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ABSTRACT

The global energy landscape is undergoing a transformative shift driven by ambitious
environmental policies aimed at mitigating climate change and promoting renewable en-
ergy sources. The Kyoto Protocol and the European Union Emissions Trading Scheme
(EU ETS) have played central roles in reshaping energy markets and emission certificate
pricing. This thesis delves into the mathematical modeling of energy markets and CO2

emission certificates, using forward-backward stochastic differential equations (FBSDEs)
to unravel intricate pricing mechanisms.

The research has two key objectives. Firstly, it aims to derive fundamental partial
differential equations (PDEs) for pricing emission certificates within standard and joint
models. These PDEs serve as the foundation for subsequent analysis. Secondly, the
thesis seeks to develop efficient numerical methods, including finite difference schemes
and alternating direction finite schemes, to solve these PDEs, enabling the interpretation
of real-world pricing dynamics.

The findings reveal the interplay between emission certificate prices, electricity de-
mand, and cumulative emissions, highlighting their influence on allowance prices. The
analysis underscores the discrete nature of allowance prices at the end of the compliance
period.

Moreover, the study emphasizes the significance of incorporating fossil fuel prices
into the modeling framework, which drives variations in initial allowance certificate prices.
In summary, this research contributes to understanding emission market pricing mecha-
nisms in the evolving energy landscape.

KEYWORDS: Forward Backward Stochastic Differential Equation, Numerical Meth-
ods, Emission Markets, Bid-Stack, Allowance Certificates.
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1 INTRODUCTION

The structural transformation of energy markets is currently underway at a global
level, primarily driven by ambitious environmental policy initiatives aimed at mitigating
the effects of climate change and fostering a transition to renewable energy sources and
low-carbon technologies. As a result, the composition of energy sources, energy demand,
and the dynamics of the energy market have undergone significant changes in recent years.
The adoption of environmental policies and the increasing focus on sustainable practices
have necessitated a profound shift in the electricity market landscape. This thesis delves
into the mathematical modelling of energy markets and carbon dioxide (CO2) emission
certificates, examining how these changes have influenced pricing mechanisms.

The Kyoto Protocol, an international treaty adopted in 1997, has played a pivotal role
in shaping the response to climate change (see [6]). The agreement sets binding emission
reduction targets for developed countries and established the framework for international
cooperation on emissions reduction. As a direct consequence, the electricity market has
experienced substantial transformations in line with the commitment to reduce green-
house gas emissions. The integration of renewable energy sources and the development
of cleaner technologies have become central to the strategies employed by energy market
participants to align with the Kyoto Protocol’s objectives.

Emission Trading, as implemented in the European Union Emissions Trading Scheme
(EU ETS), is a market-based approach to control greenhouse gas emissions. Within the
EU ETS, a cap is set on the total amount of certain greenhouse gases that can be emitted
by covered installations. These installations are issued a limited number of emission al-
lowances, which they can trade amongst themselves. This mechanism creates a market for
emission certificates, with prices being determined by the supply and demand dynamics
of the trading participants. The EU ETS has become one of the largest and most influ-
ential emissions trading systems globally, significantly impacting the pricing of emission
certificates.

One of the key focal points of this thesis is the mathematical modelling of energy mar-
kets and CO2 emission certificates. Specifically, the study revolves around a risk-neutral
valuation approach, which involves considering a forward-backward stochastic differen-
tial equation (FBSDE) to determine the price of emission certificates. This approach
considers structural models and links emission certificates to both the electricity demand
process and cumulative emissions. Such mathematical models provide crucial insights
into pricing mechanisms and risk assessment within energy and emission markets.

The scientific objectives of this research project are twofold. Firstly, the thesis aims to
derive the partial differential equations (PDEs) necessary for pricing emission certificates
within the standard model, as proposed in [17], and the joint model for electricity and
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emissions, as introduced in [15]. Understanding and establishing the fundamental PDEs
for pricing emission certificates will lay the foundation for subsequent analysis.

Secondly, the thesis seeks to develop and implement efficient numerical methods for
solving the pricing PDEs. Two numerical schemes will be used, such as a Crank-Nicolson
scheme and a forward Euler scheme. These will be tested to identify the most effective
and accurate methods for solving the pricing PDEs. These numerical methods will be
instrumental in analyzing and interpreting real-world data and pricing dynamics within
electricity and emission markets.

To achieve our proposed goal, our thesis is structured as following: we will start with
a literature review that delves into prior research on energy markets, emission trading, and
mathematical modelling techniques. The next chapters will present the derivations of the
pricing PDE’s, the development and testing of numerical methods, and the analysis of re-
sults. Finally, the thesis will conclude with a summary of findings and their implications,
along with potential paths for future research.

2 LITERATURE REVIEW

Electricity markets play a crucial role in meeting the energy needs of societies around
the world. The availability and pricing of electricity are influenced by numerous factors
such as supply-demand dynamics, fuel prices, government policies, technological ad-
vancements, and environmental regulations [4]. Modelling these intricate aspects allows
researchers to develop mathematical models that aid in predicting electricity prices [4].

Similarly, emission markets focus on the trading of greenhouse gas emissions permits
or credits. These markets have emerged as a response to global efforts to mitigate climate
change by reducing carbon emissions. Modelling emission markets involves understand-
ing risk-neutral pricing techniques for financial instruments within this domain [17].

To provide an overview of modelling electricity and emission markets, it is essential
first to define these terms. Electricity markets refer to the marketplace where buyers and
sellers trade wholesale or retail power contracts [1]. On the other hand, emission markets
involve buying or selling permits or credits related to greenhouse gas emissions [22]. The
emission markets were first studied by Dales [12] and then by Montgomery [19].

The emission rates originating from electricity production are inherently linked to the
technology and energy sources employed in the generation process. To gain insights into
which electricity sources or generators hold preference in the market, a useful tool known
as the "bid stack" comes into play. The bid stack can be thought as a map that organizes
market supply based on the ascending order of electricity production costs. This idea was
first introduced by Barlow [2], and then some of its main properties were studied in [16].

In the realm of emission markets, a no-arbitrage approach, typical in mathematical
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finance, offers a means to determine certificate prices. These prices can be conceptualized
as the anticipated discounted future returns of the contract under a risk-neutral framework.
A notable contribution to this field can be found in [17], which introduces a structural
model and risk-neutral valuation technique. Within this framework, emissions certificates
are treated as financial derivatives that depend on both demand patterns and cumulative
emissions. Importantly, the emissions process aligns with the demand process through the
bid stack map, allowing for the derivation of a forward-backward stochastic differential
equation (FBSDE) governing the certificate price. In [17], the authors use Itô stochastic
calculus to demonstrate that the FBSDE solution satisfies a semilinear partial differential
equation (PDE).

Establishing the existence and uniqueness of solutions for the FBSDEs related to emis-
sion certificates presents a challenging problem. This complexity arises from the degen-
eracy in one of the forward components and the singularity in the terminal condition.
Nevertheless, in the works of [7], [8], and [20], the authors demonstrate the existence and
uniqueness of solutions. They achieve this by imposing regularity assumptions on the
coefficients within the stochastic differential equation governing the demand process.

Expanding upon the model introduced in [17], [11] incorporates stochastic fuel prices
as variable costs impacting firms’ bidding strategies. This augmentation proves valuable
in pricing contracts like clean spread options.

To numerically address the semilinear PDE governing certificate prices, various finite
difference schemes come into play. One such scheme, detailed in [17], employs a back-
ward finite difference approach for the time derivative and an explicit scheme. An alter-
native method, presented in [15], utilizes an alternating direction implicit finite difference
scheme to solve a similar PDE numerically. Moreover, [15] puts forth a combined model
encompassing both the electricity spot market and the emission market. This integrated
model facilitates simulations of changing market parameters and policy impacts. The au-
thors deduce a partial differential equation for pricing emission certificates, and propose
an alternating direction implicit finite difference scheme in order to obtain a numerical
solution for the PDE.

3 STOCHASTIC MODELS FOR THE CARBON EMISSION MARKETS

3.1 Overview of Carbon Emission Market

We will begin by exploring the intricate relationship between electricity and emissions
markets. In a liberalized electricity market the consumers are free to choose their electric-
ity suppliers. Importantly, an electricity supplier need not be an electricity producer; they
can purchase electricity from producers and then distribute it to consumers. Our primary
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focus will be on electricity producers who predominantly generate electricity through the
combustion of fossil fuels. This method, unfortunately, leads to the emission of carbon
dioxide (CO2) and other greenhouse gases. In response to the Kyoto Protocol’s emissions
reduction goals, the European Union (EU) introduced the EU Emissions Trading System
(EU ETS).

The EU ETS functions as a market mechanism built upon a cap-and-trade framework.
Within this system, the EU establishes an annual cap on total CO2 emissions and allocates
a finite number of Emission Allowance Certificates. Each certificate grants producers the
privilege to emit one metric ton of CO2 or its greenhouse gas equivalent. At the close
of the compliance period (typically one year), electricity producers must possess enough
certificates to offset their emissions throughout that period. Any surplus certificates can be
traded with other producers or retained for subsequent years. In cases of non-compliance,
producers are subject to fines.

The imposition of a cap on the number of allowance certificates ensures their mon-
etary value, giving rise to a marketplace for emissions trading, often referred to as the
carbon market. Notably, some argue, that under perfect information, imposing a carbon
emissions tax is essentially equivalent to operating within a carbon market. In this sec-
tion, we present a structural model for a simplified version of the electricity and emissions
markets, aiming to determine a fair price for an allowance certificate.

Within this framework, the electricity market is characterized by the following (see
[5]):

• The market is open to both suppliers and consumers, simplistically assuming that
producers also act as suppliers.

• A market administrator is responsible for matching supply and demand, meaning
consumers do not directly select their suppliers; instead, each consumer is assigned
their optimal supplier.

• Electricity suppliers submit bids to the market administrator, consisting of both a
quantity (of electricity) and an associated price.

• The market administrator organizes supply bids in merit order to match demand
with the lowest available current supply bid, creating what is commonly known as
a bid stack.

• Capacity limits exist for electricity production, and in cases of excess demand, the
maximum capacity is supplied.

• For simplicity, we disregard the existence of alternative electricity production meth-
ods, including nuclear and environmentally friendly options.
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Turning to the emissions market, we make the following assumptions (see [5]):

• All CO2 emissions subject to the emissions cap originate solely from electricity
production.

• A regulatory body enforces the emissions limit using emission allowances, allo-
cated at the beginning of each period (whether through auctions, sales, or distribu-
tion remains unspecified).

• Emission allowances are tradeable assets.

• For simplicity, we operate within a single compliance period, negating any transi-
tion value of allowances across multiple periods.

This comprehensive framework highlights the intricate interplay between electricity
and emissions markets, underscoring their critical role in mitigating CO2 emissions and
addressing climate change concerns.

3.2 Construction of the Standard Model

For the construction of the standard model, we will follow [17]. This model’s goal is
to determine the price of the allowances certificates, given the total cumulative emissions
of CO2, and the demand levels for electricity.

3.2.1 Market Setup

The first step would be to define our probability space. Instead of initially modeling
the market under an empirical probability measure, denoted as P, we opt to operate di-
rectly under the risk-neutral measure Q. This choice is driven by the realization that the
absence of arbitrage is, in fact, equivalent to the existence of a specific measure Q that is
equivalent to P. Essentially, this means that if P(N) = 0, then Q(N) = 0, and vice versa.
Furthermore, it implies that all the discounted prices of the allowance certificates behave
as martingales under Q (see [17]). This motivates the following assumption:

Assumption 1: There exists an equivalent martingale measure Q equivalent to P,

under which the discounted price of any tradeable asset follows a martingale process.

With this assumption in mind, we can now define the equation governing the dynamics
of the allowance certificate prices. We initiate this process by considering a probability
space denoted as (Ω,F ,Q), where we focus on a single compliance period [0, T ]. We con-
sider also a filtration {Ft}t∈[0,T ], generated by a standard Q-Brownian motion or Wiener
process W = {Wt}t∈[0,T ].
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In our market setup, we have two essential processes: the demand process D =

{Dt}t∈[0,T ] and the aggregate supply of electricity process ξ = {ξt}t∈[0,T ]. Both of these
processes are measured in megawatts. The demand for electricity is considered to be
perfectly inelastic, as is frequently justifiable in electricity markets (see [9]), meaning it
does not depend on the price of electricity. This assumption is reasonable because there
are no close substitute goods for electricity, and elasticity levels between demand and
price are low. Additionally, we assume that the existing supply always meets the demand,
since they are related by a Walrasian equilibrium assumption [21], which is expressed as
follows:

0 ≤ Dt = ξt ≤ ξmax for 0 ≤ t ≤ T.

The cumulative emissions of CO2 during the time interval [0, t] are represented by the
process E = {Et}t∈[0,T ], measured in tonnes of CO2, and are bounded:

0 ≤ Et ≤ Emax for 0 ≤ t ≤ T,where Emax > 0.

Finally, we consider the process A = {At}t∈[0,T ] representing the price of an al-
lowance certificate. We will also consider a riskless money market account with constant
risk-free interest rate r ≥ 0.

3.2.2 The Bid and Emissions Stacks

In order to model the process E = {Et}t∈[0,T ] effectively, it is essential to address both
the bid and emissions stacks. We introduce the notation BAU (representing "business-as-
usual") to denote a function unaffected by CO2 emission constraints. In other words, it
represents the function in its pre-emission limitation state.

As outlined in Section 3.1, the market administrator organizes production bids in as-
cending order, known as the merit order. This approach ensures that energy is supplied at
the most economical price for each level of demand. Therefore, the BAU bid stack can be
characterized by the continuous function

bBAU(ξ) : [0, ξmax] → R+
0 ,

where bBAU(ξ) ∈ C1(0, ξmax) and dbBAU

dξ
> 0. Considering the discrete nature of this

problem, our bid stack should ideally take the form of an increasing step function on
its domain of definition, serving as an approximation to the actual continuous function.
Given this, we take the business-as-usual bid stack to have the following shape
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bBAU(ξ) := b
−
+

 b̄− b
−

ξθ1max

 ξθ1 for 0 ≤ ξ ≤ ξmax, (1)

where b
−
, b̄ ≥ 0 and 2 < θ1 < ∞. The parameters b

−
, b̄, represent, respectively, the

minimum and maximum values of electricity that the model can produce. The parameter
θ1 governs the steepness of the stack and, more specifically, the rate at which the marginal
costs of generators rise.

For the marginal emissions stack functions, we will use the same idea.

e(ξ) : [0, ξmax] → R+
0 ,

where e(ξ) ∈ C1(0, ξmax). Using the provided definition, the function e(ξ) links a partic-
ular electricity supply, ξ, with the emissions rate of the marginal unit, measured in metric
tons of CO2 per MWh. Given this, we have

e(ξ) := ē−

(
ē− e

−

ξθ2max

)
ξθ2 for 0 < ξ ≤ ξmax, (2)

where e
−
, ē ≥ 0 and 0 ≤ θ2 < 1. The parameters e

−
, ē, represent, respectively, the minimum

and maximum values of marginal emissions rates in the market. The parameter θ2 governs
the fuel mix in the market. A reduced θ2 value corresponds to a decreased portion of the
market capacity being fulfilled by the pollution-intensive technology.

With these definitions, we can derive the market emissions rate function

µBAU
E (Dt) := κ

∫ Dt

0

e(ξ)dξ for 0 ≤ Dt ≤ ξmax, (3)

where the scaling constant κ represents the relationship between the emissions period T

and the time unit associated with the marginal emissions stack e. Typically, T is measured
in years, and κ corresponds to the number of hours per year.

3.2.3 Load Shifting: A Short-Term Abatement Measure

Now, let us consider the impact of emissions trading on the previously introduced
business-as-usual economy. Emissions trading effectively assigns a value to carbon emis-
sions, which, in turn, raises the operational costs for firms. Particularly, this makes pro-
duction more expensive for those firms heavily reliant on emission-intensive technologies.
For every unit of CO2 they emit beyond their initial allocation, they must purchase an al-
lowance contract to avoid penalties, turning the cost of carbon into a tangible expense.
Conversely, if a firm possesses excess allowances, they can sell them in the market, where
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the cost of carbon becomes an opportunity cost.
We won’t account for firms investing in long-term abatement projects, focusing solely

on the direct impact on the bid stack. Our assumption is that firms pass on the increased
production costs linked to emissions to consumers to preserve their profit margins. Since
the price of an allowance certificate represents the cost of carbon, each firm’s business-
as-usual bids rise by an amount equivalent to the allowance price multiplied by the firm’s
marginal emissions rate.

Additionally, we consider the phenomenon of load shifting, which involves reallo-
cating energy production from emission-intensive to environmentally friendly resources.
This action leads to a cap on total emissions. The introduction of a carbon market ef-
fectively acts as an invisible carbon tax, causing emission allowance certificates to incur
additional production costs. To avoid fines, companies must purchase an allowance con-
tract for each additional unit of CO2 they release beyond their initial allocation. As in
the previous scenario, businesses are assumed to pass on the rise in production costs to
consumers to safeguard their profit margins. Consequently, the price of an allowance
certificate, represented as A, leads to an increase in each company’s business-as-usual
bids, calculated as A multiplied by its marginal emissions rate. This transforms into the
function g, where

g(A, ξ) := bBAU(ξ) + Ae(ξ) for 0 ≤ A ≤ ∞, 0 ≤ ξ ≤ ξmax. (4)

As the cost of carbon rises, the production expenses for businesses using polluting
fuels increase, leading to higher bids associated with elevated marginal emission rates.
Consequently, adhering to our merit order assumption, the market administrator will acti-
vate generators in ascending order based on their bid levels. Thus, for a given allowance
A and energy price p, we can define the set of potential operational generation units as
follows

S(A, p) = {ξ ∈ [0, ξmax] : g(A, ξ) ≤ p} for 0 ≤ A, p < ∞. (5)

To put it differently, S represents the range of production levels that can be reached at
the specified electricity and allowance certificate prices without incurring financial losses.

According to the definition of a sublevel set, the mapping from P → λ(S(·, P )),
where λ represents the Lebesgue measure, is not only strictly increasing but also contin-
uous and thus invertible under the following assumption:

λ

(
{ξ ∈ (0, ξmax) :

∂bBAU

∂ξ
(ξ) + A

∂e

∂ξ
(ξ) = 0}

)
= 0 for 0 ≤ A < ∞. (6)

With equation (5), we can now define the market bid stack b, for certain values of the
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allowance price, as

b(A, ξ) := λ(S(A, ·))−1(ξ) for 0 ≤ A < ∞, 0 ≤ ξ ≤ ξmax. (7)

Given this, the price of electricity P is then given by

P := b(A,D) for 0 ≤ A < ∞, 0 ≤ D ≤ ξmax. (8)

With the market regulator now imposing an emissions cap through emission permits, we
can formally define the capped market emissions rate as

µE(A,D) = κ

∫
Sp(A,D)

e(ξ) for 0 ≤ A < ∞, 0 ≤ D ≤ ξmax, (9)

where Sp(A,D) := S(A, b(A,D)). The set Sp(A,D) can be calculated as explained in
detail in Appendix A. In the subsequent lemma, we establish various technical properties
of µE . These properties demonstrate that the model presented for the market emissions
rate aligns with common-sense expectations and results in a function that possesses the
necessary regularity.

Lemma 1: We have then the following properties about the market emissions rate µE

(for proofs of these properties, see [17]).

1. The map D → µE(., D) is

(a) strictly increasing and

(b) Lipschitz continuous.

2. The map A → µE(A, .) is

(a) nonincreasing and

(b) Lipschitz continuous.

3. µE is bounded.

3.3 Risk-Neutral Pricing of Allowance Certificates

When we defined the market setup, we stated the fact that the absence of arbitrage
was, in fact, equivalent to the existence of a risk neutral measure Q that is equivalent to P.
With this in mind, we can make some more assumptions regarding the demand and cumu-
lative emissions processes denoted, respectively, as D = {Dt}t∈[0,T ] and E = {Et}t∈[0,T ].
Additionally, we assume that at the initial time, t = 0, the demand for electricity is known
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and evolves according to an Itô diffusion process. Specifically, for 0 ≤ t ≤ T , under the
measure Q, the demand for electricity follows the general stochastic differential equation

dDt = µD(Dt)dt+ σD(Dt)dW̃t, (10)

where W̃ = {W̃t}t∈[0,T ] is {Ft}t∈[0,T ]-adapted and is a Q-standard Brownian motion.
In order to consider a more specific model, let us consider that the demand process

satisfies the stochastic differential equation

dDt = −η(Dt − D̄)dt+
√

2ησ̄DDt(ξmax −Dt)dW̃t, (11)

where σ̄D, η > 0, are constants. The strong solution of this stochastic differential
equation is the so-called Jacobi diffusion process. It degenerates on the boundary, and
it has a mean-reverting, linear drift component. Furthermore, subject to D̄ ∈ (0, ξmax)

and min(D̄, ξmax − D̄) ≥ ξmaxσ̄D, the process remains within the interval (0, ξmax). Its
stationary distribution is a beta distribution, and its mean is given by D̄ (see [14] for more
details).

It is worth noting that our assumption of perfectly inelastic demand is reflected in the
fact that both coefficients are functions solely dependent on demand. It is also important
to mention that if there were feedback from price into demand in the model, it would
introduce additional nonlinearities not present in the current formulation. Additionally,
in practical scenarios, demand for electricity often exhibits seasonal periodicity, which
would cause µD to explicitly depend on time. However, for simplicity, we opt to disregard
this feature in our model.

Cumulative emissions are measured starting from the commencement of the compli-
ance period at t = 0, setting E0 = 0. Subsequently, they are determined through integra-
tion based on the market emissions rate µE derived in the previous chapter. As a result,
the cumulative emissions process is represented by an absolutely continuous process. For
0 ≤ t ≤ T ,

dEt = µE(At, Dt)dt, E0 = 0. (12)

It is noteworthy that this definition ensures that the process E is nondecreasing, which
aligns with its interpretation as a cumulative quantity.

3.3.1 One Compliance Period

Now, in order to finish the presentation of our standard model, we need to characterize
the allowance certificate price process A = {At}t∈[0,T ]. Contrary to what happens when
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we define the processes E and D, we do not know its value at t = 0. However, we know
that the noncompliance event at the end of the compliance period can be represented by
{ET ≥ Ecap}. Given this, we have that the terminal value of the allowance certificates is
given by the following terminal condition:

AT =

{
0 if 0 ≤ ET ≤ Ecap

Π if Ecap ≤ ET ≤ Emax.
(13)

Given Assumption 1, we are aware that the process e−rtAt is a martingale under the
martingale measure Q, where r represents the risk-free rate. Consequently, following the
Martingale representation theorem [18], we can express a martingale as an Itô integral
with respect to the Q-Brownian motion W̃ , involving an adapted process Z = {Zt}t∈[0,T ],
such that

d(e−rtAt) = ZtdW̃t for 0 ≤ t ≤ T. (14)

Now, applying the Itô formula, we have

dAt = rAtdt+ ertZtdW̃t. (15)

Arriving here, it is possible to combine the processes (12) and (10) for cumulative
emissions and demand with the equation (15) and the terminal condition (13), such that
the pricing problem is presented as follows

dDt = µD(Dt)dt+ σD(Dt)dW̃t, D0 = d ∈ (0, ξmax),

dEt = µE(At, Dt)dt, E0 = 0,

dAt = rAtdt+ ertZtdW̃ t, AT = Π I[Ecap,∞)(ET ).

(16)

The question of the existence and uniqueness of a solution to the FBSDE (16) is
intricate (see [5]). The uniqueness of this type of equation is challenged by its nonstandard
nature, stemming from the degeneracy of one of its forward components (in our case, the
emissions process E combined with the singularity of the terminal condition. Results have
confirmed the existence and uniqueness of a solution to the FBSDE (16) under weaker
conditions regarding the regularity of the coefficients µD and σD than required in [7] and
[8]. In fact, it is enough for µD and σD to exhibit sufficient regularity to ensure that the
stochastic differential equation for D possesses a strong solution. Since this proof is out
of the scope of this thesis, we direct interested readers to the thesis [20].

Building on the earlier observation, we posit that within our Markovian framework,
there is a function α(t,D,E) : [0, T ] × [0, ξmax] × [0, Emax] → [0,Π] such that At =

α(t,Dt, Et) for 0 ≤ t ≤ T . This function exhibits sufficient regularity on [0, T ) to be
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considered a classical solution to the PDE

∂α

∂t
+

1

2
σ2
D(D)

∂2α

∂D2
+ µD(D)

∂α

∂D
+ µE(α(t,D,E), D)

∂α

∂E
− rα = 0,

on U and 0 ≤ t < T ,

(17)

α = ΠI[Ecap,∞)(E) on U := (0, ξmax)× (0, Emax) and t = T .

The procedure to obtain equation (17) is straightforward. Under the risk-neutral mea-
sure Q, the asset with price process A is a traded asset with drift equal to the risk-free
interest rate (last equation of 16). Moreover, we apply Itô’s formula to At = α(t,Dt, Et),
we use equations (16) and take the expected value, all the while assuming the existence
of a classical solution to the PDE. Important to note that, despite having the terminal con-
dition, we will also need suitable boundary conditions, which will be introduced in a later
section (see Section 4.1).

3.4 Construction of the Joint Model for Electricity/Emissions

In this section, we present the joint model for electricity/emissions, which is very close
to the model introduced in the previous chapter. However, we expand upon the findings
of the previous chapter by accommodating the stochastic equilibrium bids of generators
influenced by fuel prices.

Given this, and keeping in mind the framework of the electricity and emission market
discusses in Section 3.1, we start by presenting the main differences in this model, and
then show a reformulated solution of the FBSDE of the pricing problem.

3.4.1 Stochastic Bid Curves and the Price for Electricity

In our analysis, we delve into a market existing at time t with a demand Dt for energy
and a capacity Ct measured in MWh. In day-ahead auctions, energy companies submit
m bids, each comprising a quantity qj and a price pj for j = 1, ...,m. These bids are
organized in merit order, as in the previous model, and the market operator engages gen-
erators until the current demand is satisfied. Let us denote the distribution function Fi(St)

as the fraction of bids priced below St C/MWh for generators of fuel type i = 1, ..., n.
Consequently, the spot price St, which represents the current price in the marketplace at
which electricity can be bought, solves the equation

F (St) =
n∑

i=1

wiFi(St) =
Dt

Ct

, where
n∑

i=1

wi = 1. (18)
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Thus, the electricity spot price can be expressed as

St = F (.)−1

(
Dt

Ct

)
. (19)

Let us introduce a truncated domain with fixed lower and upper bounds, denoted bL and
bU , where bL < Dt

Ct
< bU must hold. Subsequently, the demand and capacity can be

rescaled as follows
D̂t := Dt − bLCt, Ĉt := (bU − bL)Ct

. This rescaling leads to the spot price satisfying the equation

F (St) =
n∑

i=1

wiFi(St) =
D̂t

Ĉt

. (20)

3.4.2 An FBSDE for the Allowance Price

After discussing stochastic bid curves and the price for electricity, we should move
onto the equations that form the pricing problem. It is important to notice, to avoid the
difficulties of estimating market prices of risk, we are operating under a risk-neutral mea-
sure, so assumption 1 is still valid for this model. Moreover, we choose to disregard
aspects of market incompleteness (such as the uniqueness of Q), transaction costs, illiq-
uidity, inelastic demand (and the unlikely scenario of demand surpassing supply, leading
to issues like blackouts), and non-power sector emissions. Although these details are
noteworthy in market dynamics, we contend that considering these factors should not
significantly alter the crucial qualitative insights derived from the model.

Before presenting these factors, we should make a remark regarding the notation used
in the following sections. Consider a time horizon represented by T ∈ R+. In this
context, we have a (n + 1)-dimensional standard Brownian motion or Wiener process
denoted as {W̃ 0

t , W̃t}t∈[0,T ]. This process exists within a probability space represented
as (Ω,F ,Q), where Ω is the sample space, {F0

t }t∈[0,T ] denotes the filtration generated
by W̃ 0, {FW

t }t∈[0,T ] represents the filtration generated by W̃ , and Ft := F0
t ∪ FW

t . We
make some assumptions for our model. We start by defining that at time t = 0, we have
knowledge of electricity demand, which then evolves based on an Itô diffusion process.
We assume that, for t ∈ [0, T ], the demand for electricity D = {Dt}t∈[0,T ] follows the
general stochastic differential equation

dDt =µd(t,Dt)dt+ σd(Dt)dW̃
0
t , D0 = d0 ∈ (0, ξmax). (21)

In general, the drift can be time dependent to account for seasonal variations in electricity
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demand. However, in order to keep the model simple, we do not consider these seasonal
effects and assume the specific model

dDt = −η(Dt − D̄)dt+
√

2ησ̄DDt(ξmax −Dt)dW̃t. (22)

As discussed before, the solution of this SDE is a Jacobi diffusion process. It degenerates
on the boundary, and it has a mean-reverting and linear drift component. Furthermore,
subject to D̄ ∈ (0, ξmax) and min(D̄, ξmax − D̄) ≥ ξmaxσ̄D, the process remains within
the interval (0, ξmax).

The prices of fuels used in the electricity production also follow a FW
t -adapted stochas-

tic process S = {St}t∈[0,T ] taking values in Rn and where St := (S1
t , ..., S

n
t ). In vector

form:
dSt = µs(St)dt+ σs(St)dW̃t, S0 = s0 ∈ Rn, t ∈ [0, T ] (23)

These equations are driven by the Q-standard Brownian motion W̃ . In this thesis, we will
only consider the prices of coal Sc and gas Sg. We assume that these processes follow the
SDE

dSi
t = −ηi(logS

i
t − s̄i −

σ̂2
i

2ηi
)Si

tdt+ σ̂iS
i
tdW̃

i
t , Si

0 = si0 ∈ R+, (24)

where dW̃ c
t and dW̃ g

t have a correlation factor ρdt, i ∈ {c, g} and t ∈ [0, T ]. Apply-
ing Itô’s Lemma, it is easy to show that the processes Ki

t := log(Si
t) follow correlated

Onrstein-Uhlenbeck processes under the measure Q.
The market emission rate, denoted as µe, is a crucial factor in this model. It is a

positive and bounded function that is influenced by various factors, including the current
energy demand, available capacity, and the prices of coal and gas. Additionally, µe is
sensitive to changes in CO2 allowance prices, which aligns with the goals of the EU ETS.
When carbon prices fluctuate, we anticipate shifts in the merit order, leading to variations
in greenhouse gas emissions.

To incorporate the feedback loop from European Emission Allowances (EUAs) prices,
we assume that the electricity spot price responds to changes in allowance prices. This
assumption is grounded in the requirement for generators to purchase certificates to offset
their emissions. Given that these additional costs are typically passed on, at least partially,
to the market, this assumption appears to be quite relevant. To determine the current
emission rate we need to calculate the amount of energy supplied by environmentally
unfriendly generators. The proportion of clean energy is denoted as bL. Once these bids
have been excluded from the dataset, D̂t represents the remaining demand that must be
met by conventional generators.

Using model (20), we can compute the percentage of the remaining demand satisfied
by generators using fuel i = 1, 2 through wiFi(St). Their contribution to the total demand
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D̂t is then given by wiFi(St)Ĉt for i = 1, 2. If we make the assumption that each type of
generator has a specific emission rate êi (tCO2/MWh), the overall emission rate is then

µe(D̂t, At, S
c
t , S

g
t ) = ê1w1F1(St)Ĉt + ê2w2F2(St)Ĉt (25)

Cumulative emissions begin at zero at the start of the compliance period (t = 0) and are
calculated by integrating over the market emission rate µe. Assuming we know the price
At of an allowance certificate, the cumulative emissions process is continuous and can be
described as follows:

dEt = µe(Dt, At, S
c
t , S

g
t )dt, E0 = 0. (26)

This definition ensures that the cumulative emissions process E remains non-decreasing,
aligning with its cumulative nature.

In order to complete our pricing model, we need to define the allowance certificate
price process A = {A}t∈[0,T ]. In a competitive equilibrium for a single compliance period,
the price of the allowance certificate at the end of the period depends on the cumulative
emissions and is represented by a deterministic function:

AT = ϕ(ET ). (27)

Here, ϕ : R → R is bounded, measurable, and non-decreasing. Typically, ϕ(·) takes
the form ϕ(·) := π⊮[Γ,∞)(·), where π ∈ R+ represents the penalty for non-compliance,
and is the cap set by the regulator for the total allocation of certificates. As the discounted
allowance price is a martingale under Q, it equals the conditional expectation of its final
value, expressed as:

At = exp(−r(T − t))EQ[ϕ(ET )|Ft], for t ∈ [0, T ]. (28)

This equation also implies that the allowance price process remains bounded. Given that
the filtration {F}t∈[0,T ] is generated by the Brownian motion, we can apply the Martingale
Representation Theorem to represent the allowance price as an Itô integral with respect to
the Brownian motion {W̃ 0

t , W̃t}. This results in the stochastic differential equation

dAt = rAtdt+ Z0
t dW̃

0
t + Zt · dW̃t, for t ∈ [0, T ]. (29)

Here, {Z0
t , Zt} is an {Ft}-adapted, square integrable process.

Combining the previous equations, we can put the pricing problem as the solution of
the FBSDE
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
dDt = µD(Dt)dt+ σD(Dt)dW̃t, D0 = d ∈ (0, ξmax),

dSt = µs(St)dt+ σs(St)dW̃t, S0 = s0 ∈ Rn,

dEt = µE(At, Dt, S
c
t , S

g
t )dt, E0 = 0,

dAt = rAtdt+ Z0
t dW̃

0
t + ZtdW̃t, AT = ϕ(ET ).

(30)

Regarding the existence of solution, we have that if the function µe, which defines the
emission rate, exhibits Lipschitz continuity and µe(x, 0, s) remains uniformly bounded
in both x and s, and if the function ϕ, representing the terminal condition, is bounded,
non-decreasing, and Lipschitz, then the FBSDE (30) possesses a unique square integrable
solution (for a proof and more details, see [9]).

Given the previous FBSDE, we can now derive the following PDE

∂A

∂t
+ µd(t,D)

∂A

∂D
+

1

2
σd(D)2

∂2A

∂D2
+ µc(Sc)

∂A

∂Sc

+
1

2
σcS

2
c

∂2A

∂S2
c

+ µg(S
g)

∂A

∂Sg

+
1

2
σgS

2
g

∂2A

∂S2
g

+ ρσk(K)σg(Sg)
∂2A

∂Sc∂Sg

+ µe(D,A, Sc, Sg)
∂A

∂E
− rA = 0

(31)

with terminal condition at maturity t = T :

A(T,D,E, Sc, Sg) = π1[Ecap,∞](E) (32)

We will specify the boundary condition, needed to find the solution, in the following
chapter.

4 NUMERICAL RESULTS

In this chapter we will start by characterising the space and time discretization for
each model, as well as the algorithms used. First, with the standard model and then move
onto the joint model for electricity/emissions.

4.1 Discretization of the PDE

Both PDE’s describe the evolution of an option price over time and space, and it
includes several factors, such as volatility and interest rates. In order to solve them, we
need to start by discretizing the time and space. We will use an explicit forward Euler
method for the time variable for the standard model, and the Crank-Nicolson method for
the joint model of electricity/emissions.
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4.1.1 Standard Model discretization

The PDE we aim to solve is as follows:

∂α

∂t
+

1

2
σ2
D(D)

∂2α

∂D2
+ µD(D)

∂α

∂D
+ µE(α(t,D,E), D)

∂α

∂E
− rα = 0,

on U and 0 ≤ t < T .

(33)

with the terminal condition:

α = ΠI[Ecap,∞)(E) on U := (0, ξmax)× (0, Emax) and t = T (34)

. Here, α represents the option price, D and E are the spatial variables, t is the time,
σD(D) is the volatility, µE(α(t,D,E), D) and µE(D) are drift terms, r is the risk-free
interest rate, Π is a constant, and I[Ecap,∞)(E) is the indicator function.

As previously said, in order to solve this PDE numerically, we have to discretize
both time and space. We will use an explicit forward Euler method to discretize the
time variable. Let us discuss the solution to the allowance price valuation equation and
establish the necessary boundary conditions. To determine the points on the boundary
where conditions must be specified, we utilize the Fichera function. This function helps us
identify the locations on the boundary where information either flows outward or inward
for PDEs that degenerate at the boundary (see [17]).

Let us define n as the inward normal vector to the boundary, denoted as n := (nD, nE).
Fichera’s function for equation (17) is

f(t,D,E) := (µD(D)− 1

2

∂

∂D
σ2
D(D)nD + µE(α(t,D,E), D)nE on ∂UT . (35)

Information flows outward over the boundary at sites where f is greater than or equal
to zero, while it flows inward across points where f is less than zero. This distinction
necessitates the specification of boundary conditions.

When D = 0 and D = ξmax, f ≥ 0 if and only if min(D̄, ξmax − D̄) ≥ ξmaxσ̄D.
This condition is satisfied by the boundary condition derived from the Jacobi diffusion
process. For E = 0, f is always greater than or equal to zero. The crucial boundary
condition arises when E = Emax, and it takes the form:

α(t,D,E) = e−r(T−t)Π, [0, T )× (0, ξmax)× {E = Emax}. (36)

This condition is based on the principle that as soon as cumulative emissions exceed the
established cap, each additional metric ton of carbon dioxide incurs a penalty at a rate of
Π at time T.
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The time domain [0, T ] is divided into Nt time steps, where Nt is the total number of
time steps. The time step size, represented by ∆t, is given by

∆t =
T

Nt

. (37)

The discrete time levels are tk = k ·∆t for k = 0, 1, 2, . . . , Nt.
The spatial domain U is a rectangular region defined by (0, ξmax)× (0, Emax). To dis-

cretize this domain, we introduce a grid in both D and E directions. The spatial variable
D is discretized by dividing the interval (0, ξmax) into Nx equidistant grid points. The
spatial step size, denoted as ∆D, is given by

∆D =
ξmax

Nx

. (38)

The discrete spatial points for D are Di = i ·∆D for i = 0, 1, 2, . . . , Nx.
Similarly, the spatial variable E is discretized by dividing the interval (0, Emax) into

Ny equidistant grid points. The spatial step size, denoted as ∆E, is given by

∆E =
Emax

Ny

. (39)

The discrete spatial points for E are Ej = j ·∆E for j = 0, 1, 2, . . . , Ny.
With the discretization of time and space in place, we can rewrite the original PDE

in discrete form. The discrete solution αi,j,k represents the option price at the grid point
(Di, Ej) and time level tk.

The discretized PDE considering the explicit forward Euler method, can be expressed
as

αi,j,k+1 − αi,j,k

∆t
+

1

2
σ2
D(Di)

αi+1,j,k+1 − 2αi,j,k+1 + αi−1,j,k+1

∆D2
+

µD(Di)
αi+1,j,k+1 − αi−1,j,k+1

2∆D
+ µE(Di)

αi,j+1,k+1 − αi,j−1,k+1

2∆E
− rαi,j,k+1 = 0,

(40)

where ∆D and ∆E are discrete steps for D and E, respectively. Solving for αi,j,k (since
we will be moving backward in time), we get

αi,j,k = αi,j,k+1 +∆t[
1

2
σ2
D(Di)

αi+1,j,k+1 − 2αi,j,k+1 + αi−1,j,k+1

∆D2
+

µD(Di)
αi+1,j,k+1 − αi−1,j,k+1

2∆D
+ µE(Di)

αi,j+1,k+1 − αi,j−1,k+1

2∆E
− rαi,j,k]

(41)

With this procedure, there exists a numerical approximation update at each time step,
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based on the values of the previous time step. It is possible to use suitable boundary
conditions to determine the values of α at the boundaries of the discretized domain U , as
seen in equation (36).

4.1.2 Joint Model for Electricity/Emissions discretization

We need to solve numerically the following PDE

∂A

∂t
+ µd(t,D)

∂A

∂D
+

1

2
σd(D)2

∂2A

∂D2
+ µc(Sc)

∂A

∂Sc

+
1

2
σcS

2
c

∂2A

∂S2
c

+ µg(S
g)

∂A

∂Sg

+
1

2
σgS

2
g

∂2A

∂S2
g

+ ρσk(K)σg(Sg)
∂2A

∂Sc∂Sg

+ µe(D,A, Sc, Sg)
∂A

∂E
− rA = 0,

(42)

with terminal condition at maturity t = T :

A(T,D,E, Sc, Sg) = π1[Ecap,∞](E). (43)

Due to the high computational complexity of the PDE, we decided to remove the
coal variable. While modeling coal with other variables would provide a more realistic
representation of the energy and emission markets, it becomes important to reach a bal-
ance between realism and computational feasibility. Practical constraints, such as avail-
able computational power and simulation time, often require simplifications in modeling.
Then, the new PDE is

∂A

∂t
+ µd(t,D)

∂A

∂D
+

1

2
σd(D)2

∂2A

∂D2
+ µg(S

g)
∂A

∂Sg

+
1

2
σgS

2
g

∂2A

∂S2
g

+

µe(D,A, Sg)
∂A

∂E
− rA = 0,

(44)

with terminal condition at maturity t = T :

A(T,D,E, Sg) = π1[Ecap,∞](E) (45)

Here, A represents the option price, D, E and Sg are the spatial variables, t is time, σD(D)

and σG(G) are the volatilities, µD(D), µE(D,A, Sg) and µG(G) are drift terms, r is the
risk-free interest rate, Π is a constant, and I[Ecap,∞)(E) is the indicator function.

We simplify the notation and we write
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An
i,j,g = A(tn, Di, Ej, Gg),

µd;n,i = µd(tn, Di),

σd;i = σd(Di),

µg;g = µg(Gg),

σg;g = σg(Gg),

µe;n,i,j,g = µe(Di, A
n
i,j,g, Gg)−

(46)

In order to solve this PDE numerically, we will have to discretize both time and space.
We will use the Crank-Nicolson method to discretize the time variable (see [10]). We
will consider the set Ω = (0, Dmax] × (0, Ecap] × (0, Gmax] for all t ∈ [0, T ]. As in the
previous model we use the Fichera function, so we can find which points of the boundary
are necessary to specify. let us consider the inward normal vector to the boundary ∂Ω,
denoted as n = (nD, nE, nG). The Fichera function is defined on the part of the boundary
where the characteristic form equals zero (see [13]). This function is expressed as

b = (µd(D)− 1

2

∂σd(D)2

∂D
)nD + (µg(G)− 1

2

∂σg(G)2

∂G
)nG+

µe(D,A,G)nE.

(47)

If b < 0, it indicates that the flow of information is inward, requiring the specification
of boundary conditions. Conversely, b ≥ 0, it implies an outward flow, and no boundary
conditions are needed.

At the boundary ∂Ω, which corresponds to D = 0, we have b ≥ 0, meeting the
condition for an outward flow. Similarly, at the lower boundary the fuel process (G =
0), the Fichera function is also positive, indicating an outward flow. However, since the
emission rate µe is always positive, and nE = −1 at the boundary E = Ecap, the function
becomes negative. Therefore, a boundary condition must be specified in this case. This
condition becomes relevant when the emission cap has already been reached. Due to this,
we reach the following boundary condition:

A(t,D,E,G) = π exp−r(T−t) if E ≥ Ecap. (48)

The five dimension grid is discretized as

0 < D0 < D1 < ... < DND−2 < DND−1 = Dmax,

0 < G0 < G1 < ... < GNG−2 < GNG−1 = Gmax,

0 = E0 < E1 < ... < ENE−2 < ENE−1 = Ecap −∆E,

0 = t0 < t1 < ... < tNT−1 < tNT
= T,

(49)
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where ∆D = Di+1 − Di, ∆E = Ej+1 − Ej , ∆G = Gg+1 − Gg, ∆t = tn+1 − tn

An Alternating Direction Implicit scheme will be used in order to solve the PDE. The
following operator notation will be used in the scheme:

δ+x u(x) = u(x+∆x)− u(x)

δ−x = u(x)− u(x−∆x)

δ0xu(x) = u(x+∆x)− u(x−∆x)

δ2xu(x) = u(x+∆x)− 2u(x) + u(x−∆x)

δ0xδ
0
yu(x, y) = u(x+∆x, y −∆y)− u(x−∆x, y +∆y)−

u(x+∆x, y −∆y) + u(x−∆x, y −∆y).

(50)

The scheme we use is then given by

(1 +
1

2
r∆t− 1

2
µd;n+ 1

2
,i

∆t

∆D
δ
+/−
D − 1

4
σ2
d,i

∆t

∆D2
δ2D)∆A∗ =

(−r∆t+ µd;n+ 1
2
,i

∆t

∆D
δ
+/−
D +

1

2
σ2
d;i

∆t

∆D2
δ2D

+ µe;n+1,i,j,g
∆t

∆E
δ+E)A

n+1

(1− 1

2
µg;g

∆t

2∆G
δ0G − 1

4
σ2
g;g

∆t

∆G2
δ2G)∆A∗∗ = ∆A∗

(1− 1

2
µe;n+1,i,j,g

∆t

∆E
δ+E)∆A = ∆A∗∗,

(51)

where ∆A = An − An+1, and ∆A∗ and ∆A∗∗ are auxiliary variables. This scheme can
be derived by factorizing a Crank-Nicolson scheme and rewriting the system in the so-
called delta formulation. In the last leg we have to determine the boundary condition
in the artificial variable ∆A. Since ∆A is the difference in an allowance value of two
consecutive time steps, we choose the boundary condition as

∆A = Π(e−r(T−tn) − e−r(T−tn+1)) ifEt ≥ Ecap. (52)

Having defined both our models and discretization schemes, we will now show how both
algorithms are used.

4.2 Numerical Algorithms

We now provide the algorithms that will be used to calculate the allowance price
function, for both models.
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4.2.1 Standard Model Algorithm

In this algorithm, we outline the steps to numerically solve the PDE. The PDE de-
scribes the evolution of a variable represented by α over a spatial grid and time intervals.
The algorithm employs a forward Euler scheme, a popular method for solving PDEs nu-
merically, to compute the values of α efficiently.

1. Define and initialize the parameters:
- Set values for constants such as η, D̄, κ, ē, θ2, e−, ξmax, r, Emax, Ecap, T , Nt, ND,
NE , Dmin.
- Create arrays D and E with evenly spaced values within specified ranges.
- Define the time step ∆t and initialize the variable α as a three-dimensional array
of zeros.

2. Calculate the terminal condition for α:
- Set the values of α at the last time step Nt based on the Heaviside function and
the condition E ≥ Ecap.

3. Calculate the boundary condition for α:
- Set the values of α along the boundary where E reaches its maximum value.

4. Calculate the µE variable:
- Create an empty matrix and calculate its values using numerical integration.

5. Perform time-stepping for Nt time steps, starting from Nt−1 and moving backward.

(a) For each time step, iterate through the spatial grid.

(b) Update the values of α at each grid point using a forward Euler scheme.

(c) Calculate α at the current grid point based on neighboring grid points and time
step size.

(d) Update α[0, :, n], α[−1, :, n], α[:, 0, n], and α[:,−1, n] to account for boundary
conditions and extrapolation.

(e) Repeat the time-stepping loop for the previous time step (n− 1) until all time
steps are computed.

4.2.2 Joint Model for Electricity/Emissions Algorithm

As before, the PDE describes the evolution of a function represented by A over a spa-
tial grid and time intervals. The algorithm employs a Crank-Nicolson scheme to compute
the values of A efficiently.The given scheme can be solved by following these steps:
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1. Initialize the parameters and variables: Set the values of constants such as r, µ, σ
and the grid sizes ∆t, ∆D, ∆E and ∆G.

2. Calculate the terminal condition for A:
- Set the values of A at the last time step Nt based on the Heaviside function and
the condition E ≥ Ecap.

3. Calculate the boundary condition for α:
- Set the values of A along the boundary where E reaches its maximum value.

4. Iterate over the time steps:

(a) Use the given equation to solve for ∆A∗ by rearranging the terms.

(b) Use the equation (1 − 1
2
µg;g

∆t
2∆G

δ0G − 1
4
σ2g; g ∆t

∆G2 δ
2
G)∆A∗∗ = ∆A∗ to solve

for ∆A∗∗.

(c) Use the equation (1− 1
2
µe;n+1,i,j,k,g

∆t
∆E

δ+E)∆A = ∆A∗∗ to solve for ∆A.

(d) Update the values of An+1: Update An+1 by adding ∆A from An.

(e) Repeat the steps for the next time step until the desired number of iterations is
reached.

4.3 Numerical Experiments

In this final subsection we present the numerical experiments made in both models.
Firstly, we use similar values to compare how the models behave. We also demonstrate
how allowance prices are influenced by both demand and cumulative emissions, and how
the inclusion of fuel prices would change this influence. Lastly, we do sensitivity tests, in
order to check how the models react to different inputs.

The following tables show the values used for the numerical experiments to the stan-
dard model, in accordance to [17]. They do not represent any market in particular, how-
ever, these findings can be regarded as indicative of a moderately-sized market where the
primary sources of energy generation are coal and natural gas (see [17]).

b̄ b
−

θ1 ē e
−

θ2 κ ξmax

200 0 10 1.2 0.4 0.4 8760 30000

TABLE I: Parameters for the bid and emissions stacks
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η D̄ σ̄D r

10 21000 0.05 0.05

TABLE II: Parameters for the demand process and the risk-free rate

Emax Ecap Π T

1.6519 × 108 1.17 × 108 100 1

TABLE III: Parameters characterizing the emissions trading scheme

Nx Ny Ny ∆D ∆E ∆t

25 25 365 ξmax
Nx

Emax
Ny

T
Nt

TABLE IV: Parameters for the grid discretisation

In Figure 1, we present the numerical results. Specifically, at the time t = T/2,
the allowance price is influenced by both the cumulative emissions up to that point and
the current demand level, as depicted in Figure 1(a). When we hold the emissions fixed
at a constant value E = ET/2, the function α(T/2, D,ET/2) increases as a function of
the demand D, as expected, since a higher demand implies a higher probability that the
emissions cap is surpassed.

We also have that, when we fix D, α(T/2, DT/2, E) becomes an increasing function
of E. Essentially, the current cumulative emissions establish a price range for allowances,
and the electricity demand determines the precise price within that range. Additionally,
it’s worth noting that if cumulative emissions surpass the cap, the allowance price equals
the discounted penalty.

As we approach the end of the compliance period, α is determined by the terminal
condition (36). Figure (1(b)) illustrates the discrete nature of the price at this time and its
lack of dependence on D.
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((a)) t = T/2 ((b)) t = T

FIGURE 1: Plots of the allowance certificate price, in an emission market with one com-
pliance period, at different times up to expiry, for the standard model.

The tables V, VI, VII, VIII and IX summarise the numerical parameters used to study
the joint model for electricity/emissions. For the common parameters, we will use the
same presented in the previous model. As for the parameters used related to the fuel price
processes, they are based in the studies of [3] and [9].

bL bU w1 ê1 ξmax

0.2 0.95 0.6984 8.2211 30000

TABLE V: Parameters for the bid and emissions stacks

η D̄ σ̄D r

10 21000 0.05 0.05

TABLE VI: Parameters for the demand process and the risk-free rate

Ecap Π T

1.6519 × 108 100 1

TABLE VII: Parameters characterizing the emissions trading scheme

ηg s̄g σ̂g Sg
0

1.5 2 0.5 e2

TABLE VIII: Parameters relating to the fuel price processes
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((a)) t = T/2 ((b)) t = T

FIGURE 2: Plots of the allowance certificate price, in an emission market with one com-
pliance period, at different times up to expiry, for the joint model for electricty/emissions.

Nx Ny Ng Nt ∆D ∆E ∆G ∆t

25 25 25 365 ξmax

Nx

Emax

Ny

Sg

Ng

T
Nt

TABLE IX: Parameters for the grid discretisation

As before, in Figure (2), we present the numerical results. It is important to notice that
we are depicting the impact of demand and emission of CO2 in the allowance prices, with
a fixed fuel price. Looking at the Figure (2(b)), we notice that there is no influence from
D. The main difference would be that, since in this model Ecap = Emax, the allowance
price only reaches Π = 100, when E = Ecap.

At the time t = T/2, we can see the effect of the demand and the cumulative emissions
on the allowance price. In this model, when we fix the emissions at E = ET/2, the
function α(T/2, D,ET/2) exhibits a constant trend as D rises. When we fix D at D =

DT/2, the allowance price α(T/2, DT/2, E) becomes an increasing function of E. The
main difference between the two models would be the allowance price when E = E0 and
the constant trend of D in the second model. In the standard model, when E = E0 the
value of the allowance price is close to 0, for every value of demand. As for this model,
we see that the value is around 60. So, as we can see, the introduction of the price of a
fossil fuel in the model, induces a rise in the starting price of the allowance certificates.
On the other hand, the lack of influence of the demand on the second model, might be
explained by a couple of factors. The first one could be the disparity of value between
some of the parameters. The second factor could be related to the changes made in the
original equation, due to the lack of computational power and its long simulation time.
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((a)) t = T/2 ((b)) t = T

FIGURE 3: Comparison of the allowance certificate price, for different emission levels.

4.3.1 Sensitivity tests

The price of the allowance certificates is influenced by multiple factors. The char-
acteristics of power plants, including their efficiency, and fuel expenses are examples of
it. It is anticipated that environmentally friendly power plants will experience advantages
with rising EUA prices, while inefficient and environmentally harmful plants will have
increased economic value when fuel costs are low, and the cost of emitting greenhouse
gases is affordable.

In the following subsections we will simulate various scenarios and try to reach some
conclusions.

4.3.1.1 Influence of Emission Cap

Our focus has now shifted to examining how the emission cap affects the allowance
certificates price. Looking at the Figure 3(a), we can conclude that the lower the emission
cap, the quicker will the allowance price rise. This was expected, since the lower the level
of the emission cap, the higher the probability of it being reached.

Moving on to the joint model for electricity/emissions, we can see that, not only the
allowance price rises faster when the level of the emission cap is lower, but it also starts
at a higher price.

4.3.1.2 Influence of Demand

In this section we will study the influence of demand, in particular, we aim to simulate
the impacts of both an economic boom and a recession. To model the economic boom, we
will introduce a demand process that increases by 5%, representing industrial prosperity
and a high demand for energy. Conversely, to simulate the recession, we will decrease the
demand by 5%.

The starting price for the allowances, in the standard model, are Abase
0 = 5.02198,

A+5%
0 = 6.68101 and A−5%

0 = 3.6543. As for the second model we have Abase
0 = 22.5746,
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A+5%
0 = 24.4287 and A−5%

0 = 20.6737. These results highlight the sensitivity of emission
allowance prices to changes in electricity demand. During an economic boom with an in-
crease in demand, allowance prices tend to rise, reflecting the greater pressure on emission
reduction targets. Conversely, during a recession with reduced demand, allowance prices
may decrease as the need for emission reductions diminishes. It is essential for market
participants and policymakers to consider these dynamics when analyzing and forecasting
emission allowance prices in response to varying economic conditions.

5 CONCLUSION

This thesis has explored the intricate interplay between electricity and emission mar-
kets, shedding light on the profound transformations brought about by environmental
policies and market dynamics. The transition toward cleaner energy sources, driven by
international agreements like the Kyoto Protocol, has reshaped the energy landscape. The
EU ETS has emerged as a key mechanism for controlling greenhouse gas emissions, sub-
stantially impacting emission certificate pricing.

Through rigorous mathematical modeling, this research has sought to unravel the pric-
ing mechanisms governing emission certificates in the context of evolving energy markets.
A risk-neutral valuation approach, based on FBSDEs, has been employed to determine
certificate prices. This approach has considered structural models, establishing crucial
connections between emission certificates, electricity demand, and cumulative emissions.

The objectives of this study were two-fold. Firstly, we aimed to derive the fundamental
PDEs required for pricing emission certificates within both the standard model and the
joint model for electricity/emissions. These PDEs serve as the cornerstone for subsequent
analyses and pricing evaluations.

Secondly, we endeavored to develop and implement efficient numerical methods for
solving these pricing PDEs. Numerical techniques such as finite difference schemes
and methods based on alternating direction finite schemes, were examined and tested.
These numerical methods are pivotal for interpreting real-world data and pricing dynam-
ics within electricity and emission markets.

The findings presented in this thesis offer valuable insights into the intricate relation-
ship between emission certificate prices, electricity demand, and cumulative emissions.
Notably, our analysis revealed the influence of these factors on allowance prices at differ-
ent points in time. As we approach the end of the compliance period, the discrete nature
of the allowance price becomes evident, irrespective of demand levels.

Furthermore, our research highlighted the significance of introducing the price of fos-
sil fuels into the modeling framework. This addition led to an increase in the starting price
of allowance certificates, emphasizing the critical role of fuel prices in emission market
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dynamics.
In summary, this thesis has contributed to the understanding of emission market pric-

ing mechanisms within the evolving energy landscape. By combining mathematical mod-
eling and numerical results, we have unraveled complex interactions, providing a foun-
dation for further research and policy considerations in the pursuit of sustainable energy
and emissions management. Future research endeavors may explore additional factors,
such as the impact of regulatory changes and technological advancements, to enhance our
comprehension of these intricate markets.
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A COMPUTATION OF THE CAPPED MARKET EMISSIONS RATE

A.1 Finding Sp interval

Let us recall the equations (1), (2), (4) and (5).
Under the hypothesis (6), the mapping P → λ(S(·, P )) is strictly increasing and also continuous. This

implies the existence of an inverse function. Let us then define that inverse function as

(λ{S(A, ·)})−1 for 0 ≤ A < ∞, 0 ≤ ξ ≤ ξmax. (53)

With the previous definitions and hypothesis, it was possible for us to define the capped market emis-
sions rate as (9). Considering the functions (1) and (2) in the mapping, the set Sp(A,D) will always be an
interval of the following form

Sp(A,D) = [ξ1, ξ2] for 0 ≤ ξ1 < ξ2 ≤ ξmax (54)

In order to determine ξ1 and ξ2, we need to find ρ∗ such that λ(S(A, ρ∗)) = D, which means that

S(A, ρ∗) = {ξ ∈ [0, ξmax] : g(A, ξ) ≤ ρ∗} = [ξ1, ξ2]. (55)

We also have that

λ([ξ1, ξ2]) = D ⇒ [ξ1, ξ2] = [ξ1, ξ1 +D]. (56)

Let us look at some of the values the interval Sp can take, depending on the value of A. When A = 0,
we have the following

Sp(0, D) = S(0, b(0, D)) = S(0, (λ{S(0, ·)})−1(D) =

= {ξ ∈ [0, ξmax]: g(0, ξ) = bBAU (ξ) ≤ (λ{S(0, ·)})−1(D)}.
Since bBAU is strictly increasing, we have that ρ∗ is such that λ{S(0, ρ∗)} = D and we have the

following expressions

bBAU (ξ) ≤ ρ∗,∀ξ ≤ D

and

bBAU (ξ) > ρ∗,∀ξ > D.

Then, we can conclude that Sp(0, D) = [0, D].
If, on the other hand, A assumes values bigger than 0, in order to find the Sp(A,D) interval, we have

three possible cases. In the first case, we have to check if g(A, 0) < g(A,D). In that case, we have that
ρ∗ = g(A,D) and Sp(A,D) = [0, D]. In figure (4), we have a graphic representation of this case.
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(D, ρ∗)

D ξmax

g(A; 0)

ρ∗ = g(A;D)

FIGURE 4: Case 1: Sp(A,D) = [0, D]

In the second case, we need to verify if{
g(A, ξmax) < g(A, ξmax −D),

g(A, 0) > g(A,D).

If the previous expression does indeed hold, we have Sp(A,D) = [ξmax − D, ξmax] and ρ∗ =

g(A, ξmax −D).

(D, ρ∗)

ξmax −D ξmax

ρ∗ = g(A; ξmax −D)

g(A; 0)

FIGURE 5: Case 2: Sp(A,D) = [ξmax −D, ξmax]

For the last case, we should verify the following expression{
g(A, ξmax) > g(A, ξmax −D),

g(A, 0) > g(A,D).
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We then need to determine a ξ1 such that it holds the subsequent equations
g(A, ξ1) = g(A, ξ1 +D),

ξ1 +D ≤ ξmax,

ξ1 ≥ 0.

In order to find ξ1, we can use Newton’s method
g(A, ξ1)− g(A, ξ1 +D) = 0,

ξ1 +D ≤ ξmax,

ξ1 ≥ 0.

The interval in that case will be Sp(A,D) = [ξ1, ξ1 +D] and ρ∗ = g(A, ξ1).

(ξ1, ρ∗) (ξ1 +D,ρ∗)

D ξ1 ξ1 +D ξmax

ρ∗ = g(A; ξ1)

g(A; 0)

FIGURE 6: Case 3: Sp(A,D) = [ξ1, ξ1 +D]
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