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Resumo  

 

 

Ao longo dos últimos anos, a tecnologia subjacente a ativos digitais tem sido alvo de 

grandes desenvolvimentos, o que resultou no aumento da sua presença em transações 

financeiras mundiais, proporcionando um valor crescente para a sociedade, servindo 

como meio de troca e como uma classe de ativos de investimento. 

A modelação dos preços de ativos digitais é uma tarefa relevante para os investidores 

institucionais e de retalho, contribuindo para uma informada tomada de decisão numa 

classe de ativos altamente volátil. Apesar da relevância em prever as fortes flutuações 

observadas nesta classe de ativos, esta tarefa é extremamente complexa e depende de 

múltiplos fatores exógenos, tais como a rede blockchain, tendências de mercados 

financeiros e dados macroeconómicos. 

Como simples métodos estatísticos não são capazes de capturar a complexidade das 

dependências temporais, investigadores a recorrem a algoritmos avançados de 

aprendizagem de máquina e aprendizagem profunda para resolver este problema séries 

temporais não estacionárias. 

Este trabalho resulta de um estágio realizado na Klever em parceria com o ISEG no 

âmbito do Mestrado em Métodos Quantitativos para a Decisão Económica e Empresarial. 

Apresentamos uma metodologia para a construção de modelos de aprendizagem profunda 

sequence-to-vector para a previsão do preço, do retorno e do estado direcional do Bitcoin. 

Recorrendo a um completo sistema de engenharia de atributos, esta investigação alcança 

uma precisão de até 90,9% para o estado direcional, um MAPE de até 1.74% para a 

previsão do preço e 0.11 de MAE para a previsão do retorno, alcançando melhores 

resultados que o modelo de referência respetivo a cada problema. 

 

Palavras-chave: aprendizagem profunda, séries temporais, bitcoin, fatores exógenos, 

engenharia de atributos. 
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Abstract: 

 

Over the last years, major developments have been made in cryptocurrency 

technology, resulting in their increased presence in worldwide financial transactions, 

providing increasing value for society by serving as a means of exchange and investment 

asset class. 

Modeling cryptocurrency prices is relevant for institutional and retail investors, 

contributing to informed decision-making in a highly volatile asset class. Despite the 

importance of forecasting the steep fluctuations observed in this asset class, this task is 

extremely complex and relies on multiple exogenous factors such as the blockchain 

network, market trends, and macroeconomic data. 

As simple statistical methods are unable to capture the complexity of temporal 

dependencies, researchers are turning to advanced machine learning and deep learning 

algorithms to tackle this non-stationary time series problem. 

This work is the result from an internship carried out at Klever in collaboration with 

ISEG within the scope of the Master of Quantitative Methods for Economic and Business 

Decision. We present a methodology for building sequence-to-vector deep learning 

models to predict the price, return, and directional state of Bitcoin. Leveraging a 

comprehensive feature engineering system, this research achieves an accuracy up to 

90.9%, a MAPE up to 1.74% for price prediction, and up to 0.11 MAE for return 

prediction, surpassing each task’s respective baseline model. 

 

Keywords: deep learning, time series, bitcoin, exogenous factors, feature engineering. 
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1 Introduction 

 

1.2 Background 

 

Since their initial appearance in 2008, Cryptocurrencies have emerged as an 

alternative investment asset, generally considered one of the most promising types of 

profitable investments, with Bitcoin reaching its highest market capitalization of $ 1.28 

trillion in November of 2021. Nevertheless, this constantly increasing financial market is 

characterized by significant volatility and strong price fluctuations over time. Nowadays, 

cryptocurrency forecasting is generally considered one of the most challenging time-

series prediction problems due to the large number of unpredictable factors involved and 

the significant volatility of cryptocurrencies’ prices, resulting in complex temporal 

dependencies. 

 

1.3 Problem Statement 

 

In the volatile cryptocurrency market context, this study focuses on researching 

forecasting methods to predict daily BTC price, return, and directional state. We aim to 

achieve this through developing and evaluating advanced deep learning models and a 

robust feature engineering process, as the BTC price time series is non-stationary and 

exhibits autocorrelation as shown in Figure 1, revealing the lack of independence between 

values. 
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Figure 1: BTC autocorrelation visualization with a lags value of 50 

 

This research addresses the need for more precise forecasting methods in the digital 

asset domain, which is vital for informed decision-making and market comprehension. 

This work aims to research three different problems, namely a binary classification 

problem, to provide insights into the future direction of BTC price trend, and two 

regression problems, bitcoin price prediction and return forecasting.  

In this research, the predictive modeling for the day-ahead price and trend also 

encompasses both a univariate and multivariate approach. In a univariate approach, only 

the previous price of bitcoin is considered by the predictive models, whereas in a 

multivariate approach, multiple features are considered to forecast the target variable. 

These approaches were included in this research to test if adding more features would 

increase the models’ predictive power or would increase the noise in the data and, 

therefore, decrease the performance of the explored models. 

With the detailed design and evaluation of the forecasting results, data preprocessing 

methods, and feature engineering, this research contributes to the financial time series 

research domain. 
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1.4 Research Methodology 

 

A methodology based on CRISP-DM (Costa & Aparicio, 2020, 2021)was employed, 

with a particular emphasis on the identification of the most suitable methods. This 

approach involved a comprehensive exploration of deep learning algorithms for both 

classification and regression predictive modeling, with the primary goal of improving 

prediction performance by uncovering concealed patterns within the datasets: 

 Feature engineering: our research encompasses both univariate and multivariate 

approaches, utilizing a dataset consisting of 51 features related to market data, 

macroeconomic factors, BTC network data, social popularity, and newly generated 

features from the collected ones. We emphasize the importance of comprehensive feature 

engineering, including techniques like Granger Causality Test for feature selection, 

Principal Component Analysis, and an Autoencoder for feature extraction. These 

techniques enhance the quality of our input data and contribute to improved forecasting 

results. 

 Selection of deep learning models: we employ a diverse set of deep learning models 

tailored to both classification and regression scenarios based on the literature review. We 

incorporate models like Long Short-Term Memory, Gated Recurrent Units, Temporal 

Convolutional Networks, Transformers, and ensembles, known for their robust 

performance in forecasting financial time series. 

 Advanced architectural designs: our models incorporate advanced architectural 

designs, including an additive attention mechanism and hybrid structures that combine 

one-dimensional convolutional layers for noise reduction with Long Short-Term Memory 

(LSTM) layers for capturing sequence patterns and both long and short-term 

dependencies. These designs are adapted to both classification and regression-supervised 

tasks as needed. 

 Evaluation metrics: to assess the performance of our deep learning algorithms, we 

employ a range of evaluation metrics tailored to the specific task. For classification, we 

consider accuracy, precision, and recall. For regression, we evaluate Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) 

and 𝑅2. 

By employing this methodology, we aim to not only implement a wide range of deep 

learning models but also optimize their performance through careful model selection, 

evaluation, and feature engineering. This comprehensive approach enables us to extract 

meaningful insights from the data and advance the fields of financial time series 

forecasting and classification. 

 

1.5 Outline 

 

In this section, we provide a thematic overview of the chapters in this thesis, outlining 

the main objectives and contributions of each chapter. As we delve deeper into bitcoin 
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price forecasting and deep learning models, each chapter serves a unique purpose in 

building a comprehensive understanding of our research. 

First, we set the stage by introducing the volatile world of cryptocurrencies, and 

bitcoin in particular. We identify the critical problem of short-term price prediction and 

articulate our research objectives to address this challenge. 

Second, we provide a guided tour of the literature relevant to our study. We explore 

the rich field of time series forecasting, deep learning, and the unique dynamics of bitcoin 

prices. This section provides a solid foundation for understanding the context of our 

research. 

This research continues in the following section, where we detail the data collection 

and preprocessing processes. Here, we introduce the various datasets that serve as input 

to our models, revealing their sources and characteristics. We discuss the data cleaning 

and feature engineering processes that refine our input. 

After detailing the preprocessing pipeline, we present our deep-learning exploration 

methodology. We discuss the blueprints of our predictive models, explaining the 

architectural designs and hyperparameter choices behind our models. 

As our research unfolds, the next section puts our models through rigorous testing. 

We present the results of our experiments and evaluate their predictive performance 

against various metrics. Here, we discuss the lessons learned and analyze the implications 

of our findings. 

The final section concludes our research. It summarizes our key findings, highlights 

their implications for investors, and outlines future directions for improving bitcoin or 

other asset price forecasting. 

 

2 Literature Review 

 

2.2 Time Series Forecasting 

 

Mainly, it consists of predicting future events by applying models to time series. It is 

an extremely important area of machine learning because there are several prediction 
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problems involving time components. Every time series problem is very specific and has 

its own data characteristics, and according to that, the most fitting model(s) must be 

chosen to analyze and model the data. Its significance stems from its applicability to a 

wide array of prediction problems involving temporal components. Within the realm of 

time series forecasting, diverse tasks exist, including univariate and multivariate 

forecasting, point and interval predictions, and distinctions between short-term and long-

term horizons.  

Historically, time series forecasting has evolved through significant milestones 

shaped by seminal contributions. Notably, traditional statistical techniques such as 

ARIMA and Exponential Smoothing have long been employed for their interpretability 

and performance (Tomas et al, 2018). However, the advent of machine learning has 

introduced alternative approaches, encompassing regression-based models and tree-based 

methods. In recent years, deep learning models, including Long Short-Term Memory 

(LSTM) networks and Temporal Convolutional Networks (TCNs), have gained 

prominence for their ability to capture complex temporal dependencies and have further 

elevated the state-of-the-art in time series forecasting. These advances have enabled more 

accurate predictions and greater adaptability to complex data patterns. Nevertheless, 

despite these recent developments, challenges persist, encompassing issues like 

irregularly sampled data and the interpretability of deep learning models. 

 

2.3 Related Work 

 

Several research studies have contributed valuable insights and methodologies in 

cryptocurrency price forecasting using deep learning techniques. In this section, we delve 

into the related work, summarizing key findings and contributions from various papers in 

the field. (e.g.  

Politis et al. (2021) explore the use of deep learning techniques for cryptocurrency 

price forecasting. They emphasize the importance of selecting relevant features, such as 

historical price data, trading volumes, and other market indicators, for improved 

forecasting accuracy. Short-term forecasts achieve an accuracy of up to 84.2%. In 

Dimitriadou & Gregoriou, (2023) the authors compile a dataset consisting of 24 potential 

explanatory variables that are commonly used in financial literature. The dataset includes 

daily data from December 2nd, 2014, to July 8th, 2019. The paper explores various 
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forecasting models that leverage historical Bitcoin prices, data from other 

cryptocurrencies, exchange rates, and macroeconomic variables. The study compares the 

performance of different machine learning algorithms, including logistic regression and 

linear support vector machines. Empirical results indicate that the traditional logistic 

regression model outperforms the other algorithms, achieving an accuracy rate of 66%. 

This suggests that the logistic regression model is more effective at predicting Bitcoin 

price movements in the given dataset. The authors (J. Shen & Shafiq, 2020) introduce a 

comprehensive framework for predicting stock market price trends, emphasizing feature 

engineering, deep learning, and extensive model evaluation. Their study encompasses a 

dataset extracted from the Chinese stock market, spanning two years. The authors assess 

a range of machine learning models commonly applied in short-term stock market price 

trend prediction, including support vector machine (SVM), artificial neural network 

(ANN), stacked artificial neural network (SANN), and long short-term memory (LSTM). 

Their comparison focuses on bi-weekly price trend prediction and retains all 29 features 

selected through the Recursive Feature Elimination (RFE) algorithm. The evaluation 

results demonstrate the capabilities of these models, with an emphasis on accuracy, 

training efficiency, and precision. The proposed Long Short-Term Memory (LSTM) 

model achieves a binary accuracy of 93.25%. Furthermore, data pre-processing through 

Principal Component Analysis (PCA) extracts five principal components, contributing to 

the overall efficacy of the solution. The authors (Livieris et al., 2020) propose three 

ensemble learning strategies: ensemble averaging, bagging, and stacking with deep 

learning models for forecasting cryptocurrency hourly prices. Base learners are 

comprised of LSTM, Bi-directional LSTM, and convolutional layers, concluding that 

stacking with KNN as meta-learner was considered the best forecasting model, being able 

to identify the redundant and non-informative base models and “weight them” to filter 

out noise. The authors achieved an accuracy of 54.52%.  The paper (Greaves & Au, 2015) 

investigates the predictive power of blockchain network-based feature engineering on the 

future price of bitcoin and machine learning optimization to obtain a Bitcoin price 

movement classification accuracy of 55%. They found that only a limited amount of 

predictive information was embedded in the network features, not serving as a good proxy 

for Bitcoin exchange behavior. (Adcock & Gradojevic, 2019) proposed a non-parametric 

model based on technical analysis, producing point and density forecasts of Bitcoin 

returns with a feedforward neural network. They found that backpropagation neural 

networks dominate various competing models in terms of their forecast accuracy and 
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achieve an accuracy of 65%. McNally et al., (2018) attempt to predict the direction of 

Bitcoin price, implementing a Bayesian-optimized RNN and LSTM network. They 

utilized data ranging from August 2013 until July 2016, regarding open, high, low, and 

close of Bitcoin prices as well as the block difficulty and hash rate. The author states that 

ARIMA model was also implemented as a comparison to the deep learning models, 

performing poorly. After evaluating performance, LSTM achieves the highest 

classification accuracy of 52%. (Ortu et al., 2022) present a comprehensive analysis of 

the predictability of price movements comparing four different deep learning algorithms, 

MLP, CNN, LSTM and ALSTM. By using three classes of features, comprising technical, 

trading, and social data, they found that including trading and social indicators to the 

technical data yields a significant improvement in the prediction and accuracy, increasing 

the performance for the daily classification from a range of 51% to 55% to 67% to 84%. 

 

2.4 Feature Engineering for Time Series 

 

In this subchapter, we explore the fundamental concepts and techniques of feature 

engineering in the context of time series data. Feature engineering is a critical step in 

preparing data for modeling, as it involves the creation, selection, and transformation of 

variables to enhance the predictive power of machine learning models. 

There are several feature selection methods in the literature such as the Random 

Forest Feature Importance, which provides information about the contribution of each 

feature to the model’s predictive accuracy, determining which variables have the most 

substantial on the target variable (Breiman, 2001). Another method is RFE, recursive 

feature elimination, a systematic technique that iteratively prunes the least important 

features while evaluating model performance at each step (Guyon et al., 2002). RFE starts 

with the full feature set, computing an importance score for each predictor, and 

progressively removes variables that contribute the least to low error forecasts. This 

technique continues iteratively until the desired number of features is reached. Another 

technique is the Granger causality test, a statistical method generally used in time series 

analysis, consisting of the exploration of causal relationships between variables It 

determines whether past values of one variable help predict future values of another. To 

apply this test effectively, the data must be stationary, ensuring that statistical properties 

remain constant over time (Granger, 1969). 
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Feature extraction also plays a pivotal role in transforming raw data into informative 

representations. It involves the process of deriving new features from existing ones, 

aiming to reduce the dimensionality of the feature space while preserving essential 

information. Two prominent feature extraction techniques are explored in this section, 

namely PCA and AE. 

Principal Component Analysis primary objective is to simplify complex datasets by 

projecting them onto a lower-dimensional subspace while retaining as much variance as 

possible. This procedure converts a set of possibly correlated variables into a set of 

linearly uncorrelated variables (Pearson, 1901). PCA accomplishes this by identifying 

linear combinations of the original features, known as principal components, that capture 

the most significant variability in the data. 

One last mention goes to autoencoders as they are neural network architectures 

designed for unsupervised learning, specifically tailored to encode, and decode data. 

Their primary purpose is to learn compact representations of input data by encoding it 

into a lower-dimensional space and then decoding it back to the original format. This 

process is achieved using an encoder and a decoder network, often referred to as the 

"bottleneck" structure. The encoder network encodes the input data into a compressed 

representation, known as the latent space or encoding layer. This layer typically contains 

a reduced number of neurons compared to the input layer. The decoder network then takes 

this compressed representation and attempts to reconstruct the original input data. The 

key objective of the autoencoder is to minimize the reconstruction error, ensuring that the 

decoded output closely resembles the input. By learning a compressed representation of 

the data, autoencoders can effectively reduce the dimensionality of the feature space, 

resulting in a more concise set of features. Also, the process of encoding and decoding 

inherently filters out noise present in the data, leading to cleaner and more informative 

features (Vincent et al., 2008). 
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Figure 2: Autoencoder representation 

 

 

Figure 3: Linear vs nonlinear dimensionality reduction 

Source: (Nugroho, 2020) 

2.5 Gradient-Based Learning 

 

Neural networks are usually trained using an iterative gradient-based optimizer that 

minimizes the network's cost function, aiming for lower values. This optimization process 

often involves backpropagation, a fundamental technique in neural network training. 

Backpropagation calculates the gradient of the cost function with respect to the model's 

weights and biases. It efficiently propagates the error backward through the network, 

enabling the adjustment of parameters in earlier layers based on the error observed in later 

layers. 
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However, while gradient descent-based algorithms are commonly applied to non-

convex loss functions in neural networks, there's no guarantee of global convergence. 

Additionally, these algorithms are sensitive to the initial parameter values. The learning 

rate, a key hyperparameter, controls the step size by which the optimizer updates the 

model's parameters during each iteration of training. Properly setting this parameter is 

crucial for enhancing convergence and training stability. A high learning rate might lead 

to overshooting optimal parameter values, causing divergence in training, whereas a very 

low learning rate might trap the optimizer in a local minimum. 

 

 

                   Figure 4: Gradient descent algorithm 

Source: Clairvoyant 

2.6 Activation Functions 

 

In a neural network, an activation function normalizes the input and produces an 

output which is then passed forward into the subsequent layer.  Activation functions add 

non-linearity to the output which enables neural networks to solve non-linear 

problems.  Nonlinear functions usually transform a neuron’s output to a number between 

0 and 1 or -1 and 1. Common activation functions include Linear, Sigmoid, Tanh 

(Hyperbolic Tangent), and ReLU (rectified linear unit). 
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Figure 5: Activation functions 

Source: AI Wiki 

2.7 Deep Learning Forecasting Models 

 

 RNN (Recurrent Neural Network) 

 

RNNs were the first algorithm introduced with an internal memory that remembers 

its input, a type of neural network that has hidden states and allows past outputs to be 

used as inputs to better understand sequences.  

In RNN models, each time step generates a hidden state, representing the information 

learned up to that point in the sequence. The last hidden state often contains the most 

refined representation of the entire input sequence because it encodes information from 

all previous time steps, although sometimes earlier hidden states might capture critical 

information, especially in sequences with complex patterns. 

There is a wide variety of RNNs relationships that is possible to create with the idea 

of graph unrolling and parameter sharing across different time steps. It is possible to 

create a RNN with a one-to-one, one-to-many, many-to-one, or many-to-many relation.  

RNNs have traditionally treated input information in a uniform manner This means 

that no explicit connections are made between individual tokens to fully capture their 

complex relationships. In essence, each token, represented as 𝑡𝑖, receives uniform 

information from all preceding tokens 𝑡1... 𝑡𝑖−1 in a uniform fashion. However, as 𝑖 

increases, this method often results in a loss of information and challenges related to 
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vanishing or exploding gradients. This issue is mitigated in more advanced recurrent 

neural networks such as LSTM and GRU. 

 

Figure 6: Recurrent neural network architecture. 

Source: (Biswas et al., 2021) 

 

Figure 7: Many-to-one relationship suitable to predict one step ahead. 

Source: (Jiao et al., 2016) 

 LSTM (Long Short-Term Memory) 

 

LSTMs are a type of recurrent neural network that excels at capturing long-range 

dependencies in sequential data. The core point behind the LSTM success is the memory 

cell that can preserve its state over time and its nonlinear gating units that thoroughly 

regulate the information flow (Greff et al., 2017). 

Their unique architecture incorporates specialized gating mechanisms, including 

input, forget, and output gates, allowing them to selectively store and retrieve information 

over extended time steps. These gates learn what information is pertinent to keep or forget 

during training. By incorporating these mechanisms, LSTM models aim to address the 

RNN issues mentioned above and enhance the handling of information within the 

sequence. 

This inherent memory capability makes LSTMs particularly suitable for tasks related 

to sequential data modeling, such as natural language processing, speech recognition, and 



 

 13 

time series forecasting. They have become a cornerstone of deep learning in modeling 

complex temporal relationships (Hochreiter & Schmidhuber, 1997). 

 

 

Figure 8: LSTM cell. 

Source:  (Mukhanov et al., 2023) 

 GRU (gated recurrent unit) 

 

A gated recurrent unit (GRU) was proposed by (Cho et al., 2014) to make each 

recurrent unit to adaptively capture dependencies of different time scales. Similar to the 

LSTM unit, the GRU has gating units that modulate the flow of information inside the 

unit, although without having a separate memory cell. This results in the exposure of the 

full hidden content without any control because GRU does not have any mechanism to 

control the degree to which its state is exposed. 

Because GRU has a less complex structure, it is computationally more efficient than 

LSTM. 
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Figure 9: GRU cell. 

Source: (Ahmad et al., 2023) 

 BiLSTM (Bidirectional Long Short-Term Memory) 

 

Bidirectional LSTMs are a type of recurrent neural network (RNN) that can capture 

both past and future context by processing sequences in both forward and backward 

directions, enhancing the model's ability to capture long-range dependencies in the data. 

They have been successful in various sequence prediction tasks, including time series 

forecasting. 

By employing bidirectional recurrent layers, the model process sequences in both 

forward and backward directions during training, allowing the model to learn patterns and 

dependencies that are both forward-looking and backward-looking. 

Prior study proved that the bidirectional networks are significantly better than the 

standard ones in many fields (Graves & Schmidhuber, 2005). 
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Figure 10: Unfolded architecture of Bidirectional LSTM with three consecutive steps. 

Source: (Li et al., 2020) 

 CNN (Convolutional neural networks) 

 

Convolutional neural networks, or ConvNets, are a family of neural networks that 

uses convolution operation in place of general matrix multiplication, in at least one of 

their layers. This approach was significantly inspired by (Fukushima, 1980) resulting in 

very efficient models for image processing tasks, such as image classification as 

demonstrated by various research papers like (Yu et al., 2020) where the presented CNN 

achieves an higher accuracy than other state-of-the-art methods for classifying remote 

sensing images. Convolutional neural networks are a specially designed to deal with data 

that has a grid-like topology. Examples include time-series data, which can be thought of 

as a 1-D grid with a regular sample interval, and image data, which can be seen as a 2-D 

grid of pixels. 

As illustrated in figure 11, extracted from research in (Pérez-Enciso & Zingaretti, 

2019) regarding the use of deep learning for complex trait genomic prediction, and 

focusing on the study of CNNs, we can observe representations of both 1D convolutional 

operation and a 1D CNN for a SNP-matrix, where the convolution outputs are represented 

in yellow. Pooling layers after convolutional operations combining the output of the 

previous layer at certain locations into a single neuron are represented in green. The final 

output is a standard MLP. 
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Figure 11: (a) Simple scheme of a one-dimension (1D) convolutional operation. (b) Full representation of a 1D 

convolutional neural network for a SNP-matrix. 

Source: (Pérez-Enciso & Zingaretti, 2019) 

 Attention Mechanism 

 

A new approach to encoder-decoder models, introduced in 2014 (Bahdanau et al., 

2016), exploits the bottleneck of encoding an arbitrary sequence length into a fixed length 

vector. To overcome this limitation in the encoder-decoder architecture, the attention 

mechanism was introduced to enable modeling relationships between elements in input 

or output sequences, regardless of their positional distance. The objective is to allow the 

decoder to learn which is the hidden state, from the encoder that is most valuable to 

predict the next output. This enables the decoder output to choose the context vector C, 

based on the set of positions where the input sequence carries the most relevant 

information. In this sense, the most significant difference between the attention 

mechanism and traditional RNN or LSTM models is that the attention mechanism focuses 

directly on specific parts of the sequence rather than treating them equally. The attention 

mechanism in neural networks assigns weights to the hidden states based on their 

relevance or importance for the specified task, emphasizing the more relevant states while 

attenuating the influence of less relevant ones. As a result, the attention mechanism will 

help the model to have a better understating of the context of the sequence. 
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Figure 12: Bahdanau attention mechanism. 

     Source: (Yang et al., 2021) 

 TCN (Temporal Convolutional Network) 

 

Temporal Convolutional Network is a variant of the CNN architecture that is 

specially designed for time series forecasting. This architecture introduced in (Bai et al., 

2018), showed a convolution neural network architecture outperforming several recurrent 

architectures for sequence modeling and it was inspired in recent works about sequential 

tasks. The authors stated that convolution networks should be considered as a starting 

point for sequential tasks. TCNs exhibit longer memory than recurrent architectures with 

the same capacity and offer advantages such as parallelism (convolutions can be done in 

parallel as the same filter is used in each layer), and stable gradients during training. 

A key component of TCN that differ from CNN architecture is employing causal and 

dilated convolutions. Causal convolutions force the model to learn the dependence 

between the steps without violating the natural order of time and the dilated technique 

helps it process an increasingly larger portion of the time series steps as it advances to the 

deeper layers.  
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Figure 13: Dilated causal convolutional structure of TCN. 

Source: (Oord et al., 2016) 

A feature of TCNs is that they have a receptive field dependent on the specified 

model configuration which determines the number of input frames that can be observed 

to produce an individual output frame (Ravenscroft et al., 2022). 

By consulting Figure 13, the dilation factor is doubled at each layer. For instance, 

unit two in the first hidden layer processes the information from steps one and two, and 

unit four in the second layer processes steps one, two, three, and four through the 

processing of units two and four from the first hidden layer 

 

 Transformer 

 

A state-of-the-art deep learning architecture introduced in 2017 (Vaswani et al., 

2023), has excelled in a wide range of tasks involving natural language processing and 

computer vision. The basic building block of the Transformer combines a Feed forward 

network with a multi-head self-attention layer. 

The transformer model employs an encoder-decoder architecture. The encoder 

consists of encoding layers that process the input tokens iteratively one layer after 

another, while the decoder consists of decoding layers that iteratively process the 

encoder's output as well as the decoder output's tokens so far. 
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Figure 14: Transformer architecture 

Source: (Vaswani et al., 2023) 

In this research we investigate the Transformer architecture to address an important 

sequence learning problem: time series forecasting. The application of a transformer 

model in the context of time series data involves a sophisticated process of embedding, 

encoding, and decoding sequential numerical values. Unlike recurrent networks such as 

LSTMs or GRUs, the Transformer model offers notable advantages, particularly in terms 

of parallelization. Its design allows for efficient parallel computation of sequences, 

enabling faster training and inference. 

After providing the transformer a set of numerical values representing a time series, 

the data is embedded into a format suitable for the transformer’s operations. This 

embedding process transforms the input into a more structured representation. The 

encoder sequentially processes the embedded time series data, aiming to capture temporal 

patterns and dependencies present in the input time series data. Often comprises multiple 

layers to provide a deeper understanding and extraction of patterns. A key component in 

the encoder is the self-attention mechanism, enabling the model to focus on different 

aspects of the time series data at each step. The self-attention mechanism is different from 

the attention mechanism, as attention is used to assign different weights to different time 

steps within the input sequence, indicating their relevance, whereas self-attention allows 

each time step in the sequence to calculate its attention scores concerning all other time 
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steps in the same sequence, including itself. The decoder component primarily focuses on 

making predictions by generating output sequences based on the information learned 

from the encoder. 

 

 Stacking Ensemble 

 

Stacking or stacked generalization considers heterogeneous base learners, learns 

them in parallel, and combines them by training a meta-learner to output a prediction 

based on the different base learner’s predictions. A meta learner inputs the predictions as 

the features and the target being the ground truth values in data. It attempts to learn how 

to best combine the input predictions to make a better output prediction.  

 

Figure 15: Stacking ensemble high level architecture. 

 Bias-Variance Trade-Off  

 

In supervised learning, bias and variance are key factors affecting a model's 

performance. Bias represents the error from overly simplistic assumptions in the learning 

algorithm, leading to underfitting and the failure to capture the true relationships in the 

data. On the other hand, variance reflects a model's sensitivity to fluctuations in the 

training data, causing it to fit noise rather than the actual signal, resulting in overfitting.  

High bias usually results in a model that oversimplifies the underlying patterns, 

leading to poor performance on both training and new data. Conversely, high variance 

can lead to excellent performance on training data but poor generalization to new data, as 

it overfits and captures noise instead of true patterns. 
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The bias-variance trade-off involves analyzing the right balance between these two 

elements. It is critical to achieving a model that accurately captures the underlying 

patterns in the data, while also generalizing well to new, unseen data. 

 

Figure 16: Bias-variance trade-off in supervised learning. 

Source: (Rashidi et al., 2019) 

 Overfitting Mitigation 

 

Overfitting is a common issue encountered in both machine learning and deep 

learning. It arises when a model becomes overly intricate and begins fitting the noise 

present in the training data, resulting in poor generalization to new data. To combat this 

challenge, a range of techniques for addressing overfitting were developed.  

Some notable approaches include regularization methods such as L1 (Lasso) and L2 

(Ridge), introducing penalty terms into the model's loss function. These penalties 

discourage the development of excessively large model weights, thus curbing overfitting. 
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Figure 17: Dropout technique dropping units along with respective connections. 

Source: (Srivastava et al., 2014) 

Dropout, introduced in (Srivastava et al., 2014), is particularly relevant to neural 

networks, by randomly deactivating a subset of neurons during training. This randomness 

prevents certain neurons from influencing both forward and backward passes, promoting 

more robust feature learning. 

Other techniques include early stopping, as studied in (Langer, 1997), a 

regularization technique for deep neural networks with the primary goal of preventing 

overfitting.  

 

Figure 18: Early stopping regularization technique to prevent overfitting. 

Source: (Shin et al., 2016) 
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Ensemble methods, such as bagging and stacking, combine predictions from multiple 

models to enhance generalization. By doing so, they can mitigate overfitting by reducing 

the model's reliance on any single model's predictions. 

Feature selection by identifying and removing irrelevant or redundant features from 

the input data can decrease model complexity and mitigate the risk of overfitting. 

Methods like Random Forest - Recursive Feature Elimination (RF-RFE) detailed in 

(Granitto et al., 2006) aid in this process. 

Implementing cross-validation techniques, such as forward chaining, suitable for 

time series problems as it preserves the data’s temporal order, may help in identifying a 

case of overfitting.  

By exploring these strategies, researchers and practitioners aim to strike a balance 

between model complexity and generalization, addressing a fundamental challenge in the 

field of machine learning. 

 

2.8 Evaluation Metrics 

 

Within the domain of classification tasks, where the objective is to predict discrete 

outcomes, we rely on a suite of critical evaluation metrics to assess the performance of 

predictive models. These metrics serve as fundamental tools in quantifying the models' 

accuracy and reliability. 

Accuracy: this metric calculates the ratio of correctly predicted instances to the total 

number of instances, providing a holistic view of the model's performance. 

 

𝐴𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

Precision: assesses the accuracy of positive predictions, measuring the proportion of 

true positive predictions among all positive predictions. A high precision score indicates 

a low rate of false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Recall: also known as true positive rate, evaluates the model's ability to correctly 

identify all positive instances. It calculates the ratio of true positives to the total number 

of actual positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

A classification model with high accuracy, precision and recall is desirable. 

 

In the context of regression tasks, where the aim is to predict continuous numerical 

values, we employ a distinct set of evaluation metrics to assess the quality of predictive 

models. 

Mean absolute error: MAE computes the average absolute difference between the 

model's predictions and the true values. It offers insights into the magnitude of errors in 

our forecasts. 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑦𝑖 −  𝑦�̂�|

𝑛

𝑖=1

 

 

Root mean squared error: It indicates the spread of the forecast errors. A model that 

predicts occasionally erratic values will have higher RMSE value, although it may still 

have lower MAE or MAPE. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑|𝑦𝑖 −  𝑦�̂�|2

𝑁

𝐼=1

  

 

  𝑅2:  the coefficient of determination, assesses the goodness of fit of the regression 

model. It measures the proportion of the variance in the target variable that is explained 

by our model. Higher 𝑅2values indicate a better fit. 

 

𝑅2 = 1 −  
∑ (𝑦𝑖−𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦�̅�)
𝑛
𝑖=1
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Mean absolute percentage error: evaluates the percentage difference between the 

model's predictions and the actual values. It not only provides a relative measure of 

forecasting accuracy but is also highly interpretable. MAPE's interpretability allows 

stakeholders to easily understand the percentage by which our forecasts deviate from 

actual prices, aiding in informed decision-making. 

 

 

𝑀𝐴𝑃𝐸 =  
100

𝑛
 ∑

|𝑦𝑖 − 𝑦�̂�|

𝑦𝑖

𝑛

𝑖=1

 

 

A model with low MAE, RMSE, MAPE, and high 𝑅2 is desirable. 

By using evaluation metrics such as those described, it is possible to ensure a 

comprehensive assessment of a model's performance. 

 

3 Methodology 

 

The methodology used here is inspired by the CRISP-DM methodology (Costa & 

Aparicio, 2020, 2021), which is described in detail in Figure 19.  This methodology can 

even be incorporated into the context of a design science approach (Aparicio et al., 2023).  
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Figure 19: High-level solution architecture. 

3.1 Data Collection 

 

We collected five years of historical daily data on Bitcoin price from January 1, 2017, 

until December 31, 2022, from Binance API, along with a set of 50 additional features 

selected based on our domain knowledge and their significance in previous research. The 

feature dataset consisted of Bitcoin’s blockchain network data, market trends, social 

popularity, relevant macroeconomic data, and technical indicators. The volume of Bitcoin 

daily transactions, its daily price, the three highest alternative cryptocurrencies by market 

capitalization daily price and their respective daily volume, VIX daily price data, and both 

SP500 and NASDAQ 100 indices were selected to reflect market dynamics. Average 

block size, mining difficulty, miners’ revenue, n confirmed transactions per day, n-unique 

addresses, transaction-fees (USD) and average confirmation time, as a proxy for network 

congestion, were selected to represent the network status. Google trends was used to 

highlight Bitcoin’s daily popularity. Other relevant macroeconomic data, retrieved from 

the FRED API, were also integrated into the feature dataset: daily oil price, 10-year 

treasury yields, copper and Iron price, median CPI data, unemployment data, savings rate 

in the US, US GDP and both five- and ten-year breakeven inflation data, totaling to 35 

features. For better understanding of the collected variables, a description is available in 

Appendix (Table 14). 
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3.2 Data Preprocessing 

 

In this section, we detail the essential data preprocessing steps undertaken to prepare 

the dataset for modeling. Our goal was to enhance the quality and integrity of the data, 

creating a robust foundation for subsequent feature engineering and modeling. 

Missing data was addressed using a rolling forward technique, ensuring that time 

series gaps were filled appropriately. This process was vital in ensuring that each variable 

within the dataset was uniformly represented daily. By employing the rolling forward 

technique to fill missing data, temporal continuity was preserved across the dataset 

despite variations in the frequencies of the collected variables. 

To standardize the data and prevent any single feature from dominating the learning 

algorithms due to its scale, we used the standard scaler. This scaler was chosen, among 

other scaling techniques, for its robustness in dealing with outliers. 

 

𝑧 =  
𝑥 − 

1
𝑁

∑ 𝑥𝑖
𝑁
𝑖=1

√ 1
𝑁

∑ (𝑥𝑖 − 𝑢)2𝑁
𝑖=1

 

 

 For the classification task aimed at predicting price movement, a binary encoding 

was implemented to attribute a value of 0 if the next day's price decreased and 1 if it 

increased. This encoding method effectively captures the directional change in price, 

enabling the model to learn and predict based on this binary classification. 

 Furthermore, it's noteworthy that the distribution of this encoded data is balanced, 

exhibiting approximately equal proportions for both classes. The dataset contains a 

similar percentage of instances where the price decreased as those where it increased. 

This balanced distribution alleviates the need for employing techniques like synthetic 

minority oversampling technique (Chawla et al., 2002) or other sampling methodologies 

specifically designed to address imbalanced data. Consequently, the classification models 

can learn from a dataset that inherently represents both potential outcomes in a 

comparable manner, fostering a more accurate and unbiased training process. 

Following data cleaning and scaling, a detailed process of feature engineering was 

implemented, including creating new features based on the original ones, feature selection 
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to compute a subset of the original universe of features and feature extraction, where new 

features are generated from the previous feature set, resulting in an increased total number 

of features to 51. To capture key insights from the dataset, a set of additional variables 

was generated: 

 Exponential moving average with a period of nine days. 

 14-day annualized volatility, to provide insight into price fluctuations. 

 On-balance volume. 

 14-day period average true range, aiming to measure market volatility. 

 Volume weighted average price, offering a weighted average of prices by volume of 

transactions. 

 Daily return of the four digital assets contained in the dataset and weekly BTC return. 

 Rolling correlation between these newly created variables and the target variable, 

aiming to capture their relationship over time. 

Feature selection was an important step to refine the feature set for robust forecasting. 

In that sense, we resorted to the Granger causality test to identify causal relationships 

between time series variables based on temporal sequences. 

As a prerequisite, we ensured that our time series data met the stationarity 

requirement. Stationarity is a crucial condition for reliable Granger causality testing, as it 

stabilizes the statistical properties of the time series. This step involved differencing the 

data as needed to achieve stationarity. 

With stationarity established and ensured by the ADF test, we applied the Granger 

causality statistical test to assess whether past values of one variable could provide 

statistically significant predictive information about the target variable, Bitcoin price. 

This analysis was performed iteratively for the entire set of candidate features. Granger 

causality test yielded valuable insights into the temporal dependencies between various 

features and Bitcoin price. As a result, we were able to identify 26 features that exhibited 

statistically significant causal relationships with the target variable. These features were 

deemed instrumental in capturing critical information for our short-term forecasting 

models. 

Feature extraction was also implemented in this work. Two main techniques were 

employed to extract new features from the original dataset. Principal Component Analysis 

(PCA) was implemented, reducing the dimensionality of the dataset while preserving its 

essential information. We retained five principal components, explaining approximately 

85% of the variance of the target variable, which contribute significantly to capturing 

underlying patterns.  
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Figure 20: Example illustration of principal component analysis 

Source: https://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/ 

 

 

 

Figure 21: Cumulative explained variance by the number of PCs retained. 

 

Additionally, we employed the cross-correlation function from “statsmodels” 

package to systematically quantify the cross-correlation between each principal 

component and the target variable. This step facilitated a deeper understanding of how 

these components related to the target variable across different time lags. 
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 Also, for feature extraction, an autoencoder was implemented. An unsupervised 

learning method, consisting of a neural network model that seeks to learn a compressed 

representation of an input. Once fit, the encoder of the model was used to compress 

sequence data, with the bottleneck layer, that in turn was used as a feature vector input to 

our supervised learning models. Using this model for feature extraction 17 new features 

were created from the original 51 features. 

  

 

Figure 22: Learning curve of autoencoder 

All these transformed features, totaling 27 in number, are then concatenated. Among 

these features, 17 are derived from the autoencoder, while the remaining 10 features are 

the result of Granger selection, Principal Component Analysis (PCA) and cross 

correlation preprocessing pipeline. 

Due to market regime switch, imposed by the continuous market evolving, training 

and validation datasets distributions can be very different from the test dataset 

distribution, increasing the difficulty of implementing a robust deep learning model. To 

this end, a posterior transformation involves using the Yeo-Johnson power transformation 

to make the data distributions more similar to a Gaussian distribution. This transformation 

is used to stabilize the variance and reduce the skewness of the data distributions in order 

to improve the predictive ability of the models, as a skewed predictor distribution can 

have a detrimental effect on the prediction models as the tails of the distribution can 

dominate the underlying calculations. 
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Following the power transformation, the feature dataset was transformed to achieve 

stationarity through differencing, by subtracting the current value of the series from the 

previous one. ADF statistical test was employed to compare the null hypothesis of non-

stationarity with the alternative hypothesis of stationarity.  

Differencing was not applied to the target variable to ensure that the model’s output 

directly represents what is expected to be predicted. 

 Although this technique has some disadvantages for forecasting, such as the 

possibility of introducing noise and randomness into the data, as it eliminates some of the 

information and structure of the original series, differencing has proved its importance by 

making the data easy to model and improving the performance of the forecasting models 

studied. 

The resulting features, after the detailed preprocessing pipeline, are then used as 

inputs to the predictive models. 

 

3.3 Impact of Feature Engineering in LSTM Predictive Performance 

 

Figure 23 represents four different confusion matrices with respect to the prediction 

of an LSTM classifier on the same test dataset.  This LSTM model shared the same 

architecture in all four experiments. However, different features were used to train the 

model.  

In the first quadrant confusion matrix, the LSTM was trained with features result ing 

from the Granger causality test and PCA preprocessing pipeline. The second quadrant 

confusion matrix represents an LSTM trained with multivariate data without any 

transformations other than data cleaning and scaling, and in the third quadrant confusion 

matrix, features extracted by the autoencoder were used for training. Lastly, in the fourth 

quadrant, both feature sets resulting from the Granger and PCA pipeline and from the 

autoencoder were concatenated and used for training the model.                      

These predictive experiments, using an LSTM classifier, demonstrate the influence 

and importance of a robust feature engineering process aiming to extract the maximum 

possible information from raw data.  
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By observing Figure 23, using multivariate data without any transformation other 

than cleaning and scaling as a baseline, it is possible to observe that applying a feature 

selection method, namely the Granger causality test along with PCA yielded better 

predictive results. It can also be observed that training on data extracted from the 

autoencoder produced results similar to those of the transformed data used to construct 

the first quadrant confusion matrix. However, a steep increase in prediction accuracy is 

noticeable in the fourth quadrant, when both feature sets are concatenated and serve as 

input for the LSTM training. 

             

 

                  

Figure 23: Distinct LSTM predictive performance by training with different feature transformations. 
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3.4 Data Preparation 

 

The dataset was partitioned into training, validation, and test subsets following an 

80/10/10 split as part of the data preparation process. 

 

 

Figure 24:  Splitting BTC price series into train, validation, and test periods. 

 

In this phase of the data preprocessing step, the focus was on structuring of the dataset 

to align with the requirements of the explored deep learning models. To achieve this, a 

custom function was implemented to transform the data into a suitable format to effective 

modeling. 
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Figure 25: Normal input vectors compared to recurrent neural networks input. 

Source: (Singh et al., 2022) 

This implemented function's primary objective is to organize our dataset into a three-

dimensional structure that captures the temporal relationships necessary for the deep 

learning models implemented such as LSTM, GRU, TCN. 

It segments the dataset into sequential windows of a defined length, carefully aligned 

with the corresponding target variables. Doing so imbues our data with temporal context, 

enabling our models to discern and leverage historical patterns and dependencies. 

It is also important to notice this function accommodates both classification and 

regression tasks. For classification, it annotates each data window with binary labels, 

discerning whether the subsequent data point represents an increase or decrease in the 

target variable. In regression tasks, it retains the temporal sequence without labeling, 

allowing the models to predict future values directly. 
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Figure 26: Data preparation function “sequential_window_dataset”. 

This comprehensive data preprocessing pipeline was a vital component in identifying 

hidden patterns in the data, also ensuring the data was well-suited for deep learning 

models training and evaluation. All the applied transformations laid a solid foundation 

for the subsequent stages of model development. 

 

3.5 Deep Learning Models 

 

In this section, the ensemble of deep learning models harnessed to tackle the complex 

task of Bitcoin price forecasting is presented. These sequence-to-vector models were 

designed and configured to capture the temporal patterns within the data to predict one 

day-ahead. 

A comprehensive exploration of deep learning algorithms for both classification and 

regression tasks were employed, with the implementation of different architectures as it 

will be detailed below. 

 

Zero Rule Classifier: 

 

ZeroR is a naive classification method that relies on the target and ignores all 

predictors. The ZeroR classifier simply predicts the majority class.  

Although there is no predictive power in ZeroR, it is useful for establishing a baseline 

performance as a benchmark for the other classification methods included in this research. 
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Persistence Model: 

 

  A persistence model assumes the future value of a time series is calculated under the 

assumption that nothing changes between the current time and the forecast time (Paulescu 

et al., 2021), using the value at the current time step (𝑡) to predict the expected outcome 

at the next time step (𝑡 + 1).  

  This model acts as a baseline for our regression models. 

 

LSTM Network: 

 

After reviewing related literature, LSTM model is found to be a good candidate for 

predictive modeling due to its memory-keeping ability. 

With respect to its architecture and design, tanh activation functions were applied in 

all LSTM layers, and stateful architecture was preferred to maintain temporal 

dependencies: hidden state is preserved at each training iteration, allowing the model to 

detect patterns concealed in larger data than the defined input sequence. At the end of 

each epoch, states were reset, as they could grow too large and become unstable. 

 

Model Description 

LSTM LSTM layer with 100 units 

LSTM layer with 100 units 

LSTM layer with 100 units 

Dropout layer with rate = 0.2 

Output dense layer with 1 unit 

 

Table 1: Parameter specification for LSTM 
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GRU Network: 

 

Configured with similar layer dimensions as the LSTM model for consistency. Tanh 

activation functions were set in all GRU layers. 

 

Model Description 

GRU GRU layer with 100 units 

GRU layer with 100 units 

GRU layer with 100 units 

Dropout layer with rate = 0.2 

Output dense layer with 1 unit 

Table 2: Parameter specification for GRU. 

 

Bidirectional LSTM Network: 

 

Model Description 

BiLSTM BiLSTM layer with 2 x 100 units 

BiLSTM layer with 2 x 100 units 

BiLSTM layer with 2 x 100 units 

Dropout with rate = 0.2 

Output dense layer with 1 unit 

Table 3: Parameter specification for BiLSTM 

 

Hybrid Architectures: 

 

In time series analysis, it is common to apply a smoothing technique prior to analysis, 

such as a moving average or a weighted moving average based on domain knowledge, to 

reduce noise in the data. Convolutional neural networks are explored in this research since 
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their architecture allows to learn smoothing parameters. In this sense, three hybrid models 

have been implemented by combining a one- dimensional convolutional layer for pre-

processing and noise reduction with LSTM, GRU and BiLSTM layers for sequential 

modeling. Since the 1D convolutional preprocessing layers are part of the same network 

that outputs the predictions, by optimizing the neural network loss, one optimizes the 

smoothing parameters directly to perform well in the prediction tasks. 

The 1D convolutional layer, present in all three hybrid models implemented for each 

task, shifts 20 filters, also known as kernels, across the time axis in all input sequences. 

Since each filter has a size of four, the output of each filter is computed based only on the 

last four time steps. Specifically, the output of each filter is computed by determining the 

weighted sum of the values of these four-time steps and a bias. Then the resulting 

smoothed vector is used as input to a ReLu activation function, which applies a non-

linearity to it to obtain the final filter output. Two other different hyperparameters were 

configured for these convolutional layers, namely the type of padding and the strides. The 

type of padding was set to "causal", so that the input sequence is the same size as the 

output sequence, by padding the left side of the output sequence with zeros. The stride 

was set to one, which means that the filters slide one time step at a time. It is also 

important to note that these convolutional layers do not retain any memory like RNNs, 

and they can handle input sequences of any size. The number of parameters just depends 

only on the kernel size and the number of kernels, not on the length of the input sequences. 

Consult Figure 38 in Appendix for an example implementation of hybrid CNN-

LSTM model. 

Model Description 

CNN-LSTM Convolutional layer with 20 filters of size (4,0) and padding = 

“causal” 

LSTM layer with 100 units 

LSTM layer with 100 units 

Dropout layer with rate = 0.2 

Output dense layer with 1 unit 

CNN-GRU Convolutional layer with 20 filters of size (4,0) and padding = 

“causal” 

LSTM layer with 100 units 

LSTM layer with 100 units 

Dropout layer with rate = 0.2 

Output dense layer with 1 unit 
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CNN-BiLSTM Convolutional layer with 20 filters of size (4,0) and padding = 

“causal” 

BiLSTM layer with 2 x 100 units 

BiLSTM layer with 2 x 100 units 

Dropout layer with rate = 0.2 

Output dense layer with 1 unit 

Table 4: Parameter specification for hybrid architectures 

 

Attention-Based Architecture: 

 

After reviewing recent literature (Zhang et al., 2023), CNN-BiLSTM-Attention 

demonstrated superior predictive accuracy compared to other variants like LSTM, CNN-

LSTM, and CNN-LSTM-Attention models in forecasting the Chinese stock index – 

CSI300.  Given its notable performance and the potential advantage it offers in dissecting 

the contributions of individual hidden states for making informed decisions, we have 

included the CNN-BiLSTM-Attention architecture as part of our array of deep learning 

models for the tasks proposed in this study. 

The implemented Bahdanau attention mechanism is built with a custom attention 

layer that outputs a “context vector” and “attention weights”. Consult Figure 39 in the 

Appendix for the implementation of the CNN-BiLSTM-Attention model. 

 

Model Description 

CNN-BiLSTM-Attention Convolutional layer with 20 filters of size (4,) and padding = 

“causal” 

BiLSTM layer with 2 x 100 units 

Dropout layer with rate = 0.2 

BiLSTM layer with 2 x 100 units 

Attention layer with 100 units. 

Output dense layer with 1 unit 
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Table 5: Parameter specification for CNN-BiLSTM-Attention 

 

Temporal Convolutional Network 

 

The implemented TCN employs a single layer to process temporal sequences. It 

utilizes dilations as a key mechanism to control the network’s exploration of past 

information within the input sequence. 

Dilations, represented as factors (1,2,4,8,16,32), control how the convolutional 

kernel scans the input sequence. Each dilation factor dictates the gap between observed 

elements, influencing the receptive field (the span of past context examined at each step). 

With a kernel size of three, the convolutional kernel transverses the input sequences based 

on the specified dilation factors. As dilation increases, the kernel incorporates information 

from temporally distant elements, effectively broadening the network’s receptive field 

without the need for additional layers. The receptive field of this single-layer TCN results 

from the interplay between the kernel size and the chosen dilations factors. 

In summary, this TCN’s architecture harnesses dilations to sample temporal 

information selectively across different spans, culminating in a receptive field that 

facilitates learning of diverse temporal patterns within the input sequence. 

 

 

Model  Description 

TCN TCN layer with 64 filters of size (3,), padding = “causal” and dilations = 

(1,2,4,8,16,32) 

Output dense layer with 1 unit 

Table 6: Parameter specification for TCN. 
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Transformer Encoder: 

 

Since the decoder of the Transformer model is tailored for sequence-to-sequence 

tasks, translating input sequences into corresponding output sequences, this research 

focuses solely on the encoder component, connecting the encoder output directly to the 

final layer. This design allows one-step-ahead forecasts, aligning with the sequence-to-

vector modeling approach.  

This encoder should outperform the recursive models because it allows for more 

flexible parallelization, more efficient long-term memory retention, and fewer vanishing 

or exploding gradient problems. The activation function in the last layer of the model was 

modified to handle the different tasks: classification and regression. 

 

 

Figure 27: Transformer encoder architecture 
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Model Description 

Transformer 

Encoder 

Layer normalization  

Multi-head attention layer with head_size=256, num_head=4, 

dropout=0.2 

Dropout layer with rate = 0.2 

Layer normalization 

Convolutional layer with 4 filters of size (2,) 

Dropout layer with rate = 0.2 

Convolutional layer with “features_dim” filters of size (1,) 

Global average pooling layer  

Dense layer with 128 units 

Dropout layer with rate = 0.2 

Output dense layer with 1 unit 

Table 7: Parameter specification for Transformer Encoder 

Stacking Ensembles:  

 

Stacking ensemble technique was selected based on literature. The authors in 

(Livieris et al., 2020) after comparing multiple ensemble strategies for cryptocurrency 

price prediction, elected stacking ensemble with KNN as meta-learner, as the best 

ensemble. A stacking ensemble utilizes a meta-learner to learn the prediction behavior of 

the base learners, with respect to the final output. KNN is a non-parametric supervised 

learning method, where its input consists of the k closest training examples in a dataset.  

For the regression stacking ensemble, base learners were selected based on the lowest 

value of root mean squared error metric, namely the GRU, BiLSTM and CNN-BiLSTM 

from the univariate approach. The meta-learner chosen to train with the predictions made 

by these base learners was linear regression, as it gave better results than the KNN 

regressor. 
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Figure 28: High level stacking ensemble architecture for regression predictive modeling to predicting the price on 

test dataset. 

 

For the stacking ensemble for classification, three base learners were selected based 

on the highest accuracy. The selected base learners were TCN, LSTM and GRU from the 

multivariate approach, and includes a KNN classifier with 10 neighbors as the meta-

learner. 

 

 

Figure 29: High level stacking ensemble architecture for classification predictive modeling to predict the trend on 

test dataset. 

For the stacking ensemble responsible for modelling and predicting next day returns, 

the selection of the three base learners was based on the lowest RMSE. Using this 

criterion, BiLSTM, CNN-BiLSTM-Attention, and LSTM were selected as the base 

learners, and KNN was selected as the meta-model. 
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Figure 30: High level stacking ensemble architecture for regression predictive modeling to predict the 

return on test dataset. 

 

It is important to note that a natural implementation design common to all deep 

learning regressors is that the output-dense layer has a linear activation function, whereas, 

in all deep learning classifiers, the output-dense layer has a sigmoid activation function. 

 

3.6 10.6 Model Training 

 

 This phase of the research is related to the training of the deep learning models. This 

section encapsulates the rigorous process of model optimization and fine-tuning, which 

includes several key elements. 

 All models were trained using the ADAM optimizer, a variation of the gradient descent 

optimization algorithm tasked with updating the weights of the neural networks during 

training. 

 The Many-To-One relationship is implemented across all models, defining 15 as the 

time window size, which results in the models processing 15 lags of each feature to 

predict the next value of the target variable. 

 It is also important to mention there are two different cost functions for each type of 

task being researched. For regression, the configured cost function is the mean squared 

error, and binary cross-entropy is used as the cost function for the models solving for 

classification. 
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 The model training pipeline featured a range of callbacks playing a key role in their 

performance results, including learning rate scheduling, a critical element in training deep 

learning models by dynamically adjusting the learning rates. By leveraging a learning rate 

scheduler, it is possible to systematically adapt the learning rate throughout the training 

process. This dynamic adjustment was instrumental in finding the optimal convergence 

path, improving the models' ability to navigate complex optimization problems 

efficiently.      

 Early stopping callback was implemented to act as a monitor and keep track of the 

validation loss during training. It intervened when it detected signs of overfitting, halting 

training to prevent the models from memorizing noise in the data. This approach not only 

preserved model integrity but also improved generalization. 

 Resetting states was also featured in models with recurrent layers preserving state 

information across training batches. The reset states callback ensured that stateful models 

started each epoch with a clean slate, maintaining the temporal dependencies while 

preventing excessive reliance on past data. 

 To also monitor the validation loss, model checkpoints were employed to save the best-

performing model during training. This safeguarded against potential disruptions and 

allowed us to retain the model with the highest predictive performance. 

 Throughout the training process, we evaluated model performance using dedicated 

validation datasets. This enabled tracking progress, identifying potential issues, and 

making informed decisions about model adjustments. 

 

4 Experimental Results 

 

4.1 Model Performance 

 

This section will present the evaluation of the predictive models implemented for 

solving the three proposed tasks: forecasting next-day trends, price, and return.  

First, a comprehensive evaluation of Bitcoin’s directional state is presented. 
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 Univariate                  Multivariate 

Accuracy Precision Recall Accuracy Precision Recall 

Zero Rule 

Classifier 

45.5 45.5 100 45.5 45.5 100 

LSTM 43 43 100 87.9 83.9 92.4 

GRU 43 43 100 86.1 84.1 87.3 

BiLSTM 81.8 75.9 84.5 83.6 82.5 83.5 

CNN-LSTM 43 43 100 83 83.1 81.1 

CNN-GRU 43 43 100 80 81.1 75.6 

CNN-

BiLSTM 

74.5 64.9 88.7 73.9 64 90.1 

CNN-

BiLSTM-

Attn 

82.4 73.3 93 81.8 81.8 79.7 

TCN 43 43 100 90.9 89 92.4 

Transformer 

Encoder 

45.4 44.1 94 81 73.2 89.6 

Table 8: Evaluation results of BTC directional status classification on test dataset 

 

Table 9: Evaluation of stacking ensemble classifier for trend forecasting on test dataset. 

 

 

 

Meta 

learner 

Base Learners Accuracy Precision Recall 

 TCN 74.5 72.3 66.2 

KNN LSTM 

 GRU 
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Figure 31: Accuracy scores of all models on test dataset 

By observing Figure 31, TCN is the model that achieves the highest accuracy 

among the other deep learning models. 

 

 

Figure 32: TCN confusion matrix on test dataset. 
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Figure 33: Learning curve of TCN classifier 

 

After analyzing the classification task, price forecasting models were also 

evaluated. 

 

 Univariate Multivariate 

MAE RMSE MAPE 𝑅2 MAE RMSE MAPE 𝑅2 

Persistenc

e Model 

646.5 1002471. 2.31 0.99 646.5 10024 2.31 0.99 

LSTM 622.2 921.2 3.1 0.846 909.7 1075.8 4.6 0.79 

GRU 383 619.6 1.94 0.93 662.2 812.5 3.4 0.88 

BiLSTM 404 589.7 2.06 0.94 1186.2 1367.2 6.1 0.66 

CNN-

LSTM 

601.6 915 3.01 0.85 1677.3 2097.2 8.5 0.2 

CNN-

GRU 

528.8 780.9 2.6 0.89 1282.5 1678.9 6.6 0.49 

CNN-

BiLSTM 

363.1 554 1.82 0.94 1257.8 1560.9 6.37 0.55 

CNN-

BiLSTM-

Attn 

446.5 663.2 2.28 0.92 1590 1972 8.33 0.3 
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By observing Table 10 and Table 11, stacking ensemble for BTC price forecasting 

surpasses all base learner’s predictive performance. 

 

 

Table 12: MAPE score across all models on test dataset. 

 

TCN 792.1 925.7 4.2 0.84 915.4 1191 4.70 0.74 

Transfor

mer 

Encoder 

440 686.7 2.25 0.91 1094 1433 5.81 0.59 

Table 10: Evaluation of models for BTC price forecasting 

Meta learner Base learners MAE RMSE MAPE 𝑹𝟐 

 GRU 336 454.8 1.74 0.96 

Linear 

Regression 

BiLSTM 

 CNN-BiLSTM 

Table 11: Evaluation of stacking ensemble for BTC price forecasting 
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Figure 34: Predicted vs ground truth with stacking ensemble on test dataset. 

 

 

 

Finally, the last regression problem, concerning to BTC return forecast is evaluated. 

 

 MAE RMSE 𝑹𝟐 

Persistence Model 0.93 1.3 -1.08 

LSTM 0.25 0.35 0.8 

GRU 0.28 0.41 0.73 

BiLSTM 0.11 0.16 0.96 

CNN-LSTM 0.31 0.42 0.71 

CNN-GRU 0.34 0.46 0.65 

CNN-BiLSTM 0.34 0.46 0.65 

CNN-BiLSTM-Attn 0.21 0.28 0.87 

TCN 0.26 0.37 0.77 

Transformer Encoder 0.32 0.45 0.63 

Table 13: Evaluation of BTC returns forecasting. 
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Meta learner Base learners MAE RMSE 𝑹𝟐 

 BiLSTM 0.53 0.8 0 

KNN CNN-BiLSTM-

Attn 

 LSTM 

Table 14:Evaluation of stacking ensemble for BTC return forecasting. 

 

 

Figure 35: MAE score across all models on test dataset. 
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Figure 36: Predicted vs ground truth with BiLSTM on test dataset. 

 

 

 

Figure 37: Learning curve of BiLSTM. 
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5 Discussion 

 

In this section, we discuss and compare the results of our proposed model, other 

approaches, and the most related works. 

As stated by several researchers, like McNally et al. (2018), Adcock & Gradojevic 

(2019) or Aparicio et al.(2022), classical statistical techniques do not perform as well as 

deep learning in the realm of cryptocurrency price forecasting. Considering that most of 

the related work relates to research and implementation of advanced machine learning 

and deep learning algorithms aimed to tackle this problem.  

This research shows superior performance when compared to most of the related 

work, surpassing the predictive accuracy of all related work, except for (J. Shen & Shafiq, 

2020), where the authors achieved 93.3% accuracy. Our study shares some similarities 

with the authors regarding the significance of feature engineering and deep learning 

models. However, a critical divergence lies in the different datasets used for modeling 

and forecasting, as the aim of the research was to predict bi-weekly equity price trend. 

When comparing to (Greaves & Au, 2015), the author only considered blockchain-related 

information, resulting in a movement classification accuracy of 55%, which relates to the 

importance of a diversified data collection process. Collecting data from multiple sources 

was an important process of our research, enabling the predictive models to capture 

patterns more effectively and attain superior performance.  

Other research, such as  (Mudassir et al., 2020) and (Dimitriadou & Gregoriou, 

2023), although similar to ours with respect to the collection of data from multiple sources 

and the implementation of a careful feature preprocessing, fails to implement more 

advanced architectures, which could have led to an improved result from the 65% and 

66% accuracy obtained, respectively. 

It is also important to mention that Ortu et al., (2022) explored deep learning models 

and a wide set of features, including technical, trading, and social data. Our research 

complements their findings by also encompassing similar types of data and improving the 

performance of daily classification of the price trend.  

This demonstrates the impact of data preprocessing techniques and advanced 

architecture exploration in enhancing the accuracy of cryptocurrency price forecasting 

models. 
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6 Conclusion  

 

6.1 Findings 

 

Non-stationary time series exhibit evolving statistical distributions over time, which 

results in a changing dependency between the input and output variables. Nevertheless, 

almost all implemented deep learning classifiers were able to take advantage of the 

explanatory features to increase their predictive accuracy largely, ranging from 73.9% to 

90.9% in the multivariate approach. It is important to note that feature engineering played 

a significant role in achieving these lower forecast errors when compared to the univariate 

approach. 

In the regression task, multivariate data did not have a positive effect on predictive 

performance, with all regressors performing worse on multivariate data than on univariate 

data. However, five regressors were able to outperform the persistence model baseline in 

the univariate approach, with a MAPE below 2.31%, with the hybrid architecture CNN-

BiLSTM showing the lowest MAPE of 1.82% when considering stand-alone models 

only. 

In the regression problem of predicting bitcoin daily returns, all deep learning models 

outperform the baseline in all evaluation metrics, with BiLSTM being the model with the 

lowest prediction errors. In fact, BiLSTM shows good performance in each of the 

forecasting problems. It is always able to outperform the baseline, and in addition to being 

the best model for forecasting bitcoin daily returns, it also presents the highest accuracy 

in the univariate approach of the classification task with 81.8% accuracy, which is 

surpassed by the TCN with 90.9% accuracy in the multivariate approach. 

Looking at the evaluation metrics of the hybrid architectures, adding a CNN 

preprocessing layer generally reduces the predictive performance of the model, as the 

evaluation metrics of the hybrid models worsen across the prediction tasks. The attention 

mechanism in the hybrid CNN-BiLSTM resulted in better performance in two tasks out 

of three, by improving the predictive performance of the hybrid model in forecasting the 

daily return and trend. 
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It is also important to note that the price prediction stacking ensemble was able to 

outperform the base learners, achieving a MAPE of 1.74%, making it the best performing 

model in the price prediction modelling task. The classifier stacking ensemble was not 

able to outperform the base learners, achieving an accuracy of 75%. Similarly, the 

ensemble model tasked with predicting yields produced negative results, achieving an 

RMSE of 0.8, which was only better than the baseline RMSE. 

 

6.2  Implications 

 

This research has a strong focus on feature engineering and its impact on prediction 

performance. Several techniques have been tested, such as RFE or Random Forest feature 

importance. However, the integration of methods that extract features through linear 

relationships, such as PCA, and methods capable of extracting new features through non-

linear relationships, such as AE, proved to be critical to achieving high quality. 

Furthermore, the prediction of the daily trend of the BTC showed a significantly high 

accuracy, thanks to preprocessing techniques such as stationarity and power 

transformations. These transformations facilitated pattern learning, as evidenced by the 

faster convergence of the models when applied. 

The data preprocessing pipeline developed here can serve as a guideline for future 

research in the field of financial time series forecasting. 

Furthermore, it is worth noting that our research included an extensive exploration 

of architectural designs. These explorations encompassed recurrent models, hybrid 

models and an attention mechanism, evaluated both from a univariate and multivariate 

approach, enabling a comprehensive analysis of which model and approach are best suited 

for different tasks. 

 

 

6.3  Limitations 

 

In the development of robust forecasting models to predict financial time series, 

several limitations and challenges have surfaced. These limitations are essential to 
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acknowledge, as they may impact the scope and generalizability of our findings. These 

limitations are also detailed in (Israel et al., 2020). 

One significant limitation pertains to data availability. While we collected a diverse 

set of features, encompassing market data, macroeconomic indicators, network data, and 

social popularity, some essential variables remained beyond our reach. Notably, we 

lacked access to options data such as open interest data, and certain other proprietary 

information that could potentially enhance our predictive capabilities. Also, regarding 

data restrictions, it is important to note the limited size of important financial datasets, as 

some datasets have few data points, also distributed among different market regimes, and 

their nature is usually stochastic and non-stationary, making it difficult to generate 

synthetic data that tracks the temporal dynamics of the financial markets.  

Low signal-to-noise ratio was also a limitation in our research. Unlike traditional use 

cases of machine learning techniques such as natural language processing, generally the 

signal-to-noise ratio in financial data is low.   

Another difficulty is the market-changing dynamics and regime switches, presenting 

a challenge for a machine learning model to tackle a forecasting problem, as the training 

dataset can have a very different distribution from the test dataset. 

 

6.4 Future Work 

 

As we conclude our research in Bitcoin time series forecasting with deep learning 

models, we recognize several promising avenues for future research and areas where 

further exploration could yield significant advancements. This section outlines some of 

these potential directions: 

Integration of sentiment analysis with natural language processing (NLP). NLP-

based sentiment analysis techniques, such as BERT (Bidirectional Encoder 

Representations from Transformers), to extract sentiment from social media and news 

feeds. The results from  (D. Shen et al., 2019) showed that the number of tweets on Twitter 

can influence the trading volume of BTC for the next day. In this sense, analyzing 

sentiment data from different sources can serve as a valuable predictor and lead to 

promising results. 



 

 57 

Exploring advanced transformer models, including the Temporal Fusion 

Transformer (Lim et al., 2021)  and other transformer-based neural network architectures 

tailored for time series data, to investigate the application of transformers to capture long-

term dependencies and temporal patterns in cryptocurrency price data.  

Also, expanding the dataset to include options data such as open interest and miners’ 

outflow sources will enhance the feature set and deepen the analysis. 

It is also important to mention further incorporation of regularization techniques to 

contribute to more stable deep learning models such as L1 and L2 regularization. 

Furthermore, to enhance the robustness and reliability of the predictive models, 

incorporating residual analysis can provide valuable insights into unexplained variations 

in predictions and can be integrated into model architectures, allowing learning from past 

prediction errors and enhancing predictive performance. There are already models that 

leverage residual components, such as residual neural networks, that are worth exploring 

(He et al., 2015). 

Fractional differencing for time series modeling discussed in (Lopez de Prado, 2018), 

is also a promising avenue for time series modeling because it allows the series to retain 

more memory while still being stationary. Since differencing extracts mathematical 

memory from the original time series, instead of relying on integer differencing to make 

the series stationary, the differencing coefficient is fractional, allowing the series to retain 

its predictive power. 

To finalize, it is also important to note the exploration of Time2Vec as a potential 

direction, a model-agnostic vector representation of time  (Kazemi et al., 2019),  an 

embedding technique used in time series that can lead to improved forecasting and 

predictions in various time-dependent applications such as price prediction. 
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Appendix 

Variable Name Description 

Oil price Crude oil daily prices – WTI, serves as one of the main oil 

benchmarks (dollars per barrel) 

Treasury yields Represent the interest rates paid on U.S. government debt. 

Copper price Market value of one tone of copper. 

Iron price Market value of one tone of iron. 

CBOE Refers to an ETF that tracks the performance of gold prices.. 

SP500 Stock market index, representing the performance of 500 of the 

largest companies on the US. 

MedianCPI Variation of the Consumer Price Index (CPI), serving as a proxy 

for inflation. 

Nasdaq100 Stock market index that containing technology and non-financial 

companies. 

UnemploymentU

SA 

The percentage of the labor force that is not currently employed in 

USA. 

USA_GDP Gross domestic product of the USA. 

Debt_GDP_USA Metric to compare USA’s total outstanding of debt to its GDP. 

FiveYrBreak Estimation of market-based expectations of future inflation. 

TenYrBreak Estimation of market-based expectations of future inflation. 

transaction_fees Costs associated with processing and verifying transactions on the 

Bitcoin network. 

avg_block_size Average size of a block (contains a group of transactions) within 

the blockchain. 

miners_revenue Total amount of rewards that cryptocurrency miners receive for 

their work in processing and validating transactions. 

confirmed_trans

actions 

Refers to cryptocurrency transactions that have been successfully 

processed and added to a blockchain. 
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unique_addresse

s 

Number of individual addresses within the blockchain network. 

hash_rate Refers to the measurement of computational power or processing 

capacity within a blockchain network. 

Difficulty Refers to a parameter that regulates the complexity of the 

mathematical problems miners must solve to validate transactions 

and create new blocks in the blockchain. 

estimated_outpu

t_volume 

Represents the estimated total value or quantity of BTC 

transferred in a set of transactions. 

estimated_transa

ction_volume 

Represents the estimated total value or quantity of BTC being 

transacted within a given time frame. 

btc_trends Represents a normalized google search data, respective to interest 

in BTC. 

High Represents highest trading price of BTC on a given day. 

Low Represents the lowest trading price of BTC on a given day. 

Volume Total amount of transaction of BTC on a given day. 

Close_ETHUSD

T 

Last market price of Ethereum on a given day 

Volume_ETHUS

DT 

Total amount of transactions of Ethereum on a given day 

Close_BNBUSD

T 

Last market price of Binance Coin on a given day 

Volume_BNBUS

DT 

Total amount of transactions of Binance Coin on a given day 

Close_XRPUSD

T 

Last market price of Binance Coin on a given day. 

Volume_XRPUS

DT 

Total amount of transactions of Ripple on a given day. 

Close_btc Last market price of BTC. 

Debt_USA Total national debt USA. 
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SavingsRate Portion of a person’s or household’s disposable income that is 

saved. 

Table 15: Collected features set. 

 

model = keras.models.Sequential( 

    [ 

        # 1D-Conv layer will slide filters across one-dimension (time 

axis) of the input; kernel:filter 

        keras.layers.Conv1D( 

            filters=20, 

            kernel_size=4, 

            strides=1, 

            padding="causal", 

            activation="relu", 

            batch_input_shape=[1,None, n_features], 

        ), 

        keras.layers.LSTM(100, return_sequences=True, stateful=True), 

        keras.layers.LSTM(100, return_sequences=True, stateful=True), 

        # dropout layer to prevent overfitting 

        keras.layers.Dropout(0.2), 

        keras.layers.Dense(1, activation="linear"), 

    ] 

) 

 

Figure 38: Hybrid CNN-LSTM implementation 

 

import tensorflow as tf 

from tensorflow import keras 

 

n_features = X_train.shape[-1] 

 

# attention layer 

class Attention(keras.layers.Layer): 

    def __init__(self, units): 

        super().__init__() 

        self.W1 = keras.layers.Dense(units) 

        self.W2 = keras.layers.Dense(units) 
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        self.V = keras.layers.Dense(1) 

 

    def call(self, features): 

        score = tf.nn.tanh(self.W1(features) + self.W2(features)) 

        attention_weights = tf.nn.softmax(self.V(score), axis=1) 

        context_vector = attention_weights * features 

        context_vector = tf.reduce_sum(context_vector, axis=1) 

        return context_vector, attention_weights 

 

# Input layer 

input_layer = keras.layers.Input(shape=(None, n_features)) 

 

# CNN-BiLSTM-Attention model 

x = keras.layers.Conv1D( 

    filters=20, 

    kernel_size=4, 

    strides=1, 

    padding="causal", 

    activation="relu" 

)(input_layer) 

 

x = keras.layers.Bidirectional(keras.layers.LSTM(100, 

return_sequences=True))(x) 

# add dropout to control overfitting 

x = keras.layers.Dropout(0.2)(x) 

x = keras.layers.Bidirectional(keras.layers.LSTM(100, 

return_sequences=True))(x) 

 

context_vector, attention_weights = Attention(100)(x) 

output = keras.layers.Dense(1, activation="linear")(x) 

 

model = keras.models.Model(inputs=input_layer, outputs=output) 

 

model.compile(loss="mse" , optimizer="adam", metrics=["mae", "mse"]) 

early_stopping = keras.callbacks.EarlyStopping( 

    monitor="val_loss", 

    patience=20, 

    mode="min", 

    restore_best_weights=True, 

) 
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lr_schedule = keras.callbacks.ReduceLROnPlateau( 

    monitor="val_loss", 

    factor=0.5, 

    patience=10, 

    min_lr=0.0001, 

    mode="min", 

    verbose=1, 

) 

checkpoint = keras.callbacks.ModelCheckpoint( 

    

f"artifacts/{features_set}_features_set/saved_deepLmodels/univariate/c

nn-bilstm-attn_regressor.h5", save_best_only=True, monitor="val_loss", 

mode="min" 

) 

reset_states = ResetStatesCallback() 

history = model.fit( 

    train_set, 

    epochs=200, 

    validation_data=valid_set, 

    verbose=1, 

    shuffle=False, 

    callbacks=[early_stopping, lr_schedule, checkpoint, reset_states] 

) 

Figure 39: CNN-BiLSTM-Attention implementation. 


	Acknowledgments
	Resumo
	Abstract:
	Table of Contents
	List of Tables
	1 Introduction
	1.2 Background
	1.3 Problem Statement
	1.4 Research Methodology
	1.5 Outline

	2 Literature Review
	2.2 Time Series Forecasting
	2.3 Related Work
	2.4 Feature Engineering for Time Series
	2.5 Gradient-Based Learning
	2.6 Activation Functions
	2.7 Deep Learning Forecasting Models
	 RNN (Recurrent Neural Network)
	 LSTM (Long Short-Term Memory)
	 GRU (gated recurrent unit)
	 BiLSTM (Bidirectional Long Short-Term Memory)
	 CNN (Convolutional neural networks)
	 Attention Mechanism
	 TCN (Temporal Convolutional Network)
	 Transformer
	 Stacking Ensemble
	 Bias-Variance Trade-Off
	 Overfitting Mitigation

	2.8 Evaluation Metrics

	3 Methodology
	3.1 Data Collection
	3.2 Data Preprocessing
	3.3 Impact of Feature Engineering in LSTM Predictive Performance
	3.4 Data Preparation
	3.5 Deep Learning Models
	3.6 10.6 Model Training

	4 Experimental Results
	4.1 Model Performance

	5 Discussion
	6 Conclusion
	6.1 Findings
	6.2  Implications
	6.3  Limitations
	6.4 Future Work

	References
	Appendix

