mesh points for estimation purposes, so

near the edge of our domain, its accuracy could be compromised. A linear interpolation

is not as sophisticated, but ensures the same accuracy on the entire domain.

Because the velocity field is one-dimensional, P
(
τn, χn(B̂i, Ĝj), Ĝj

)
is located in

the same line in the direction B̂ which passes, namely, by the mesh points P (τn, B̂i, Ĝj)

and P (τn, B̂i+1, Ĝj). So, as Vázquez (1998), we will introduce a restriction (whose

derivation is in the Appendix) for the time step that implies that B̂i < χn(B̂i, Ĝj) <

B̂i+1 for all appropriate values of i and j, which is:

∆τ < e−ḡ b̂ ·∆B̂. (3.22)
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This way, we can consider the linear approximation for all appropriate values of i

and j,

P
(
τn, χn(B̂i, Ĝj), Ĝj

)
≈ αi,jP

(
τn, B̂i, Ĝj

)
+ (1− αi,j)P

(
τn, B̂i+1, Ĝj

)
, (3.23)

with

αi,j =
B̂i+1 − χn

(
B̂i, Ĝj

)
∆B̂

. (3.24)

Using central differences to numerically compute the derivatives in (3.21), one ar-

rives at the full discretization of that problem, for each and all appropriate values of

n, i, and j,

P n+1
i,j − αi,jP n

i,j + (1− αi,j)P n
i+1,j

∆τ
+
r

2

[
P n+1
i,j + αi,jP

n
i,j + (1− αi,j)P n

i+1,j

]

−
σ2
g

4ĝ2


P n+1
i,j+1 − 2P n+1

i,j + P n+1
i,j−1 + αi,j+1P

n
i,j+1 + (1− αi,j+1)P n

i+1,j+1

− 2
(
αi,jP n

i,j + (1− αi,j)P n
i+1,j

)
+ αi,j−1P n

i,j−1 + (1− αi,j−1)P n
i+1,j−1(

∆Ĝ
)2


− αg

4ĝ

(
f(T − τn+1)− (Ĝĝ − ḡ) +

βgω

2αg

)[
P n+1
i,j+1 − P n+1

i,j−1

∆Ĝ

]

− αg
4ĝ

(
f(T − τn)− (Ĝĝ − ḡ) +

βgω

2αg

)
αi,j+1P

n
i,j+1 + (1− αi,j+1)P n

i+1,j+1

− αi,j−1P n
i,j−1 + (1− αi,j−1)P n

i+1,j−1

∆Ĝ


− βg

8ĝ

[
θn+1
i,j+1 − θn+1

i,j−1 + θni,j+1 − θni,j−1

∆Ĝ

]
= 0,

(3.25)

where we simplified the notation for the approximations at the mesh nodes P l
r,s ≈

P
(
τ l, B̂r, Ĝs

)
and θlr,s ≈ θ

(
τ l, B̂r, Ĝs

)
.

We remember that (3.25) is coupled with the nonlinear relation between P and θ

described in (3.8) at each time step, i.e.,

θn+1 = mω
λ

(
P n+1 + λθn+1

)
. (3.26)

So, in the following subchapter we use a fixed point algorithm first presented in

Baamonde-Seoane et al. (2021) to solve this system of equations.
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3.3.2 The Subsequent Fixed Point Algorithm

A fixed point algorithm is suitable for this problem because we are dealing with

a nonlinear system of two equations with two unknowns: at each time step, we must

compute P n+1 and θn+1. The algorithm must first solve equation (3.25) to obtain

P n+1 for a previously computed value of θn+1; next, it must update θn+1 as disclosed

in (3.26) with the more recent value of P n+1. This process must be iterated until a

certain stopping criterion is fulfilled. Hence, we add a superscript to the unknowns:

P n+1,k and θn+1,k represent the kth iteration of the respective variables.

The algorithm, based on Baamonde-Seoane et al. (2021), is sketched as follows:

Step 1 Initialize the variables

n, k ≥ 0, P 0 and θ0 initialized (for example, P 0 = θ0 = 1). 1

Step 2 At each time step, solve the linear system, update θ and check the stopping test

For n = 0, 1, . . . , NT − 1:

(a) Initialize θn+1 for the first iteration

Let θn+1,0 = θn.

(b) Start the fixed point iterations

For k = 0, 1, 2, . . .

i. For a given θn+1,k, we can obtain P n+1,k+1 by solving the linear system

C(Ĝ)P n+1,k+1 = bn. This system has (NB̂ − 1) × (NĜ − 1) unknowns.

If we order the finite differences mesh nodes in lexicographical order,

the matrix C(Ĝ) is block diagonal. It has NB̂ − 1 blocks of tridiagonal

matrices of order NĜ − 1 each. Each one of those matrices is given by:

c1(Ĝ1) c2(Ĝ1) 0 . . . 0

c3(Ĝ1) c1(Ĝ1) c2(Ĝ1)
. . .

...

0
. . . . . . . . . 0

...
. . . . . . c1(ĜNĜ−2) c2(ĜNĜ−2)

0 . . . 0 c3(ĜNĜ−1) c1(ĜNĜ−1)



1At this point, we do not have any reasons to believe the variables should be initialized in a different

way. Nonetheless, we will comment on how this initialization can be different and more efficient in

the subsequent Chapter.
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with:

c1(Ĝj) =
1

∆τ
+
r

2
+

σ2
g

2ĝ2
(

∆Ĝ
)2 ,

c2(Ĝj) = −
σ2
g

4ĝ2
(

∆Ĝ
)2 −

αg

4ĝ
(

∆Ĝ
) (f(T − τn+1)− (Ĝj ĝ − ḡ) +

βgω

2αg

)
,

c3(Ĝj) = −
σ2
g

4ĝ2
(

∆Ĝ
)2 +

αg

4ĝ
(

∆Ĝ
) (f(T − τn+1)− (Ĝj ĝ − ḡ) +

βgω

2αg

)
.

Moreover, computationally, P n+1,k+1 is the vector that contains the

approximation at the kth iteration of the solution at the finite differences

mesh nodes by lexicographical order.

On the right-hand side of the linear system, computationally we have

a vector bn =
(

(bni=1,j), (b
n
i=2,j), . . . , (b

n
i=NB̂−1,j

)
)

. for j = 1, . . . , NĜ − 1.

For each one of the appropriate values of i and j and at each time step,

its components are:

(
bni,j
)

=
αi,jP

n
i,j + (1− αi,j)P n

i+1,j

∆τ
+
r

2

[
αi,jP

n
i,j + (1− αi,j)P n

i+1,j

]
−

σ2
g

4ĝ2
(

∆Ĝ
)2

[
αi,j+1P

n
i,j+1 + (1− αi,j+1)P n

i+1,j+1 + αi,j−1P
n
i,j−1

− 2
(
αi,jP

n
i,j + (1− αi,j)P n

i+1,j

)
+ (1− αi,j−1)P n

i+1,j−1

]
− αg

4ĝ∆Ĝ

(
f(T − τn)− (Ĝĝ − ḡ) +

βgω

2αg

)[
αi,j+1P

n
i,j+1

+ (1− αi,j+1)P n
i+1,j+1 − αi,j−1P

n
i,j−1 + (1− αi,j−1)P n

i+1,j−1

]
− βg

8ĝ
(

∆Ĝ
)[θn+1

i,j+1 − θn+1
i,j−1 + θni,j+1 − θni,j−1

]
= 0,

ii. After computing P n+1,k+1, update θn+1,k+1 with the identity stated in

(3.26):

θn+1,k+1 = mω
λ

(
P n+1,k+1 + λθn+1,k

)
Notice that θn+1,k+1 has the same shape as P n+1,k+1: computationally,

it is a vector with size (NB̂ − 1)× (NĜ − 1) ordered in lexicographical

order.
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iii. Defining a small enough ε > 0 and using the infinity norm, check the

stopping test: ∥∥θn+1,k+1 − θn+1,k
∥∥
∞

‖θn+1,k+1‖∞
< ε

(c) If the stopping test is satisfied, then restart Step 2 with the next time step;

otherwise, go to (b).

An important note about the algorithm above is that it does not include the imposi-

tion of Neumann boundary conditions mentioned in a previous subchapter in (3.13). In

the next Chapter, it will be shown that this numerical method and its implementation

will be tested in a so-called “academic test”, i.e., in a PDE with a known analytical

solution. For that reason, in that test we do not impose Neumann boundary condi-

tions. Instead, we set Dirichlet boundary conditions that are given by evaluating the

known analytical solution at the corresponding boundaries, as in Baamonde-Seoane

et al. (2021). Only after this test, the algorithm is utilized in a real case, in which

Neumann boundary conditions are imposed. Therefore, to ensure that the algorithm

above is a sketch that is adequate for both cases, we do not address the issue of bound-

ary conditions. However, we indicate that we impose such conditions by adding them

directly to the solution at each time step. This is performed by adding two lines and

two columns to each of the tridiagonal matrices that make up the block diagonal matrix

C(Ĝ) and the corresponding entries to the vectors P n+1 and θn+1. Then, we impose

the desired spatial boundary conditions appropriately. As for the boundary condition

referent to compliance dates, it is done directly in the price vector P .





Chapter 4

Results and Discussion

In this Chapter we present and discuss some numerical results after implementing

the pricing model. First, we check the performance of the proposed numerical method

and then we focus on a real world scenario, as in Baamonde-Seoane et al. (2021). Last

but not least, we see how the model reacts to changes in the feedback parameter via a

sensitivity analysis, based on the paper by Coulon et al. (2015).

4.1 Academic Test

We start by running the code we built in Python to implement the numerical method

in a so-called “academic test”, i.e., an example with a known analytical solution. This

is an important exercise not only to test whether the implementation was performed

correctly but also to check the convergence of the numerical method.

To do so, we use the same non-homogenous PDE as Baamonde-Seoane et al. (2021):

L1[P ] = h, (4.1)

where the operator L1 is the one defined in (2.8) and h is given by

h(t, B, G̃) = exp
(

(T − t)BG̃
)[
−BG̃+

1

2
σ2
g(T − t)2B2−

− (T − t)Bαg
(
f(t) +

βg
αg

exp
(

(T − t)BG̃
)
− G̃

)
− exp

(
G̃
)

(T − t)G̃− r
]
.

(4.2)

This way, P (t, B, G̃) = exp
(

(T − t)BG̃
)

is the analytical solution of (4.1).

23
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We also consider the single period case (γ = 1), with T = 1. Moreover, once this is

a purely academic test, we can choose for the domain truncation the values b̂ = ĝ = 1,

and so the PDE problem is posed in the domain Ω̃ = [0, 1]3. We do not include the

seasonality effect in this test, and so we take f = 0. The remaining parameters in the

PDE (4.1) are presented in Table 4.1 and taken from Baamonde-Seoane et al. (2021)

and Coulon et al. (2015).

Table 4.1: Parameters in the PDE for the academic test.

Parameter T γ αg βg σg r

Value 1 1 2 1.27×10−3 0.1863 0.02

As for boundary conditions, we impose Dirichlet boundary conditions on Γ∗,+1 , Γ∗,−2

and Γ∗,+2 , and also the terminal condition at time t = T by evaluating the analytical

solution at the corresponding boundaries.

Following Baamonde-Seoane et al. (2021), we take the parameter ω = 2 for the

numerical method and ε = 10−5 for the stopping criterion. Like the authors, to assess

the performance of the numerical method we consider a constant relation between

spatial and time steps, but it must check the inequality (3.22).

To ascertain the error when approximating the analytical solution by using the

numerical method, we use the infinity norm at each time step n to compute the relative

error between the exact and numerical solutions

υ∞n (∆τ) =
max
i,j

∣∣∣P (τn, B̂i, Ĝj

)
− P n

i,j

∣∣∣
max
i,j

∣∣∣P (τn, B̂i, Ĝj

)∣∣∣ , (4.3)

and next, we take the maximum of the errors defined for each time step in (4.3):

Υ∞(∆τ) = max
n

(υ∞n (∆τ)) . (4.4)

For each step size ∆τ , the radius of convergence is

R(∆τ) =
Υ∞(∆τ)

Υ∞(∆τ/2)
, (4.5)

and the empirical order of convergence is given by log2(R).
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Table 4.2: Relative errors and order of convergence.

Time Steps Space Steps Υ∞(∆τ ) R(∆τ ) Order

30 16 0.028153 - -

60 32 0.014045 2.0045 1.0032

120 64 0.007251 1.9370 0.9538

240 128 0.003619 2.0036 1.0026

The results obtained after implementing the numerical method are summarized in

Table 4.2.

We note that these results are very similar to those obtained in Baamonde-Seoane

et al. (2021). In fact, the small differences that can be reported in terms of relative

errors may be due to the fact that we used a linear interpolation to approximate the

values P
(
τn, χn(B̂, Ĝ), Ĝ

)
, while the authors used a quadratic interpolation formula.

We also note that our script takes more time to run; in a laptop whose CPU is a Intel(R)

Core(TM) i7-7500U @ 2.70GHz with 12GB of RAM, the last row of this academic

test took approximately 30 minutes to conclude. In spite of its simplicity, Python is

notoriously slower at numerical computations and simulations than MATLAB (see, for

example, Guedes and Nepomuceno (2019)), which was the programming language of

choice in Baamonde-Seoane et al. (2021). Besides, in that study, the CPU and RAM

units were more powerful.

However, most importantly, we report that a first order convergence is achieved as

in Baamonde-Seoane et al. (2021).

4.2 Real Case

In this case, we also follow the work of Baamonde-Seoane et al. (2021) and analyse

the evolution of REC prices in a real world scenario. That scenario is the one featured

in Coulon et al. (2015) for a particular kind of RECs: the solar renewable energy

certificates (SRECs) in the New Jersey market. In that paper, the authors construct

a valuation model very similar to the one we presented earlier, calibrate it to the New

Jersey market data and backtest it.

Given the similarities between the models, we operate similarly to Baamonde-

Seoane et al. (2021) and consider the same parameters that were calibrated in Coulon
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et al. (2015). So, we will value RECs with maturity T = 13, corresponding to the end

of the energy year of 2013, which is May 31, 2013. We also consider the lifespan of

the certificate is three years, that is, γ = 3. That means that the beginning of the

certificate is t0 = 10, which corresponds to the date of May 31, 2010. Recall that

after changing the time variable, this date is equivalent to τ = 3. The first compliance

date is one year after the start of the “life” of the certificate, i.e., May 31, 2011, or

equivalently, τ = 2 and t = 11.

Some practical information on the model is condensed in Tables 4.3 and 4.4. Table

4.3 encapsulates the parameters considered for the PDE (3.7), including for the season-

ality function (2.2), retrieved from Coulon et al. (2015), whereas Table 4.4 showcases

the values of the requirement (Ri) and ACP (ACPi) at the end of each energy year.

Table 4.3: Parameters considered for the PDE in the real test.

Parameter αg βg σg r a1 a2 a3 a4

Value 2 1.27× 10−3 0.1863 0.02 -0.1209 0.0900 0.2151 0.3859

Table 4.4: Requirements and ACPs for each energy year in the real test.

Energy Year Ri ACPi

2011 306000 675

2012 442000 658

2013 596000 641

As for the parameters that arise from the domain truncation, we choose b̂ = 7×105

and ḡ = ln(7× 105). This allows to grasp the behaviour of the numerical solution in

an appropriate and relevant domain for the values of the stochastic factors.

Regarding the parameters of the discretization, we take the time step ∆τ = 1/400

and the spatial steps ∆B̂ = ∆Ĝ = 1/32. As in the academic test, we take the parameter

ω = 2 for the duality method and ε = 10−5 for the stopping criterion in the fixed point

algorithm.

After implementing and running the script that numerically solves the PDE, we

return to the original variables (t, B,G) and plot the numerical results.
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As in Baamonde-Seoane et al. (2021), for comparison reasons, out of the entire set

of solutions in time we obtained, we choose to present the REC price curves for two

moments: eight (Figure 4.1) and four (Figure 4.2) months before maturity.

Figure 4.1: REC price eight months before maturity.

Figure 4.2: REC price four months before maturity.

In both cases, the price of the certificate takes values between zero and the value

of the ACP, which makes sense economically; in case the LSE fails to comply with

regulations, it would be unreasonable to pay a premium for the certificate instead of

simply paying for the ACP.
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Also, both plots show the inverse relation between the accumulated number of RECs

and the price: as supply (B) increases, the price decreases, and vice-versa. Again, this

is reasonable, because for a LSE it would make no sense to invest in the purchase

of RECs if it already has accumulated a number of them that allows to comply with

regulations. That way, the demand drops and so does the price. Conversely, if the

number of accumulated RECs does not allow to face regulatory impositions, a LSE’s

demand for RECs will increase, causing their prices to surge.

Similarly, both plots reveal that REC prices react to changes in the renewable

energy generation rate (G). As expected, the greater the renewable energy generation

rate, the lower the REC price. This is because a LSE with greater energy generating

capability is expected to fulfil the regulatory requirements more easily and so has a

lower demand for RECs. Nevertheless, that impact seems to be slightly stronger in

Figure 4.1. In that plot, when B approaches zero, the price increases as in Figure 4.2,

but a rapid increase is offset by high values of the variable G. In Figure 4.2, a high

renewable energy generation rate is not enough by itself to lower the price curve; the

REC prices are equal to the ACP amount even for values of accumulated certificates

close to the requirement. This is because time before compliance date is running out

and energy generation rate has a paramount importance in this period of time.

Furthermore, seeing the figures as a whole, we see the importance of the other factor,

which is time to maturity. As we get closer to compliance date, REC prices tend to

increase when there are not enough accumulated certificates or when the renewable

energy production rate is low. On one hand, this makes sense economically, because in

such cases demand increases, which causes the prices to increase as well. On the other

hand, it is also important to observe and analyse this fact mathematically. Recall

that, at the time of maturity and compliance dates, we have boundary conditions

defined by (2.10), which are plotted as three dimensional Heaviside step functions.

Furthermore, we solve the PDE backwards in time. So, we conclude that the closer we

are to maturity, the more similar the numerical solution is to the maturity boundary

condition. As reported in Baamonde-Seoane et al. (2021), the dynamics of the PDE

push the cross-sectional curves of REC prices versus the accumulated RECs to the left,

which can be also observed in Figures 4.1 and 4.2.

An important note is that the initialization of the price vector in the algorithm

proposed in the previous Chapter is not as arbitrary as one would expect. After

initializing the vector with the appropriate boundary conditions in time, we initialized

the remaining entries of the vector as “transition” states between one boundary and
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the next one. These transition states can be thought of as intermediary values that

smoothly connect one boundary condition to the next. This construction ensures that

our algorithm begins its iterations with a price vector that visually resembles multiple

plots, each transitioning gradually from one step function to the next. Without this

construction, we observed that our algorithm struggled with slow convergence towards

the numerical solution. In some instances, it even triggered another stopping criterion

we implemented to prevent excessive computational iterations (specifically, we set a

limit of 200 iterations per time step). The root cause of this slow convergence lies in

the inherent fixed point nature of our algorithm, as they often heavily depend on the

initial solution. By initializing the price vector with these transition states, we mitigate

this issue. Our algorithm starts with a price vector that is not too far removed from

the expected solution, gradually refining its values over successive iterations. This

initialization aligns with the problem’s dynamics and assists the algorithm in reaching

convergence efficiently.

4.3 Sensitivity Analysis

In the previous subchapter, we analysed the results by observing the price curves in

time with respect to the two stochastic factors considered in our work: the accumulated

number of renewable energy certificates, and the renewable energy generation rate.

However, another exercise that can be done is analysing the sensitivity of the numerical

solution of the pricing PDE to changes in its parameters.

Some parameters of the PDE (2.8), such as the ones that control the amplitude

of the seasonality function and the volatility of the generation process, are calibrated

and backtested in Coulon et al. (2015). The authors have also calibrated the level of

feedback, but it is an interesting exercise to see its influence on REC prices, because it

may impact investment decisions. The parameter βg controls how fast new renewable

energy production infrastructure is installed when REC prices are high. So, seeing

how prices react to different levels of feedback is very relevant economically, because

it can help us better understand the dynamics of the renewable energy market and its

responsiveness to market conditions.

Moreover, our pricing model features a parameter, αg, that controls the mean

reversion speed of the OU process that drives the renewable energy generation rate,

as in Baamonde-Seoane et al. (2021). This parameter is not calibrated by the authors

and seems to serve an ad-hoc purpose, in spite of its relevance in the model. As it
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controls the speed to which the process driving energy generation returns to the mean,

its increase should in theory result in a decrease of the volatility in the renewable energy

generation process. So, it is also worthwhile to investigate how REC prices are sensitive

to changes in this parameter. However, this is a mere mathematical analysis exercise,

because market players cannot change this parameter. For an illustration of that,

consider an over-simplistic case, for instance in SRECs, where it is possible to plausibly

assume that the renewable energy generation rate depends solely on temperature. In

that case, a change in the mean reversion speed would simply be a result of changes in

weather patterns. Clearly, it is not a tunable parameter by market makers, but rather

a characteristic of the market that all participants must be aware of.

To analyse the sensitivity of the model to changes in the parameters αg and βg, we

start by selecting a set of values for them and then replace them in the implementation

of our model. This was done for the feedback parameter, βg, in Coulon et al. (2015),

for the authors’ model. Like in that study, we will see how REC average prices and

their variability changes with the parameters, as well as the total number of RECs

generated. Concerning average prices, our approach is similar to that of the authors.

We simply find a numerical solution for the PDE at each time step and take the average

of all prices computed. For the first elements in the set of values we considered for αg

and βg, we normalize the average price obtained to 100 to compare it with the average

prices found with the remaining elements of the sets. But since our model has a PDE

representation and is not implemented via Monte Carlo simulations like the model in

Coulon et al. (2015), we propose another way of measuring price variability instead of

standard deviation.

As mentioned before, for each time step we have a three dimensional plot of prices

with respect to the two stochastic factors. To measure REC prices’ variability, we

start by considering the prices at a specific mesh node, at all time points. Intuitively,

we proceed by computing the standard deviation of that set of values, again for each

mesh node. Next, we calculate the mean of those standard deviations and use this

result as an indicator of price variability. Although it is a naive approach because it

only encompasses variability for a specific mesh node over time and does not include

variations over different mesh nodes at each time step, it serves its purpose as a measure

of price fluctuations. In fact, if an outside observer goes to the market, what they see

are fluctuations over time, not over two stochastic factors. After computing these

variabilities, we act as described for averages prices, normalising the values in a way

that the first element is 100 on the scale.
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Figure 4.3: The PDE’s sensitivity to mean reversion speed and feedback parameters.

(a) Sensitivity to αg. (b) Sensitivity to βg.

As in Coulon et al. (2015), we also see the impact of changing these parameters in

the number of generated RECs. A greater number of accumulated RECs are associated

with higher levels of renewable energy being generated, which in turn means that

the transition to a greener economy takes place as a faster pace. So, analysing the

sensitivity of the PDE to these parameters is interesting for both regulators and market

makers. Again, we run our implementation with different values for each parameter

and for comparison purposes normalize the values obtained such that the first element

of the set of parameters corresponds to 100 on the scale.

The results obtained after deploying this methodology are depicted in Figure 4.3.

Note that to arrive to the results in Figure 4.3a, we set βg with the same value as in the

previous subchapter. Analogously, in Figure 4.3b, the mean reversion speed parameter

αg is the same as before.

To properly analyse Figure 4.3a, we first recall that in this thesis and in Baamonde-

Seoane et al. (2021) the value considered for the mean reversion speed was αg = 2.

Therefore, the first conclusion to be drawn is that there are no major differences in the

three measures studied around that value. This can be a reassuring fact: in Baamonde-

Seoane et al. (2021), this parameter was not calibrated and is incorporated in the model

in an ad-hoc way, but between αg = 1 and αg = 6, the numerical solution is similar to

the one found with αg = 2. This explains the similarities between our results and the

ones in Coulon et al. (2015), where no mean reversion speed parameter is incorporated.

It is after αg = 6 that the results start being different. Average prices increase and

their variability decreases. This essentially corresponds to a positive shift in the price
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axis and a higher resemblance between plots like the ones in Figs. 4.1 and 4.2 at

different time instants. However, between αg = 1 and αg = 10, virtually no effects on

the number of generated RECs was verified.

Unlike the results of Figure 4.3a, Figure 4.3b expresses some data that can be

relevant for decision-makers. The feedback parameter expresses the tendency to invest

in renewable energy production technology when REC prices are high, so the higher

the feedback parameter, the higher that tendency to respond to REC prices. It is

observed that as the feedback parameter increases, the average REC prices increase

and their variability decreases by as much as 40%. This is a big revelation for LSEs.

Any risk averse individual would be interested in an investment that increases potential

profits (average prices can be interpreted as average annual revenues per REC (Coulon

et al., 2015)) and decreases risk. So, for such an investor, it would make sense to

strongly react to changes in REC prices and install renewable production infrastructure

accordingly. Note that this decrease in variability makes sense financially, as installing

renewable energy production technology serves as a hedge against changes in REC

prices. However, no significant differences in the total number of RECs generated was

registered. This is probably due to the nature of REC prices in the domain chosen:

a higher feedback parameter is associated to more investment in renewable energy

production infrastructure when REC prices are high; when REC prices are low, that

urge to invest in such infrastructure is very reduced. Since our domain comprises both

scenarios (as seen in Figs. 4.1 and 4.2), they seem to cancel out and overall REC

production remains the same.
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Conclusions

The objective of this dissertation was to model the price of renewable energy cer-

tificates, following the work of Baamonde-Seoane et al. (2021). The model aims to

determine a fair value for any time instant since the start of the certificate’s life up

to its maturity, depending on two stochastic factors: the renewable energy generation

rate and the accumulated number of RECs.

We start by presenting comprehensive models for both stochastic factors. We model

the energy production rate as the exponential of an Ornstein-Uhlenbeck process, the

classical model for temperature dynamics (Benth et al., 2008). It includes a seasonality

function to account for the influence of weather patterns in energy production. The

accumulated number of certificates is computed as merely the sum in continuous time

of the renewable energy production rate.

Then, we see how compliance requirements univocally determine a certificate’s price

at compliance time, both in single and in multiple compliance periods. This allows

writing a system of coupled forward-backward stochastic differential equations and the

associated partial differential equation. The solution of this equation is our certificate’s

price.

Given the intricacies of that equation, we then delve into the treatment of its non-

linear convective term and employ a numerical method that addresses its convection-

dominated nature. This was done by using a duality algorithm based on the Yosida

approximation of maximal monotone operators, and then by a characteristics scheme in

the direction without diffusion and a Crank-Nicolson scheme for the remaining terms.

The numerical scheme culminates in a fixed point algorithm.

This algorithm is implemented and then tested in an academic problem with known

analytical solution, where it is seen that it converges with order 1. We then consider

33
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a real REC pricing problem for the New Jersey market and arrive at results already

known in the literature. Our addition to the state of the art is the sensitivity analysis

that is then performed, where we examine the effects of changes in two parameters

in certificates’ prices. The most relevant result with implications for investors is the

impact of an increase in the tendency to install renewable energy production infras-

tructure when certificate prices are high. When that occurs, average prices (and conse-

quently revenue) increases, and prices’ variability decreases. Therefore, any risk-averse

investor would be interested in acting accordingly, tending to react when prices are

high by installing renewable energy production infrastructure.

The results in this thesis still leave plenty of room for future work. More funda-

mental research could focus on a result of existence and uniqueness for the derived

partial differential equation and for the system of forward-backward stochastic differ-

ential equations in (2.7). This last problem is still open because the first forward SDE

is coupled with the backward SDE, which is a more complex situation than the ones

considered in Bento (2022) and Schwarz (2012). On the more practical front, one could

calibrate the model to more recent market data and to different countries. As markets

for renewable energy certificates surge all over the world, this may be a very relevant

exercise for regulators and investors.
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Appendix

Modelling

Derivation of the Pricing SDE

With a non-negative interest rate, equation (2.5) implies that the price process Pt

is bounded with values between 0 and πT . Therefore, EQ [P 2
T ] < ∞. We construct a

filtration FQ
t generated by the Brownian motion W 0

t , which is a Wiener process under

the measure Q. So, the price process is adapted to the filtration.

Thus, by the Martingale Representation Theorem (see, for example, Øksendal

(2003)), there is a unique process Z0
t which is FQ

t -adapted and square integrable such

that

Pt = E[PT ] +

∫ T

t

Z0
s dW

0
s .

We can use the tower property to evaluate the expected value in the previous

equation. On the other hand, under the equivalent martingale measure we can also

write the price process as a diffusion with drift where the drift coefficient is equal to

the risk-free rate, i.e,

dPt = rPt dt+ Z0
t dW 0

t .

Combining the two expressions, one arrives at:

Pt = πT1[0,RT )(BT )− r
∫ T

t

Ps ds−
∫ T

t

Z0
s dW

0
s .

Deriving the Pricing PDE Associated to the FBSDE

Recall our assumption that the pricing function P depends on two stochastic factors:

the accumulated RECs at time t, Bt, and the renewable energy generation rate at the
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same instant, Gt = exp
(
G̃t

)
. Thus, P = P (t, Bt, G̃t).

To get an expression for the dynamics of P with respect to those variables, we can

apply Itô’s formula (e.g., Øksendal (2003)). By applying it, we get:

dPt =
∂P

∂t
dt+

∂P

∂B
dBt +

∂P

∂G̃
dG̃t +

1

2

∂2P

∂G̃2

(
dG̃t

)2

=

(
∂

∂t
+
σ2
g

2

∂2

∂G̃2
+ αg

(
f(t) +

βg
αg
P − G̃

)
∂

∂G̃
+ exp

(
G̃
) ∂

∂B

)
P dt+ σg

∂P

∂G̃
dW 0

t .

On the other hand, under the equivalent martingale measure Q, Pt has a drift

equal to the risk-neutral rate, as it can be seen in the last equation of the system (2.7).

Therefore, the drift coefficient of the previous equation must be equal to the one in

(2.7), which straightforwardly yields the PDE (2.8).

Numerical Methods

Equivalence of Equations (3.6) and (3.12)

This equivalence is derived by a simple usage of the chain rule. Recalling the change

of variables introduced in (3.9), we use the chain rule in Leibniz’s notation to see that

∂P

∂B
=
∂P

∂B̂

dB̂

dB
=

1

b̂

∂P

∂B̂
.

Analogously, the following expressions are derived for the partial derivatives with

respect to Ĝ:

∂P

∂G̃
=

1

ĝ

∂P

∂Ĝ
,

∂2P

∂G̃2
=

1

ĝ2

∂2P

∂Ĝ2
.

In these new variables (see (3.10)), (3.6) is rewritten using the results above:

L2[P ] =
∂P

∂y0

+
σ2
g

2ĝ2

∂2P

∂y2
2

+
αg
ĝ

(
f(y0)− (y2ĝ − ḡ) +

βgω

2αg

)
∂P

∂y2

+
1

b̂
exp(y2ĝ − ḡ)

∂P

∂y1

−rP

Then, (3.12) expresses this equation in a more condensed manner.

Derivation of the Time Step Restriction

Recall that in Chapter 3 we justify how P
(
τn, χn(B̂i, Ĝj), Ĝj

)
is located in the

same line in the direction B̂ which passes, namely, by the mesh points P
(
τn, B̂i, Ĝj

)
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and P
(
τn, B̂i+1, Ĝj

)
. We here derive a restriction for the time step that implies that

B̂i < χn
(
B̂i, Ĝj

)
< B̂i+1, following an idea found in Vázquez (1998).

First, as ∆τ, b̂ > 0 and the exponential function is strictly positive, it is clear by

(3.19) that χn
(
B̂i, Ĝj

)
> B̂i,∀i ∈ {0, 1, . . . , NB̂}, j ∈ {0, 1, . . . , NĜ}. Therefore, we

need to ensure that

χn
(
B̂i, Ĝj

)
< B̂i+1 = B̂i + ∆B̂, ∀i ∈ {0, 1, . . . , NB̂}, j ∈ {0, 1, . . . , NĜ}

⇐⇒ B̂i +
∆τ

b̂
exp

(
Ĝj ĝ − ḡ

)
< B̂i + ∆B̂, ∀i ∈ {0, 1, . . . , NB̂}, j ∈ {0, 1, . . . , NĜ}

⇐⇒ ∆τ <
b̂ ·∆B̂

exp
(
Ĝj ĝ − ḡ

) , ∀j ∈ {0, 1, . . . , NĜ}

Recalling that 0 ≤ Ĝ ≤ 1, the sufficient condition for the inequality above to hold

for all values of j is

∆τ < e−ḡ b̂ ·∆B̂.
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