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Abstract

Climate change and weather-related catastrophes have been putting pressure
on nature-dependent sectors such as Agriculture. The insurance business is a support
mechanism for these vulnerable activities. Thus, in this work we intend to study the
relationship between losses in the agricultural sector, particularly the ones partially
supported by insurance companies, by analysing climate and insurance data. Because of
this relationship we believe that insurance companies contract definitions should be
based on scientific evidence.

To correctly understand the climate data, provided by IPMA, it is necessary to
treat the collected data. That was done in this work using the CLIMATOL software and
by analysing standard quality checks that guarantee the goodness of our data. We used
the treated data for trend analysis. Agriculture-Insurance related data was collected
from the website IFAP, which contains a publicly available dataset that concerns
information about the Crop Insurance variables and Governmental aid to farmers.

We will analyse to which extent the insurance companies and Government base
their budgeting and policy definition on the scientific analysis of weather data. This was
done by means of regression models and analysing the impact of each created variable
for different groups of crops and regions.

For the treatment and manipulation of the data, it was used inhouse R code and PowerBl|

as the data visualization tool.

Keywords: Climate Data, Climatol, Crop Insurance, Agricultural losses, Trend Analysis,
Regression Modeling



Resumo

As alteracdes climaticas e as catastrofes naturais tém vindo a por pressao sobre
os setores dependentes da natureza, nomeadamente a agricultura. As seguradoras
surgem como mecanismos de suporte para estas atividades mais vulneraveis.
Consequentemente, neste trabalho, através da analise dos dados do clima e dos dados
de seguros, pretendemos perceber a relacdo que existe entre as perdas no setor
agricola, em particular aquelas que sao suportadas em parte pelas companhias de
seguros. Esta relacdo que parece existir entre os setores leva-nos a crer que a definicao
de contratos de seguros deve ter uma base cientifica.

De forma a analisar corretamente os dados do clima, disponibilizados pelo IPMA,
€ necessario tratar os mesmos para que possam ser utilizados. Esse tratamento de dados
foi feito neste trabalho através da utilizacdo do software CLIMATOL e da analise de
critérios de qualidade de forma a garantir a qualidade dos dados a utilizar. Apds
tratados, os dados foram utilizados para andlise de tendéncias. Os dados relacionados
com os seguros agricolas foram obtidos através do website do IFAP, estando disponiveis
publicamente. A base de dados utilizada contém informacao sobre varidveis de seguros
agricolas e apoios estatais aos agricultores.

Foram analisados até que ponto é que a definicdo de orcamentos e de politicas
bem como dos prémios de seguro sdo baseados na analise cientifica da evolucdo do
clima. Para tal, utilizdmos modelos de regressdo que estudassem estas relacdes para
diferentes regides e conjuntos de culturas.

Para o tratamento e manipulacdo dos dados foram utilizados cédigos de R e o

PowerBIl como ferramenta de visualizagao.

Palavras-chaves: Dados do Clima, Climatol, Seguros Agricolas, Perdas Agricolas, Analise
de Tendéncias, Modelos de Regressao



Glossary

IFAP - Finance Institute of Agriculture and Fishery
IPMA - Portuguese Institute of Sea and Atmosphere
SC - Crop Insurance

SIPAC- Integrated Weather Protection System

SVC- Crop Viticulture Insurance
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1. Introduction

Climate Change is a reality intensely studied over the last years. Many changes
have occurred over the world and the impacts differ for different regions, see [1].
Portugal is no exception to these more extreme phenomena, and it has been registering
changes in temperature and in the frequency of occurrences of drought periods, as seen
in [1]. This increase in the events and their intensity has been more predominant in the
last thirty years, [2].

In this thesis, we aim to understand how the Portuguese latest climate evolution
impacts the agriculture-insurance line of business, and its recent development. We also
intend to study to which extent both the insurance sector and Government’s support
mechanisms are climate-driven. On one hand, the conclusions are that for the
agriculture crop insurances, the tariffs are highly related to the weather variables as well
as the frequency of hazards. On the other hand, the support given by the State to the
farmers for crop insurance has not been aligned with the weather evolution. Indemnities
paid to the farmers cannot be explained by our models.

As mentioned in [3], the effects of climate change can be direct or indirect. In
Portugal, the common tendencies significantly affect the water resources available for
industrial activities and day-to-day life. A substantial seasonal and year variability makes
the country vulnerable to the extreme phenomenon associated with droughts, as
exposed in [4]. At the same time several works, such as [2], [1], and [5] highlight that
the last decades are the ones with higher average temperatures. Between 2004 and
2006 the droughts had the most prolonged duration, affecting 100% of the Portuguese
mainland. In 2012, the severe drought situation led to the rise of government and public
concerns related to climate change.

More recently, in November of 2021, a meteorological drought period began and
it has been getting worse in 2022. The Portuguese mainland is considered to be in a
drought situation, which is related to surface water and groundwater unavailability in
accordance to what is explained in [5].

A study case on the Guadiana’s River in the south of Portugal, [5], highlights the
vulnerability of regions that depend on Agriculture because those s are more susceptible

to severe changes and higher risks in the future. This phenomenon aggravates for



Portugal because of its western Mediterranean position, which is believed to be one of
the regions to feel climate change impacts firstly and more intensely, see [5].

The role of insurances as a support service is of great importance in mitigating
the impact of climate change in Agriculture, as mentioned in [6] and [7]. Scientific
knowledge and methods based on evidence may help in predicting climate phenomena
and making the insurance sector an important figure in future adaptations.
Understanding how climate change has been affecting losses and prices of insurance
companies, namely regarding agricultural lines of business, is of great importance in
defining new strategies for the sector and in better supporting the more vulnerable
industries.

In [6], it is mentioned that many factors contribute to the higher risks of this type
of insurance, namely information asymmetries. The unpredictability of weather
phenomena requires more skilled and expert underwriting. Weather and climate studies
may be helpful to define future budgets for disaster payment, according to [8].

In order to relate the information from both agriculture-insurance data and
climate data, there are some recommended steps. The phases go from data collection,
to climate analysis with several in-between steps, [9]. Climate data still has many quality
problems that are even more predominant when considering daily data. Several works,
such as [9] and [10], highlight as the most important steps the homogenization, data
quality checks, missing data infilling and metadata study. They all impact the goodness
of results and were taken into consideration for this thesis. There are many software or
packages that already include features that approach each of the listed topics. The
choice of the method depends on several factors that characterize the dataset of each
researcher.

In this work, we use climate data from IPMA, the Portuguese Institute of Sea and
Atmosphere. This institute is responsible for collecting the data from the Portuguese
meteorological stations. Different methods to treat and analyse the data are studied in
order to get good quality from the Portuguese Climate stations’ observations. The
homogenization and quality control steps were performed using the CLIMATOL package
from R. This package applies, under parametrization, a homogenization algorithm and
quality control checks. Using the treated data, the latest climate developments and

trends are analysed. The results of different types of meteorologic observation stations,

2



namely manual and automatic, are extrapolated from one period to the other by
analysing the parallel measurement periods.

Afterwards, the analysed Portuguese climate data is related with crop insurance
aid data, which is publicly available. The data can be found in IFAP, Finance Institute of
Agriculture and Fishery, website. The information refers to Government support
mechanisms related with Insurance Underwriting Aid. The goal is to study how the
frequency of hazards and its financial amounts impact the Insurance companies, the
State, and the farmers, as well as how are those variables developing. Finally, the impact
of climate variables in specific insurance variables is studied with the purpose of
extrapolating their influence on the insurance sector. The final step is done by means of
regression models.

This thesis is organized as follows. In Chapter 2, we start with the analysis of the
raw data, as well as the application of the CLIMATOL package. Still in this chapter, the
tendencies for climate data are studied along with the parallel measurements’
comparison. In Chapter 3, the agriculture -insurance data is analysed and related with
the climate data, using regressions models. The final chapter is dedicated to conclusions

and future perspectives.

2. Portuguese Climate Data: ETL & Analysis
2.1 Portuguese climate raw data analysis

Good quality data is not possible without some preliminary steps.
Homogenization, missing data infilling and metadata study is essential to guarantee
robust results as mentioned in [8],[6], and [9]. When performing homogenization there
are several methods and techniques we can consider. Several software have been tested
in [11], and our choice was on CLIMATOL, an R package, that allows for climate data
treatment with flexibility to deal with different weather variables, and a user-friendly
interface as exposed in [12] and [13]. More details on the process of climate data
treatment and the CLIMATOL algorithm can be found in Appendix A section.

The data used in this work was collected and provided by IPMA. The data comprises
observations since 1941, although not all stations have such long series of observations.

Since 1941, meteorological stations have suffered modifications. The main changes are
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related to location and equipment. The data collected for this work is denominated as
manual or automatic due to the differences in equipment. Most of manual stations have
information until 2011, and automatic stations series go from 1995 to 2018.

For the data to be analysed through visuals, it had to be transformed from its original
format using R as the main tool. The selected variables to study were the minimum
(Tmin) and maximum (Tmax) temperature, rainfall values for twenty-four hours (Rtotal),
and the maximum wind speed achieved in one day (Wspeed). Throughout the thesis,
those same variables are referred to as Tmin, Tmax, Rtotal, Wspeed.

For the exploratory and visualization analysis, PowerBi tool was used due to its
capabilities of building dynamic graphs that allows for instant filtering and complex

graphical visualization.

Lisbon

Figure 1. Distribution of the meteorological stations

We start by analysing the specificities of the raw data. The way the stations are
dispersed throughout the country, the seasonal behaviour of the weather variables, and
their limits are taken into account in this quality checks assessment. The data comprises

observations of 90 automatic stations that cover a period of 29 years and 150 manual
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stations accounting for 70 years, from 1941 to 2011. In Figure 1, we can see their
distribution over mainland Portugal. There exists a high density of stations in Lisbon. The
Algarve region has stations along the coast. Interior and northern region of Portugal

have a lower density of stations.
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Figure 2. Means of considered variables throughout the year-Tmax and Tmin (2C), Rtotal
(mm) and Wspeed (km/h)

While looking at the data distribution throughout the year, in Figure 2, we can
see that the data mirrors what is the expected behaviour of climate in Portugal. The
winter and autumn months have lower temperatures (both maximum and minimum)
and higher rainfall values. Also, the wind variable reaches higher velocities in the winter
and autumn months, decreasing in the spring and summer seasons.

Another essential step performed on the raw data is the cleaning of incorrect
data that cannot be used. Some data records had values that could not be accepted

because they were outside logic and valid limits for the data. Both incorrect and missing



data were found and may be due to misfunction of the station’s equipment. The logic
limits are defined by IPMA, [14], that keeps track of each variable’s extremes.

All the variables with values outside the acceptable intervals are considered
unacceptable and deleted. Figure 3, which includes data of both manual and automatic
stations, displays the percentages of acceptable data, and it is possible to see that the

datasets are good overall.
Percentage of Bad Data Tmin Percentage of Bad Data Tmax
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Figure 3. Percentage of correct and incorrect data for all variables

The only exception is the variable of wind speed that has the biggest proportion of
incorrect data, with almost 40% of its values unsuitable to be used, while this percentage
is no more than 6% for the other variables. Several studies, including [15], highlight that
although temperatures and rainfall are highly studied in the scientific community, the
windspeed-related variables are more difficult to analyse and understand and fewer
studies exist for wind data. Indeed, reliable windspeed observations are difficult to
obtain as they are affected by several factors, such as anemometer height changes or
different sampling intervals, that lead to their inhomogeneities. Nonetheless, the study
of changes in wind speed is also of great importance.

The tendencies of climate data should not be calculated using raw data, [9].
Nevertheless, to perform Temporal Validation, which analysis if the data in hands
follows the previously described evolution or events, we analysed briefly the trend lines
of the variables means, supplied by PowerBl. We observe that the maximum and
minimum temperatures are increasing over the years, from 1941 to 2019, and the

rainfall values are decreasing for the same period. The wind speed variable shows a



significant decreasing slope, while the tendency slope of the other variables is more
moderate. The variables align with what has been reported in other studies such as [2]
and [1].

In the next section, we describe the homogenization process using CLIMATOL
and after that we use the homogenized data to perform a tendency analysis in PowerBI.

2.2 Data treatment and homogenization using CLIMATOL

In order to use the homogenization tool of CLIMATOL, two input files are
prepared, one with information about the data itself and another with information
about the station codes and locations. The raw data is treated through an inhouse R
code to automatically generate the input files for each variable and for the desired
number of years.

Afterwards, following [12], an exploratory analysis on the data is performed to
better parametrize the functions in CLIMATOL and adjust them to the variables. One of
the output files, that results from the exploratory analysis function, is a report about the
data that allows us to take conclusions and parametrize the necessary variables so that
the homogenization process best fits our data (see [12] and [16]). This type of analysis
was already done for other contexts, such as in [16]. Some parametrization tips can also
be found in other papers and on the user guide for CLIMATOL [9]. The exploratory
analysis is based mainly on three phases: (i) evaluation of the general range and
distribution; (ii) analysis of data clusters; and (iii) analysis of the anomalies that are
important for future parametrization.

Here we describe the process in detail, and more conclusions, for manual
stations data that cover the period of 1941 up to 2011. For the remaining data, the
exploratory analysis follows a similar procedure.

2.2.1 Range and distribution of the data

The first analysis made, with only 30 stations, showed inconsistencies, leading to
the conclusions that there existed some quality issues due to the small number of
stations available. As the number of stations used increased, the quality improved.
Figure 4 displays the availability of the data. The white spots stand for the days with no
available data; the stations are represented by specific numbers given by the software

on the y-axis, and on the x-axis, time is represented in years.
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Figure 4. Data availability for each station and over the years for all variables

In terms of data availability, we verify that there are no available data for some
steps, even considering the 150 manual stations. However, that availability should not
be a problem for the quality of the process. As expected, the available wind speed data

is lower than that of all the other variables.
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Figure 5. Data availability for each step over the years
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Figure 5 shows the available data for each step. The dotted green line indicates
the minimal number to have reliable homogenization processes. Only the Wind speed
variable showed some steps with only two or one data available, which is explained by
the difficulty in having wind data. As mentioned before, poor data quality and availability

is common when considering wind variables.
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Figure 6. Data Histograms for the variables Rtotal (mm) and Tmax (2C)

Looking at the data distribution histograms of the raw data, in Figure 6, it is
possible to see that for maximum temperature the distribution is not centred and some
values lean to the extremes. Similar graphs were generated for other studies, such as
[16], and these variables were considered to follow a Gaussian distribution. This is also
true for minimum temperatures. The situation is different for the wind speed and
rainfall variables, which distributions have an “L” shape, best fit by Gamma distributions,
which is characteristic of zero limited variables. These differences lead to different

standard deviation parameters, as advised in [17].

2.2.2 Data correlation and clustering

Next, we analyse data similarity and clustering, starting with the correlograms of
the data. The daily correlogram series, in Figure 7, show the correlation coefficient in
terms of distance. It is expected that the further the stations, the lower their correlation
is. The higher the correlation between stations, the more reliable the filling of the
missing data is. In Figure 7, most of the correlations are around zero, and some are even

negative.
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Figure 7. Data correlograms for the variables Tmin and Wspeed

This result is not the most encouraging, but it can be understandable if we
consider the lack of station, namely in some regions, and how far they are from each
other. Although 150 manual stations are being studied, the density of this network is

not high, which may impact the final results, [18].

Rtotal station locations (9 clusters) Tmin station locations (9 clusters)
Q A e § ==y IR
- - N ‘r’ - E (
"i;'\, C;x :_“‘ )
; ] “ N ET C “':" ; i
\f @ 2R V. o ‘
Rw " (:“".v i ,
- e By > r
L ,"lv. . ¥ " ’:‘; g ]
. o © —t
= 10 L 2
8 8
& &
T T I [ I I I [
-95 -85 ~-75 -95 -85 -75

Figure 8. Map of Portugal with weather variable clusters, for the variables Rtotal and Tmin
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Figure 8, displays the main variable clusters of rainfall values and minimum
temperatures. We can see how the stations cluster together and how heterogeneous
are the data profiles. The results are very similar for the other 2 variables. We can see,
that the nine main clusters do not seem to follow any geographical rule. There are also
stations of the same cluster in different regions, very dispersed. These results may

explain the poor correlation between stations.

2.2.3 Data anomaly analysis
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Figure 9. Histograms of normalized anomalies: (i) Tmax; (ii) Wspeed

The graphs about the distribution of the normalized anomalies, Figure 9, allow
for a better parameterization of the homogenization function in CLIMATOL. These
graphs allow us to decide what the threshold of anomaly acceptance should be. In this
work, we gave as much range to the accepted anomalies as possible. We want to focus
more on the extremes and outlier values than on the averages of the data.

The frequency distribution of the SNHT, Standard Normalised Homogeneity Test,
for overlapping windows and for the overall series are more important than the
frequency of the standardized anomalies.

The SNHT is a likelihood test performed on the ratios or differences between the
data that will be calculated for and the reference series, as explained by [10]. These values
can be parametrized and for this work a wide window was given so that more outlier
values are accepted, including the extremes of the variables without compromising the

quality of the homogenization and infilling process.
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SNHT

SNHT

After the first an analysis it was possible to implement the CLIMATOL tool and
the next section presents the quality evaluation of the results.
2.2.4 Data quality checks
The exploratory analysis is an interactive process that should be repeated until
satisfactory results are obtained. Also, it should not be applied directly on daily data due
to its high variances, as mentioned in [17]. The daily data was aggregated into monthly

series that should be parametrized if necessary.
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Figure 10. Quality and singularity plots-SNHT vs. RMSE values

The stations' quality and singularity graphs, in Figure 10, provide an idea of how well
the stations' values were calculated and homogenized, i.e., bringing insight on the
quality of the final results. The ideal situation is to have all stations in the left bottom
corner, meaning a low SNHT and Root Mean Square Error (RMSE). The lack of correlation
between our series can explain the higher values of RMSE. Nonetheless, the lower values

for SNHT are acceptable as an indicator of the quality of the homogenization process.
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Indeed, the SNHT relates with the difference of the calculated homogenized series to
the actual homogenized values.

Although the final results are satisfactory other analyses on the treated data are
made to assess if the data is good to use. Evaluating if the variables are within the valid
limits and their seasonal the distribution allow us to access some basic validation rules,

[19].
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Figure 11. Evolution of the treated data for all variables by month- Tmin and
Tmax (°C), Rtotal (mm) and Wspeed (km/h)

From Figure 11 it can be seen that the distribution of climate data is no longer
following what is the typical weather seasonality for the Portuguese climate, [4]. The
homogenized data lost its seasonal characteristic. It is mentioned in [11] that CLIMATOL
underestimates the seasonal Cycle amplitude in the adjusted data, and clearly this
aspect must be taken into account for the research. The use of these results for trend

analysis is still recommended and reliable. However, these distributions do not reflect
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the Portuguese climate characteristics on temperature and rainfall, making the data
unsuitable for any seasonal analysis, and only suitable for the trend study (see [11]) as
the variables are within acceptable limits defined by IPMA, [14].

It was analysed both manual and automatic station tendencies, and the main
conclusions were that the treated data presents what is reported before concerning the
Portuguese weather phenomena and their most recent years' evolution, mentioned by
[2] and [5].

2.3 Comparing climate data of manual and automatic stations

In order to have high-quality observation data, these have to be made over a
sufficiently large period, so to differentiate the patterns that relate to non-climatic
factors from the ones that genuinely exploit the climatic evolution. Over the last years,
for most of the Portuguese meteorological stations, there was a shift between older
stations with manual instruments and newer stations with automatic instruments. The
transition process comprised an overlap period for some stations, meaning that the two
types, manual and automatic, performed in parallel. These parallel measurements allow
for inference in the patterns of the differences between the two types of equipment
(see [21]).

In [21] and [22], such comparisons are made for the German meteorologic
stations network. It is studied the distribution of the differences in terms of frequency,
the evolution of the differences and behaviour in terms of seasonality, as well as their
mean and standard deviations. With this information, they are able to choose the best
way to extrapolate the data from manual to automatic observation data, allowing to
have long data series.

Hence, the parallel data for manual and automatic includes the period from 1941
to 2018. We have manual observations between 1941 to 2011 and automatic
observations between 1995 to 2018. For the 240, including manual and automatic
stations, around 60 correspond to the same locations or with minor differences in their
location. Those stations are used for comparison. The differences are computed as the

automatic stations' values minus manual stations' values.
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Figure 12. Variables differences between automatic and manual observations- Frequency distribution-

Tmin and Tmax (2C), Rtotal (mm) and Wspeed (km/h)

The frequency distribution on the differences, in Figure 12, between stations is
analysed first. Rainfall differences have the lowest values, with the histogram peek
clearly at zero. For the minimum and maximum temperatures, the differences verify a
normal distribution around zero. Nonetheless, there is a broader range of differences in
the maximum and minimum temperature histograms. The differences concerning the
windspeed follow a normal distribution with a slight skewness to the right. Here the
differences are not centred in zero but in six units km/h.

Differences throughout the year between automatic and manual measurements
are also studied. Figure 13 shows that rainfall values have lower values of these
differences in summer months due to the lower rain intensity in those same periods for
both stations. For the temperature the differences are higher in summer for both
minimum and maximum temperatures because between the equipment used, one is
more sensitive to higher temperatures than the other, reacting faster. Manual stations

used mercury thermometers that take more time to react to the temperatures rising,
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contrary to the instant thermometer used in automatic stations. For the wind speed

differences, there is no clear pattern across the year.
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Figure 13. Mean of differences between automatic and manual station observations
per months- Tmin and Tmax (2C), Rtotal (mm) and Wspeed (km/h)

The average difference between automatic and manual station observations is
zero for the rainfall variable, minimum and maximum temperature. For the windspeed
variable, the average difference registered is around six kilometres per hour which
should be taken into account when analysing the trends.

The studies in [21] and [22] showed very low standard deviation values for the
differences between automatic and manual stations observation, and it was easy to
extrapolate that the difference between equipment was 0 for most cases. For the
Portuguese data at hand, the standard deviation of these differences is 7.84 ml/24
hours, 10.142C, 7.482C, and 5.14km/h for rainfall, maximum, minimum temperature,
and wind speed, respectively. The differences of geographic and meteorologic
characteristics between the two networks, such as higher thermal amplitudes in
Germany in contrast with Portugal, for example, could be in the origin of these diverse

outcomes.
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The behaviour of the differences between automatic and manual time series
indicate that we can study the time series from automatic stations as a continuation of
the time series from the manual station’s observations. The higher differences in
summer, for temperature values, are due to the different thermometers used, leading
to more step trend lines. Regarding standard deviations of the differences, the values
are significant and emphasize the extensive range of differences, especially concerning
the maximum temperature.

2.4 Trend analysis of the homogenized climate data

PowerBI provides a visual trend line that consists of a linear regression using time
as the independent variable, and the user cannot intervene. Thus, a dynamic trend line
is calculated so that we could have access to the slope values. A dynamic trend line is a
linear equation that dynamically uses the time variable (adjusting the data to the periods
such as year, quarter, month, etc.). More information about the approach of dynamic
trend lines can be found in [19] and [20].

The average mean values over the years for wind and temperature are
considered. For the rainfall values, the yearly sum is considered instead. We started by
looking at the tendencies of minimal and maximum temperatures, rainfall values in 24
hours, and maximum wind speed values. As the research evolved other variables such
as thermal amplitude, maximum of maximum temperature and the minimum of
minimum temperature were considered. To calculate the trends of the thermal
amplitude we looked at the mean values per year. For the maximum and minimum for
both maximum and minimum temperatures we calculated each extreme for each
station and looked at the mean per year considering all the stations. A linear equation

is used to determine the trendline, an approach used in other papers such as [23]:

(1) Y=mX+b.
where the m represents the speed at which the variable in study is growing, [23].

In Figure 14, we can see trends' behaviour of the mean variables or sum (for the
rainfall variable). On a closer look at the trends of the manual stations, it can be seen
that the slopes are minimal, around 0 for most variables. Nevertheless, the slight
tendencies seem to be negative for the minimum, maximum temperature, and the

rainfall values. Looking at the whole period from 1941 to 2011, the growth rate for both
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minimum and maximum temperatures are - 0.0012C per year. For the rainfall values, the
trend is also very small since we are looking at the sum’s values, corresponding to -91.33
millilitres per year. Regarding the windspeed, the tendency is almost -0.002 km/h, per

year.
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Figure 14. Trend and Variables Evolution-manual stations, 1941 to 2011- Mean of Tmin
and Tmax (2C), Sum of Rtotal (mm) and Mean Wspeed (km/h)

As we decrease the range of years (from 1985 to 2011), and start analysing more
recent intervals, the tendencies shift from slightly negative to slightly positive for both
minimum and maximum temperatures. For rainfall values, the negative slope maintains,

but its value changes to -375.08 millilitres per year.
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Regarding automatic stations in Figure 15, we can see that in the whole period

between 1995 and 2018, the extreme temperatures, both maximum and minimum,

present a negative slope, indicating that their growth rate is negative. The maximum

temperature values show a decrease of 0.0032C on average, and the minimum

temperatures show a decrease of 0.0012C. On the other hand, the rainfall tendencies

increase 83 millilitres per year for the entire country, again representing minimal

differences. For the wind speed variable, the trend of evolution is negative.

Tmin Evolution and Trend over the Years

Regression (Y) Tmin @ Average of Tmin

b M\V\/

2000 2005 2010 2015

[rs]
[=]

Tmax Evolution and Trend over the Years
Regression (Y) Tmax @ Average of Tmax

214

21,2

2000 2005 2010 2015

Rtotal Evolution and Trend over the Years

Regression (Y) Rtotal @ Rtotal

65K /\—W/\/\/

2000 2005 2010 2015
Wspeed Evolution and Trend over the Years

Regression (Y) Wspeed @ Average of Wspeed

2000 2005 2010 2015

Figure 15. Trend and Variables Evolution-automatic stations, 1995 to 2018-- Mean of Tmin
and Tmax (2C), Sum of Rtotal (mm) and Mean Wspeed (km/h)

When shortening the analysis period to the last ten years of observations,2010

to 2018, we see that the variables have different behaviours. For the maximum

temperature, for example, since 2010, the homogenized data is above the trend line,

and for the rainfall, the sum line is almost always under the trend line. The trends have
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changed over the last ten years, with the slopes reaching 0.0332C for the maximum
temperature, meaning, it is expected that the average maximum temperature increases
around 0.0332C per year. For the rainfall the tendency was of -349.788ml per year. As
we decrease the range of the observations, it is possible to see an intensification of those
signals. For the period between 2010 and 2018, the behaviour of the minimum
temperatures continues to show a decreasing trend that is now steeper with a tendency
of decrease of -0.022C. The wind speed trend line shows a slight decrease for this period.
These results are within what have been the latest developments in Portugal in terms of
maximum temperature and precipitation values, which are described in [1], [2], and [3].

Next, we look at other variables such as thermal amplitude, yearly maximum of
daily maximum temperature, and yearly minimum of daily minimum temperatures.
Looking at the thermal amplitudes in a day, or the extremes that happen for each station

in a year could give more insight into the latest climate evolution trends.

Thermal Amplitude Evolution and Trend over Years

Regression (Y) Thermal amp @ Average of Thermal Amp
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Figure 16. Trend and Variables Evolution }or Thermal Amplitude-manual and automatic
stations — values in °C
In Figure 16, it is shown the evolution of the thermal amplitude yearly mean
values for the last 60 years. It can be seen that the trend is positive, with a growth rate
of 0.012C per year. As before, we see significative changes in the behaviour of the
observed variables (red line) in the last ten years of observations, with a sudden
increase, in 2010, which corresponds to the same year where the maximum
temperatures started having higher positive trends. From 2000 to 2018, the trend line
slope is about 0.042C, and between 2010 and 2018, it is around 0.082C. These trends

represent an intensification of maximum temperatures, with a contrary in the minimum

temperatures.
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When observing similar graphics and information for the yearly maximum and
minimum for daily maximum temperature and minimum temperatures, respectively, we
verify zero tendencies when considering the period of 1941 up to 2011. For the period
between 2000 to 2018, the only change is seen on the growth rate of maximum
temperature that is -0.022C. As before, it was possible to see that after 2010 the
behaviour of the variables changed, but those changes do not reflect significant
variations in the tendencies.

We may assume that the soft changes in the weather variables in the first
observation years balance the last few years. It is noticeable that the weather variables
are changing more and faster than before if considering the latest decade. Such
intensification may have several impacts on several fields of life. When comparing the
mean yearly evolutions with the yearly maximum and minimum evolution of the
temperatures, we see that the change is more significant for mean values than the
extremes. The thermal amplitude behaviour reflects the yearly mean of the extreme
temperature behaviours, and its results come from faster growth in the yearly mean

maximum temperature than in the yearly mean of the minimum temperatures.

3. Insurance data: agriculture lines of business
3.1 Insurance data processing and metadata

In this chapter, we explore how the yearly agriculture insurance information
related with indemnities, public aid, tariffs paid, etc., evolved over the years and in
which extent the weather variables can explain the last years evolution. In this study,
publicly available data from the Government insurance aid to farmers is used. The data
is available on the IFAP (Financial Institute of Agriculture and Fishery) website, [24]. The
data is not as detailed as desired, nevertheless it allows for some analysis and
conclusions.

The Government provides public aid so that the farmers can have insurances that
cover their crops. The Government aid is given in the form of financial support by paying
part of the insurance premium. This public help can be divided into three segments:
Crop Insurance (SC), Crop Viticulture Insurance (SVC) and Integrated Weather Protection
System (SIPAC). The first public aid to farmers was defined by SIPAC, which covered all

21



types of crops and it was applied since 1996 to 2013. From 2012 on, the agreements
where split into Viticulture Insurance aid and Crop Insurance aid which includes all the
crops except viticulture.

The public aid covers insurances related with: (i) adverse climatic phenomena
similar to natural catastrophes that destroys 30% or more of the production; (ii) adverse
climatic phenomena that are not natural catastrophes; (iii) plagues and diseases that are
caused by natural factors and that cannot be controlled by agricultural techniques. All
this information can be found in the contracts for each of the agreements and on the
several updates they suffered throughout the years, the information is in IFAP website,
[25].

This data has information about the tariff’s geographical region. In Table 1 of the
Appendix B, is possible to see how the counties were aggregated by region. The division
presented is not the original one because some counties were accounted for in two
regions. In order to keep track of the real evolution in the counties and to not duplicate
results, every time a county is associated with two regions it is taken out of the region
with the bigger number of counties. For an easier understanding and analysis, the main
segmentation used for this work is the type of crops, divided into vineyards and others,
and segmentation by region.

The public information is organized into two different categories: the insurance
contracts and the losses. Out of the variables is the Insured Capital, which is the value
of the product of the production, the production in quantities, times the market price:

(2) Insured Capital = Production X Market Price.

It represents how much of the good is being insured and how much it is worth. Another
variable is the Commercial Prize, which is the value of Insured Capital times the Tariff.

(3) Insured Capital X Tarif f = (Production X Market Price) X Tariff.

The Tariff is the insurance premium applied by the insurance company, per euro of
Insured Capital. The Commercial Prize value does not include taxes and it is solely based
on the goods of the farmer and the price of the insurance service. Another variable is
the Bonus. From the total amount that has to be paid to the Insurance Company, the
State contributes directly paying to insurance companies, taking some responsibility

from the farmers. The calculation of this value depends on the aid percentage that is
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applied to each case. Every program has specific application conditions. The tariff used
is either the national reference tariff or the insurance company tariff in case this last one
is smaller.

(4) Bonus = Bonus % X Commercial Prize
= Bonus % X (Tarif f X Insured Capital).

With the bonus, the amount that a farmer has to pay can be summed up in the following
equation:

(5) Farmers Payment = Commercial Prize — (Bonus).

On the second set of data, there is information on the Losses. For these files the
variables are Indemnities, which are paid values by the insurance company to the
insured farmer; the Refund of Indemnities, which are the returned values by the insured
farmer to the insurance company. The Expenses, that correspond to operational
expenses of the insurance company; The Refund of Expenses, corresponding to amounts
paid back to the insurance company from operational costs. All the variables’ units are
euros. The reasons for the refunds of indemnities and expenses were not explained in
the metadata. Each record has information on the cause of the hazard and all this
metadata was collected with the help and support of professionals that work at IFAP.

Besides the variables described before, the datasets are also divided into Crop
that is covered by the insurance, Charging Region, consisting of five regions classified
from Ato E, see Table 1 of Appendix B, and the County, that takes into consideration the
administrative division of the Portuguese national territory. The regions were also
segmented by district and NUTS (Territorial Units for Statistical Purposes).

For this data to be used and analysed in Microsoft PowerBI, every file is treated,
translated and merged to build the entire dataset with losses and underwriting

Information.
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3.2 Analysis of the insurance data

3.2.1 Data on losses
Claims by Crop
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Figure 17. Percentage of claims by crop type, top 10 crops- All agreements

In this section, we evaluate the composition of the claims in terms of causes and
crops in order to understand the latest years' evolution.

As shown in Figure 17, the top ten crops are displayed and account for more than
75% of the number of incidents registered between 1996 and 2019. Vineyards is the
most affected culture with 38.74%, followed by apple, pear, cherry, wheat, peach, and
plum culture. Looking at the causes of the incidents, Figure 18 shows that more than

70% is due to hail and frost, followed by fires (9%) and very heavy rainfall (8.2%).
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Figure 18. Percentage of claims by cause-All agreements

Most of the hazards were registered at the end of 1990. These high values,
shown in Figure 19, are not the result of more incidents but rather the result of higher

participation of farmers applying to the insurance public aid. The data available includes
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only information on insurance acquired by the farmers that applied to the public help.
So, it does not always represent the actual number of hazards that affected agriculture
in the country. The fact that the Government aid was very high in 1996-1999, around
85% including fiscal expenses, explains the abnormally high claim values for these years.
With the public bonus decrease in the following years, as well as other alterations to the
Calamity Fund, which controls the public funds that go to crop insurance aid, the
farmers' participation levels decreased, and, with that, the number of registered claims.
In 2000, the second-highest number of incidents was registered, not because of the
contract conditions, but due to weather conditions which generated many frost claims.
Since 2000 the number of registered hazards decreased until 2005, remaining roughly

stable until 2019. There is no available data in 2018.
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Figure 19. Number of Claims per Year- All agreements

A similar analysis can be done for the expenses and indemnities. Figure 20
illustrates the evolution of indemnities and expenses, that the insurance companies
have. The bonus variable gives us the State's amount paid to the insurance company
supporting the farmers with these costs. As explained before, the more significant
amounts at the end of the 1990's decade are due to the greater participation of farmers
applying for the aid. Interestingly, the bonus is higher than indemnities at the end of the
decade and the beginning of the 2000s. However, between 2010 and 2019, this
relationship changes. We can see periods where the indemnities are higher than the
bonuses, which indicates that, for some periods, the insurance companies are spending
more money than the State.

To better understand the impact that the weather claims have for both private
and government entities, the ratio between total expenses of insurance companies,

including indemnities and expenses, and bonus is calculated:
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Figure 20. Evolution of expenses (€), indemnities (€), bonus (€) and total costs over bonus - All
agreements

In Figure 20, we can see that at the same time the value of indemnities, red
columns, decreases, the public aid, purple columns, presents a similar behaviour on
different scales. This behaviour makes the amount spent by the insurance companies to
be, sometimes, the double of public aid. In 2013 and 2017, the insurance companies
paid almost twice of what was paid by the State.

The higher amounts paid by the insurance companies, compared with the State,
although not linear, seem to display an increasing trend. The analysis of the expenses is
similar to the indemnities, and there is no increasing trend in the last few years.

To better understand the evolution of the variables, an analysis by crop, cause
of incident, and region is made. We split the time evolution in two, from 1996 to 2012,
where SIPAC was the Insurance agreement in force, and from 2012 up to 2019, where

SVC and SC were the insurance agreements applied.
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Figure 21. Number of Claims per Year- SIPAC Agreement

Looking only at the SIPAC agreement, the number of claims are decreasing from
1996 to 2013, Figure 21. In 2000, 1163 incidents were registered, accounting to 10

million euros of indemnities. In 2012, 469 incidents were registered, with the
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correspondent value of 14 million euros of indemnities. Although the number of claims
decreased, the value paid increased about 4 million euros, which can indicate less
incidents but worse weather phenomena that leads to more losses. The ratio of costs
over the bonus, Figure 22, started to increase in 2003, showing that the State's expenses
were less than the expenses from the insurance companies.

For SIPAC, vineyards, apple, pear, cherry, wheat, peach, and plum culture, make
up for more than 70% of the total number of incidents, and hail and frost being the
number one cause of all incidents.
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Figure 22. Evolution of expenses (€) , indemnities (€), bonus (€) and total costs over bonus — SIPAC

As displayed in Figure 23, for the SVC, vineyards insurance agreement, we can
see an increase from 2012 up to 2019. The occurrences went from 57 in 2012 to 179.
The worst year in terms of the number of claims and indemnities was in 2017, with 218
occurrences and 7 million euros spent by the insurance companies.
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Figure 23. Number of claims per year- SVC Agreement

For this specific crop, hail and frost are the main cause of claim, but also scald
and tornados are significant among the causes of losses. The sensitivity of Vineyard crop
to hail and frost is mentioned in [26]. The most affected parts of the country are the
north, mainly the inner countryside, mostly regions D and E. We have a small increase

for the SVC insurance indemnities with 57 claims corresponded to 1 million euros of
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indemnities in 2012, and, in 2019, the incidents account to 2 million euros of
indemnities.

Looking at the indemnities and bonus, in Figure 24, it can be seen that the bonus
is always higher than indemnities, and so, for Vineyards, the public aid tends to be
greater than the expenses the insurance companies have. The value of the ratio total-
bonus reached its peak in 2017 with 2.4, meaning that for each euro spent by the State,
the insurance companies spent 2.4 euros.
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Figure 24. Evolution of expenses (€), indemnities (€), bonus (€) and total costs over bonus — SVC

Conducting a similar analysis for the SC, insurance that includes the remaining
crops, we can see a slightly positive trend in the number of claims. Here, the relationship
between the amount spent by insurance companies and the State is more similar, with
two years, 2014 and 2017, registering more money paid by insurance companies than
from the State. From 2014 to 2019, there was a slight increase in occurrences, from 292
to 403, respectively. The indemnities also have increased slightly, going from 11 million

euros to 12 million euros in 2019.

Number of Claims per Year

401
400

37
292 275 292
: II|IIIIIIIIIIII “““““““l ||IIIIIIIIIIIII
0

2014 2015 2016 2017 2018 2019
Year

Thousands

Figure 25. Number of Claims per Year- SC Agreement
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For SC insurance, the observations only start from 2014 and go until 2019. For
this insurance, which does not include vineyards, the main affected crops are apple,
pear, cherry, and peach, making more than 50% of the whole affected crops. In terms of
claim causes frost and hail are, again, the primary cause. The region where most of the

claims happen is predominantly the northern countryside.

Expenses, Indimnities, Bonus and Costs over Bonus

Expenses ®@Indimnities ®Bonus @Total Costs over Bonus

2,5

10M €

Millions

g
Total Costs over Bonus

OM €

2014 2015 2016 2017 2018 2019
Year

Figure 26. Evolution of Expenses (€), Indemnities (€), Bonus (€) and Total Costs over Bonus — SC

A similar analysis is done per region and per crop. We could see that in region
A, which includes some counties of Lisbon and Algarve, there was a slight decrease of
claims registered in the last 25 years. The ratio of insurance total costs over bonus tends
to be around 1, meaning that the costs for the insurance companies and the State were
very similar.

For region C, which corresponds to Alentejo, mostly countryside, the main crops
and causes of claims tend to vary between insurance agreements, and fire and heavy
rain are some of the principal causes of incidents. Alentejo is the driest region of
Portugal, and the heavy rain occurrences are a surprising fact, but that can be explained
by some south winds that bring higher levels of rainfall to the region. If these
phenomena happen in a short period, that could explain damages caused by heavy rain.

For region D, the inner north of Portugal, the number of claims has been regular
in the last few years. The ratio between insurance companies' and State expenses is the
highest, especially in the last years. It tends to be around 1.09 euros for the insurance
companies per euro spent by the State. Region E includes the counties of Vila Real,
Braganca, Viseu and Guarda. It registers the most significant values for claims with a

tendency to remain the same over the last ten years, around 200 claims. The ratio total
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costs- bonusis 1.37, which leads to this being one of the most significant regions in terms
of the amount that the insurance companies pay when compared with the State. For
Vineyards, in the last decade, there has been an increase in the number of incidents,
however never exceeding the values registered at the end of the twentieth century. The

other crops presented an irregular behaviour.

3.2.2 Contract insurance data

In this section, we analyse the insurance data defined a priori to the claims. As
mentioned, for each contract we have information on the Insured Capital, the
Commercial Prize, which is the total amount of insurance premium net of fiscal expenses
and the bonus.

Insured Capital, Indemnities and Indemnities over Insured Capital over Year
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Figure 27. Evolution of Insured Capital (€), Indemnities (€) and Indemnities over Insured Capital— All

As presented in Figure 27, the Insured Capital is very high at the end of the 90s
decade and beginning of 2000s, due to the public incentives that led to a strong
participation of farmers, with more than 100 000 farmers applying for the aid. These
values decreased between 2000 and 2015, but it increased again in the last five years,
reaching almost half a billion euros. In order to see how the value of the goods insured
relates with the actual value of the indemnities we consider the following ratio, which

is represented in the graphs by the purple line:

Indemnities

(7)

Insured Capital’

Per euro insured by the farmers, the insurance companies only pay around 5%

of that value in indemnities. The years where the Insured Capital decreases verify an
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increase in the ratio of indemnities over Insured Capital. In 2010 the insurance
companies paid 8% of indemnities compared to the value of all insured goods.

Although there is a decrease in the Capital Insured, the incidents occurring did
not decrease at the same scale. Thus, the value of the damages was more significant,
which could explain the bigger participation of the farmers in the last years.
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Figure 28. Evolution of Commercial Prize (€), Bonus (€), Farmers Payment (€) and Bonus-
Commercial Prize ratio over the years- All Agreements

As mentioned before, until 2000, the State covers around 85% of the farmers
insurance expenses, but in the beginning of the new century, there was a cut from 85%
to 65%. The worst moment for farmers was in 2012 and 2013, where the amount of help
covered less than 50% of all the costs. This period paralleled with the change of
insurance contracts, when they went from the SIPAC agreement to SVC and SC
agreements. Afterwards, the State help remained constant, around 60%, which means
that farmers support 40% of the costs with insurance. In Figure 28, we can see how the
responsibilities shifted from the State to the farmers, throughout the years, contributing
with 40% of the costs as opposed to the first years where they contributed with 15%.

In Figure 29, we see that the insurance companies-bonus ratio increased in the

last years.
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Figure 29. Evolution of Indemnities (€), Bonus (€), Commercial Prize (€) and Costs over
Bonus by years- All Agreements
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Doing the same analysis for SIPAC agreements, the sum of indemnities over the
insured capital increased after 2004. At the same time, the indemnities over the State
expenses were also increasing after that same year. On the other side, for the SVC
agreement, which includes only Vineyards, the decrease of the ratio of indemnity over-
insured capital, since the Capital Insured increased. The amount of support of the State
remained constant, around 60%, and the value for total cost-bonus ratio slightly
decreases, remaining higher than the State’s payments.

For the SC insurance agreement, what is worth mentioning is that the State aid,
between 2016 and 2017, suffered a clear cut, with the help decreasing from 64% to 59%,
continuing to decrease in the latest years. Here, we continue to have higher expenses
on the insurance companies’ side than on the State's side. Compared with the other
crops, the Vineyard shows the same level of State support, but not as much irregularities
in the evolution.

Knowing that the Commercial Prize is the Insured Capital times a tariff, it is
possible to calculate the tariff associated with each crop. By observing Figure 30, the
main conclusions are that the tariff values have decreased since 1996. The average tariff
started with 0.083, meaning that the insurance companies receive 0.083 euros per
Insured Capital euro. Since 2000, this value has been decreasing, and it reached 0.054,

in 2020.
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Figure 30. Evolution of tariffs (€)- All Agreements

In Figure 31, we can see the regions in the north of Portugal with higher tariffs,
by the size of the circles, which can indicate a bigger probability of claims. Indeed, it is

the region with the higher number of claims. Region A corresponds to the orange dots,
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region B to the green dots and regions C, D and E to the blue, red and purple dots,
respectively.
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Figure 31. Tariffs (€) in Portugal

Looking at the differences in the evolution per region, in Figure 32, region E has
an increasing tendency of tariffs’ value. Although following more or less the behaviour

of other regions, after 2014 it starts to increase while the others decrease or continue

relatively stable. Region E relates to Portugal's innermost north part.

Tariff by Year per Region
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Figure 32. Tariffs (€) per Region over the Years

There is a relatively stable tendency for region D with the average tariff being
0.109. Region C has a decreasing tendency on tariffs and relatively low values for it. This

region corresponds mainly to Alentejo. In Region B we verify very irregular fluctuations
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of the tariff throughout the years, that end up creating a relatively stable tendency.
Finally, region A, which includes Lisbon and Algarve areas, shows an increasing tendency
for the value of the tariffs, which are on average 0.029.

In the SIPAC agreement, the average tariff for all products is around 0.08. The
tariffs have a decreasing tendency with very irregular fluctuations. The highest tariffs
applied were in 1999 with 0.09, and the lowest in 2008 with 0.07. In 2006 there is a
drastic drop followed by a drastic increase in 2009.

The most significant tariffs are associated with Walnut, Hazelnut, and Almond
with tariffs values of more than 0.2 euros. The lowest tariffs were paid in crops such as
Safflower, Canary seed, and Horticulture, with 0.02 euros. The regions' evolution, for
SIPAC Agreement, shows a similar behaviour, with regions E and D standing out with the
most significant values and the biggest increase in 2013.

For the SVC insurance agreement, the average tariff was 0.051. Starting with a
tariff of 0.087 in 2012 and ending with a tariff of 0.042 euros in 2020, we have an evident
decreasing tendency. Region E is again outstanding, with the highest values and a very
steady evolution compared with region D. The only culture in this agreement is the
Vineyard which is mainly located in the north of Portugal.

Finally, for the SC insurance Agreement, there is an evident tendency of increase
of tariffs values, on average, for all regions, with regions E and D being those with higher
tariffs. The crops that stand out the most are Walnut, Cherry, Quince, and Peach, with
tariff values of 0.246,0.238,0.22 and 0.213, respectively. On the other hand, we have
rice, Sorghum, and Barley crops with very low tariffs. The average tariff here is around
0.055 euros.

Looking into the crops with higher tariffs, Figure 33, Walnut production has an
average tariff of 0.243, and it is produced mainly in regions C, D, and E. The tariff
tendency has been steadily increasing over the years. Quince culture is very restricted
in the areas where it is produced, mainly in Viseu and Guarda, and it only started to
appear after 2016. Nonetheless, it has 0.22 of average tariff. The Cherry is common in
the inner North of Portugal. Its average tariff is around 0.218, and its tendency is

increasing over the years.
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Figure 33. Tariffs (€) per Crop over the Years

3.3 Impact of climate data in insurance data

In this section, we analyse the impact of weather variables on agriculture-related

insurance.

3.3.1 Methodology

There are several pieces of evidence in literature that link weather phenomena
and their climate variables with agriculture, leading to “disaster payments (..) affected
by weather and long-term climate variables”, as mentioned in [8]. Many studies, such
as [27], define their variables keeping in mind the thresholds defined in insurance
contracts, that set limits for weather disasters. In the data used for this study, the
applicability of the insurance indemnities does not depend on weather variable limits,
but on production losses thresholds instead.

One of the approaches indicated in [8] and [28] is to use models that directly
study crop yields against weather variables. Another possible methodology is to use
other variables, of socioeconomic nature, to do studies at an aggregate level. In this
work, we have access to payment per culture and region, as well as weather data. Thus,
we choose to plot climate data against insurance-related data.

We consider a regression model approach with equations of the form of:

(8) Yi=fXy)+e.
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Where the Y; is the dependent variable under study and X,,; are all the weather
variables for each period i. f represents the function used on the explaining variables

and e; represents the data not consider in the function f that still explains Y;.

Type Variable Name Description Variable Acronym

Tariffs The price per unit insured, paid to Tariffs

the insurance companies

The proportion of what is paid by the

Bonus over State as part of the total amount of BoCP
Commercial Prize Commercial Prize that the Insurance
Dependent . .
. companies receive
Variables

Total amoun i insuran ..
Indemnities otal amount paid by insurance Indemnities
companies in case of incidents

Claims over ) .

The proportion of claims for the total CoNC
Number of _ oN
number of contracts registered
Contracts

Table 1. Dependent Variables

We aim at explaining variables such as (i) the Tariffs; (ii) Indemnities; (iii) Bonus
over Commercial Prize, and (iv) Claims over the number of contracts through climate
variables. The definition of the dependent variables is presented in Table 1.

In order to combine the yearly information from the insurance data with the
daily information from the weather climate variables, the later are transformed into
yearly variables. This transformation is done by finding measures that translate the
evolution, tendencies, and outliers found in Chapter 2. The definition of the climate

variables can be found in Table 2.

Variable
Type Variable Name Description
Acronym
Number of days for each year that are above the third quantile
Days_above_treshold_x (limit of the 25% highest observations) of the whole variable DATx
distribution, between 1996 and 2020
Independent Number of days for each year that are under the first quantile
Variables Days_under_treshold_x (limit of the 25% lowest observations) of the whole variable DUTx
distribution, between 1996 and 2020
Number of days for each year that are above the mean of the
Days_above_mean_x DAMx
whole variable distribution, between 1996 and 2020
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Minimum values per year for each variable. The values are

Min(x)
calculated per group of region, stations and year.
Maximum values per year for each variable. The values are
Max(x)
calculated per group of region, stations and year.
Mean values per year for each variable. The values are
Mean(x) Meanx

calculated per group of region, stations and year.

First quantile value for each variable distribution per year. The
Fst_qtl_x_year
values are calculated per group of region, stations and year.

Third quantile value for each variable distribution per year.
Trd_qtl_x_year The values are calculated per group of region, stations and

year.

Number of available data (correct data) over the number of
Ratio_x
days in a year (365)

Table 2. Independent Variables.

The x represents the climate variable being referred to. The variables can be
represented by Rt or Rtotal for rainfall;, min or Tmin for minimum temperature;
max or Tmax for maximum temperature; Wspeed or W for windspeed related variables
and dif or ThermA referring to thermal amplitude.

In the study [8], the 99th and 1st percentile were defined for maximum and
minimum temperature, respectively, so to capture the impacts of the highest and lowest
temperatures. With variables such as FstRtotal, FstTmin, TrdTmax, and TrdThermA,
among others, we tried to capture the evolution of the highest and lowest observations
for all-weather phenomena registered. In [28], abnormal values of temperature and
precipitation were used to study the farmers' decision to contract insurance services.
These variables are used to quantify extreme weather situations. In our study, the
outliers were defined as days above or under the thresholds representing the number
of days in each year, below the 25% lowest observations or above the 25% highest
observations. The findings throughout the process led to the creation of new variables,
such as the mean and thermal amplitude-related variables. As new variables are created

and new approaches experimented, several examples were tested. The primary analysis
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was done on initial variables such as DATrt, DATmin, DATmax, DATw, DUTrt, DUTmin,
DUTmax, DUTw, MinRt, MinTmin, MinTmax, MinWspeed, MaxRt, MaxTmin, MaxTmakx,
MaxWspeed, FstRt, FstTmin, FstTmax, FstWspeed, TrdRt, TrdTmin, TrdTmax,
TrdWspeed, RTmin, RTmax, and RWspeed.

The weather data analysed in Chapter 2 was considered unfit for the regressions,
because the outlier observations became inexistent. The initial study on the raw
weather datasets allowed us to check that the collected information was in accordance
to what is the Portuguese latest evolutions throughout the years and its seasonal
distribution, see [4], [5], and [3]. The incorrect data was removed, taking into account
the acceptable limits registered by IPMA, [14].

Since the insurance data comprised the years from 1996 to 2020, only the
weather data from those years was considered, mainly the variables from automatic
stations only, which cover a period between the 1995 and 2018. From the analysis in the
previous section, it is clear that there exist differences in the insurance variables'
evolution when segmented by tariff regions and crops. Thus, the regressions’ analysis is
first performed at an aggregate level for all regions and all cultures combined, and after,
by region and type of crop. The regions go from A to E, and the stations included in each
can be consulted in Table 2 of the Appendix B. The crops are divided into two big groups,
the Vineyard crops and all other except Vineyard. Since we want the data to be
segmented for region and crop, all the yearly weather variables are calculated for each
combination of region and crop. The climate and insurance data were combined by the
Stations’ Location and the insurance tariff regions, as shown in Table 2 in the Appendix
B.

The correlation between independent variables in Figure 34, shows a strong
correlation between all Ratio_x variables and the other variables, as expected. Because
of such correlations, the ratios were not included in the regressions. After which, all
correlations decreased significantly.

The group of DAT and DUT variables also presented correlations between them.
However, they are not so significant and were still included in the models, and the

results confirmed those variables to be significant and important.
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Figure 34. Correlogram of initial variables

For all the dependent variables being studied, scatterplots against the
independent variables are generated. The main conclusion is that there is no clear
relationship, as we can see in the example of Figure 35. The relationships had similar

behaviour for all the dependent variables except for the indemnities.
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Figure 35. Scatter Plots of Independent variables against the Tariffs
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First, to find the final models, all-weather variables are considered. Looking at the
statistical significance of each variable as well as the significance of the model as a
whole, some variables are dropped. This is done recursively until reaching the final
model. R?, adjusted R? and F-tests are analysed to understand the total capacity of the
model to explain the dependent variable. A similar approach is made in [28], to access
the variables' goodness for regression models with the variables' significance level and
the F-tests levels for the significance of the models as a whole.

With the entire set of variables, those showing no significance are dropped, one
at the time. The improvements of the model significance are analysed. When R?
improvement stagnates, the model is considered good. The remaining variables are then
tested for quadratic relationships, to understand if those explain better the behaviour

of the dependent variable.

3.3.2 Models and Results
3.3.2.1 Regressions for variables a priori to hazards

The results from the regression models obtained to explain the tariffs values, as
expected, show differences between regions and crops. As explained before, we first
study models that include all tariff regions and all crops, and then study smaller datasets
with specific regions and groups of crops, Vineyards or all the others except Vineyards.

The first regression considered is as follows:

(9) Tariffs = By + f1DATRt + B,DATRt? + B3sMaxRt + B,MaxRt? + fsDATmin +
BeDATmMin? + B, MinTmin + BgMinTmin? + BoDUTmax + 1oDUTmax? +
f1iMinTmax + B, MinTmax? + B;3sMaxTmax + By sMaxTmax? + B;sDATw +
B16DATW? + B1;DUTw + B1gDUTW? + BioMinWspeed + BooMinWspeed? +
Bo1MaxWspeed+e.
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Residuals:
Min 10 Median 30 Max
-0.229796 -0.043641 -0.005935 0.044512 0.2529533

coefficients:
Estimate std. Error t value pri=|t|)

(Intercept) 0.0864323 L0D71358 12.113 < 2e-1f ##%
poly(a%pays_above_treshold_Rtotal, 2)1 -0.3621926 .0969742 -3.735 0.000191 s
poly(aspays_above_treshold_Rtotal, 2)2 0.1436215 .0807232 1.804 0.071321

poly(a%$ max(Rtotal)™, 2)1 0.7308829 .0778350 9,390 « 2e-1f ###
poly(a%$ max(Rtotal)™, 2)2 -0.2529922 L0784787 -3.224 0.001277 ¥**

.1157555 -13.962 < 2e-16 **¥*
0817951 2.283 0.022512 *
.1009414 0.947 0.343641
.0784414 4.228 2.41e-05 #x*
.1518467 8.342 <« Ze-1f #u%
.0914580 4.271 2.00e-0Q5 wu%

poly(a%$pays_above_treshold_Tmin, 2)1 -1.6161841
poly(as$pays_above_treshold_Tmin, 2)2 0.1867056
poly(as$ min(Tmin) ~, 2)1 0.09356035
poly(a$ min(Tmin) ™, 2)2 0.3316598
poly(a%$pays_under_treshold_Tmax, 2)1 1.2667522
poly(a%$pays_under_treshold_Tmax, 2)2 0.3906128

COoO0000000000000000000O0

poly(a%$ min(Tmax) ", 2)1 -1.7471487 .1295763 -13.484 <« Ze-16 #*¥¥%
poly(a$ min(Tmax) ", 2)2 -0.5710889 .0891769 -6.404 1.71e-10 ***
poly(a% max(Tmax) ", 2)1 -0.1092764 .1064184 -1.027 0.304557
poly(a$ max(Tmax) , 2)2 -0.3618947 0.0814171 -4.445 9,06e-06 %%
poly(a$pays_above_treshold_wspeed, 2)1 -0.8261913 .1582506 -5.188 2.24e-07 ¥
poly(a$pays_above_treshold_wspeed, 2)2 0.4618632 1074484 4,298 1.77e-05 #u=
poly(a$pays_under_treshold_wspeed, 2)1 0.2744296 .1206718  2.274 0.023013 *
poly(a$pays_under_treshold_wspeed, 2)2 0.3188418 .0785323  4.060 5.01e-05 #u%
poly(a%$ min(wspeed)™, 2)1 -0.2189516 .1174398 -1.864 0.062350
poly(a%$ min(wspeed)™, 2)2 0.4510745 .0936583 4,816 1.52e-06 #*¥%*
as ‘max(wspeed) 0.0018252 .0002988 6.107 1.12e-09 #%*
Signif. codes: 0 *#*%%’ 0,001 ‘*=' 0.01 **' 0.05 *.” 0.1 * " 1

Residual standard error: 0.06634 on 3613 degrees of freedom
(39 observations deleted due to missingness)

multiple R-squared: 0.5509, adjusted rR-squared: 0.5483

F-statistic: 211.1 on 21 and 3613 DF, p-value: < 2.2e-16

Figure 36. Results of Regressions on Tariffs for all regions and all crops

This regression takes into account all regions and crops resulting in a model
explanatory capacity of 55%. The results can be seen in Figure 36. The most significant
variables are DATRt, DATmin, MinWspeed, DUTmax, DUTwspeed, and the maximum
and minimum for most of the weather variables. The relationships are mainly quadratic,
and almost all variables are significant at a five percent level. The coefficients of the
variables show substantial impacts on the Tariffs, bearing in mind that the units are in
euros. For all crops and regions, MinTmax negatively impacts tariffs, and DUTmax has
the most significant positive impact on tariffs. We can observe that tariffs are vulnerable
to the changes in the weather variables.

The regression model used to explain the data for all regions and all other crops
except Vineyard, represented in Equation 10, reached very high levels of explanatory
capacity, with an R? of 70% approximately, see Figure 47. The F-test values indicate the
model to be significant at a 5% level. The main highlights are that for all-weather

variables, the DAT and DUT variables seem to be present and significant.

(10) Tariffs = By + f1DATRt + B,DATRt? + B3sMaxRt + B,MaxRt? + fsDATmin +
BeDATmMin? + B,DUTmin + BgDUTmin? + BoMinTmin + B1oMinTmin? + f;,DATmax +
f12DATmax? + B13DUTmax + B14,DUTmax? + BisMinTmax + B;cMinTmax? +
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B17DATW + B1gDATW? + B1oDUTW + o0 DUTW? + By MinWspeed + B, MinWspeed? +
BosMaxWspeed+e.

rResiduals:
Min 1q Median 3qQ Max
-0.253666 -0.038000 -0.004884 0.038296 0.218341

Coefficients:
Estimate std. Error t wvalue Pri=|t|)

(Intercept) 0.0798144 0072587 10.996 < 2e-16 %%
poly(ajpays_above_treshold_Rtotal, 2)1 -0.3225211 .0877486 -3.676 0.000242 %=
poly(ajpays_above_treshold_Rtotal, 2)2 0.1844419 0721465 2.556 0.010628 =*
poly(a$ max{Rtotal)™, 2)1 0.7840402 0699070 11.215 < 2e-1f wuw
poly(a$ max(rtotal) ", 2)2 -0.1430000 0.0709328 -2.016 0.043900 *
poly(ajpays_above_treshold_Tmin, 2)1 -1.5996390 1199126 -13.340 < 2e-16 =%
poly(a$pays_above_treshold_Tmin, 2)2 0.3225103 0856803 3.764 0.000171 ##%=
poly(a$pays_under_treshold_Tmin, 2)1 -0.0475766 1734169 -0.274 0.783838

poly(a$pays_under_treshold_Tmin, 2)2 -0.4892481 1028289 -4.758 2.06e-06 %%
poly(a$ " min{Tmin)~, 2J1 0.3949917
poly(a$ " min{Tmin) ", 2)2 0.4695302 0802021 5.854 5,37e-0Qg #%%

0984035 -2.312 0.020861 *

Q
Q
2

1088268 3.630 0.000289 %%
5
poly({ajpays_above_treshold_tmax, 2)1 -(0.2274943 Q
[}

poly(aj$pays_above_treshold_Tmax, 2)2 -0.2870929 0752073 -3.817 0.000138 =#=*
poly(a$pays_under_treshold_Tmax, 2)1 1.4B77082 .1623416  9.164 < 2e-16 =¥
poly(ajpays_under_treshold_Tmax, 2)2 0.6241937 0963715 6.477 1.11e-10Q %%
poly(a$ min(Tmax) ™, 2J1 -2.0187944 .1261472 -16.003 <« 2e-1f6 %%
poly(a$ min(Tmax) ", 2)2 -0.7189450 0820160 -8.766 < Ze-1f #%*

poly(ajpays_above_treshold_wspeed, 2)1 -0.B406396
poly(aj$pays_above_treshold_wspeed, 2)2 0.6696901
poly{a$pays_under_treshold_wspeed, 2)1 0.5717670
poly(ajpays_under_treshold_wWspeed, 2)2 0.2263490

1413184 -5.949
0955196 7.011 2.98e-12 #u=*
1251826 4.567 5.16e-06 *%*

3.06e-09
2
5
0731188 3.096 0.001984 ==
a
2

COoO0O0O0O0O000000000000000000

poly(a$ min(wspeed) ™, 2)1 -0.3232016 0.1047208 -3.086 0.002047 =
poly(a$ 'min(wspeed) ™, 232 0.3965389 . 0845832 4. 688 2.B%e-06 ¥%*
ai max(wspeed)” 0.0025823 . 0003044 8.483 <« Ze-16 #ux
Signif. codes: 0 *#%%° 0,001 **%° Q.01 **’ 0.05 ".” 0.1 * " 1

rResidual standard error: 0.05899 on 2689 degrees of freedom
(39 observations deleted due to missingness)

Multiple R-squared: 0.7031, Adjusted R-squared: 0.7006

F-statistic: 276.9 on 23 and 2689 DF, p-value: = 2.2e-16

Figure 37. Results of Regressions on Tariffs for all regions and all crops except Vineyards

The higher capacity of the model to explain the level of the tariffs may indicate
that the crops besides Vineyards are more sensitive to the changes that occur from year
to year. This conclusion is under what is mentioned in [5], where simulations on future
climate scenarios and agriculture approaches show how different crops depend on
climate variability. In that study, it is interesting to see that the crops that are more
dependent on water resources, such as horticulture, maize, and fruit trees, are more
sensitive to climate changes. On the other hand, crops such as olive and grapevine are
less influenced by the climate scenarios because they are better adapted to
Mediterranean conditions.

For the models exposed in Figures 36 and 37, most variables explain the tariffs
better when having a quadratic behaviour.

A higher explanatory capacity for other crops except Vineyards is observed for
region A. The R? reaches 70% with a p-value for the F-test that indicates the model is

significant in explaining the Tariffs. Equation 11, for region A, all crops but Vineyards,
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most variables presented quadratic relationships with positive coefficients, as we can
see in Figure 38. A continuous increase of DATRt, DATmin, DATmax, and MinTmax leads
to a significant increase in the Tariffs. The growth of maximum temperature and wind

speed also positively impacts the Dowsed Tariffs.

(11) Tariffs = By + f1DATRt + B,DATRt? + B3 DATmin + ,DATmin? +
BsDATmax + BgDATmax? + ,DUTmax + fgDUTmax? + foMinTmax +
BioMinTmax? + B, MaxTmax + B;,MaxWspeed+e.
Residuals:
Min 1q Mead an 30 M ax
0. 0089861 -0.0027501 0.0000209 0.0025827 0.0164679

coefficients:

Estimate std. Error € value Pei>|T|)
[Intercept) =0, 034744 D, ULO3EYY 3,193 0, 00L93E
poly(atbays_above_treshold_grtotal, 231 0.06E4EG6 0O.00B6113  7.853 B.06e-12 w@«
||-'_|I':.-'l{_._:TI_':,_l:,-:._-llln:_-'.-l'-_'r'|,--_.||-:-'I-':_2|,:_|I,-|I, 232 0.0LI865E O.00B4679 1.637 0.105322
poly{atoays_above_treshold_Tmin, 231 -0.0419515 0, 0102803 -4,081 0.000103 v~
poly{aibays_above_treshold_Twin, 232 0.0206510 0©.0118053 1.749 D.0DE3936 .
polyCajpays_above_treshold_Tmax, 231 0, 0540613 O, 00B9ETE 65.015 4. 660-0F #*%#
polyCalbays_above_treshold_Tmax, 232 0.0162743  0.0092383 1.762 0.0BLE1S
poly{aibays_under_treshold_Tmax, 231 0.0263E5E 0.0L00£430  2.627 0.010249 =
polyiaioays_under_treshold_Tmax, 2332 0.0162943 0. 008538E 1,908 0.039814 .
poly(at min(Tmax) ", 231 0. 02ZBO5SST  0.0076290 3,678 0.000416 weow
poly{at min{Tmax)", 232 0.0L43044 O.0D0BT7EE Z2.110 DO.037ESS *
af maxi{Tmax) 0L, O013081 O, Q002746 5.493 4, 24p-07 w#%
af ‘max(wspead] " 0. 0006126  0.0001307 4,687 1.07e-05 wew
signif. codes: 0 ‘**** 0001 *#=' 0,01 ‘*' 0,05 ‘.* 0.1 * ' 1
rResidual standard error: 0.005065 on B3 degrees of freedom

(1 observarion deleted due To r",:.illgru'u:._]

Multiple R-sguared: O.7477, Adjusted R-squared: ©.7112
F-staristic: 20.5 on 12 and B3 oF, p-value:! < 2. 32e-1@

Figure 38. Results of Regressions on Tariffs for Region A and all crops except Vineyards

For regions C, D, and E, the models with higher explanatory capacity are those of
Vineyard crops. This is expected because these regions, especially regions D and E, have
a predominancy of Vineyards. Nonetheless, the capacity of the models to explain the
variable tariff is not as high as it is for the whole country. Despite lower values for the
R?, the models are significant at a five percent level. The details of the models for regions
C, D and E can be found in the Appendix Cin Figures 1, 2 and 3.

For the different crop groups comparison, the main insights are that DATmin has
mainly positive effects on the evolution of the tariff’s values, for all crops except
Vineyards, and mainly negative effects for Vineyards. DUTmin does not seem to have
much importance on the models that explain the tariffs, concerning Vineyard crops. Only

for region E there are variables such as, MinTmin, resulting in increases of the tariffs, as
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suggested in [29] where the sensitivity of Vineyard crops to low negative temperatures
is highlighted.

DATRt has mainly positive effects for both groups of crops, meaning it increases
tariff values as more days verify rainfall values above the limit for the 25% highest
observations. MaxTmin has mainly positive effects for Vineyard crops while for other
crops except Vineyards this is not the case. In [26], is referred that fruit trees differ in
their sensitivity to chilling conditions and although some grow better for cooler
temperatures, others are well adapted to warmer conditions. This heterogeneity seems
to be represented in our results where there is no pattern that variables like DATmax or
MaxTmax follow.

Regarding the coefficients, it was noticed that DAT variables are present in
almost all of the final models, with DATRt mostly linear and with positive signs. DATmin,
DATmax, and DATw have quadratic relationships, with the signs differing between
models. DUTmin had almost always a quadratic effect on the dependent variable of
tariffs. MinTmin, MinTmax, and MinWspeed have mostly positive linear effects on the
evolution of Tariffs. The impact of MinTmin and DUTmin are different from what is seen
in [8]. In their study, the decrease of minimum temperatures is associated with higher
disaster payments. At the same time, an increase in maximum temperatures also leads
to increases in disaster payments. In our work DATmax, for half of the models has a
positive relationship with the tariff’s variable. For region C, this does not verify. Another
important conclusion is the DATRt, is mainly related to increases in the tariffs, which is
confirmed in [8], where higher precipitation levels lead to an increase in disaster
payments. Again, for region C, this does not verify, which is explained by the fact that
the regions included are mostly in Alentejo, known for lower values of rainfall. Hence,
more days of rainfall above the threshold is considered beneficial for the crops taking
into account the very low values it normally verifies.

In order to better explain the variable of the tariffs, it was assumed that, because
the tariffs are values defined a priori to the hazards, it could be true that the previous
year's weather variables have a higher impact on the tariff’s levels for a specific year. To
analyse that, four regions and culture groups are chosen to see what the impacts are at

a first try. The results can be found on the following Table:
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Experience Description Original R? Final R2

All tariff Regions
1 and all crops except 70% 65.5%
Vineyards

2 Region D and all
crops

3 Region E and all 6% 7.2%
crops

20% 28%

Region B and all
4 crops except 42% 71.9%
Vineyards

Table 3. Comparison of Results of Regressions for Tariffs with and without lag years

The first experience is done for all tariff regions and all crops but Vineyards,
which previously had the highest R2. The second experience is performed on region D
for all crops, where before it registered an explanatory capacity of around 20%. The third
experience is for region E and all crops, where the R?> was no more than 0.06. For the
last experience, region B is chosen for all crops, but Vineyards with a previous
explanatory capacity of 42%. More detailed information about the model results for
each scenario, can be found in the Appendix C.

When applying the new regressions of tariffs with the previous years' weather
variables, we see that the final results remained very similar for all the examples. In
some cases, the explanatory capacity of the models decreased. In others, it increased,
and only for the model of region B the improvements were significant. In terms of
significance of the variables there are no substantial changes that indicate that the
variables that are not significant before became significant for the models with a one-
year lag.

Nonetheless, it is seen that DAT and DUT of the weather variables are still the
ones that are always present after the selection process. Once more, these variables
perform better when applying a quadratic relationship. Details on the calculated
models, can be found in the Appendix C, in Figures 4,5, 6 and 7. These results are
expected if we believe that the weather does not have drastic changes from one year to
the other. The similarities over consecutive years can explain the similarities in the
model's significance levels. Future studies may be necessary on relating not only the

previous year but also some past consecutive years on the study of the tariff level.
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As the research process evolves, there are improvements made to the dataset.
In an initial phase, the variables chosen are related mainly to more extreme weather
observations. The next step is to verify if more central variables better explain the tariffs.
The mean of the variables for each year is introduced, and the number of observations
in a year above that mean. The latest is calculated for all variables, and a new weather
phenomenon is introduced, the thermal amplitude. The choice of the thermal amplitude
results from the fact that hail is a very present cause of claim all over the country. In the
absence of information related to humidity, the thermal amplitude could explain it to
some extent.

To analyse the significance of new variables, they are introduced in the models
that cover all regions. The first try is for all regions and all crops, in the second try the
model covers data for all regions and vineyard's crop, and for the last try, the dataset

used is for all regions and all other crops except vineyards.

Experience Description Original R? Final R?

All regions and all
1 54% 60%
crops

All regions and
2 . 41% 45%
Vineyard Crop

All regions and all
3 crops except 70% 78%
Vineyard Crops

Table 4. Comparison of Results of Regressions for Tariffs with and without new variables

In Table 4, we may see the final results after introducing new variables for these
three scenarios. The new variables showed significance and improved the models. For
the first try, the model achieved an R? of 0.6, showing a higher explanatory power over
the tariff’s values. The Adjusted R? was also higher. For the second try, the
improvements were minor, but the new variables showed significance at a 5% level. For
the last test, the R? reaches 0.78, which gives an excellent explanatory capacity to this
model. More details on the models generated can be found in the Appendix C, in Figures

8,9 and 10.
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Introducing the new variables could be considered an improvement to all
regressions and so considered essential to look at when defining tariff values for
insurance contracts.

One of the other variables studied is the ratio of BoCP. Here, we intend to
understand how the weather variables can explain how the State's aid varies. The
scatterplots for BoCP do not show any specific behaviour of the independent variables.
The model that includes all regions and all crops is as follows:

(12) Bonus over Commercial Prize = f, + B;DATRt + f,DATRt? + B3TrdRt +
BsTrdRt? + BsDATmin + BcDATmin? + B,DUTmin + BgDUTmin? + foMaxTmin +
BioMaxTmin? + B;;DATmax + B,,DATmax? + B;3DUTmax + B1,DUTmax? +

BisTrdTmax + B1sTrdTmax? + $1,DATw + B1gDATW? + B1oDUTW + S,,DUTW? +
BoiMaxWspeed + B, MaxWspeed? + B,3TrdWspeed + [, TrdWpseed?+e.

rResiduals:
Min 1qQ Median 3Q Max
-0.44909 -0.06151 ©.00401 0.06671 0.39926

Coefficients:
Estimate std. Error t value pPr{=|t|)

(Intercept) O0.629257 0.001685 373.376 <« 2Z2e-1G %%%
poly(aspays_above_treshold_Rtotal, 2)1 -1.556250 0.166705 -9.340 < 2e-16 %%
poly(aspays_above_treshold_Rtotal, 2)2 -0.9536557 0.131524 -7.273 4.30e-13 dww
poly(as$trd_gtl_Rtotal_year, 2)1 1.225919 0.134407 9.121 < 2e-1§ #u=
poly(as$trd_qtl_Rtotal_year, 2)2 -1.024024 0.135527 -7.556 5.24e-14 ww=
poly(aspays_above_treshold_Tmin, 2)1 -0.677597 0.237400 -2.854 0.004339 %%
poly(aspays_above_treshold_Tmin, 2)2 -0.254182 0.152502 -1.667 0.095652
poly(aspays_under_treshold_Tmin, 2)1 -0. 506627 0.269318 -1.881 0.060032
poly(aspays_under_treshold_Tmin, 2)2 -0.471472 0.161837 -2.913 0.003599 =¥
poly(a$ max(Tmin) ™, 2)1 0.672235 0.227972 2.949 0.003211 =*
poly(as max(Tmin) "™, 2)2 J.6688606 0.192573 3.473 0.000520 =%
poly(aspays_above_treshold_Tmax, 2)1 -1. 560533 0.342434 -4.557 5.36e-0f dHww
poly(aspays_above_treshold_Tmax, 2)2 -1.295573 0.181278 -7.147 1.07e-12 du®
poly(aspays_under_treshold_Tmax, 2)1 2.181268 0.442492 4.930 8.62e-07 %%
poly(aspays_under_treshold_Tmax, 2)2 1.251835 0.207446 6.035 1.76e-09 s
poly(as min(Tmax) ™, 2)1 -1. 885769 0.220023 -8.571 <« 2e-1§ dwww
poly(as min(Tmax) ™, 2)2 0.999853 0.147141 6.795 1.26e-11 %%=
poly(a$ max(Tmax) ", 2)1 -2.626863 0.349309 -7.520 6.B7e-14 ==
poly(a%s max(Tmax) ™, 2)2 G.810560 0.304103 2.665 0.007724 %=
poly(asfst_qgtl_Tmax_year, 231 3.404341 0.440873 7.567 4.B8le-14 www
poly(asfst_qgtl_Tmax_year, 2)2 -0.460810 0.196358 -2.347 0.018990 =
poly(astrd_qtl_Tmax_year, 2)1 1.234822 0.431191 2.864 0.004211 ¥
poly(as$trd_gtl_Tmax_year, 2)2 -0. 347947 0.307865 -1.130 0.258470
poly(a$pays_above_treshold_wspeed, 2)1 -1.426403 0.355523 -4.012 6.14e-05 %=
poly(a$pays_above_treshold_wspeed, 2)2 0.522834 Q.316087 1.654 0.098198 .
poly(aspays_under_treshold_wspeed, 2)1 1.548236 0.242378 6.388 1.90e-10 ¥
poly(as$pays_under_treshold_wspeed, 2)2 0.427031 0.126960 3.364 0.000778 ww=
poly(a% max(wWspeed) ™, 2)1 0.764083 0.214492 3.562 0.000372 =%
poly(as max(wspeed) ™, 2)2 -0. 580208 0.159901 -3.629 0.000289 %%
poly(astrd_qtl_wspeed_year, 2)1 Z2.214904 0.391746 5.654 1.69e-08 ¥
poly(as$trd_qtl_wspeed_year, 2)2 -0. 657406 0.256143 -2.567 0.010311 =
Ssignif. codes: Qg f®e=? Q001 =7 0.01 ‘*' 0.05 ‘." 0.1 ° " 1

Residual standard error: 0.1016 on 3604 degrees of freedom
(39 observations deleted due to missingness)

Multiple R-squared: 0.2927, Adjusted R-squared: 0.2869

F-statistic: 49.72 on 30 and 3604 DF, p-value: < 2.2e-16

Figure 38. Results of Regressions on BoCP for all Regions and all crop

We conclude that the models showed less capacity to explain the bonus over

Commercial Prize when compared with tariffs’ models. As shown in Figure 38, the
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variables that are more present are the DAT and DUT ones. Almost all variables are
significant at a level of 5%, and all the variables were better represented with a quadratic
relationship to explain the dependent variable. This model presented a capacity to
explain around 30% of the values of the ratios being studied.

For all regions and all crops except Vineyards the model got more robust results.
This improvement is also noticed in the F-statistics where for Vineyard crops is 17.17
and for all crops except Vineyards is 48.18. Stronger models for all crops but Vineyards
are also true for region A where we get an R? of 0.85. For regions C, D, and E, we were
able to get greater values of explanatory capacity when considering only the Vineyards.
The models enumerated can be found with more details in the Appendix C, in Figures 11
to 15.

In terms of coefficients and their signals, the most significant findings are that
most models had DATRt and DATmin with quadratic behaviours and negative signals.
This indicates that as the number of days above the third quantile for rainfall and
minimum temperature increases, the proportion of what the State pays decreases. This
relationship although not linear and not true for all the calculated models, is the most
predominant. DAT and DUT variables are present in most of the models. The DUTw
variable has positive coefficients that indicate that while the DUTw increases, the BoCP
increases. The first and third quantile of the variables for each year were also significant
for most models, with the TrdTmin having mostly negative linear impacts and TrdTmax
with positive linear impacts.

In terms of the signals of the coefficients, there is no pattern that the models
follow. For the BoCP models the new variables that concern the means, days above
mean, and measures for the thermal amplitude are not used due to time constraints.
Nonetheless, we believe that the same improvements previously seen for the tariffs
would be verified here.

Although the bonus variable was not studied alone, it is believed that the high
values of explanation of the models result from the fact that Commercial Prize is related
to tariffs, as illustrated by Equation 4. Consequently, the variables that explain the tariffs
end up having significance for the BoCP values. The models did not reach higher R?
because the State's money depends on many conditions, mainly the funds made

available for such programs and not solely on the impact of the weather variables.
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There are no specific patterns of variables signals for the two groups of crops
being analysed. For both groups, we verify that MaxRt leads to increases in the BoCP
and MaxTmax leads to decreases for both Vineyard crops and all crops but Vineyard.
3.4.2.2 Regressions for variables a posteriori to hazards

In order to study variables that result from the hazards, an initial analysis on the

correlations and variables scatter plots was done for indemnities.
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Figure 39. Example of Scatter Plots of Independent variables against the Indemnities

In Figure 39, the scatter plots suggest better and clearer relationships between
the variables and the indemnities. Initially, it was considered that the indemnities
variable would have the most robust models considering the R? and F-statistics. To
reinforce this belief, we know that tariffs and bonus are defined a priori to the weather
phenomena. For indemnities, its value is defined a posteriori and the existing
relationship could be more direct.

Contrary to our assumptions, the regressions for indemnities or ratios using the
indemnities have the poorest results. Neither the entire dataset nor the segmentation
by region and crop improved the models. We obtain no significance for almost any
variable. The models have an R? no bigger than 0.07, which gives almost no importance

to the weather phenomena in explaining the values of Indemnities.
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Looking at the plots of the variables, it could be considered that some follow an
exponential behaviour. Thus, it was created the logarithm of indemnities to use in the
regressions. The results continue to be unsatisfying, with poor significance for the
variables individually and the entire models. Neither the corrections on the datasets nor
the introduction of new variables lead to improvements in the significance of the
models.

The indemnities are the combination of several factors and are aggregated
values from several insurance companies that may define the indemnities payment
differently. Such differences and constraints may be affecting the results of the
regressions, indicating that this dependent variable is not directly correlated with
weather evolution.

The last variable defined is the ratio of claims over the number of contracts.
Using the number of claims alone leads to biased conclusions, because they depend on
the number of farmers that applied to the State aid and not on the total number of
hazards in the country. We chose to use a ratio that relates the number of claims in a
year with the number of contracts made. In this way, we can see the proportion of
hazards compared to the number of contracts, taking out some of the bias of the

number of claims.
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Figure 40. Scatter Plots of Independent variables against the CoNC
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In figure 40, we see how the independent variables relate with effect variable.
There is no clear relation that can be assumed. When accessing the regressions, most of
the variables seem significant, as well as the models that present a high R2.

For region A, all crops, the model is as follows:

(13) Claims over Number of Contracts = By + B1DATRt + f,MaxRt + ffzMeanRt +
BsTrdRt + B,TrdRt? + fsDATmin + B¢DATmin? + B,DUTmin + BgDUTmin? +
BoMaxTmin + B;oMaxTmin? + p;;DATmax + B,,DATmax? + B3DUTmax +
B14DUTmMax? + BsTrdTmax + B1¢TrdTmax? + B1;DATwW + B;gDATW? + BoDUTw +
B2oDUTW? + By MaxWspeed + fo,MaxWspeed? + Bo3TrdWspeed +
BoaTrdWpseed? +e.

rResiduals:
Min 1g Median 3q Max
-0.66825 -0.00284 0.00075 0.06496 0.40655

coefficients:
Estimate std. Error t value Pr[t|)

(Intercept) -30. 25064 4.18067 -7.236 1.90e-10 ¥
afDays_above_treshold_Rrtotal 0.40894 0.06221 6.574 3.77e-09 #=*
a% max(rtotal)” -0.16499 0.02772 -5.952 5.77e-08 #%%
a% mean Rtotal” 7.38590 1.24406 5.937 6.14e-08 =%
a%Days_above_mean_Rtotal -0.59560 0.08833 -6.743 1.77e-09 ##*¥
afpays_above_treshold_Tmin -0.68573 0.13147 -5.216 1.27e-06 #*¥*
a$ ' min(Tmin) "~ -2.12659 0.39474 -5,.387 6.27e-Q7 #w%
a$ max(Tmin) "~ -0.34442 0.08021 -4.294 4.63e-05 %%
a% mean Tmin~ -1.44082 0.68137 -2.115 0.037393 =
afDays_above_mean_Tmin 0.22748 0.04416 5.151 1.66e-06 #***
asfst_gti_Tmin_year 3.08425 0.58588 5.264 1.04e-06 %%
astrd_gtl_Tmin_year 3.85826 0.97214 3.969 0.000150 %=
afDays_above_treshold_Tmax 0.52087 0.09475 5.487 3,97e-07 ww=
at min{Tmax) " 1.54840 0.28185 5.494 4.03e-07 *%*
a% max(Tmax) "~ 2.28316 0.36892 6.189 2.06e-08 %%
a% mean Tmax~ -18.14443 3.39846 -5.339 7.66e-07 ¥¥¥
afDays_above_mean_Tmax 0.04219 0.01071 3.939 0.0001e7 #%%
asfst_gtl_Tmax_year 12.92759 2.33593 5.534 3.40e-07 #w*
astrd_gtl_Tmax_year 2.28818 0.55121 4,151 7.82e-05 ##*
afDays_above_treshold_wspeed -0.29127 0.05490 -5.305 8.8le-07 #¥*
af min(wspeed)” 4,55042 0. 89856 5.064 2.35e-06 %%
al max(wspeed)” 0.87141 0.16984 5.131 1.80e-06 =%
a% mean wspeed’ -18.21341 3.56230 -5.113 1.93e-06 #=¥*
afDays_above_mean_wspeed 0.10543 0.02103 5.013 2.89%e-06 #¥*
atfst_gtl_wspeed_year 11. 86468 2.30947 5.137 1.75e-06 ##*
attrd_gtl_wspeed_year 7.15089 1.36560 5.236 1.17e-06 ##*
atpays_above_treshold_diff 0.05604 0.01234 4,540 1.84e-05 #¥*
a$ min thermal_amp” 6.95674 1.23808 5.619 2.38e-07 #wx
a% max thermal_amp” -0.93242 0.14201 -6.566 3.90e-09 =
a% mean thermal_amp’ -20.32264 3.91910 -5.186 1.44e-06 =¥
a%pays_above_mean_diff -0.08380 0.01482 -5.653 2.06e-07 *¥*¥
asfst_gtl_diff_year 4.41002 0. 89170 4,946 3.78e-06 %%
astrd_gtl_diff_year 10.52774 1.91638 5.494 4.03e-07 %%
signif. codes: @ *#®*’ 0,001 ‘¥**' 0.01 ‘*’ Q.05 ‘. 0.1 ° ° 1

residual standard error: 0.1685 on 85 degrees of freedom

(1 observation deleted due to missingness)
mMultiple R-squared: O0.868, Adjusted R-squared: 0.8183
F-statistic: 17.46 on 32 and 85 DF, p-value: < 2.2e-16

Figure 41. Results of Regressions on CoNC for Region A and all crops

As we see in Figure 41, the model for region A reaches an R? of 0.86, which
indicates that the weather variables explain in almost 87% the number of claims over
contracts that occur. All the variables are more significant for region A when

represented with a linear relationship. The means of the variables are the ones with the
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lowest coefficients leading to the conclusion that the higher the means, the lower the
ratio of claims over the number of contracts.

Region B also reaches a value of 0.83, an excellent indicator that we can use the
weather variables to explain the number of claims. For regions C, D, and E, we observe
high significance values for the variables and the models as a whole.

In terms of the coefficient’s values and signals, the main observations are that
DATRt presents a negative coefficient on its quadratic variable, which represents that a
continuous increase of the DATRt variable leads to a decrease in the CoNC. On the other
hand, DATmax and DATw have a positive linear impact that leads to the increase of
CoNC. The DUT variables have no significance for any of the models. For Minimum of
Minimum and Maximum temperature, the impacts are mostly positive and linear,
meaning that these variables increase claims over contracts.

The thermal amplitude has a negative linear impact, which indicates that the
higher the difference between maximum and minimum, the more claims over contracts
should be expected. It is believed that thermal amplitude has impact on the occurrence
or frost, which is one of the main causes of hazards.

For CoNC, the first and third quantile of the variables were significant in most
models, but their signals vary. The only common point is for the third quantile of
maximum temperature that has a positive coefficient for all models, leading to more
significant increases of claims. DAMRt and DAMmin have mostly negative coefficients
which lead to lower claims as they increase, although for DAMRt, these conclusions are
not always valid.

For the model that represents all regions and all crops, that can be accessed in
the Appendix C, Figure 16, the best model had all rainfall-related variables linear. For
almost all the variables with quadratic behaviours, we can observe negative values that
indicate that CoNC decreases as the independent variables increase. For variables such
as the first and third quantile of the maximum temperature, we identify the contrary
behaviour. For the minimum thermal amplitude, an increase represents a positive
growth in the number of claims. Almost all variables showed significance to explain, to
a great extent, the number of claims over the number of contacts per year.

Considering an analysis per region we can see that, for region A, tariffs and claims

over contracts seem to be aligned and share the same coefficient signals. This is true for
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DATRt, DATmin and MinTmin. For the first two the BocP signals are inverse meaning that
while the tariffs and CoNC increase with DATRt and DATmin, the BoCP decreases. For
MaxTmin all the dependent variables are negatively impacted leading to decreases in
tariffs, CONC and bonus ratio. Here, it may happen that lower risk for the framers, that
translates in lower tariffs, lowers the help the State may give.

An analysis for all other regions, show that, for all variables that are common for
the models of tariffs and CoNC it is possible to verify, for most of the cases, that if a
variable influence positively the tariffs it also influences positively the CoNC, for
example. For BoCP there seems to exist a contrary behaviour where the ratio decreases
if the other variables increase, for example. This could be explained by the fact that the
Commercial Prize increases with tariffs leading to lower ratios and sometimes, for the
sustainability of the aid system the State may have to reduce its participation, reducing
the bonus while the Commercial Prize increases. We see this happening in the year of
1999, as exposed in section 3.1, where the State’s aid went from 85% to almost 65%.
This relationship is not in all cases and it may result from the weaker relationship
between the bonus and the weather variables that weakens the evolution of the ratio

when compared with the impact on the tariffs or number of claims.

4. Conclusions

The main goals of this dissertation were to relate weather data with agriculture-
insurance data, in order to understand to which extend the frequency of hazards,
the indemnities, the bonus of the Government and the insurance premiums, develop
alongside with the climate evolution, reflecting the latest years of climate change
and extreme phenomena intensification.

Through quality control, homogenization, and missing data infilling on of the
data collected from IPMA, it was possible to create a dataset that led to reliable
results in the analysis of the climate in Portugal in the last decades.

Parallel measurements analysis for manual and automatic stations, which have
different instruments, was essential to understand how results can be extended

from one period to the other. With this analysis we could observe that the
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instruments represent differences that are zero on average. Contrary to what was
found in other studies, the standard deviation of these differences was high, which
may be explained by the high thermal amplitudes and geographic position of
Portugal.

A trend analysis on climate variables, such as temperature, rainfall and, wind
speed were, performed and we verified an increase of the maximum temperature
and a decrease of minimum temperatures alongside with the decrease of rainfall
values. When looking at the whole period, from 1941 to 2018, the changes in the
data did not look significant. However, in the last ten years there was a very clear
intensification of the tendencies.

Regarding the analysis of the insurance data, the main outcome was that the
different tariff regions and cultures have different associated evolutions and
specificities, and such segmentation is important for the analysis of the results. The
regressions led to the conclusion that the weather evolution is important to explain
the definition of prices by the insurance companies and the frequency of claims.
When it comes to the State aid, the weather is not as important. Also, the
indemnities were the variable least explained by the climate variables through our
models.

The variables related with Vineyard crop were less explained by weather
phenomena than other crops due to its suitability to Mediterranean climate. The
influence of each climate variable on each group of region and crop varied
immensely, due to the big heterogeneity that each crop has in terms of growth ideal
conditions.

Future studies should include more segmented crop groups, that have similar
ideal growth conditions. A seasonal analysis should also provide a more realistic

relationship between climate variables and agriculture-hazards.
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Appendix A

Data treatment, homogenization and quality control
Good quality data is not possible without some preliminary steps. First, we

should analyse the raw data to understand which series and periods have well enough
data to perform studies on them, [30]. There is the need to homogenize the climate
time-series data by removing systematic biases. In [15], is identified that the changes
that lead to breakpoints may occur due to non-climatic factors and it is the researchers'
job to distinguish the climate phenomena resulting from human or equipment errors
from true phenomena. In the end, we want to achieve comparability between data, in
order to make correct conclusions, as mentioned in [9].

Since the changes in data may result from external factors, direct analysis on the
raw data could be dangerous if not appropriately studied. The homogenization process
is always recommended to study climate variables. Previous studies, such as [9], refer
that this can be done in three steps: detection, adjustments, and validation. By applying
all these we should be able to detect inhomogeneities, compare the stations with
neighbour stations, giving more certainty to the results, and critically assess the work
that has been done.

In [31], is suggested several validation rules for quality control on the data. The
validation checks can be (i) basic, including limit, logic and per period validation; (ii)
temporal validation; or (iii) spatial.

Although, long-term time series for climate data is the most accurate data recorded
in the past, older datasets always bring several challenges and so metadata is extremely
important to understand what happened over time, see [32]. Parallel measurements
between old and new setups are advisable when starting the homogenization process
(see [9]).

The weights of each reference series should reduce the white noise, the
inhomogeneities, and respect the regional climate signal, see [9]. The theoretical
minimum number of stations for statistical homogenization is considered three, but in
practice, five is the value to achieve good results.

Some works, such as [9] and [18] suggest that we should have in mind that the

distances from reference stations to the stations under analysis have impacts on the
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results. The density of the station’s network depends on many factors, as for instance
the size and development of a country.

In [33] and [10] is mentioned the necessity to overcome other challenges such
as the missing data for stations’ time series. Some software, such as CLIMATOL, include
missing data infilling in their homogenization algorithms.

Inthe work [32], it is described that choosing the best method for data treatment
is a subjective choice of the researchers. There are many methods and inter-
comparisons of the techniques that we can study to decide which process best suits their
work. Most techniques are recommended generally for annual and monthly data
because daily data presents more statistical bias, as mentioned in [33]. In the research
in [33] and [30], the suggested approaches were the arithmetic average; Regional
Weighting; the Simple Linear Regression and the Multiple Linear Regression; the Inverse
Distance Weighting (IDW). An important conclusion from those comparisons was that
the bigger the datasets, the better the results for any technique.

The methods presented can be applied manually or automatically and in [9] is
highlighted those manual methods as being more labour-intensive and demanded of a
more experienced user. The latest developments of automatic methods increase

efficiency while decrease the chances for human errors.

CLIMATOL: Software for climate data treatment
Specificities about the weather variables have to be taken into account when

choosing the best tool for the data homogenization and missing data infilling, see [34].
The study of [32] describes the topic of statistical packages and software that do
homogenization and filling of missing data. These methods were studied by a
coordinated European initiative, which assessed their validity. Software such as HOMER,
MASH, ACMANT, PRODIGE, and CLIMATOL are mentioned and compared to see which
one fits better the homogenization task.

The homogenization processes can be performed based on statistical testing or
using numerical studies, as mentioned in [9]. When assessing statistical testing, we can
choose several types of tests: (i) the t-test; (ii) the Standard Normalised Homogeneity
Test, SNHT, which is used by CLIMATOL which is the software used in this work; (iii) and
Penalized Maximal T-test, PMT.
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In [11], it is done a direct comparison between methods, and the main
conclusion was that the tools differed on the ratios of homogeneous series. Different
breaking points are detected according to the different algorithms and strategies the
tools intrinsically use. CLIMATOL showed to be the software that approximate better
the actual scenario. In addition, the CLIMATOL tool is the most suitable for several types
of weather variables, being the tool with most support material available as well as more
user-friendly interface.

In the work [13], the creator of the CLIMATOL package described the tool as
being able to “provide functions to facilitate the homogenization of climatological
variables at any temporal scale”. The R package of CLIMATOL contains quality control
functions, homogenization, and infilling of missing data.

CLIMATOL allows for resolution in daily data, which is the type of data we use in
this work, by using composite reference data. The primary operations are automatic.
Authors such as [9] established the tool’s good results and accuracy. One of its best
specificities is that it can be used automatically, [11], while handling mid-size networks

that go up to 100 stations network, while removing several types of errors.
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Figure 1. Type | and Type Il Regression. Source: Guijarro [13]

CLIMATOL uses a type Il regression (RMA) instead of type | regression for the
homogenization. The orthogonal regression (RMA) minimizes the perpendicular
distance of the scatter points to the linear regression line instead of the vertical distance,
as illustrated in Figure 1. Also, in CLIMATOL tool, both the dependent and independent
variables have been standardized. It is possible to use several reference data for the
same point and the weights of each reference data are defined according to the distance

to the candidate series, [12].
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The method used by CLIMATOL for missing data, allows for flexibility by using
nearby data while adapting to the different availability of information in stations nearby.

After estimating all the data, the following step is outlier and shift detection and
correction. The outliers correspond to points for which the anomalies are greater than
five, by default, and the value used in this work and above which outliers are deleted.
The SNHT, Standard Normalised Homogeneity Test, is mostly used for series with one
breakpoint but with unknown dates, it is a likelihood test performed on the ratios or
differences between the data that is calculated for and the reference series, [10]. The
maximum values of SNHT are stored, as well as their locations, and when the statistic
series of SNHT is higher than a certain threshold, the series is split at that point, creating
a new series with the same coordinates, [12].

The same happens with the threshold that rejects anomalous data, set as five. This
value should be set up to at least twenty when dealing with daily data, especially for
precipitation, because of its significant variability. The last step of the process is devoted
to recalculating the missing data, including the data that was deleted in the process. The

process that unrolls in CLIMATOL is summarised in the flow-chart in Figure 2.

Read input data > MNormalize series with their €
| means and standard deviations
+ f stage 3,
RETURN

Initial checks and calculation of

Estimate all series from
means and standard deviations =

their neighbors and

.L undo normalization
+ Compute SNHT
Stage 1: SNHT applied on af all series
stepped overlapping windows Compute series of anomalies
{observed - estimated data)
4, and delete outliers
Stage 2: SNHT applied ¢-
on the whole series
il missing data and If maximum SNHT
¢ compute Rew Means ower than threshold
and standard deviations RETURN
Stage 3: In-filling of
all missing data ¢

Did any mean
changed?

Split series with higher
SNHT break-points

Write homagenized series,
graphics and other sutpus

Figure 2. Flowchart of Climatol software. Source: Guijarro [13]
Although the process is similar, we have to consider the specificities of dealing
with daily data, which is known to have a higher variability, [17]. Thus, it is better to
homogenize monthly data and use the metadata for daily homogenization In CLIMATOL

this is done by using the breakpoints from the monthly data into the daily series.
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In [11] is referred that the assessment of the certainty on the results of a

homogenization process, although very important, is many times overlooked.

Understanding the proper signal of a climate variable is not a straightforward procedure,

however CLIMATOL has shown to be good in removing most of the trend errors, which

leads to more solid results on the trend analysis.

Appendix B

Tariff
Region

Region

Counties

Faro; Lisbon; Setubal

ALBUFEIRA; ALCOUTIM; ALIEZUR; CASTRO MARIM; FARO; LAGOA; LAGOS; MONCHIQUE; LOULE; OLHAO; PORTIMAO; SAO BRAS DE ALPORTEL;
SILVES; VILA DO BISPO; TAVIRA; VILA DO BISPO; VILA REAL DE SANTO ANTONIO; AMADORA; CASCAIS; LISBOA; LOURES; LOURINHA; MAFRA;
ODIVELAS; OEIRAS; SINTRA; TORRES VEDRAS; ALMADA; SEIXAL; SESIMBRA; SETUBAL

Sesimbra; Santarém;
Setubal; Viana do Castelo

AVEIRO; ESPINHO; ESTARREJA;SANTA MARIA DA FEIRA;ILHAVO;MURTOSA;OLIVEIRA DE AZEMEIS;OVAR; SAO JOAO DA MADEIRA;VAGOS;
ODEMIRA; ESPOSENDE; FIGUEIRA DA FOZ;MIRA;MONTEMOR O VELHO;SOURE; ALCOBACA;BOMBARRAL;CALDAS DA
RAINHA;LEIRIA;MARINHA GRANDE;NAZARE;OBIDOS;PENICHE; POMBAL;PORTO DE MOS; ALENQUER;ARRUDA DOS
VINHOS;CADAVAL;SOBRAL DE MONTE AGRACO;VILA FRANCA DE XIRA; MAIA;MATOSINHOS;PORTO;POVOA DE VARZIM; VILA DO CONDE;
VILA NOVA DE GAIA ; RIO MAIOR;AZAMBUIJA; ALCACER DO SAL; ALCOCHETE; BARREIRO; GRANDOLA; MOITA; MONTIO; PALMELA;S
ANTIAGO DO CACEM; SINES; CAMINHA;VIANA DO CASTELO

Setubal; Santarem;

ALJUSTREL; ALMODOVAR; ALVITO; BARRANCOS; BEJA; CASTRO VERDE; CUBA; FERREIRA DO ALENTEJO; MERTOLA; MOURA; OURIQUE;
SERPA;VIDIGUEIRA; ALANDROAL; ARRAIOLOS; BORBA; ESTREMOZ; EVORA; MONTEMOR O NOVO; MORA; MOURAO; PORTEL; REDONDO;
REGUENGOS DE MONSARAZ; VENDAS NOVAS; VIANA DO ALENTEJO; VILA VICOSA; BATALHA; ALTER DO CHAO; ARRONCHES; AVIZ; CAMPO
MAIOR; CASTELO DE VIDE; CRATO; ELVAS ;FRONTEIRA; GAVIAO; MARVAO; MONFORTE; NISA; PONTE DE SOR; PORTALEGRE; SOUSEL;
ALCANENA; ALMEIRIM; ALPIARCA; BENAVENTE; CARTAXO; CHAMUSCA; CONSTANCIA; CORUCHE; ENTRONCAMENTO; GOLEGA; OUREM;
SALVATERRA DE MAGOS; SANTAREM; TORRES NOVAS; VILA NOVA DA BARQUINHA

Aveiro; Braga; Braganga;
Castelo Branco; Coimbra;
Setubal do Castelo; Vila Real;
Viseu

ALBERGARIA A VELHA; ANADIA; AROUCA; AGUEDA; CASTELO DE PAIVA; MEALHADA; OLIVEIRA DO BAIRRO; SEVER DO VOUGA; VALE DE
CAMBRA; AMARES; BARCELOS; BRAGA; CABECEIRAS DE BASTO; CELORICO DE BASTO; FAFE; GUIMARAES; POVOA DE LANHOSO; TERRAS DE
BOURO; VIEIRA DO MINHO; VILA NOVA DE FAMALICAO; VILA VERDE; VIZELA; ALFANDEGA DA FE; MIRANDELA ;BELMONTE; CASTELO BRANCO;
IDANHA A NOVA; OLEIROS; PENAMACOR; PROENCA A NOVA; SERTA; VILA DE REl; VILA VELHA DE RODAO; ARGANIL; CANTANHEDE; COIMBRA;
CONDEIXA A NOVA; GOIS; LOUSA; MIRANDA DO CORVO; PAMPILHOSA DA SERRA; PENACOVA; PENELA; TABUA; VILA NOVA DE POIARES;
GOUVEIA; MEDA; SABUGAL; SEIA; VILA NOVA DE FOZ COA; ALVAIAZERE; ANSIAO; CASTANHEIRA DE PERA; FIGUEIRO DOS VINHOS; PEDROGAO
GRANDE; AMARANTE; BAIAO;FELGUEIRAS; GONDOMAR;LOUSADA;MARCO DE CANAVESES;PACOS DE FERREIRA;PAREDES;PENAFIEL;SANTO
TIRSO; TROFA;VALONGO; ABRANTES; FERREIRA DO ZEZERE; MACAO;SARDOAL; TOMAR; ARCOS DE VALDEVEZ; MELGACO; MONCAO; PAREDES
DE COURA; PONTE DA BARCA; PONTE DE LIMA; VALENCA; VILA NOVA DE CERVEIRA; MESAO FRIO; MONDIM DE BASTO; PESO DA
REGUA;SANTA MARTA DE PENAGUIAO;VALPACOS; ARMAMAR; CARREGAL DO SAL; CINFAES;MORTAGUA; NELAS;LIVEIRA DE FRADES; RESENDE;
SANTA COMBA DAO; SAO JOAO DA PESQUEIRA; SAO PEDRO DO SUL

Braganga; Guarda; Vila Real;
Viseu; Castelo Branco;
Coimbra;

BRAGANCA; CARRAZEDA DE ANSIAES; FREIXO DE ESPADA A CINTA; MACEDO DE CAVALEIROS; MIRANDA DO DOURO; MOGADOURO; TORRE
DE MONCORVO; VIMIOSO; VINHAIS; AGUIAR DA BEIRA; ALMEIDA;CELORICO DA BEIRA;FIGUEIRA CASTELO RODRIGO; FORNOS DE ALGODRES;
GUARDA; MANTEIGAS; PINHEL; TRANCOSO; ALIJO; BOTICAS; CHAVES; MONTALEGRE; MURCA; RIBEIRA DE PENA; SABROSA; VILA POUCA DE
AGUIAR; VILA REAL; CASTRO DAIRE; MOIMENTA DA BEIRA; PENALVA DO CASTELO; PENEDONO; SATAO; SERNANCELHE; TAROUCA;VILA NOVA
DE PAIVA; CARRAZEDA DE ANSIAES; VILA FLOR; CARRAZEDA DE ANSIAES; VILA FLOR; COVILHA; FUNDAO; OLIVEIRA DO HOSPITAL; AGUIAR DA
BEIRA; ALMEIDA; CELORICO DA BEIRA; FORNOS DE ALGODRES; GUARDA; PINHEL; TRANCOSO; ALIJO; CHAVES; MURCA; SABROSA; VILA REAL;
AROUCA; TONDELA; VILA NOVA DE PAIVA; VISEU; VOUZELA; CASTRO DAIRE; LAMEGO; MANGUALDE; MOIMENTA DA BEIRA ; PENALVA DO
CASTELO; PENEDONO; SATAO; SERNANCELHE; TABUACO

Table 1. Counties and Tariff Regions

Regions Meteorological Stations Number

A 535; 739; 740; 746; 770; 865; 867; 869

B 531; 702; 713; 718; 720; 726; 729; 742; 766; 767; 776;
783

c 558; 562; 571; 734; 744, 824; 826; 35;837;
840; 847, 848;850; 863; 864

D 549; 570; 605; 622; 630; 632; 655; 657; 668; 685; 697; 705;
707; 716; 724, 800;803; 06;812

£ 566; 616; 619; 644; 651; 663; 666; 671; 680;
683; 687; 690; 698

Table 2. Tariff Regions and Meteorological Stations
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Appendix C

Imiformula - aftariffs — afpays_above_treshold_rrotal + af'max(mRrotal)’ +
aibays_above_treshold_Tmin + poly{afpays_under_treshold_Tmin,
2) + af'min{Tmin}" + af "max(Tmin)" + aibays_above_treshold_Tmax +

poly{aspays_under_treshold_Tmax, 2] + af'min(Tmax}” + poly(aipays_above_treshold_wspeed,
2] + at ' min{Wspeed}”}

residuals:

®in 14 Median £l Max

-0. 062628 -0.013730 -0.001539 O0_.011573 O.04B460
Coefficients:

EsTtimate std. Error T value Pri=|T|)
[Intercept) 5.864e-02 3.061e-02 1.916 0.057393 .
aibays_above_treshold_rtotal -1.828e-04 1.1B5e-04 -1.543 0.123030
as max(rroral)” =2.17%e-04 1.236e-04 =1.763 0. 080066 .
afpays_above_treshold_Tmin 6.383e-05 1.335%e-04 0.478 0.633163
poly{afbays_under_treshold_Tmin, 2)1 1.353e-01 3.9E9e-02 1.392 0.000E3E =@+
paly{afpays_under _treshold_Tmin, 2)2 -4, 695e-02 2.910e-02 -1.613 0.108E811
af 'min{Tmin}" -1.65%e-03 1.127e-03 -1.472 0.143130
at max{Tmin) " 2.640e-03 1.242e-03 2.125 0.035279 *
afpays_above_treshold_Tmax -9.602e-04 1.108e-04 -8.014 3.353e-13 ##x
poly(atbays_under_treshold_Tmax, 2)1 -2.25%e-01 4.714e-02 -4.792 4.04e-06 "o«
poly{afoays_under_treshold_tmax, 232 4 _B7Fe-02 2.933e-02 1.663 0.09852E .
af ‘min{Tmax]) 2.015%e-03 1.082e-03 1.863 0.064526 .
poly(atbays_above_treshold_wspeed, 271 3.68%e-02 3.408e-02 1.082 0.2B0B41
poly{asoays_above_treshold_wspeed, 2)2 -53.663e-02 2.655e-02 -2.133 0.034647 *
af ‘min{wspead)” B.5B8e-03 3.805e-03 2,257 0.025496
signif. codes: O **=+" Q001 ‘**° Q.01 **° 0.05 f.° 0.1 ¢ ' 1

rResidual standard error: 0.0197 on 145 degrees of freedom

Multiple R-squared: 00,3297,

F-statistic: 11.67 on 14 and 145 OF,

adjusted R-squarad:
p-value: = Z.2e-16

0.4E43

Figure 1. Results of Regressions on Tariffs for Region C and Vineyards

call:

Tmi{formula = aiTariffs ~ aipays_above_treshold_Rtotal + poly(aiDays_above_treshold_Tmin,
) + polydaf maw{rmin) ™, 2} + afpays_above_treshold_tmax +
al min(Tmax) ™ + alDays_under_treshold_wspeed + poly{af min(wspead) ",
2} + poly(ad max(wWspaed)” . 23]

rResiduals:
Min 14
-0.073055 -0.0L0BYE

Madian

Coefficients:

30 Max

0.001726 0.013510 O0.063354

Estimate Std. Error T value Pri>|t])
(INtercapt) 9. 827e-02 1.076e-02 9,137 < Ze-16 v*¥
alDays_above_treshold_Rtotal 1.122e-04 .347e-05 1.767 0.078198 .
poly({aspays_above_treshold_Tmin, 231 -9.016e-02 4.704e-02 -1.917 0.056204 .
poly{aspays_above_treshold_tmin, 232 -1.587e-01 3.292e-02 -4,.B27 2. 24e-0f **+
poly({as max(Tmin) ", 2)1 2.150a-02 3.752e-02 0,573 0.56703%
poly(as ' max{Tmin) "™, 232 1.022e-01 2.9833e-02 3.427 0.000€E93 w=w
ajoays_above_treshold_Tmax =1.483e-04 7.555e-0F -1.963 0.050360 .
a¥ min(Tmax)" 1,275e-03  5,950e-04 2.140 0. 033166 *
aiDays_under _treshold_wspeed -1.560e-04 3.8%4e-05 -4.006 7.75e-05 #@=
poly{as min{wspead) ™, 2)1 -1,090e-02 3.926e-07 -0,ZTE 0O.7E14E1
poly{as ‘min(wspead) ™, 212 3.59422-02 2.760e-02 1,428 0.134226
poly(as max(wspead) ™, 2)1 -6.799e-02 4.219%2-02 -1.611 0.105144
poly{as max{wspeed)”, 232 -6, 771e-02 2.925e-07 -2.315 0.071234 *
Signif. codes: O *o@«" Q.001 ‘'*°° Q.01 '°" 0.05 .7 Q1 " 71

Residual standard error;: 0.02339 on 307 degrees of freedom

Multiple R-squared: 0.2%11,
F-statistic: 10.51 on 12 and 307

Adjusted R-squared:
p-value: < 2.2e-16

oF,

0. 2634

Figure 2. Results of Regressions on Tariffs for Region D and Vineyards
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call:

Imi{formula = afTariffs - aSpays_above_treshold_Rtotal + poly(af max(Rtotal)’,
2] + poly(aipays_above_treshold_Tmin. 23 + poly(ai min{Tmin)",
2) + poly(asi'max(Tmin)", 2} + ajoays_above_treshold_tmax +
poly(afpays_under_treshold_Tmax, 2) + afDays_above_treshold_wspeed +
poly{atbays_under_treshold_wspeed, 237

Residuals:
#in 1a weadian In Max
=0, 091953 -0.032379 0.001281 0.031618 O.109015

coefficients:

Estimate std. Error t value Prix(t|)
(Intercept) 0.0547338 0.0137213 3.959 7, 9de-05 wo
atpays_above_treshold_rtotal 0.0010513 0Q.0001166 Q. 0L7 « 2e-16 *#=
poly(af max{rtotal) ", 2)1 -0.1482020 0.047622% -3.099 0.002084 =+
poly(at " max({Rtotal)”, 2)2 -0.1335012 0.0480166 -2.729 0.00G642 »*
poly(afpays_above_treshald_tmin, 2)1 -0. 1609820 0.0721495 -2.231 0.026238 *
poly(afbays_above_treshold_Tmin, 232 -0 2168560 0.0505768 -4,288 2. 28e-05 wew
poly{af " min(Tmin) ~, 2J1 -0.1547673 0.048726E -3.176 0.00LE1Z **
polylaf min(Tmin) ", 232 0.1578225 0. 0476926 3,309 0.001023 ==
poly(af max({Tmin) " . 21 0. 0008840 O0.0625044 0,014 0.988723
polyfat max(Tmin) ™, 232 D.2310931 0O.0563698 4.100 5.058-05 ¥**
aspays_above_treshol d_Tmax 0. 0003597 0. 0001294 2. 779 0. 005712 **

poly(atDays_under_treshold_Tmax, 21 -0.1486520 0.0740792 -2,007 0.045481 «

poly{afoays_under_treshold_tmax, 2)2 -0.179E830 0.0530197 -3.393 0.000763 ***
aipays_above_treshold_wspeed -0. 0003910 0.0001066 -3, 668 0.000279 w4«
poly(atDays_under_treshold_Wspeed, 21 -0.7B26065 0O.0B36398 -9.357 <= Za-1k w@=
poly{afpays_under_treshold_wspeed, 212 0.2236184 0.043550% 5,249 2. 52e-07 #==*

signif. codes: @ "¢@¢<' Q.01 '*¢" 0.0L ‘" 0.05 f." 0.1 ' ' 1

Residual standard error: 0.039% on 387 degrees of freedom
Multiple R-squared: O.3I8E7, adjusted B-squared: ©O.365
F-statistic: 16.4 on 15 and 387 oF, p-valve: < 2,2e-16

Figure 3. Results of Regressions on Tariffs for Region E and Vineyards

Residuals:
Min 10 Median k] Max
-0.178474 -0.043061 -0.004166 O0.041174 0_207594

Coefficients:

estimate std. error T value pri=|T|)
(Intercept) 4,148e-01 4,534e-02 9,150 < 2e-1f %=w
poly({aipays_above_treshold_Rtotal, 231 -2.782e-01 H8.46Be-02 -3, 286 0.00L046 »»
poly{aspays_above_treshold_rtoral, 2)2 2.327e2-01 6.955e-02  3.345 0. 000B4E #@*
polyfas max(Rrotal)”, 231 3. B03e-01  6.694e-02 5,681 1.066a-08 w#«
poly{as ' max(Rtotall™, 2)2 -2, 308e-01 &.B806e-02 -3.391 0.000717 wew
poly{aspays_above_treshold_tTmin, 231 -2.260e+00 1.356e-01 -16.659 < 2e-16 #**
poly(aspays_above_treshold_Tmin, 2)2 4, B87e-01 B, 3760-02 5,834 6.850-0§ w#«
poly({aipays_under_treshold_Tminm, 231  -1.527e+00 1.681e-01 -0,035F <« Ze-1f wow
poly{aspays_under_treshold_Tmin, 2}z  -2.580e-01 9.B81Be-02 -2.625 0.008637 =*
poly(as sax{Tmin) ", 2J1 3. 519e-01  1.140e-01 3,086 0. 002069 **
poly{a% ' max(Tminl ", 232 -3, 371e-01 7.282e-02 4,028 4.07e-0f wes
poly{asbays_above_treshold_Tmax, 2)1 O, E87e-01 1.177e-01 B.398 < 2Ze-1§ *=*
poly(aspays_above_treshold_tmax, 2}2  -4,056e-01 8.091e-02 -5,013 6.13e-07 ***
poly({aipays_under_treshold_Tmax, 231 2. 30de+d0  1,561e-01 14,765 < Je-1f wew
poly{aspays_under_treshold_Tmax, 2}z 1.023e-01 9.541e-02 1.072 0.2E3936

af max(THax) " -7.93%e-02 1.162e-03 -6.829 1.32e-11 #=x
adpays.above_treshold wspeed 1,8%5e-04 5.021e-03 3,773 0. 000165 v
aipays_under _treshold_wspead 7.022e-04 6.935e-05 10.127 < Ze-16 *=v

Signif. codes: O **%%' 0,001 '*%° 0,01 **" Q.05 .7 0.1 71

gesidual svandard error: 0.08054 on 1270 degrees of freedom
{8 observations deleted due to missingnass)
MuTtiple R-squared: 0.6594, adjusted R-squared: 0.654%
F-statistic: 144.6 on 17 and 1270 oF, p-value: < 2.2e-16
Figure 4. Results of Regressions on Tariffs for all Regions and all crops except Vineyards. Y-1

weather variables
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call:
Im{formula - afTariffs - poly(aspays_above_treshold_rrotal, 2) +
poly{af maxi{rRtotall . 21 + poly(alDays_above_treshold_Tmin,
23 + poly(aspays_under_treshold_Tmin, 2) + poly{af max{Tmin)}",
2) + polylaipoays_above_treshold_Tmax, 2) + polylafpays_under_treshold_Tmax,
2) + alt " max(Tmax)  + aiDays_above_treshold_wspeed + alDays_under_treshold_wspeed)

rResiduals:
#im jile] Kedian ] Max
-0.1&67921 -0.043174 O.D000174 O0.042214 0O_141784

Coefficients:

estimate std. Error T value Pri>|T|)
[Intercept) Q. 2517976 0.1013282 2.485 0.01341 =
poly(atDays_above_treshold_Rtotal, 231 0.1019%874 ©0.1167463 0.85% 0.390938
poly{afoays_above_treshold_mtotal, 232 -0.0856456 0.099013%1 -0.865 O.3E76d

poly(af max({Rtotal) "™, 2J1 Q. 2203303 0.0812814 2.711 0.00703 =«
poly(a$ max({rRtoral)”™, 2)2 -0.1152932 0.085%428 -1.296 0.19571
poly(afoays_above_treshold_tmin, 2)1 -0.4300387 O0.1844562 -2.331 0.02028 #

poly(afpays_above_treshold_Tmin, 2)2 0,6674833  ©.0969827 G. 883 2.3%9e-11 =%+
poly{atbays_under_treshold_Tmin, 2)1 0.1003166 ©.1836174 0.546 0.58517
polyCaioays_under_treshold_tmin, 2)2 0.0934451 0.1166432 0.804 042165
poly(a¥ max(Tmin) ", 231 Q. 3500684 0.1666605 2.100 0.03638 =
polyiaf max{Tmin)", 2)2 0.0158122 0.0991252 0.160 O.87335
polyCaioays_above_treshold_Ttmax, 2}1 0.4203225 0.1520395 Z.764 0.00600 *¥
poly(alDays_above_treshold_Tmax, 232 -0, 2500885 0.1178966 -2.121 0.034358 =

poly{afoays_under_treshold_Tmax, 2Z)1 0.1272636 ©O.1822242 0.698 0.4E538
palyCafoays_uvnder_treshold_Tmax, 2)2 Q.2177360 0.1182348 1.840 O0.06658 .
af ‘max{Tmax]" -0,00152%98 0.0025781 -0.593 0.55330
atbays_above_treshold_wspeed -0.0001957 O.0000661 -2.961 O.00326 #*
aspays_under_treshold_wspeed =0, 0002055 0,00013530 -1.522 0O.12883
signif. codes: © *#=+" g. QD1 *‘#*+" @o.01 “=" 0.0 "." 0.1 ° " 1

Residual standard error: 0.063% on 363 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-sguared: ©0.3127, adjusted R-squared: 0.2805

F-statistic: 9.716 on 17 and 363 DF, p-value: < 2.2e-16

Figure 5. Results of Regressions on Tariffs for Region D and all crops. Y-1 weather variables

call;

Tm{farmula = afTariffs ~ aibays_above_treshold_Rtotal + af max{Rtortall)”™ +
ajoays_above_treshold_Tein + aspays_under_teeshold_tmin +
ai ' min{Tminl ™ + a% max{Tminl}  + alDayz_above_treshold_Tmax +
aipays_under_treshold_Trax + at " miniTmax)” + af 'max{Tmax) ™ +
ainays_above_treshold_wspeed + afpays_under_treshold_wspeed +
Ad mwinlwspead]” + afi max{wspeead) )

Residuals:
Min 1y Median {w] Manx
=0, 20243 =0.02675 002187 ©0.04451 023963

coefficients:

Estimate Std, Error £ walue Pri={tll
{Inmtercapt) 1.012e-01 5.115e-02 1.978 0O0.4Ble *
aspays_above_treshold_rrotal 6.332e-04  1.204e-04 5.257 1.80e-Q7 ===
A% 'max{Rtotall” 1.232e-04 1.254e-04 0. 983 0, 32602
aipays_above_treshold_Tmin -7.335e-04 Z.473e-04 -2.966 0.00309 ==
aspays_under_treshold_tmin J.4840-02 1. FRde-04d 1.967 0.04720 *
ai " min{Tminl}" -4, 93%9e-04 1.4Ble-03 -0.334 0,73B83
af max{tmin) " 1.740e-02 1.767e-03 O.3ES ©O.31Z250B
aibays_above_treshold_Tmax 2. 2482-04 1.883e-04 1.19%4 0, 23283
aibays_under_treshold_Tmax -4.391e-04 1.71l4e-04 -2.5B62 0.0L1057
ag ain{Tmax)* E.&891e-04 1._464e-03 0. 504 O.5527E
a3 " max{Tmax] " 1.720e-03 1.510e-03 1.139 0.25480

aspays_above_treshold_wspeed -6.£082-05 1.401e-04 -0.457 0.64743
afpays_under_treshold_wspeed -2, 847e-04 1.204e-04 <2.19% 0,02812 =
ai min{wspead)” 1.397e-02 2.669e-03 5.234 2.04e-0QF waw
A "mnax{wspesd)” -1.039e-03 7F_.0OEQe-04 -1_4638 0.142351

Signif. codes: O "=&=' 2,001 "=*" Q.01 "*' Q.05 ‘.7 o.1 " " 1
Residual standard error: 0.06572 on 958 degrees of freedom
{z observartions deleted due to missingness)

ulviple R-sguared: 0.08582, adjusted rR-sguared: 0.07246
F-statistic: 6.424 on 14 and 958 DF. p-wvalue: L.73%e-12

Figure 6. Results of Regressions on Tariffs for Region E and all crops. Y-1 weather variables
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call:

Im(formula = afTariffs ~ poly{atpays_above_treshold_rtotal, 2) +
polytaf max(rRroral)”, 2} + ajoays_above_treshold_tein + poly(ajpays_under_treshold_Tain,
2) + a¥ max(Tmin)"~ + poly{afpays_above_treshold_Tmax, 2} +
poly(afDays_under_treshold_Tmax, 2} + poly{aibays_under_treshold_wspeed,
2) + af manwwspesd) )

residuals:
Min 1q median 3q Max
-0.0231355 -0.0042315 0.0008879 O0.0030620 0.0240901

coefficients:

Estimate Std. Error t value Pri=[t])
(Intercept) 7.351e-02 1.98%e-02 3.695 0.000419 =w=
polylajpays_above_treshold_mrotal, 2)1  3.093e-02 1.715e-02 1.B03 0.073390 .
poly(alDays_above_treshold_Rtotal, 232 -4.846e-02 1.731e-02 -2,800 0.00G508 *~
poly(af max({Rtotal)”, 2}l -3.242e-02 1.338e-02 -2.423 D.017833 ©
polylal max{mrotal}”, 232 -5.691e-02 1.670e-02 -3.408 O.001061 #*
afpays_above_treshold_Tmin 1.262e-04 &.376e-05 1,507 0.136087
poly(ajDays_under_treshold_Tmin, 231  -3.390e-02 1.79%e-02 -1.B84 0.0D6348E .
polylalpays_under_treshold_tain, 232 1.150e-02 1.695e-02 0.679 0.499533
af ‘max{Tmin)" -5.82%e-05 1.131e-03 -0,052 0,959042
poly(ajDays_above_treshold_Tmax, 2)1  -3.0Ble-02 1.346e-02 -2.289 0.024949 ¢
polylalpays_above_treshold_Teax, 237 -1.955e-02 1.498e-02 -1.305 0.196010
poly(alDays_under _treshold_Tmax, 2J1  -1.02%e-01 1.625e-02 -6.333 1.67e-08 w«w
poly(ajDays_under_treshold_Tmax, 2)2 B.7l6e-02 1.537e-02 5.599 3.47e-07 o¥o
polyCajoays_under_treshold_wspeed, 2)1  6.619e-02 1.836e-02 1.606 O.000562 #=#
poly(alDays_under _treshold_wspeed, 2)2 -5.743e-02 1.427e-02 -4,025 0.000136 #«~
at 'max(wspead)” -1.433e-03 5.2B2e-04 -2.713 0.00B292 °~
Signif. codes: @ "#%%° 0,001 "+=' Q.01 ‘¢ 0,05 .7 0.1 ' " 1

rResidual standard error: 0.009753 on 74 degrees of freedom
Multiple R-sguared: O.7667, Adjusted R-sguared: 0.71%
F-statistic: 16.21 on 15 and 74 OF, p-value: < 2Z.Ze-16

Figure 7. Results of Regressions on Tariffs for Region B and all crops except Vineyards. Y-1
weather variables
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call:

Tm{formula = a%Tariffs ~ poly(afDays_above_treshold_Rtotal, 2) +
a%¥ 'max(rtotal)” + poly(aiDays_above_mean_rRtotal, 2) + aifst_gtl_Rtotal_year +
poly(astrd_gt1_Rtotal_year, 2) + poly(atpays_above_treshold_Tmin,
2) + polyla$ ' min(Tmin) ", 2) + poly(a$ ' max{Tmin)", 2) + poly(af mean Tmin",
2) + poly(a$fst_gtl_Tmin_year, 2) + poly(a$trd_gtl_Tmin_year,
2) + poly(a%pays_above_treshold_Tmax, 2) + poly(ag min{Tmax)",
2) + poly(a%$ max{Tmax) ", 2) + poly(a$fst_gtl_Tmax_year, 2) +
attrd_gtl_Tmax_year + poly(afpDays_above_treshold_wspeed,
2) + poly(af$ ' min{wspeed)™, 2) + a%¥ max(wspeed) + af mean wspeed  +
afDays_above_mean_Wspeed + aifst_qtl_wspeed_year + aitrd_gtl_wspeed_year +
poly(a%pays_above_treshold_diff, 2) + poly(a$ min thermal_amp”,
2) + a%¥'max thermal_amp™ + poly(a$ mean thermal_amp™, 2) +
poly(asfst_qui_diff_year, 2) + poly(a$trd_qtl_diff_year,
20

Coefficients:

Estimate Std. Error t wvalue Pr(=]t|)
510e-01 . 897e-02 2.560 0.010499 =
12%e-01 L028e-01 1.033 0.301585

. 330e-01 . 008e-01 3. 6850 0.000266 =77

. 778e-05 6.295 3.44e-10 ===

{(Intercept) 1.
poly{afDays_above_treshold_Rtotal, 231 3.
poly(atDays_above_treshold_Rtotal, 2)2 7
a% max(Rtotal)’ 3.637e-04
-3
-4

poly(a%Days_above_treshold_Tmax, 2)1 -9.485e-01
poly(atDays_above _treshold_Tmax, 2)2 -4, 819e-01

L71lee-01  -3.496
.108e-01 -4.349

000478
.40e-05

0

0

0

3
poly{afDays_above_mean_Rtotal, 2)1 L 243e-01 L028e-01 -1.071 0.2841%54
poly(a%$Days_above_mean_Rtotal, 2)2 L037e-01 L043e-01  -1.974 0.048489 =
aifst_gtl_Rtotal_year 5.484e-01 . 564e+00 0.351 D.725948
poly({as$trd_gt1_Rtotal_vear, 231 -4,158e-01 .896e-02 -4.202 2.71e-05
poly(as$trd_gtT1_Rtotal_year, 2)2 2.782e-01 . 250e-01 2.225 0.026159
poly(a%Days_above_treshold_Tmin, 2)1 -1.465e+00 L915e-01  -5.025 5.2%9e-07
poly{afDays_above_treshold_Tmin, 2)2 5.022e-01 L131e-01 4,440 9.27e-06
poly(as min(Tmin) ", 2)1 2.695e-01 .353e-01 1.993 0.046372
poly(a% min(Tmin) ", 232 1.854e-01 03%e-01 1.880 0.060173 .
poly{a$ max{Tmin)", 271 6. 867e-01 L793e-01 3. 830 0.000131
poly(a$ max(Tmin) ", 232 -3.669e-01 .831e-01 -2.004 0.043139
poly(a% mean Tmin™, 2)1 -2.637e+00 .328e-01 -2.827 0.004723 ==
poly{a$ mean Tmin", 2)2 -2.198e+00 326e-01 -4.126 3.77e-05
poly(a$fst_qt1_Tmin_year, 2)1 2.321e+00 L 743e-01 4,893 1.04e-06
poly(a%$fst_qtl_Tmin_year, 232 7.53%e-01 L632e-01 2.865 0.004196 ==
poly{as$trd_gt1_Tmin_year, 231 5.357e-01 .330e-01 1.005 D.314971
poly(astrd_gt1_Tmin_year, 2)2 1.173e+00 22%e-01 2.774 D.003572

0

1
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poly(as min{Tmax)", 2)1 -1.400e+00 L458e-01  -9.6058 « 2e-16 ==F
poly(a% min{Tmax) , 2)2 -8.207e-01 . 325e-02 -8.802 =« 2e-16 ===
poly(af max{Tmax) , 2J1 1.240e-01 .097e-01 0.591 0.554508
poly(a$ max(Tmax) ™, 232 -8.175e-01 .550e-01 -5.273 1.42e-07 ===
poly(a%$fst_qtl_Tmax_year, 231 -1.674e+00 .8R2e-01 -5.808 £.86e-09
poly(atf=t_gt]1_Tmawx_wear, 2)2 1.014e+00 .113e-01 9,117 < 2e-1lg ===
altrd_gtl_Tmax_wear 2.343e-03 772e-03 1.322 0.186202
poly(atDays_above_treshold_Wspeed, 2)1 6.138e-01 097e-01 1.498 0.134184
poly(a%Days_above_trezshold_Wspeed, 2)2 4.047e-01 . 727e-01 2.343 0.019187 =
poly(as min(wWspeed) , 2)1 -1.629e-01 .368e-01 -1.191 0.233686
poly(a% min(Wspeed) , 2)2 3.480e-01 . 39%e-02 3.703 D.000216 ===
at max(wWspeed)’ 1.279e-03 728e-04 3.430 0.000611

al mean Wspeed’ -1.987e-02 .818e-03 -2.023 0.043116
aiDays_above_mean_Wspeed -3.115e-04 L003e-04 -3.104 0.001923 ==
atfst_gtl_Wspeed_year 9.963e-03 .002e-03 1.992 0.046482
altrd_gtl_Wspeed_vyear 1.001e-02 . 696e-03 2.131 D.033158
poly(a%Days_above_treshold_diff, 2)1 1.87%3e+00 G08e-01 6.463 1.17e-10 ===
poly(aftDays_above_treshold_diff, 2)2 5.223e-01 .120e-01 4.662 3.24e-06 =%%
poly(a% min thermal_amp’, 2)1 1.774e-01 L448e-01 1.225 0.22069%
poly(a% min thermal_amp , 2)2 1.011e+00 .363e-01 7.419 1.47e-13 ===
a% max thermal_amp’ -3.872e-03 877e-04 -4.362 1.32e-05 ===
poly(a$ mean thermal_amp’, 2)1 -2.986e-01 .044e+00 -0.286 0.774827
poly(a% mean thermal_amp ™, 2)2 -3.418e+00 .517e-01 -6.194 §.51e-10 ===
poly(atfst_qgtl_diff_wear, 2)1 2.399e-01 .405e-01 0.545 0.585982
poly(asfst_qtl_diff_year, 2)2 1.551e+00 . 663e-01 5.823 £.2%9e-09 ===
poly(attrd_gtl_diff_year, 2)1 1.480e-01 .353e-01 0.233 0.815814
poly(attrd_gtl_diff_wvear, 232 1.711e+00 . 7dee-01 4.568 5.10e-06 =%%
Signif. codes: 0O **===' Q0.001 *==' 0.01 **=’ 0.05 *.” 0.1 * * 1

Residual standard error: 0.068253 on 35385 degrees of freedom
(39 observations deleted due to missingness)

Multiple R-squared: 0.6042, Adjusted R-=squared: 0.3988

F-statistic: 111.7 on 49 and 3585 DF, p-value: < 2,Ze-186

Figure 8. Results of Regressions on Tariffs for All Regions and all crops. Introduction of new
weather Variables



call:

Tm(formula = ajtariffs ~ aspays_above_treshold_rtotal + a$pays_above_mean_rtotal +
atpays_above_treshold_tmin + a$"min(tmin) "™ + a$ max(Tmin)" +
poly(a$pays_above_mean_tmin, 2) + a$trd_gti_tmin_year + poly{aspays_above_treshold_Tmax,
2) + a$ " min(Tmax)” + poly(a$ max(Tmax) ™, 2) + poly(asfst_gtl_Tmax_year,

2) + poly(as$pays_above_treshold_wspeed, 2) + poly(aspays_above_treshold_diff,
2) + a$ " min thermal_amp™ + a$'max thermal_amp® + a$pays_above_mean_diff +
astrd_grtl_diff_year)

residuals:
Min 1Q Median 3qQ Max
-0.092342 -0.026023 -0.003703 0.019710 0.117261

coefficients:
Estimate std. Error t value pPr(=|t])

(Intercept) -0.0296106 0.0671665 -0.441 0.659425
aspays_above_treshold_rtotal 0.0009856 0.0001974  4.994 7.12e-07 ##=
aspays_above_mean_rtotal -0.0009565 0.0002464 -3.882 0.000111 ##¥*
a%pays_above_treshold_tTmin -0.0009507 0.0001634 -5.818 8.26e-09 #¥*
as min{Tmin) " -0.0011312 0.0009316 -1.214 0.224959

a$ max({Tmin) " 0.0019221 0.00094867 2.030 0.042616 *
poly(a$pays_above_mean_tmin, 2)1 0.4498158 0.1311790  3.429 0.000633 #¥#=
poly(aj$pays_above_mean_tmin, 2)2 -0.0498287 0.0792413 -0.629 0.529626
astrd_gtl_tmin_year 0.0067030 0.0025087 2.673 0.007661 **
poly(aj$pays_above_treshold_Tmax, 2)1 -0.3765745 0.1307875 -2.879 0.004080 **
poly(a$pays_above_treshold_Tmax, 2)2 -0.2682008 0.0665945 -4.027 6.12e-03 #¥¥%
as min{Tmax) " -0.0014704 0.0007170 -2.051 0.040573 =
poly(a$ max(Tmax) ", 2)1 -0.1203678 0.1112133 -1.082 0.279403
poly(a$ max(Tmax)", 2)2 0.1189422 0.0702598 1.693 0.000823 .
poly(a$fst_gtl_Tmax_year, 2)1 -0.4238383 0.1178483 -3.596 0.000340 #¥%
poly(asfst_gtl_Tmax_year, 2)2 0.1964702 0.0456528 4.304 1.87e-03 ##x
poly(aj$pays_above_treshold_wspeed, 2)1 0.0470570 0.0498141  0.945 0. 345090
poly(ajpays_above_treshold_wspeed, 2)2 0.1271980 0.0456751  2.785 0.003468 #**
poly(aj$pays_above_treshold_diff, 2)1 0.3417686 0.2108370 1.621 0.105466
poly(aj$pays_above_treshold_diff, 2)2 0.1332342 0.0592042  2.250 0.024664 *
as$"min thermal_amp’ 0.0037766 0.0017807 2.121 0.034204 *
a$ max thermal_amp’ -0.0044984 0.0009433 -4.769 2.16e-06 #¥*%
aspays_above_mean_diff -0.0003670 0.0001044 -3.516 0.000459 =%
astrd_gtl_diff_year 0.0121071 0.0024080 5.032 5.86e-07 #%uwx
signif. codes: © "#¥¥° Q0,001 ‘¥%' Q.01 ‘¥’ 0.05 '.' 0.1 ° ' 1

residual standard error: 0.03828 on 898 degrees of freedom
Multiple R-squared: 0.4688, Adjusted rR-squared: 0.4552
F-statistic: 34.46 on 23 and 898 DF, p-value: < 2.2e-16

Figure 9. Results of Regressions on Tariffs for All Regions and Vineyard crops. Introduction
of new weather Variables
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call:

Im(formula = a$Tariffs ~ poly(atpays_above_treshold_Rtotal, 2) +
poly({a% max(Rtotal)", 2) + poly(a$ mean Rtotal’, 2} + poly(atpays_above_mean_Rtotal,
2) + a$fst_gtl_rtotal_year + aS$trd_qtl_Rtotal_year + poly(as$pays_above_treshold_tmin,

2) + poly(a$ ' min(Tmin) ", 2) + poly(a$ max(Tmin) ", 2) + poly{a% mean Tmin~,
2) + poly(atpays_above_mean_Tmin, 2) + poly(asfst_gtl_Tmin_year,

2) + poly{a$trd_qt1_Tmin_year, 2) + poly(afDays_above_treshold_Tmax,

2) + poly(a$ " min(Tmax}", 2) + poly(a$ max(Tmax) , 2) + poly{(a% mean Tmax~,

2) + a%trd_qtl_Tmax_year + aSDays_above_treshold_wspeed +
poly(a$ min(wspeed)™, 2) + af$ max(wspeed) ™ + a%$ mean wspeed  +
poly(a$pays_above_mean_wspeed, 2) + poly(a$fst_qtl_wspeed_year,
2) + a$trd_gtl_wspeed_year + poly(a$pays_above_treshold_diff,

2) + poly(a$ min thermal_amp™, 2) + poly(a$ max thermal_amp”,

2) + poly(a$ mean thermal_amp”, 2) + poly(a$pays_above_mean_diff,
2) + poly(a$fst_qtl_diff_year, 2) + poly(a$trd_qtl_diff_year,

2))

Coefficients:
Estimate 5td. Error t wvalue Pr{=]t])

(Intercept) 0.1070826 0.0759301 1.410 0,.158574
poly(a%Days_above_treshold_Rtotal, 2)1 1.3043572 0.2668193 4,889 1.08e-06
poly(a%Days_above_treshold_Rtotal, 2)2 0.5716934 0.1715265 3.333 0.000871
poly(a$ max(Rtotal)", 2)1 0.2684482 0.0853350  3.146 0.001675
poly(a$ max(Rtotal)’, 2)2 0.1973230 0.0699815  2.320 0.004843
poly(a% mean Rtotal , 2)1 0.5051996 0.1435654 3.51% 0.000441
poly(a$ mean Rtotal , 2)2 -0.4216014 0.0898325 -4.693 2.83e-08
poly(atDays_above_mean_Rtotal, 2)1 -1.7372221 0.2862655 -6.069 1.47e-09
poly(a%Days_above_mean_Rtotal, 2)2 -0.1316888 0.1736112 -0.759 0.448203
a%fst_qt1_Rtotal_year 7.2560432  1.4640420 4,957 7.62e-07 =
attrd_qt1_Rtotal_year -0.0120788 0.0027747 -4.353 1.39e-05 =
poly(atDays_above_treshold_Tmin, 2)1 -1.5081612 0.2931249% -5.145 2.87e-07 =
poly(atDays_above_treshold_Tmin, 2)2 0.9603856 0.1218298 7.883 4.682e-15 =%
poly(as min(Tmin) ", 2)1 0.2861624 0.1150714  2.487 0.012950 =
poly(as min{Tmin) ", 2)2 0.3451747 0.0849937  4.061 5.03e-05 ===
poly(a$ max(Tmin) ", 2)1 0.6565780 0.1544764  4.250 2.21e-05 =
poly(as max(Tmin) ", 2)2 -0.8322121 0.1528086 -5.445 5.62e-08 ===
poly(a$ mean Tmin", 2)1 -3.0077793 0.8318780 -3.616 0.000305 ===
poly(a$ mean Tmin ', 2)2 -2.3836265 0.4616384 -5.163 2.60e-07 ===
poly(atDays_above_mean_Tmin, 2)1 -0.3502239 0.2650611 -1.321 0.186517
poly(a$Days_above_mean_Tmin, 2)2 -0.9379576 0.1744254 -5.377 8.21e-08
poly(asfst_gt1_Tmin_year, 2)1 2.2089811 0.4077416 5.418 6.58e-08
poly(asfst_gt1_Tmin_year, 2)2 1.1490487 0.2352399 4,885 1.10e-06
poly(aStrd_gt1_Tmin_year, 2)1 0.2545462 0.4760148 0.535 0.592871
poly(astrd_gt1_Tmin_year, 2)2 1.4156797 0.3626827  3.903 9.72e-05 ===
poly(atDays_above_treshold_Tmax, 2)1 0.1714669 0.2462071 0.695 0.486218
poly(atDays_above_treshold_Tmax, 2)2 -0.3941708 0.0965891 -4.081 4.62e-05
poly(at min(Tmax)", 2)1 -1.4799813 0.1292280 -11.066 = 2e-16
poly(at min{Tmax) , 2)2 -0.8868501 0.0738023 -11.700 < 2e-16
poly(as max(Tmax) , 2)1 0.3345317 0.1897582 1.763 0.078026
poly(as max(Tmax) ", 2)2 -0.6899620 0.159863% -4.316 1.65e-05 ===
poly(a$ mean Tmax , 2)1 -0.7447283 0.5133160 -1.451 0.146949
poly(a$ mean Tmax , 2)2 0.3099934 0.1290103 2.403 0.016336 =
attrd_qt1_Tmax_year 0.0028414 0.002184¢ 1.301 0.193477
a%Days_above_treshold_Wspeed 0.0001540 O0.0001387 1.110 0.267081
poly(as min(wspesd) , 2)1 -0.2364463 0.1145190 -2.065 0.039049 =
poly(as min(Wspeed) , 2)2 0.1866499 0.0860311 2.170 0.030128 =
a% max(Wspeed)’ 0.0013745 0.0003599 3.820 0.000137 ===
a% mean Wspeed’ -0.0290353 0.0094422 -3.075 0.00212&6 ==
poly(atDays_above_mean_Wspeed, 2)1 -1.0441679 0.3268767 -3.19%4 0.001418 ==
poly(atDays_above_mean_Wspeed, 232 0.5950959 0.1380559 4,311 1.69e-05 =%
poly(a$fst_qt1_Wspeed_year, 231 1.0636318 0.6032262 1.763 0.077975
poly(aifst_qtl_Wspeed_year, 22 0.3184118 0.1057129 3.012 0.002619 ==
a%trd_qtl_Wspeed_wear 0.0173728 0.0044379 3.915 9,28e-05 =
poly(aiDays_above_treshold_daff, 2)1 1.9146913 0.3665519 5.224 1.89e-07 =
poly(atDays_above_treshold_diTf, 2)2 1.2499810 0.1406598 B.B887 « 2e-16 ==%
poly(a$ min thermal_amp’, 2)1 0.1815561 0.1270333 1.429 0.153084
poly(a% ' min thermal_amp , 2)2 1.1532272 0.1265322 9,114 <« 2e-1g =%%
poly(a%$ max thermal_amp’, 231 -1.2186182 0.1521938 -8.007 1.74e-15 =
poly(at max thermal_amp™, 2)2 0.5116127 0.1011779 5.057 4.56e-07 ===
poly(a% mean thermal_amp , 2)1 -2.3197125 0.9176608 -2.328 0.011534 =
poly(a% mean thermal_amp , 2312 -3.5758067 0.5057415 -7.070 1.97e-12 ===
poly(aiDays_above_mean_diff, 2)1 0.3921978 0.3510106 1.117 0.263950
poly(atDays_above_mean_diff, 2)2 -1.3217574 0.1835403 -7.201 7.72e-13 ===
poly(a$fst_gt1_diff_year, 2)1 0.7433315 0.3725243  1.995 0.046102 =
poly(a$fst_qtl_diff_year, 232 2.0791353 0.2356682 8.822 <« Ze-1f ==%
poly(astrd_qt1_diff_year, 2)1 0.2469606 0.5463199 0.452 0.651274
poly(astrd_qtl_diff_year, 2)2 1.4242023 0.3444107 4.13% 3.66e-05 ===

Residual standard error: 0.05093 on 2655 degrees of freedom
(39 observations deleted due to missingness)

Multiple R-squared: 0.7815, Adjusted R-squared: 0.7769

F-statistic: 166.6 on 57 and 2655 DF, p-value: < 2.2e-16

Figure 10. Results of Regressions on Tariffs for All Regions and All crops except Vineyards.
Introduction of new weather Variables



call:

Tm{formula = a%¥ Bonus owver Comercial Prize -~ afbays_above_treshold_Rtotal +
poly(as$ max(Rtotal) , 2) + attrd_gtl_rRtotal_year + aiDays_abowve_treshold_Tmin +
as " min(Tmin) "~ + poly{ag$ max(Tmin) ", 2) + poly(astrd_gtl_Tmin_year,

2) + atpays_above_treshold_Tmax + afpays_under_treshold_Tmax +
a$ " min(Tmax) "~ + poly(a$fst_gtl_Tmax_year, 2) + afpays_above_treshold_wspeed +
a%fst_gtl_wspeed_year)

Residuals:
Min 1qQ Mmedian 3qQ Max
-0.066878 -0.020027 0.001757 0.014458 0.087087

Coefficients:
Estimate std. Error t value pri=[t|)

(Intercept) 0.1438001 0.0578752 2.485 0.015109 =
afpays_above_treshold_rtotal -0.0018383 0.0001985 -9.260 3.38e-14 %%
poly(a$ max(Rtotal)”, 201 0.2822127 0.0593145  4.758 8.82e-0F &=
poly(a% max(Rtotal) ™, 2)2 -D.3445371 0.0532836 -6.466 8.01le-0Q #wu=
astrd_qtl_Rtotal_year 0.1807467 0.0145672 12.408 < Ze-1g ¥«
afDays_above_treshold_Tmin -0.0016266 0.0003326 -4.891 5.27e-0G »¥*
as " min(Tmin) ~ -0.0416712 0.00325342 -7.931 1.28e-11 %%
poly(a$ max(Tmin)~, 2)1 0.4493866 0.1412041 3.183 0.002097 #=
poly(a% max(Tmin)~, 2)2 -0.6313649 0.1271615 -4.965 3.95e-0F #u=
poly(a$trd_gtl_Tmin_year, 231 -0.6449067 0.1897097 -3.399 0.001067 =¥
poly(as$trd_qgtl_Tmin_year, 2)2 1.3904750 0.1823618 7.625 5.00e-11 #%*
aftpays_above_treshold_Tmax 0.0003310 0.0003116 1.062 0.291423
afpays_under_treshold_Tmax -0.0020285 0.0008346 -2.430 0.017381 *
af " min{Tmax) ~ 0.0104011 OQ.0030093 3.456 0.0008BBg %%
poly(asfst_qtl_Tmax_year, 2)1 0.3068077 0.1333561 2.267 0.026181 *
poly(asfst_qtl_Tmax_year, 2)2 -0.52655332 0.0833272 -6.304 1.61le-0F =%%
afDays_above_treshold_wspeed 0.0002722 0.0001634 1.666 0.099656 .
aifst_qtl_wspeed_year 0.0676133 O.0074087 9.126 6.14e-14 #%=*
Signif. codes: 0O “®=%%' Q. 001 °*=%' Q.01 "%’ 0.03 “." 0.1 °* " 1

rResidual standard error: 0.030539 on 78 degrees of freedom
(1 cbservation deleted due to missingness)

Multiple R-squared: 0.8579, Aadjusted R-squared: 0.8269

F-statistic: 27.7 on 17 and 78 DF, p-value: < 2.2e-16

Figure 11. Results of Regressions on BoCP for Region A and all crops except Vineyards

call:

Tm{formula = a$ Bonus over Ccomercial Prize” -~ a$pays_above_treshold_rtotal +
poly(atpays_above_treshold_Tmin, 23 + poly(a$ max({Tmin)",
2) + poly(asfst_qti_Tmin_year. 2) + a$trd_qtl_Tmin_year +
poly(aspays_under_treshold_Tmax, 2) + a%$ max({Tmax)  + affst_qtl_Tmax_year =+
ajtrd_gtl_Tmax_year + poly(aspays_under_treshold_wspeed,
2) + a%$ min(wspeed)™ + a% max(wspeed)  + a$fst_gtl_wspeed_year)

Residuals:
Min 1q Median 3Q Max
-0.229212 -0.0335389 -0.001007 ©0.032794 (0.179664

Coefficients:

Estimate std. Error t value pPr{=|t]|)
(Intercept) -4.427e-01 2.854e-01 -1.551 0.122223
aibays_above_treshold_Rtotal 1.336e-05 2.395e-04 0.056 0.955552
poly(a$pays_above_treshold_tTmin, 2)1 -1.224e-01 2.222e-01 -0.551 0.582097
poly(atpays_above_treshold_Tmin, 2)2 2.61%e-01 1.671le-01 1.568 0.118259
poly(a$ max(Tmin)~, 231 -1.815e-01 2.175e-01 -0.835 0.404720
poly(a$ max(Tmin) ™, 232 -1.526e-01 1.326e-01 -1.151 0.251046
poly(asfst_grl_Tmin_year, 2)1 -1.010e+00 1.478e-01 -6.832 6.93e-11 #=*=*
poly(a$fst_qtl_Tmin_year, 2)2 -5.957e-01 1.855e-01 -3.211 0.001506 **
aftrd_gtl_Tmin_year 2.884e-02 1.152e-02 2.504 0.012953 =
poly(atpays_under_treshold_Tmax, 2)1 7.783e-01 2.127e-01 3.659 0.000312 s
poly(a$pays_under_treshold_Tmax, 2)2 3.662e-01 1.183e-01 3.095 0.002206 **
af  max(Tmax) "~ -6.552e-03 2.265e-03 -2.892 0.004180 #¥*
asfst_qgtl_Tmax_year 7.94%e-02 1.550e-02 5.127 6.09e-07 %%
aftrd_qtl_Tmax_year -8.417e-03 4.388e-03 -1.918 0.056280 .
poly(a$pays_under_treshold_wspeed, 2)1 -2.587e-01 1.423e-01 -1.817 0.070399 .
poly(a$pays_under_treshold_wspeed, 232 1.915e-01 1.157e-01 1.656 0.099139 .
af " min{Wspeed) " 1.322e-02 ©6.559e-03 2.016 0.044913 *
af max({wspeed)” 7.677e-03 1.532e-03 5.012 1.05e-0G ##=
aifst_qgrl_wspeed_year -6.463e-02 1.745e-02 -3.705 0.000263 ¥¥*
signif. codes: Q fEwwT Q.001 f%*" Q.01 ‘*' Q.05 '." 0.1 ° " 1

Residual standard error: 0.06847 on 238 degrees of freedom
(3 observations deleted due to missingness)

Multiple R-squared: 0.4705, Adjusted R-squared: 0.4304

F-statistic: 11.75 on 18 and 238 DF, p-value: < 2.2e-186

Figure 12. Results of Regressions on BoCP for Region B and all crops except Vineyards



Call:
Tmi{formula = ag Bomnus over cComercial
poly{aipays_under _treshold_Tmin,

21 + poly(aifst_gtl_Tmax_year,

aipays_under_treshold_wspeed + poly(as min{wspesd)”,

asrrd_grl_wspeed_year)

rResfduals:

Prize’”

~ afnays_above_treshold_rtotal

+

23 + poly(af max{Tmink ",
2} + attrd_gtl_Tmin_year + poly{atbays_above_treshold_Tmax,
2) + polyfajoays_under_treshold_tmax, 2) + polylai max{Tmax)",

2} + aSpays_above_treshold_wspeed +
2} o+

-

T

LR

wMin 1ia Median E2n] Man

0. 204540 -0.0531764 -0.00410E 0.033674 0O.23L797
Coefficients:

Estimate Std. Error T value Pri=|T|)
(INTercept) ~0. 7342248 ©O.384Z2E97 -1.963 0O.031L67
alipays_above_treshold_Rtotal -0 003258 0.0005125% -0.636 0.52598
poly{afoays_under_treshold_Tmin, 231 0O.5625193 0O.2362004 Z.3E2 0O.01859
paly{afpays_under _treshold_Tmin, 2)2 -0.1738560 0.14009%0 -1.241 0. 21670
poly{at " max({Tmin) . 2)1 0. 059605 O.1390011 -0.032 0. 974E9
polyaf max(Tmin)} ", 232 -0.219943E O.1156324 -1.902 O0O.03926
aftrd_qgtl_Tmin_year 0. 0110557 0. 0LT0148 0.650 0. 51691
poly{afDpays_above_treshold_Tmax, 271 -1.3909217 0O.1752960 -7.935 6.1Le-13
polylafpays_above_treshold_Tmax, 232 O.4242685 0.1433239 2.960 0.00361
poly{atpays_under_treshold_Tma=x, 2)1 -0.8303E85% 0.4555256 -1.823 0.07045
poly{afoays_under_treshold_Tmax, 272 -0.4214E47F 0O.2229791 -1.890 O0O.06079 .
polyla® max(Tmax) , 211 0. 0356491 O.1373396 0.405 0. GEGO0
poly{at max{Tmax) . 232 -0. 27875373 0.1351762 -2. 062 0. 04104
polylaffst_gul_Tmax_year, 231 0. 2700772 0.4503093 0.600 0. 52964
poly{afifst_gtl_Tmax_year, 232 . 6585589 0.2251353 2.925 0.00402
aipays_above_treshold_wspeed -0. 0017736 O.00D8247 -Z.151 O.03I3Z0
afpays_under_treshold_wspeed 0. 016110 0. ODEEST Z2.356 0O.019E84
poly{af min{wspead) ™, 231 0. 1971626 0.1257157 1.568 0.11903
polylas " min{wspesd)™, 232 -3.1660579 0.0923166 -1.779 O.07739 .
afStrd_qgtl_wspeed_year 0. 1086454 0.0343711 3.161 0O.00193
signif. codes: O “#*=' 0 001 “*=' 0,01 *=" 0,05 “." 0.1 ° 1

resfdual standard error:
Multiple R-squared: O.6593,
F-statistic: 14.26 on 19 and 140 DF,

p-value:

0.0B898 on 140 degrees of freedom
Aadjusted R-sguared:

= 2.2e-16

0, 6131

Figure 13. Results of Reqressions on BoCP for Region C and Vineyards Crops

call:

Tmi{formula
polyiad max(Rrotal)”,
21 + polyfasfst_qgtl_Tmin_year,

at Bomus over Comercial
2} + aspays_under_treshold_tmin + poly{af max(Tmin) ",

prize’

~ afpays_ahove_treshold_grtotal +

21 + aftrd_gtl_Tmin_year =+

aspays_above_treshold_Trax + aiDays_under_treashold_Tmax +
pn1y(a$trd_qtl_Tmau_year, 2} + asuays_ahnue_rreshﬂ1d_wspeed -
afDays_under _treshold wspeed + af max(wspeesd) ]

residuals:

Min 1 redian ELw wan

-0, 25281 -0.03760 0O.00262 0.04913 00271728
Coefficients:

Estimate std. Error t walue Pri=|tT|]
[InTercept} 0. 2012624 0. 1094371 1.839 0. 06EEBR3
aSpays_above_treshold_ntotal 0. 001724 00002819 . 811 0. 541388
poly(ad max{Rtotall , 231 0.0413516 0.11908E81 0. 347 0. 728655
polyias max{RTtoral)", 232 0. 3589646 O.L1031904 3.479 0.0DO5TE ===
afpays_under_treshold_Tmin =0, 0OOE09E O, 0004517 -1.350 0.177993
poly(al max{Tmin} ", 231 -0. 5306833 0.2223981 -2.386 0.01LT7638 =
poly(ad max{Tmin} ", 232 0. 3026874 ©.1529522 1.979 0.048725 =
polylaifse_grl_Tmin_year, 231 -1.0372301 O.2306810 -4.496 9. 85e-05 &%
poly(affst_qgtl1_Tmin_year, 232 0.4669730 0.1202618 3.883 0.000127 =&
attrd_qgul_Tmin_year 0. 0518747 0. 0075977 6. 828 4.72e-11 ===
aspays_above_treshold_Tmax =0, 0012355 0.0003451 -3, 580 0. 000400 =w=
atpays_under_trashold_Tmax =0, 0002557 0.0003152 -0.811 0.417952
poly(ajcrd_grl_Tmax_year, 2)}1 -0.625112% 0.2196758 -2.846 0.004735 ==
polylajrrd_gri_tTmax_year, 232 -0.3635743 0.1619291 -2.245 0.025472 =
afbays_above_treshold_ Wspeed G 0001997 0, 0001645 1.214 0. 225709
atbays_under_treshold_Wspeed -0.0003060 O.0001450 -2.111 0.035619 =
as " max(wspeed)” =0.00112E5 O0.0011516 -O0.9E0 0. 327920
signif. codes: o ‘we=' Q.01 "¢<" Q.0L <" 0D.05 ‘.7 Q.1 " " 1

Residual stamdard error:
Multiple R-squarsed: O0.4957,
F-staristic: 18.&81 on 16 and 303 OF,

0.0EL538 on 303 degrees of fresdom
Adjusted B-squared: 0.4689
p-walue: « 2.2e-16

Figure 14. Results of Regressions on BoCP for Region D and Vineyards Crops
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call:
Im{formula = al Bonus over Comercial Prize - poly(albays_above_treshold_Rtotal,
27 + polyias " max{Rrotall}”, 23 + poly(aitrd_grl_Rtotal_year,
2) + ajfpays_above_treshold_Tain + poly(as max(mmind ", 2) +
aftrd_gtl_Tmin_year + albays_above_treshold_Tmax + poly(aibays_wnder_treshold_Tmax,
27 + at'min(Tmax) " + afi max{Tmax)  + polyl{aibays_under_treshold_wspeed.
2) + polylas atn{wspeed) ™, 20 + af max(wspeed)” + poly{asfst_gul_wspeed_year,
233

residuals:
Min 1q Median ELu] Max
=0, 289380 -0.05372 0.01320 O0.06300 0Q,24275

Coefficients:
eztimate std. Error T value Pri=|t|]

(InTercept) 0.651B214 O.15657E6 4_.163 3.E9e-05 =#=
polylalbays_above_treshold_Rtotal, 2)1 -1.0945484 0,215%963 -5.067 . 3le-0F ==
poly(aibays_above_treshold_rrtotal, 232 -0.1E53835 0.129800L -1.425 0.154048
polyiaf max{rRrorall)”, 2)1 -0.7E33446 0.1266014 -6_227 1.26e-09 =#*
polyial max(Rtotalld , 2)2 0. 31684085 0.1296234 2.441 0. 013103 =
polyladtrd_qtl_Rtotal_year, 2J1 0. 5935424 0.14918752 4,012 7.25e-05 =~
polylajtrd_qrl_mrrotal_year, 232 -0.1E74117 0.1495463 -1_.253 O0.210903
afpays_above_treshold_Tmin -0 0023361 00006270 -4.045 6. 35e-05 ==
polyCad ‘max(Tmind ", 2J1 0. 2656043 0.1776727  1.495 0.135768
poly(at max({Taind ", 2}z 0.3121744 0©0.1512208 2.064 0.039662 *
astrd_grl_main_year 0. 0438602 O.0083741 5.239% 2.69e-0QF =wE
afDpays_abowve_treshold_Tmax 0. 0006135 0.0004403  1.394 0.164275
poly{ajioays_under_treshold_Tmax, 2)1 0.9E51712 O.2219620 4.4318 1.19e-05 ===
poly(ajoays_under_treshold_Tsax, 232 =0 2226060 0.1218782  -1.826 0.068365

af ' min{Tmaxl " -0.01586347  0.0029422  -6.334 6, 77e-10 =i+
Ak 'max{Tmax) " -0.0137819% O.0D035936 -3.8315 0.00014F7 #&%
polylajoays_under_treshold_wspeed, 231 -0.2447674 0O.3942463 -0.621 0, 535071
poly{alpays_under _treshold wspeed, 232 0O.3480674 0,1695903 2,052 ¢.040815 =
poly{ad min{Wwspeed)”, 211 -0.4011095 O.1707618 -2.34%9 0.019338 *
polylai min{wspeed)”, 233 -0 2947169 01444734 -7.036 0042395 *
af ‘maxiwWspeed) 0. 0050954 0, 0014614 3.A4BT 0L 000545 =i
polyi{aifst_gqtl_wspeed_year, 2}1 -1.0483560 0.3646183 -2.875 0.0D4265 **
poly{ajfst_grl_wspeed_year, 232 -0 4EBF9T4 01434628 -3.390 0.000F73 =&+
Signif. codes: @ "=9*' 0,001 =% Q.01 '+ 0.0% . 0.1 f " 1

Residual standard error: 009638 on 380 degrees of freedom
Multiple R-sguared: O.4363, Adjusted R-squared: O0.4036
F-statistic: 13.37 on 22 and 3E0 oF, p-valus: < 2 Ze-1§&

Figure 15. Results of Regressions on BoCP for Region E and Vineyards Crops
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Call:

TIm{formula = a% Claims over Contracts’™ ~ a%Days_above_treshold_Rtotal +
a% mean Rtotal® + a$Days_above_mean_Rtotal + a%Days_above_treshold_Tmin +
al ' min(Tmin) " + poly(as$ mean Tmin , 2} + a%Days_above_mean_Tmin +
aifst_gtl_Tmin_vear + alDays_above_treshold_Tmax + poly{a$ min(Tmax)",
2) + poly(af max(Tmax) ", 2) + poly(a$ mean Tmax , 2) + poly{aifst_gt1_Tmax_wear,
2) + poly(a%$trd_qtl1_Tmax_wvear, 2) + a%Days_above_treshold_Wspeed +
poly(a% min(Wspeed) , 2) + a% max(Wspeed)  + aiDays_above_mean_Wspeed +
poly(adfst_qt1_Wspeed_year, 2) + poly(aitrd_gtl_Wspeed_year,
2) + poly(a%Days_above_treshold_diff, 2) + poly(a$ min thermal_amp’,
2) + a%t ' max thermal_amp’ + af'mean thermal_amp’ + aifst_gtl_diff_wyear)

Residuals:
Min 10 Median 30 Manx
-1.6428 -0.3367 -0.0478 0.2327 3.2668

Coefficients:
Estimate Std. Error t value Pr(=|t])

(Intercept) 2.536e+00 5.076e-01 4,996 6.14e-07 =
aiDays_above_treshold_Rtotal 1.916e-02 1.661le-03 11.534 < Ze-16 ===
a% mean Rtotal’ 3.417e-02 1.713e-02 1.995 0.046103 =
aiDays_above_mean_Rtotal -2.39%2-02 2,33Be-03 -10.262 =< 2e-16 ===
aiDays_above_treshold_Tmin -2.919%92-03 1.268e-03 -2.301 0.021434 =
at min(Tmin)" 3.817e-02 7.842e-03 4,868 1.18e-06 ===
poly(a%$ mean Tmin', 2)1 -1.604e+01 5.487e+00 -2.924 0.003477 ==
poly(a$ mean Tmin', 2)2 -1.857e+00 1.067e+00 -1.741 0.081833
aiDays_above_mean_Tmin -3.772e-04 9.000e-04 -0.419 0.675181
aifst_qt1_Tmin_year 1.058e-01 2.671le-02 3.939 7.67e-05 =
aiDays_above_treshold_Tmax -4.2952-03 1.184e-03 -3.626 0.000292 =
poly(a% min(Tmax)", 2)1 -1.873e+01 1.373e+00 -13.635 « 2Ze-16 ===
poly(af min(Tmax) ™, 2)2 -4.941e+00 8.037e-01 -6.147 8.75e-10 ===
poly(at max(Tmax) ", 2)1 -2.798e+00 1.955e+00 -1.431 0.152489
poly(at max(Tmax) , 2)2 -4,748e+00 1.618e+00 -2.935 0.003360 ==
poly(at mean Tmax' , 2)1 4_.288e+01 B8.57%=+00 4,993 6.06e-07 =
poly(a%$ mean Tmax', 2)2 -1.328e+01 3.18Be+00 -4.165 3.19e-05 =
poly(a$fst_qt1_Tmaw_year, 231 -2.057e+01 4.803e+00 -4.283 1.8%e-05 ===
poly(a$fst_qt1_Tmawx_vear, 232 1.311e+01 2.107e+00 6.222 5.46e-10 ===
poly(astrd_qgt1_Tmax_year, 231 -1.162e+01 4.686e+00 -2.480 0.013201 =
poly(a$trd_qt1_Tmax_year, 232 6.959e+00 2.631e+00 2.645 0.008210 ==
a%Days_above_treshold_Wspeed 9.038e-03 1.231e-03 7.341 2.62e-13 ===
poly(a% min{wWspeed) , 2J1 1.857e+00 1.244e+00 1.492 0.135744
poly(a% min(Wspeed) , 232 -1.72%9e+00 9.820e-01 -1.761 0.078370 .
a% max(wWspeed)’ 4.883e-03 2.97%e-03 1.639 0.101331
aiDays_above_mean_Wspeed -7.969e-03 B8.640e-04 -9.224 =« Ze-1f =7
poly(atfst_qgtl_Wspeed_vear, 2)1 -1.660e+00 3.477e+00 -0.477 0.633125
poly(a$fst_qtl_Wspeed_year, 2)2 3.526e+00 1.69%%e+00 2.075 0.038078 =
poly(a%trd_qtl_Wspeed_year, 2)1 -6.058e+00 3.170e+00 -1.911 0.056041 .
poly(a$trd_qt1_Wspeed_year, 2)2 -3.880e+00 1.764e+00 -2.200 0.027895% =
poly(atDays_above_treshold_diff, 2)1 1.472e+01 2.557e+00 5.757 9.27e-09 ===
poly{aiDays_above_treshold_diff, 2)2 -3.405e+00 7.785e-01 -4.373 1.26e-05 ===
poly(at ' min thermal_amp’, 2)1 2.656e+00 1.195e+00 2.222 0.026325 =
poly(a%$ min thermal_amp™, 2)2 8.014e+00 1.094e+00 7.324 2.97e-13 ===
a% max thermal_amp’ -2.463e-02 B8.030e-03 -3.067 0.002181 ==
a% mean thermal_amp’ 5.391e-02 4.72%e-02 1.140 0.254416
aifst_qtl_diff_year -1.316e-01 2.948e-02 -4.465 B.27e-06 ===
5ignif. codes: O “===' Q.00L ‘==" 0.01 ‘=" Q.05 *“." 0.1 * * 1

Resz1dual standard error: 0.6013 on 3598 degrees of freedom
(39 observations deleted due to missingness)

Multiple R-squared: 0.3828, Adjusted R-squared: 0.3766

F-statistic: 61.98 on 36 and 35398 DF, p-value: < 2.Ze-16

Figure 16. Results of Regressions on CoNC for All Regions and all cultures
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call:

Tm(formula = a%$ Claims over Contracts ™ ~ poly(a$pays_above_treshold_rtotal,
2) + a$ mean Rtotal” + poly(aipays_above_mean_rtotal, 2) +
at$trd_qgt1_Rtotal_year + a%Days_above_treshold_Tmin + a$ ' min(Tmin)™ +
af$ 'max(Tmin) " + poly(a$ ' mean Tmin", 2) + poly(a$Days_above_mean_Tmin,
2) + poly(a$fst_qtl_Tmin_year, 2) + at$Days_above_treshold_Tmax +

af ‘mean Tmax + poly(astrd_gtl_Tmax_year, 2) + aiDays_above_treshold_wspeed +

a$ ' min(wspeed)” + poly(a$ max(wspeed) ™, 2) + poly(a%t mean wspeed’,

2) + poly(as$trd_qt1_wspeed_year, 2) + poly(a$bays_above_treshold_diff,
2) + poly(a$ max thermal_amp™, 2) + poly(a$ mean thermal_amp”,

2) + poly(a$fst_qgtl_diff_year, 2) + poly(attrd_qtl_diff_year,

23)

coefficients:

Estimate std. Error t© value
{(Intercept) -8.502032 .943951 -2.88EB
poly(a%Days_above_treshold_Rtotal, 2)1 4.404661 . 605921 2.743
poly(a%bays_above_treshold_Rtotal, 2)2 -1.9935333 .904833 -2.205

2

1

]
as$ mean rRtotal” -0.209211 0.063370 -3.301
poly(aspays_above_mean_Rtotal, 2)1 -3.163612 1.572227 -2.012
poly(a%Days_above_mean_Rtotal, 2)2 5.047658 0.943795 5.348
astrd_gtl_rtotal_year 0.078542  0.045029 1.744
aipays_above_treshold_Tmin -0.025150 0.002693 -9.340
as min(rtmin) ° -0.103228 0.017312 -5.963
af ' max(Tmin)’ -0.169311 0.022003 -7.704
poly(a% mean Tmin™, 2)1 10.444244 4.161639 2.510
poly(a% mean Tmin™, 2)2 12. 567850 2.081529 6.038
poly(a%$bays_above_mean_Tmin, 2)1 -2.028547 1.231314 -1.647
poly(a%pays_above_mean_Tmin, 2)2 -6.612165  1.151834 -5.741
poly(asfst_grl_Tmin_year, 2)1 -16.797257  1.642363 -10.227
poly{asfst_qtl_Tmin_year, 2)2 -4.185841  1.113845 -3.758
aipays_above_treshold_Tmax 0.001955  0.002867 0.682
ai mean Tmax’ 0.668790  0.133547 5.008
poly(astrd_qgtl_Tmax_year, 2)1 -8.646156  2.115923 -4.086
poly(astrd_qtl_Tmax_year, 2)2 7.164362  1.048581 6.832
afpays_above_treshold_wspeed -0.009461  0.003012 -3.141
af ' min(wspeed)’ -0.057367 0.027951 -2.052
poly(a% max(wWspeed) ™, 2)1 -1.113053 0.438802 -2.537
poly(a% max(wWspeed) ™, 2)2 -1.2599413 0.657759 -1.976
poly(as mean wspeed’, 2)1 -1.53773%9 1.737819 -0.885
poly(a% 'mean wspeed’, 2)2 -26.296862 4,929378 -5.335
poly(aftrd_qtl_wspeed_year, 2}1 3.549582 2.479774  1.431
poly(astrd_qtl_wspeed_year, 2)2 26. 385758 5.218177 5.057
poly(a%$bays_above_treshold_diff, 2)1 12.12968%  1.800986 6.735
poly(a$pays_above_treshold_diff, 2)2 -2.434067  0.728543 -3.341
poly(a% 'max thermal_amp™, 2)1 2.069644 1.382969 1.497
poly(a% 'max thermal_amp™, 2)2 -4.235358 0.868913 -4.874
poly(a% mean thermal_amp™, 2)1 -44.050431 8.303468 -5.305
poly(a% mean thermal_amp™, 2)2 48.392829 7.955526 6.083
poly{as$fst_qtl_diff_year, 2)1 -3.982227  1.783262 -2.233
poly(asfst_qrl_diff_year, 2)2 -21. 940686 2.641307 -8.307
poly{(af$trd_qtl_diff_year, 2)1 B.153492 5.922636 1.377
poly{af$trd_qtl_diff_year, 2)2 -23.944573 6.036510 -3.934
Signif. codes: © "*#%' Q.001 ‘**' Q.01 **' Q.05 ‘." 0.1 * ' 1

rResidual standard error: 0.2048 on 219 degrees of freedom
(3 observations deleted due to missingness)

Multiple R-squared: 0.8394, Adjusted R-squared: 0.8123

F-statistic: 30.%95 on 37 and 219 DF, p-value: < 2.2e-16

Figure 17. Results of Regressions on CoNC for Region B and all cultures
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call:
Im(formula = a$°'claims over Contracts ™ ~ poly(a$pays_above_treshold_Rtotal,

2) + poly(a$ max(rRtotal)’, 2) + poly(a$ mean rtotal’, 2) +
ajDays_above_mean_Rtota + poly(a$trd_qgtl_rRtotal_year, 2) +
poly(a$pays_above_treshold_tmin, 2) + poly(as min{tmin)",

2) + a$ " max(Tmin)" + poly(a%$ mean Tmin", 2) + poly(a%Days_above_mean_Tmin,
2) + poly(a$fst_gtl_Tmin_year, 2) + poly(a$trd_gtl_Tmin_year,

2) + atpays_above_treshold_Tmax + a$ ' min(Tmax) ™ + af max(Tmax) ™ +

a¥ mean Tmax  + poly(a%pays_above_mean_Tmax, 2) + poly(aftrd_gtl_Tmax_year,
2) + atpays_above_treshold_wspeed + a3 min(wspeed) ™ + a$ max{wspeed)  +

a% mean wspeed® + aftrd_gtl_wspeed_year + poly(aspays_above_treshold_diff,
2) + a$ ' min thermal_amp™ + a%$ max thermal_amp™ + af mean thermal_amp™ +

poly(as$pays_above_mean_diff, 2) + as$fst_qri_diff_year)

Residuals:
Min 1Q median 3Q

Max

-0.94156 -0.11827 0.03772 0.15263 0.8B2B1

Coefficients:

Estimate std.

Error T wvalue

Pri=[tl|)

(Intercept) -4,228e+00 9.012e-01 -4.692 3.13e-086
poly(atDays_above_treshold_Rtotal, 2)1 5.645e+00 1.184e+00 4.767 2.19e-06
poly(atpays_above_treshold_rtotal, 2)2 -9.630e-01 4.412e-01 -2.182 0.029337
poly(a$ max(rtotal) ™, 2}1 -1.455e+00 4.830e-01 -3.012 0.002667
poly(a$ max(rtotal)™, 2)2 1.970e+00 6.420e-01 3.068 0.002221
poly(a$ " mean Rtotal’, 2)1 2.854e+00 1.106e+00 2.581 0.010023
poly(a% mean Rtotal™, 2)2 -5.594e+00 1.688e+00 -3.314 0.000958
aiDays_above_mean_Rtota -1.354e-02 2.544e-03 -5.323 1.29e-07
poly(a%$trd_gtl_rtotal_year, 2)1 1.730e+00 1.454e+00 1.189 0.234606
poly(attrd_gtl_rtotal_year, 2)2 3.647e:00 1.023e+00  3.564 0.000385
poly(a%pays_above_treshold_Tmin, 2)1 3.736e:00 1.266e+00 2.951 0.003256
poly(atpays_above_treshold_Tmin, 2)2 1.159e+00 6.217e-01 1.864 0.062623
poly(a$ " min(Tmin) ~, 2)1 3.098e+00 4.905%e-01 6.316 4.25e-10
poly(at min(Tmin) "™, 2)2 9.788e-01 3.667e-01 2.669 0.007740
af max(Tmin) " 6.083e-02 7.479e-03 8.133 1.40e-15
poly(a% " mean Tmin™, 2)1 1.632e+01 3.429%e+00 4,760 2.26e-06
poly(a$ mean Tmin~, 2)2 1.886e+00 2.378e+00 0.793 0.427734
poly(atpays_above_mean_Tmin, 2)1 -2.767e+00 1.947e+00 -1.421 0.155725
poly(atpays_above_mean_Tmin, 2)2 -3.412e+00 9,858e-01 -3.461 0.000564
poly(a$fst_gtl_Tmin_year, 2)1 -1.504e+01 1.879e+00 -B.003 3.7Be-13
poly(a$fst_gtl_Tmin_year, 2)2 1.530e+00 1.071e+00 1.709 0.0B7EB4
poly(attrd_gtl_Tmin_year, 2)1 -B.448e+00 2.225e+00 -3.798 0.000156
poly(attrd_gtl_Tmin_year, 2)}2 -4.768e+00 1.836e+00 -2.597 0.009549
aibays_above_treshold_Tmax 2.123e-03 1.747e-03  1.216 0.224465
ai min(Tmax) " 1.033e-02 7.24%e-03 1.428 0.153768
at max(Tmax) "~ -5.066e-02 B8.004e-03 -6.329 3.92e-10
a% mean Tmax 2.416e-01 2.945e-02 8.205 B.11e-16
poly(atpays_above_mean_Tmax, 2)1 6.367e+00 1.582e+00 4.025 6.1%e-05
poly(atpays_above_mean_Tmax, 2)2 -3.748e+00 1.136e+00 -3.299 0.001008
poly(attrd_gtl_Tmax_year, 2}1 -1.270e+01 2.113e+00 -6.012 2.67e-0%
poly(at$trd_gtl_Tmax_year, 2)}2 2.613e+00 1.204e+00 2.169 0.030314
afpays_above_treshold_wspeed 2.551e-03 6.012e-04 4,243 2.43e-05
af ' min{wspeed)” 5.668e-02 2.369e-02 2.392 0.016949
af max(wspeed)” 1.341e-02 2.883e-03 4.653 3.78e-06
af ' mean wspeed” 2.341e-01 5.559%9e-02 4,211 2.80e-05
aftrd_gtl_wspeed_year -2.717e-01 4.525e-02 -6.005 2.7%e-0%
poly(atpays_above_treshold_diff, 2)1 -2.896e+00 1.878e+00 -1.542 0.123442
poly(atpays_above_treshold_diff, 2)2 -5.395e+00 B8.353e-01 -6.458 1.75e-10
af'min thermal_amp” 7.375e-02 1.638e-02 4.502 7.63e-06
af ' max thermal_amp” -3.859%e-02 1.056e-02 -3.654 0.000273
a%¥ " mean thermal_amp’ 3.438e-01 5.958e-02 5.769 1.10e-08
poly(atpays_above_mean_diff, 2)1 -1.943e+00 2.173e+00 -0.894 0.3715350
poly(a$pays_above_mean_diff, 2)2 5.222e+00 1.161e+00 4.496 7.84e-06
asfst_grl_diff_year -3.619e-01 3.857e-02 -9.384 < 2e-16
signif. codes: 0 “#%%¥" 0,001 ‘**' 0.01 **' 0.05 0.1 "1

Residual standard error: 0.2452 on 886 degrees of freedom
(28 observations deleted due to missingness)

Multiple R-squared: 0.58186,
F-statistic: 28.64 on 43 and 886 DF,

Adjusted R-squared:
p-value: < 2.2e-16

0.5613

Figure 18. Results of Regressions on CoNC for Region C and all cultures
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call:

Im(formula = a$ claims over Contracts’ ~ poly(a$pays_above_treshold_rtotal,
2) + a$ max(rtotal)” + afDays_above_mean_Rtotal + aftrd_gtl_Rtotal_year +

poly({a$pays_above_treshold_Tmin, 2) + poly(a%$ min{Tmin) ",
2) + a%fst_grl_Tmin_year + poly(a$trd_gtl_Tmin_year, 2) +

a$pays_above_treshold_Tmax + a%$ ' min(Tmax)”~ + poly(a3pays_above_mean_Tmax,
2) + poly(aspays_above_treshold_wspeed, 2) + poly(as ' mean wspeed”,
2) + poly(a$pays_above_mean_wspeed, 2) + poly(a$fst_gtl_wspeed_year,
2) + poly(as$trd_qtl_wspeed_year, 2) + a$ min thermal_amp™ +
a$ " max thermal_amp”™ + poly{aibays_above_mean_diff, 2))

Residuals:
Min 10 Median 30 Max
-2.3879 -0.4536 -0.0804 0.55%66 1.4839

Coefficients:

Estimate std.
. 944498
. 950444
168208
. 002578
009975
048627
.04p184
. 553796
L 709928
149677
064701
LA77113
. 168081
.004713
026274
223330
L114873
029652
011701
. 282434
. 560676
231844
. 259630
478384
. 347048
. 752245
. 054569
065260
027748
420732
127274

(Intercept) Q.
poly(a$pays_above_treshold_Rtotal, 2)1 7.
poly(a$pays_above_treshold_Rtotal, 2)2 -3
af max(rtotal)” a.
a%pays_above_mean_Rtotal -0.
attrd_gt1_Rtotal_year 0.
poly(a$pays_above_treshold_Tmin, 2)1 6.
poly(a$pays_above_treshold_Tmin, 2)2 -6.
poly(a$ min(Tmin) ™, 2)1 6.
poly(a$ min(Tmin) ", 2)2 a.
asfst_gtl_Tmin_year a.
poly(astrd_gtl_Tmin_year, 2)1 -10.
poly(astrd_qti_Tmin_year, 2)2 6.
afpays_above_treshold_Tmax 0.
af " min{Tmax)’ -0.
poly(a$pays_above_mean_Tmax, 2)1 -9,
poly(a%bays_above_mean_Tmax, 2)2 7.
poly(a$bpays_above_treshold_wspeed, 2)1 41.
poly(atpays_above_treshold_wspeed, 2)2 9.
poly(a$ mean wspeed™, 2)1 86.
poly(a$ mean wspeed™, 2)2 -14,
poly(a$pays_above_mean_Wspeed, 2)1 -40.
poly(a$pays_above_mean_Wspeed, 2)2 -14.
poly(a$fst_qtl_wspeed_year, 2)1 -28.
poly(a$fst_qgtl_wspeed_year, 2)2 6.
poly(a$trd_gtl_wspeed_year, 2)1 -64.
poly(a$trd_gtl_wspeed_year, 2)2 8.
at min thermal_amp” -0.
a% max thermal_amp’ 0.
poly(a$pays_above_mean_diff, 2)1 .

poly(a$pays_above_mean_diff, 2)2 -5.

signif. codes: 0 ***%*' 0.001 “®**’ 0.01 **°

167894
419055
538288
001591
022639
222163
915134
178222
300942
003619
072244
105726
106874
002209
170171
638227
141621
772839
007680
830048
724565
251476
Q09125
513744
630055
125821
847217
044998
132830
888475
411029
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Error T value

0.1 ° °

Residual standard error: 0.7366 on 289 degrees of freedom

Multiple rR-squared: 0.3345, Adjusted R-squared:

0.48862

F-statistic: 11.06 on 30 and 289 DF, p-value: < 2.2e-16
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Figure 19. Results of Regressions on CoNC for Region D and all cultures
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call:

Im{formula = a$ Claims over Contracts ™ - poly(a$Days_above_treshold_rtotal,
2) + poly(as$ max(rtotal)", 2) + poly(a% mean rRtotal”, 2} +
poly(a$ min(Tmin) ", 2) + poly(a$ max(Tmin)", 2) + a%¥ mean Tmin  +
a%pays_above_mean_Tmin + as$trd_gti_tTmin_year + poly(aiDays_above_treshold_Tmax,
2) + a$ 'min(Tmax) " + poly(a% mean Tmax™, 2) + a%$Days_above_mean_Tmax +
affst_gtl_Tmax_year + poly(astrd_gtl_Tmax_year, 2) + alDays_above_treshold_wspeed +
af ' min({wspeed)” + af max(wspeed) + a%¥ mean wWspeed + affst_gtl_wspeed_year +
af$trd_gtl_wspeed_year + poly(a% ™ max thermal_amp’, 2) + a%¥ mean thermal_amp)

Residuals:
Min 10 Median 3Q Max
-1.53882 -0.41362 0.019%23 0.40063 1.83831

Coefficients:
Estimate Std. Error t© value Pri=|t|)

(Intercept) 9.926208 2.297158 4.321 2.00e-05 w=ww
poly(a$pays_above_treshold_Rtotal, 2)1  B8.341007  1.443689 5.916 7.50e-09 ==
poly(a$pays_above_treshold_Rtotal, 2)2 -2.098455  0.843228 -2.489 0.013263 *
poly(a$ max(rtotal)™, 2)1 0.862186 1.005529 0.857 0.391753
poly(a$ max(rtotal) ™, 2)2 -2.928796 0.970062 -3.019 0.002710 **
poly(a$ mean Rtotal , 2)1 -5.120707 1.356534 -3.775 0.00018p #=*
poly(a$ mean Rtotal , 2)2 7.381129 1.426014 5.174 3.706e-07 #uw
poly(a$ ' min(Tmin) ™, 2)1 1.750316 1.355044  1.292 0.197264
poly(a$ min(Tmin) ™, 2)2 -3.421412 1.148716 -2.978 0.003087 #*
poly(a$ max(Tmin) ™, 2)1 -2.742586 1.175662 -2.333 0.020193 *
poly(a$ max(Tmin) ", 2)2 -1. 364809 1.191863 -1.145 0.252903

a% mean Tmin’ -0.320573 0.140930 -2.2753 0.023494 =
afDays_above_mean_Tmin -0.011730 0.003745 -3.132 0.001872 **
attrd_gtl_Tmin_year 0.401674 0.114867 3.497 0.000528 w#ww
poly(a$pays_above_treshold_Tmax, 2)1 9.871746  2.898747  3.406 0.000733 #¥¥
poly(a$pays_above_treshold_Tmax, 2)2 -2.708523 1.418256 -1.910 0.056936 .
af ' min(Tmax) " 0.079241 0.024051 3.295 0.00108Q **
poly(a$ mean Tmax™, 2)1 41. 323210 8.306256 4.975 1.00e-06 w=®*
poly(a$ mean Tmax™, 2)2 3.553766 2.163002 1.643 0.101235
afDays_above_mean_Tmax -0.0067384 0.004399 -1.5342 0.123882
atfst_qgtl_Tmax_year -0.438836 0.103771 -4.229 2.9Ge-05 #¥¥
poly(a$trd_gtl_Tmax_year, 2)1 -27.386925  4.825062 -5.676 2.78e-08 #¥¥
poly(a$trd_gti_Tmax_year, 2)2 4.913000 2.677670 1.835 0.067335
atbays_above_treshold_wspeed 0.008455 0.003742  2.260 0.024431 *
at min(wWspeed)” 0.179901 0.049579 3.629 0.000325 www
a% max(wWspeed)” 0.048748 0.014125 3.451 0.000822 #u®
af 'mean wspeed” -1.509985  0.357221 -4.227 2.98e-05 #¥¥
atfst_gtl_wspeed_year 0.753842  0.177615 4.244 2.77e-05 #¥%
aftrd_gtl_wspeed_year 0.539940 0.197443  2.735 0.006544 *¥*
poly(a$ max thermal_amp™, 2)1 2. 644320 2.185851 1.210 0.227147
poly(a$ max thermal_amp™, 2)2 -3.532500 1.034512 -3.415 0.000709 #*¥*
a% mean thermal_amp” -0.183581  0.097958 -1.874 0.061705
signif. codes: O *#%%' 0_001 “®**° 0.01 **° 0.05 *." 0.1 ° ' 1

Residual standard error: 0.655 on 371 degrees of freedom
Multiple R-squared: ©0.3931, Adjusted R-squared: 0.3424
F-statistic: 7.753 on 31 and 371 DF, p-value: < 2.2e-16

Figure 20. Results of Regressions on CoNC for Region E and all cultures
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