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GLOSSARY 

 

AIC   Akaike Information Criterion. 

AY     Accident Year.  

BF      Bornhuetter–Ferguson.  

BIC    Bayesian Information Criterion. 

C.V    Coefficient of Variation.  

CDF   Cumulative Distribution Function.  

CL      Chain Ladder.  

CUM   Cumulative.  

DEV   Development.  

EDM   Exponential Dispersion Models.  

EF       Exponential Family.  

EU       European Union 

EXP    Exponential.  

GLM   Generalised Linear Models.  

IBNR   Incurred but not Reported.  

MSEP Mean Square Error of Prediction.  

PDF      Probability Distribution Function.  

PP         Probability – Probability.  

QQ       Quantile – Quantile.  

S.E        Standard Error. 
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ABSTRACT 

         Generalised linear models(GLM) are routinely used in two different areas of actuarial work: 

Loss Reserving  and Premium rating. There is little overlap between the two areas: Loss Reserving 

models attempt to model the development of claims but pays little attention to effect of risk 

variables. Premium Rating model attempt to model the effect of risk variables on claim patterns 

(frequency and/or severity), but usually assumes that the claims analysed are fully developed. 

In this dissertation, we aim to bridge the gap between these two areas of actuarial work by 

developing a Premium Rating model that incorporates risk variables. Specifically, we will 

consider  demographic characteristics such as gender on claim patterns. By doing so, we hope to 

provide a more comprehensive understanding of the factors that contribute to insurance claims 

and improve insurers' ability to accurately price their policies, something which can be done in 

GLM but not in the original Chain Ladder or Bornheutter-Ferguson methods.  

   The GLM approach is applied to real-life statistics of a professional health insurance that is 

sold to two risk groups, females and males. The results show that with the inclusion of the 

risk_group variable in the GLM model framework, females have higher claim cost per insured 

than males, plus that the number of females is increasing while the number of males is falling. 

The increase of the proportion of females is partly explained by the fact that more females are 

entering the profession. In a competitive market, the insurance company could risk adverse 

selection, if at the same time as more women enter, the lower risk group (males) starts falling 

because premiums are becoming too high. EU regulation does not allow insurers to differentiate 

premiums by sex. Therefore, the insurance will have to find other ways than premium 

differentiation, to prevent or reduce adverse selection. It is not my purpose to suggest what the 

company could do. The purpose of this dissertation is to demonstrate that the use of a GLM in 

loss reserving may show up facts that would remain concealed if one only used a simple chain 

ladder method on the aggregate statistics. 

The theoretical base of the work is standard; its challenges lies in applying GLM to realistic 

datasets and studying the results. 

KEYWORDS: Chain ladder, Bornhuetter-Ferguson, GLM, risk group. 
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1.INTRODUCTION 

 The insurance industry makes promises rather than sells actual products. An insurance 

contract is a guarantee given by the insurer to the policyholder (insured) to pay for future losses 

or damages in exchange for a premium paid in advance. 

Therefore, insurers must determine a reasonable price for their contract based on their best 

judgment after analysing and evaluating past data. Most types of home, liability, and auto 

insurance, as well as other forms of general insurance, have an annual policy term. The time it 

takes to settle these claims, however, can be years. This means that the actuary frequently lacks 

information crucial to the completion of the insurance contract, such as the date of settlement. For 

instance, the payments of claims arising from liability insurance might drag on for a longer period. 

This may be due to investigations, dispute, litigation, or other processes leading to determination 

of the claim amount. 

Figure 1.1 gives a single claim's history. It demonstrates that t1 was the date of damage 

occurred. Then sometime later say, at t2 the insurer is notified of the loss/claim arising from the 

damage. Usually, the claim will not be paid instantly.  

 

Figure 1.1 Timeline for a single claim payment 

     After a number of loss payments, the insurer determined that the claim's activity was finished 

at time t6, and closes the file. If this decision was later proven to be incorrect at time t7, the claim 

file was reopened, another payment was paid (at t8), and it was once more closed at t9, since there 

has been no further action. The duration required to complete a claim payment is subject to 

fluctuation based on several factors, including the intricacy of the claim, the insurer's internal 

procedures, and the extent of negotiation needed. Nevertheless, it is crucial for insurers to ensure 

timely and precise payment of claims to sustain policyholder contentment and guarantee financial 

soundness. 
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The single claims payment process plays a crucial role in loss reserving, as each payment impacts 

the insurer's reserves and can affect their ability to accurately estimate future claim liabilities. 

However, it is challenging and often impossible to model reserves assuming a normal distribution 

of data due to the presence of various risk factors. However, the advent of more sophisticated 

statistical tools, such as the generalized linear model (GLM), has helped to overcome this 

challenge. Unlike conventional methods like the Chain Ladder (CL) method, which is used to 

estimate final losses and does not rely on known distributions, GLM can assume various known 

distributions. Additionally, GLM can reveal insights that would remain hidden if one only used a 

simple chain ladder method on the aggregate statistics and other basic conventional methods. 

The insurance world is changing at a very fast pace. In the Insurance  world  pricing, underwriting, 

and claims triage have been metamorphosed by predictive analytics. GLM are routinely extended 

in two different areas of actuarial work: loss reserving and premium rating. There is  little overlap 

between the two areas: loss reserving models attempt to model the development of claims but 

normally pay little attention to the effect of risk variables. Premium Rating models attempt to 

model the effect of risk variables on claiming patterns (frequency and/or severity), but usually 

assume that the claims analysed are fully developed. 

The purpose of this work aims to integrate premium rating factors and loss reserving 

methodologies by developing parsimonious models that incorporate both risk and development 

variables. The models will be applied to actual data to test their effectiveness in predicting claims 

patterns and associated losses, providing insurers with better insights for risk management and 

pricing strategies. 

The current practice of traditional loss reserving estimates claims reserves based only on two 

variables: an accident year effect and a development year effect. However, this approach ignores 

the impact of other relevant factors such as premium rating factors. In order to address this gap, 

this study aims to explore the use of Generalized Linear Models (GLM) for claim reserving that 

incorporates premium rating factors such as risk group variables. By doing so, the study seeks to 

extend the applicability of the results to pricing or designing insurance products for each risk 

group. This approach has been suggested as more accurate and efficient in claim reserve 

estimation as compared to traditional methods, which only consider accident and development 

year effects. The results of the study are expected to be relevant to policymakers and actuaries in 

making better decisions regarding investment for claim settlement and evaluating loss reserves 

respectively. 
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The objective of this study is to develop more accurate and reliable loss reserving models that 

can assist insurers in making better-informed decisions regarding risk management and pricing. 

To achieve this goal, the study will focus on four key objectives: 

First, the study will evaluate the suitability of various probability distributions for modeling 

claims paid data. This will involve analyzing historical claims data to identify the most 

appropriate distribution for the data set.  

Second, the study will estimate claims reserves using traditional loss reserving methods. 

These methods involve analyzing historical claims data to predict future claims patterns, based 

on two key variables: an accident year effect and a development year effect. By estimating claims 

reserves using these methods, the study will provide a benchmark against which to compare other 

modeling approaches. 

Third, the study will quantify the uncertainty associated with loss reserve estimates by 

applying the (Mack) stochastic model to calculate the standard error of the estimate. This will 

provide insurers with a measure of the reliability of their loss reserve estimates, allowing them to 

adjust their risk management strategies accordingly. 

Finally, the study will develop a generalized linear model within a specified model framework 

to estimate reserves for each risk group, considering relevant risk variables such as policyholder 

gender.  

The research aims to address two important questions in the area of actuarial science and 

insurance. Firstly, the study will investigate the added value of the stochastic loss reserving 

technique, specifically the Generalized Linear Model (GLM), compared to other traditional loss 

reserving techniques, in terms of its impact on decision-making. Secondly, the research will 

demonstrate how the reserve estimates for each risk group can help insurance companies design 

and price their products.  

    The study aims to introduce additional techniques to the traditional loss reserving approach, 

giving actuaries more options to evaluate loss reserves. This can be beneficial in situations where 

traditional methods may not be adequate or where more accurate reserve estimates are required. 

By incorporating generalized linear models and stochastic loss reserving techniques, this research 

offers more comprehensive and robust tools for estimating future claims liabilities. 

Overall, this study's findings have the potential to improve the accuracy of loss reserve 

estimates, enhance financial planning and stability in insurance companies, and provide additional 

techniques for actuaries to better evaluate reserves. 



JOEL A. MENSAH  ACTUARIAL SCIENCE  DISSERTATION 

12 

 

The various chapters consist of the following: chapter 2 consists of a literature review of loss 

reserving methods, including its applications to various insurance data, chapter 3 is dedicated to  

models and methods in loss reserving, chapter 4 presents the data analysis, first fitting  the claim 

data to various probability distribution and then using packages in R to determines reserve 

estimate for both the conventional method and GLM and lastly chapter 5 presents the main 

conclusions. 
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2. LITERATURE  

This chapter looks at the relevant literature and shows how loss reserving methods are used 

in different areas of actuarial science.  

Loss reserving using the chain ladder technique is a traditional method that estimates loss 

reserves by calculating a consistent ratio of losses between subsequent development years, as 

described by Mack (1993). The chain ladder method does not rely on known distributions and 

avoids assumptions seen in other traditional methods. However, recent studies have shown that 

by assuming claim amount distributions are known, other models can produce estimates that are 

comparable to the chain ladder method. For example, Wüthrich and Merz (2008) demonstrate that 

the distribution-free chain ladder estimates and the Poisson model for claim counts can both 

produce the same projected claim amount. For further details, please refer to Wüthrich and Merz 

(2008). 

In the context of loss reserving, another approach is the Bornhuetter-Ferguson method. 

Schmidt and Zocher (2008) demonstrate how this method can be extended to encompass loss 

reserving techniques based on run-off triangles, such as the chain-ladder method. They found that 

the Bornhuetter-Ferguson principle provides indicators that can be considered the best predictors 

of ultimate losses. Schmidt and Zocher (2008) provide a comprehensive explanation of this 

approach and related topics. For further study, refer to Schmidt & Zocher (2008) and Schmidt 

(2006). 

In their paper, Kočović et al. (2018) conducted a comparative analysis of the Chain Ladder 

(CL) and Bornhuetter-Fergusons (BF) methodologies to gain a better understanding of their 

benefits and drawbacks. The authors noted that it is crucial to evaluate the results of each method 

to identify the causes of any discrepancies in the reserve estimates. Their study revealed that the 

chain ladder method is suitable when there is a constant pattern of loss development and a 

substantial number of reported claims. However, for cases where an inconsistent pattern of 

reported claims exists, such as in their example, the Bornhuetter-Fergusons method was more 

appropriate. 

The authors also cautioned that these methods should be used with caution, considering their 

respective benefits and drawbacks, and combined with the subjective assessments of actuaries 

based on their experience and knowledge. They highlighted that accurately estimating claim 

reserves using these traditional methods is challenging and prone to inconsistencies. As such, they 

recommend future studies focus on utilizing stochastic models to estimate claim reserves, which 

would address the drawbacks of these traditional methods. Kočović et al.'s study adds to the 
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existing literature on the effectiveness of these methods in accurately estimating claim reserves 

and the need for more advanced modelling techniques to improve accuracy and efficiency. 

Building on the previous discussion about the limitations of traditional loss reserving 

methods, it is important to note that these methods are deterministic and may not accurately 

capture the variability inherent in the underlying claims data. This is where stochastic modelling 

comes into play. Unlike deterministic methods, stochastic models consider the uncertainty and 

variability associated with claims data and can provide more accurate and reliable reserve 

estimates. One such model is the Mack stochastic model, which extends the chain ladder method 

by incorporating the calculation of the standard error to a particular reserve estimate. For further 

information on the Mack stochastic model, please see Mack (1993) and Mack et al (2000). 

The use of stochastic models for loss reserving has become increasingly popular in recent 

years. One area of emphasis for such models is the Generalized Linear Model (GLM). Schmidt 

(2004) provides a remarkably simple method to estimate the number of claims required for a tariff 

computation based on the number of risk factors and the number of levels for each element. Frees 

and Valdez (2008) proposed a conceptual framework for three components that relate to the rate, 

nature, and intensity of damages. These components allow actuaries to consider a wide range of 

factors when estimating losses. Another study by Klein et al. (2014) examines a scenario where 

the assumption that the response variable has an exponential family of distribution is relieved. 

This allows the actuary to consider risk factors not only in the mean but also in parameters that 

affect the behavior of the individual who files loss claims. By considering a wider range of factors, 

such as the nature and intensity of damages, and incorporating them into stochastic models like 

the GLM, actuaries can improve the accuracy and efficiency of their loss reserve estimates. 

Taylor and McGuire (2002), their paper presented a case study in the application of 

Generalised linear models to loss reserving. The study was initially approached from the 

perspective of  an actuary with a predisposition to the application of the chain ladder (CL). They 

saw that the data set used in their study violate the conditions for application of the Chain ladder  

in many ways.  These difficulties of attuning the Chain ladder to allow for these features of their 

data set to be captured was overcome by the introduction of GLM regression as a well 

systematized and rigorous form of data analysis. This helped them in modelling and investigating 

a number of complex features of data responsible for the violation of the CL assumptions.  Their 

paper concluded that the complexity of the data set is seen in the model of claim sizes fitted to it, 

which entails the following, in addition to the expected variation with operational time: a seasonal 

effect, which will be extremely difficult to accommodate such trend within the CL framework 

and estimate them efficiently. 
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De Jong and Heller (2008) used the vehicle insurance data set to calculate insurance premiums 

using features of the insured drivers and vehicle. Their goal was to estimate the mean claim 

frequency while considering various explanatory variables and employing models supplied by the 

generalized linear model methodology. Their paper offers a theoretical exposition of GLMs, with 

a particular emphasis on Poisson regression models, as well as an emphasis on the influence of 

different explanatory factors on the number of claims, using various descriptive approaches in R.  

N. Naufal, S. Devila and D. Lestari (2019) presented a paper on using GLM to determine life 

Insurance premiums. According to them the risk of mortality  for each individual is determined 

by various risk factors which includes gender, marital status, alcohol consumption, age, smoking 

status, geographical location, profession and education. This risk factors affects the premium paid 

by each individual to ensure fairness. For this reason, insurers need a model that will measure the 

effect on mortality of these risk factors. According to them GLM provides important insights in 

insurance data analysis. In their study they used GLM to model the risk of mortality caused by 

various risk factors and then calculate the premium for each individual. The data they used in 

their study are life claim data which comprises of  risk factors that affect mortality  rates in 

Indonesia. Based on the discussion and case studies, the risk factor with a significant effect on the 

probability of mortality  is gender. The issue of age and smoking status do not affect the 

probability of mortality. The probability of individual female mortality which is greater than that 

of male individual.  

Having reviewed various literature, little work has been found that applies a stochastic model 

(GLM) to loss reserving, and includes other risk  variables than the accident year and development 

year effect as covariates. 
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3. METHODS AND MODELS 

    According to Neuhaus (2014), several lines of research are currently en vogue in the actuarial 

profession. For want of better terms, Neuhaus (2014) also referred to these lines of research as 

“fitting to method”, and “fitting to data”. Before explaining what the two terms meant, he 

proceeded to define certain key words which are mostly used interchangeable, especially in the 

actuarial profession. 

• Model: a simplified mathematical description of the claim development mechanism. 

• Method: an algorithm for turning observed data into projections of future data. 

3.1 Fitting to method 

     Several academics and actuaries are attempting to analyze the statistical properties of the 

heuristic methods, most often the Chain-ladder method. The seminal paper is Mack (1993), see 

also England and Verrall (2002) and Wüthrich & Merz (2008) for comprehensive descriptions. 

This line of research involves finding a model within which a given method is optimal or at least 

justifiable, for example, because its predictions coincide with maximum likelihood estimates. 

Thereafter the statistical properties of the method are computed within constraints of that model. 

As a result, the actuary will be able to produce an estimate of predictive uncertainty. 

3.2 Fitting to data 

     Other authors fit models not to methods, but to data. An extensive treatment can be found in 

Taylor (2000). According to Neuhaus (2014), the main difference between fitting to method and 

fitting to data is that in the former approach the method being studied puts à priori constraints on 

the admissible models, while in the latter approach the model is built with the objective of 

capturing important aspects of the mechanism that underlies claim development. 

3.3 Classical methods 

 The chain ladder method 

The chain ladder approach to loss reserving is used by most insurance firms for loss reserving. 

It is a particular fundamental reserve strategy that is employed to foretell final losses. According 

to Christofides (1997), the key idea behind the chain ladder technique is that previous payments 

are good predictors of the ones to come. According to Taylor and McGuire (2004), the triangle 

was first studied from the standpoint of the inclination to apply the CL. Wüthrich (2019), gives 

the annotation to the various elements of the total claim reserves for the future payments where 

𝑋𝑖,𝑗 stands for the payments made for claims with accident year i in development year j. Thus, the 

vertical axis i = year of accident and j = development year on the horizontal axis. 𝐶𝑖,𝑗 = ∑ 𝑋𝑖,𝑘
𝑗
𝑘=0   
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as the total payments made for claims from accident year i until development year j. According 

to Wüthrich (2019), all the observations are located in the upper left of the triangle  𝒟𝐼, and the 

lower part of the triangle 𝐷𝐼
𝐶 is future observation that actuaries would like to predict. 

 

Table 3.1: The Run – off Triangle 

 

 According to Merz and Wüthrich (2008), the CL technique is one of the most popular claims 

loss reserving techniques. Classical actuarial literature often classifies the CL method as a purely 

computational algorithm for estimating reserves.  

 Assumptions of the chain ladder algorithm 

1. Various accident years' 𝑖 = 1, … 𝐼 cumulative claims 𝐶𝑖,𝑗 are independent from one another. 

2. It further assumes the presence of developmental factors 𝑔𝑜, … , 𝑔𝑗−1 > 0 such that ∀ 0 ≤

𝑖 ≤ 𝐼  and  ∀ 1 ≤ 𝑗 ≤ 𝐽. We obtain; 

    𝔼[𝐶𝑖,𝑗|𝐶𝑖,0 … 𝐶𝑖,𝑗−1] =  𝔼[𝐶𝑖,𝑗|𝐶𝑖𝑗−1] =  𝑔𝐽−1 . 𝐶𝑖𝑗−1                       (3.1) 

Merz and Wüthrich (2008) also remarks that the first moment is assumed in Equation (3.1) 

which is already adequate (and hence gives the CL algorithm) for calculating the conditional 

expectation of future claims. Merz and Wüthrich (2008), then proposed that by using the 

cumulative claim  𝐶𝑖,0, 𝐶𝑖,1, … , 𝐶𝑖,𝑗  in accident year 𝑖 then it forms a Markov chain, which is a 

stronger assumption in addition to the first two assumption. Thus, 

                              𝐶𝑖𝑗 . ∏ 𝑔𝑘
−1𝑗−1

𝑘=0                                                               (3.2) 

The factors 𝑔𝑗 are known as the CL age-to-age ratio, CL factors, or CL link ratios, and they 

serve as the CL method's main point of interest. 
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Merz and Wüthrich (2008) further assumed 𝒟𝐼 =  {𝐶𝑖𝑗; 𝑖 + 𝑗 ≤ 𝐼, 0 ≤ 𝑗 ≤ 𝐽} } to be the 

collection of observations in the upper part of the run-off triangle. Using the model assumption 

in (3.1)  ∀ 1 ≤ 𝑖 ≤ 𝐼. Thus,  

   𝔼[𝐶𝑖,𝑗|𝐷𝐼] =  𝔼[𝐶𝑖𝑗|𝐶𝑖,𝐼−𝑖] =  𝐶𝑖,𝐼−𝑖 .  𝑔𝐼−𝑖  … 𝑔𝑗−1                              (3.3) 

Equation (3.3) represents the best estimate of reserves for accident year 𝑖, predicated on the 

Upper part of the run-off triangle (𝒟𝐼) and observed CL factors. In this vein, predicting the 

outcome of the random variable 𝐶𝑖,𝑗 − 𝐶𝑖,𝐼−𝑖  give the observation 𝒟𝐼, using the conditionally 

expected value (3.3) becomes possible. Sadly, in most real-world situations, the CL factors are 

unknown, hence the need to estimate them. Equation (3.4) gives the formular to estimate the CL 

factors. 

            𝑔𝑗
𝐶𝐿 =  

∑ 𝐶𝑖,𝑗+1
𝐼−𝐽−1
𝑖=1

∑ 𝐶𝑖,𝑗
𝐼−𝐽−1
𝑖=1

=  
∑ 𝐶𝑖,𝑗

𝐼−𝑗−1
𝑖=1

∑ 𝐶𝑘,𝑗
𝐼−𝐽−1
𝑘=1

 .
𝐶𝑖,𝐽+1

𝐶𝑖,𝑗
                                              (3.4) 

Now the CL estimator for 𝔼[𝐶𝑖,𝑗|𝒟𝐼]  is �̂�𝑖,𝑗
𝐶𝐿 = �̂�[𝐶𝑖,𝑗|𝒟𝐼] = 𝐶𝑖,𝐼−𝑖 .  �̂�𝐼−𝑖 … 𝑔𝑗−1   𝑓𝑜𝑟 𝑖 + 𝑗 >

𝐼.  This is the CL computational algorithm that results in the CL reserves. 

 Bornhuetter – Ferguson Method 

The Bornhuetter Ferguson loss reserving approach is another straightforward technique. 

Bornhuetter and Ferguson (1972) proposed a method that combines the chain-ladder forecast with 

previous knowledge of anticipated loss costs. Thus, The BF method constructs a loss reserve 

considering the insurance company's exposure to loss, as opposed to the basic chain ladder, which 

relies on the concept of experience. The advantage of the BF reserving method is that it does not 

change when the number of claims goes up or down. It also does not consider the "run-up" of 

each claim cohort and assumes that its future will follow a model pattern.  

In their publication from 1972, Bornhuetter and Ferguson state that the BF technique as a 

mechanical procedure for estimating reserves. As it ignores outliers in the observations, it is 

regarded as a robust strategy according to Merz and Wüthrich (2008). The CL assumes that the 

observation 𝒟𝐼 are extended into the lower part of the run-off triangle, whereas the Bornhuetter- 

Ferguson (BF) assumes a different position by suggesting that the lower  𝒟𝐼
𝐶 is extended 

independently from 𝒟𝐼 utilizing professional expertise. 

Assumptions of the BF method 

1.   Various accident years' 𝑖 = 1, … 𝐼 cumulative claims 𝐶𝑖,𝑗 are independent from one 

another. 
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2.   It also assumes that the presence of  parameters 𝜇0, … , 𝜇1 > 0 and a pattern 𝛽0, … , 𝛽𝑗 >

0 with 𝛽𝐽 = 1 ,∀ 𝑖 ∈  {0, … 𝐼} ,  𝑗 ∈  {0, … 𝐽 − 1} and 𝑘 ∈  {1, … 𝐽 − 1} 

𝔼[𝐶𝑖,0] =  𝛽𝒊 . 𝜇0 

              𝔼[𝐶𝑖,𝑗+𝑘|𝐶𝑖,0, … , 𝐶𝑖,𝑗] =  𝐶𝑖,𝑗 +  𝜇𝒊  .  (𝛽𝑗+𝑘 − 𝛽𝒋)                             (3.5) 

From the above equation we have  

𝔼[𝐶𝑖,𝑗] =  𝜇𝑖  . 𝛽𝑗    and    𝔼[𝐶𝑖,𝑗] =  𝜇𝑖 

According to Merz and Wüthrich (2008), the sequence (𝛽𝑗)𝑗=0,…,𝐽  depicts the overall trend 

of claim development. If 𝐶𝑖,𝑗 are the cumulative payment, then (𝛽𝑗)
𝑗
 depicts the cumulative pay-

out pattern. Based on the right hand of Equation (3.5); the BF estimator for 𝔼[𝐶𝑖,𝑗|𝒟𝐼] is given by 

�̂�𝑖,𝑗
𝐵𝐹= 𝔼 ̂[𝐶𝑖,𝑗|𝒟𝐼] = 𝐶𝑖,𝐼−𝑖 + ( 1 − �̂�𝐼−𝑖)�̂�𝑖 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝐼, this represent the BF method which 

give the computational algorithm that results to the BF reserves. 

3.4 Mack Stochastic Model 

The chain-ladder procedure only provides a single point estimate of the outstanding claims 

and gives no hint of the expected variations of the actual outcome around the reserves. In any loss 

reserving exercise, it is important to understand the data and the best loss reserving method for 

which it is suitable. To go beyond the chain-ladder technique's straightforward reserve 

estimations, a stochastic model must be specified. Mack (2000) introduced a stochastic model  of 

claim development that allows loss reserves to be calculated with a given confidence interval 

level. According to Mack (2000), this approach will also compute the process variance, parameter 

variance, and the standard error of the reserve estimate. 

Estimation of the mean square error  

The mean square error 𝑀𝑆𝐸(�̂�𝑖𝑗)  estimator is: 

𝑀𝑆𝐸(�̂�𝑖𝑗) =  𝔼 ((�̂�𝑖𝑗 − 𝐶𝑖𝑗)
2

|𝐷𝑖) 

Next, with  𝔼(𝑋 − 𝑎)2 = 𝑉𝑎𝑟(𝑋) + (𝔼(𝑋) − 𝑎)2 we get: 

𝑀𝑆𝐸(�̂�𝑖𝑗) = 𝑉𝑎𝑟(𝐶𝑖𝑗|𝐷𝑖) + (𝔼(𝐶𝑖𝑗|𝐷𝑖) − �̂�𝑖𝑗)
2
 

The Mack stochastic model is a widely used technique for estimating loss reserves. One of 

the key advantages of this model is that it takes into account the uncertainty inherent in loss 

reserving. To quantify the uncertainty of a particular reserve estimate, the mean square error 

(MSE) is used. This measures the difference between the estimated and actual values. 
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Specifically, the 𝑀𝑆𝐸 (�̂�𝑖𝑗)estimator is defined as the expected value of the squared difference 

between the estimated and actual claim amounts �̂�𝑖𝑗 and 𝐶𝑖𝑗, respectively, given the development 

data 𝐷𝑖. The estimator can then be decomposed into the variance of the claim amount conditional 

on the development data  Var (𝐶𝑖𝑗 | 𝐷𝑖) and the squared difference between the expected value of 

the claim amount conditional on the development data 𝔼 (𝐶𝑖𝑗 | 𝐷𝑖)  and the estimated value �̂�𝑖𝑗. 

This allows for a more accurate and reliable estimation of loss reserves, taking into account the 

inherent uncertainty in the claims data. 

3.5  Generalized Linear Models 

A Generalised Linear Model consists of two parts: the random component and the systematic 

component. 

 The random component assumes that the response’s distribution belongs to the family of 

exponential dispersion distributions. The response Y  has a distribution in the EDF, with density 

function taking the form: 

𝑓(𝑦|𝜃, 𝜙) = 𝑐(𝑦, 𝜙) exp {
𝑦𝜃−𝜅(𝜃)

𝜙
},  where: 

• 𝜃 is the canonical parameter; 

• 𝜅 is a known function, and is called the cumulant function; 

• 𝜙 > 0 is the dispersion parameter; 

• 𝑐(𝑦, 𝜙)  is the normalising function: it ensures that ∫ 𝑓(𝑦|𝜃, 𝜙)𝑑𝑦 = 1, if  y is continuous. 

     The systematic component assumes that the function 𝑔 links the linear predictor  𝜂 =  𝛽0 +

∑ 𝛽𝑗𝑥𝑗
𝑝
𝑗=1  and the mean response: 𝑔(µ) = 𝜂; in the linear regression, 𝑔(𝜇) = µ. 

    The systematic component connects predictor variables to the response variable. It assumes a 

function 𝑔 links the predictor variables to the mean response value 𝜇. The linear predictor 𝜂 is the 

sum of the intercept 𝛽0 and the product of the predictor variables (represented by 𝑥) and their 

coefficients 𝛽. The function 𝑔 links 𝜂 to 𝜇, telling us how the predictor variables contribute to the 

response variable. 

The table below gives the different model component of the GLMs most used in insurance data 

for observed claim count or count severities. 
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Table 3.2 : EDMs 

3.6 Fitting probability distribution to the data. 

Claims paid amounts are mostly positively skewed. Therefore, the probability distributions that 

fit claim paid data, according to Klugman et al. (2008), are the Gamma, Lognormal, Weibull, 

Beta, Pareto, Burr, Normal, and Inverse Gaussian distributions. See Appendix 1 for the selected 

probability distribution used to fit the claims paid amount data, their parametric estimates, and 

log-likelihood. 
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4. DATA ANALYSIS 

In this chapter, we present various analyses to the data. To enable a thorough understanding 

of the nature of the claims paid amount, probability distribution that fitted the claims paid amount 

the best was identified. To model the insurance data to obtain reserves, the conventional CL 

approach, and the Mack stochastic model, respectively, were utilized. Lastly, we used the GLM 

with specified frameworks to determine both the CL and BF estimates with the inclusion of the 

risk variable. All the data analysis were done in R and Microsoft Excel. 

4.1 Plotting the claims paid amount.  

The analysis of the claims paid data begins with the scatter plot of the claims paid amount. 

figure 4.1 the original scatter plot did not show a clear pattern, but it is clustered below the claim 

amount less than 1,000,000. For figure 4.2 the logged scatter plot also shows no clear pattern in 

the claim paid data with a reduction in the variability. The scatter plot does not give enough 

information pertaining to the claims paid data. 

 

      Figure 4.1: Scatter plot of claims paid        Figure 4.2: Logged scatter plot of claims paid. 

 

The next plot is the Histogram, from figure 4.3 we could see that the original claim size is 

right tailed. However, with figure 4.4 taking natural logarithm of the claim amount, gives a clear 

picture of how the claims are distributed. The original claim size is positively skewed which is 

suggestive of a gamma distribution. We could see that the histogram gives us more insight into 

the data. 
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Figure 4.3 Histogram for Claims paid                    Figure 4.4 Histogram for logged claims paid. 

 

Lastly, we plotted the claims paid amount using the boxplot. figures 4.5 & 4.6 represents the 

boxplot. The boxplot summarizes large amount of data by displaying the data along a number 

line. A small distance between the extremes and the quartiles shows that the data is clustered 

together, the opposite is however true. We can see that about 75% of the claim amount is below 

1,310,000. 

     

           Figure 4.5 Box plot of claims paid            Figure 4.6 Box plot of logged claims paid. 
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4.2 Fitting probability distribution to the claims paid data. 

According to Neuhaus (2014), the main objective of fitting probability distribution is to 

capture important aspects of the mechanism that underlies claim development. 

The gamma distribution is a continuous probability distribution that is widely used to model 

continuous variables that are  positively skewed distributions. 

 

Figure 4.7: The diagram for the fitted gamma distribution to the claims paid. 

Consideration would be given to the (QQ) and the PP plots when determining whether a 

distribution in question better fitted the claim amount data. The data points on the QQ plot should 

all be on the 45° line for a symmetric distribution. It can be seen from the QQ plot in the diagram 

that the data points are on the 45° line. Consequently, the gamma distribution is a better fit to the 

claims paid data than the exponential and lognormal distribution. 
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  Exponential distribution  

The exponential distribution describes the arrival time of a randomly recurring independent 

event sequence. It is a special case of the gamma distribution. 

 

Figure 4.8: The diagnostics diagrams for the fitted exponential distribution to the claims paid. 

It is obvious from the QQ plot that some data points stray off the 45° line. Hence the gamma 

distribution is still chosen to be a better fit to the claims paid data as compared to the exponential 

distribution. 
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 Log-normal  

The log-normal distribution is a continuous probability distribution of a random variable 

whose logarithm is normally distributed. 

 

Figure 4.9: The diagnostics diagrams for the fitted log- normal distribution to the claims paid. 

It obvious from the QQ plot that some data points stray off the 45° line. Hence the gamma 

distribution is chosen to be a better fit to the claims paid data as compared to the log-normal 

distribution. 

 These basic plots (Scatter plot, Histogram & Box plot) and the diagram derived to determine a 

better probability distribution that fits the observed claims paid amount using R statistical 

software1                                                                                                        

 
1 See Appendix 2 for the Basic R codes used for estimating the various statistics, the basic plots, and 

the diagram for fitting of the probability distribution for the claims paid data. 
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4.3 The Chain ladder method 

The development period of the claim payments as given by the insurer’s data is 1,2,3,4 and 

5. The accident years range from 2017 to 2021. The primary objective of the CL loss reserving 

method is to forecast the amount of reserves that must be set aside to cover projected future claims 

by projecting past claims experience into the future. Table 4.1 and 4.2 shows the run-off triangle 

of both the incremental claims payment and the cumulative payments obtained using the 

ChainLadder packages in R2.                                                                                                                                          

  Incremental and Cumulative loss payment through development years 

 

Table 4.1: Incremental claims payments 

 

Table 4.2: Cumulative payments 

Now that these cumulative payments have been given, development patterns can be 

examined. We can estimate the age-to-age loss-development factors from the cumulative 

payments. 

  Development pattern in chain ladder 

Figures 4.10 and 4.11 represent the incremental and cumulative claims development by origin 

year. The triangle appears to be well behaved. The years 2020 has a higher incremental payment. 

For the years 2017 and 2018, the values appears to be relatively stable at the latter part of the 

development year. In general, the incremental and cumulative payment diagram can be used to 

 
2 The complete R codes used for this process and for the dissertation is available in this repository: 

https://joeboy15.github.io/Dissertation--MFW/MFW. 
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analyze trends in payments over time and to identify any unusual patterns or outliers. It can also 

be used to predict future losses by extrapolating the trends in payments. 

Figure 4.10: Incremental and cumulative of claims development 

 

 

 

Figure 4.11: Cumulative claims development 
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Age-to-Age paid loss-development factors based on cumulative payment. 

 

Table 4.3: Development year ratio 

The above Table  4.3 offers insights in development years. The ratio reflects claim payment 

stability. The average factors will be applied to the last  payment points, one for each accident 

year (thus the diagonals in the cumulative payments table), to calculate the expected ultimate pay-

out per accident year. 

 

Table 4.4: Full triangle  

The last column contains the forecast ultimate loss cost of 122,206,776.8. 

 

Table 4.5: Observed claims statistics and future claim development. 

The chain ladder approach seeks to predict the claims payment amount into the triangle's 

bottom right corner of the run-off triangle as well as amount after age 4. By the end of 2021, the 
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insurer should set aside 7,054,884 per the Chain Ladder Loss Reserving Method to fulfil all 

benefit obligations made to the insurance company's various clients. 

 

Table 4.6:  Prediction of future claim development 

From Table 4.6 shows the outstanding estimates to be paid in future we see that the total paid 

in 2022 is 6,730,983.1 and that of 2023 is 323,945.7 which sums to the total outstanding estimate 

7,054,884.        

4.4 Mack Stochastic Model Results 

The Mack model is regarded as a stochastic structure for the chain-ladder technique, allowing 

us to compute the mean square error of future payments. Figures 4.12 and 4.13 are plots form the 

MackChainladder package in R. 

 

Figure 4.12: Chain ladder development by the origin period 
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Figure 4.12 depicts the chain ladder plot with Mack's standard error. Each plot depicts the 

evolution of the cumulative sums paid through time beginning with the year of origin. The solid 

lines indicate the predicted evolution of cumulative payments for unseen future periods, and the 

dashed lines depict a plus or minus one standard error as calculated by the Mack technique. As a 

result, the total sums paid in all years from 2017 to 2021 grew and remained consistent. 

Furthermore, the standard error for 2017, 2018, and 2019 is not detected when contrasted to 2020 

and 2021, which clearly show a large standard error, because the years 2017-2019 are considered 

to be fully developed. 

 

 

Figure 4.13: Mack Model diagram 

The plot of the chain ladder in evaluating the Mack assumptions is shown in Figure 4.13. 

There are no trends in the four residual plots, indicating that the Mack’s assumption is correct. 

The evolution of the chain ladder by origin period follows a similar pattern for dev 1 to 5. 

Furthermore, the origin period and forecast amount in the first graph from the left show that there 

is no forecast region for the origin (2017), indicating that the development years are fully 

developed.  
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Mack Reserve Estimate from the R output 

The results shown in table 4.7 below provides the statistics of the stochastic Mack model 

using the R program MackChainLadder. 

 

Table 4.7 Mack Reserve Estimate 

The incurred but not reported (IBNR) and the mean square error associated with the individual 

loss payment throughout the years are calculated using the MackChainLadder package. The Mack 

model's coefficient of variance was plus or minus 30%. This suggests that the prediction or future 

payment has a standard error of 30% of IBNR. 

4.5 Generalized Linear Models in Estimating Loss Reserves 

 Generalized linear models (GLMs) extend the range of available modelling options, which 

could include, the following: a calendar year effect like inflation; a trend in the accident year 

effect; a parametric function for the development year effect; adding risk group effects. It is quite 

difficult to incorporate and quantify such patterns in the classical CL framework. The GLM is 

one example of a fully parameterized model that considers all other effects to get a more detailed 

reserves estimate. 
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Specialized cases for the Generalized Linear Model 

 

Table 4.8: Specialized cases for the Generalized Linear Model 

This gives us a stochastic model to justify the CL and BF methods and to analyse their 

behaviour, using established GLM techniques (diagnostics, confidence intervals etc). However, 

model assumptions should always be chosen with the primary aim of providing a satisfactory 

description of the mechanism that generates claim development - even when the resulting 

estimates differ from those of the CL or BF method. Generalized linear models extend the range 

of available modelling options. 

 Introduction to the data set 

The data set relates short-tailed business, and it includes the following variables: 

• Accident year is the years in which the accident occurred, ranging from 2017 to 2021. 

Accident years before 2017 are considered to be fully developed and require no valuation 

of outstanding claims. 

• Development year is the delay between the accident year and the payment year, for this 

dataset the development years are 1 to 5. The development years 4-5 are inactive, as most 

or all claim payments happen in development years 1-3. 

• Exposure represents how many persons were exposed to risk in different accident year. 

• Claims Paid represents incremental payments on the claim between the reporting date 

and the valuation date. 

• Claims Paid Cumulative represents the cumulation of the incremental claims paid. 

• Risk group for this data the risk group is 0 for females and 1 for Males. 

• Calendar year A 12-month interval beginning in January and ending in December. 

• Valuation year this is the year  in which claims are valued, i.e. 2021. 
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4.6 Pure CL estimates. 

To get the chain ladder estimate via GLM, we model claims paid as our response variable 

and then use the year_development and year_accident variables in the dataset as independent 

variables. The family of distribution chosen, is the Poisson distribution, with this distribution the 

maximum likelihood estimates of the GLM coincides with the estimates from the Chain-ladder 

method. As a result, a GLM with Poisson distributions is often cited as the model underlying the 

Chain-ladder method as seen in tables 4.9 and 4.10. The following code shows how to use the 

glm(): 

 

If a predictor variable has a p-value less than the significance level (typically 0.05) in the 

GLM summary output, it is statistically significant. This indicates that the predictor variable has 

a significant effect on the response variable, and its coefficient estimate shows the direction and 

strength of the relationship. In this case, only the intercept, factor(year_development)1, and 

factor(year_development)2 are statistically significant in the R output.                                          
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The estimates derived for the Pure CL Method 

 

Table 4.9: Pure Chain ladder using the GLM- cumulative claims paid. 

 

Table 4.10: Pure Chain ladder using GLM - outstanding estimates. 

 

Table 4.11 Chain Ladder predictions  

Tables 4.9, 4.10, and 4.11 represents the cumulative claims paid run-off triangle, the 

outstanding estimates, and the ultimate estimates, respectively. In Table 4.11, 0 and 1 represents 

female and male insureds, respectively. Also, the predictions are “fitted values” and the total 

column shows a “fitted ultimate cost”. The predictions are the fitted claim cost estimates that are 

most relevant for premium rating.  

4.7 CL estimates with risk_group 

In this model, we model the claims paid as our response variable. We then use the year_ 

development, year_accident variables and the risk_group in the dataset as independent 

variables. The introduction of the risk_group allows the researcher to see which group generated 

more claims. The result of this model is the CL + risk estimate. The usefulness of the addition of 

the risk group helps the insurer in designing its products for the various risk group it introduces. 

This is one of the many useful variations of the GLM method. The following code shows how to 

use the GLM:  
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From the GLM summary above, a predictor variable is considered statistically significant if its 

associated p-value is less than the chosen significance level, typically 0.05. This indicates that the 

variable has a significant effect on the response variable, and its coefficient estimate can be used 

to make reliable predictions. In this model, the intercept, factor(risk_group)1, 

factor(year_development)1, and factor(year_development)2 are statistically significant 

predictors. 

The estimates derived for the Pure chain Ladder with risk_group.  

  

Table 4.12: Chain ladder using GLM with risk group - cumulative claims paid.  
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Table 4.13: Chain ladder using GLM with risk group - outstanding estimates. 

 

Table 4.14 Chain ladder + risk group prediction 

From Tables 4.12, 4.13 and 4.14 represents the cumulative claims paid based on the risk 

group, the outstanding payments based on the risk group and the prediction based on the risk 

group, respectively. In Table 4.14, 0 and 1 represents female and male insurers, respectively. 

Also, the predictions are “fitted values” and the total column shows a “fitted ultimate cost”.   

4.8 Implication of the Pure (CL) and the CL with risk group 

Since there is only one pricing variable (risk_group1),  𝑒−0.4715 =  0.62407 is the factor by 

which the outstanding payments decreases when we compare male insureds to female insureds. 

This is true because from table 4.11 and 4.14 we can see that the risk_group 0 which is 

1representative of female had higher predictions as compared to risk_group1 which is 

representative of males. By splitting between risk group the insurer can detect this disparity. Even 

though the overall predictions are the same in both table 4.11 and table 4.14, the difference in the 

predicted claim cost by risk group is much clearer in table 4.14 than in table 4.11. 

4.9 Pure Bornhuetter – Ferguson estimates 

To derive the Pure (BF) estimates, we model the claims paid as our response variable. We 

then use the year_development in the dataset as independent variable.  The result of this model 

is the BF estimates. The following code shows how to use the GLM:  
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If a predictor variable has a p-value less than the significance level (typically 0.05) in the 

GLM summary output, it is statistically significant. This indicates that the predictor variable has 

a significant effect on the response variable, and its coefficient estimate shows the direction and 

strength of the relationship. In this case, only the intercept, factor(year_development)1, and 

factor(year_development)2 are statistically significant in the R output. 

 The estimates derived for the Pure BF Method 

 

Table 4.15: Pure Bornhuetter-Ferguson using GLM- cumulative claims paid. 

 

Table 4.16: Pure BF using GLM - outstanding estimate. 
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Table 4.17: Pure BF Predictions  

Tables 4.15, 4.16 and 4.17 the cumulative claims paid run-off triangle, BF outstanding 

estimates, and the BF predictions, respectively. In Table 4.17, 0 and 1 represents female and male 

insurers, respectively. Also, the predictions are “fitted values” and the total column shows a “fitted 

ultimate cost”. The predictions are the fitted claim cost estimates that are most relevant for 

premium rating.  

4.10 BF estimates with risk_group 

In this last model, we model the claims paid as our response variable. We then use the 

year_development and the risk_group in the dataset as independent variable. The result of this 

model is the BF+ risk group estimates. For the insurer to better appreciate the dynamics owing to 

the claims paid amount, we add the risk group.  The following code shows how to use the GLM: 

 

From the GLM summary above, a predictor variable is considered statistically significant if 

its associated p-value is less than the chosen significance level, typically 0.05. This indicates 

that the variable has a significant effect on the response variable, and its coefficient estimate can 
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be used to make reliable predictions. In this model, the intercept, factor(risk_group)1, 

factor(year_development)1, and factor(year_development)2 are statistically significant 

predictors. 

The estimates for BF with risk_group  

 

Table 4.18: BF using GLM with risk group - cumulative claims paid. 

 

Table 4.19: BF using GLM with risk group - outstanding estimates. 

 

Table 4.20 BF + risk group prediction 

From Tables 4.18, 4.19 and 4.20 represents the BF cumulative claims paid based on the risk 

group, the BF outstanding payments based on the risk group and the BF prediction based on the 

risk group, respectively. In Table 4.20, 0 and 1 represents female and male insurers, respectively. 

Also, the predictions are “fitted values” and the total column shows a “fitted ultimate cost.” 

4.11 Implication of the Pure (BF) and the BF with risk group 

    Since there is only one pricing variable (risk_group),  𝑒−0.4708 =  0.62450 is the factor by 

which the outstanding payments decreases when we compare male insureds to female insureds. 

This is true because from Tables 4.17 and 4.20 we can see that the risk_group 0 which is 

representative of female had higher predictions as compared to risk_group1 which is 

representative of males. By splitting between risk groups, the insurer can detect this disparity. 

Even though the overall predictions are similar the same in both table 4.17 and table 4.20 the 

difference in predicted claim coast by risk group is much clearer in table 4.20 than in table 4.17. 
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5.CONCLUSION 

The table below shows the various estimates based on the model framework specified, that 

way we demonstrate the value added by including the extra risk variable/s, something which can 

be done in GLM but not in the original CL or BF methods. 

 

Table 5.1 Prediction estimates 

The  0 and 1 represents female and male insureds, respectively .We can observe that the BF 

+ risk group gives the strongest distinction between the risk groups predicted ultimate. This is 

because the BF also takes account of the number of insureds per risk group. Also, the predictions 

are “fitted values” and the total column shows a “fitted ultimate cost.” 

In table 5.2 below we see that the number of females is increasing while the number of males 

is falling, which in part explains the disparity in predicted claim cost. 

 

Table 5.2: Number of sums of risk insured.  

From the findings of the study, the following conclusion can be made. 

We can also see that females have higher claim cost per insured than males, plus that the 

number of females is increasing while the number of males is falling. It is a typical adverse 

selection situation that needs to be addressed. By EU regulation, insurers are not allowed to charge 
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different premiums, for males and females buying the same insurance. Insurers can devise 

different stratagems to circumvent the restriction: for example, by offering products that appeal 

more to the one sex than the other. Or by charging different premiums for other rating variables 

that are highly correlated with sex.  

  In further studies, the model that was generated using GLM approaches can have the age, 

sum insured per risk and/or premiums added to it to acquire further information about the 

insurance data. 
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APPENDICES 

A.1 Selected probability distribution used to fit our claims paid amount data and their 

parametric estimates and loglikelihood 

This section of Appendix A.1 is dedicated to outlining the continuous distribution functions 

(CDFs), and probability density functions (PDFs) of the selected probability distribution for 

fitting the data. 

1. Log-Normal Distribution 

The pdf of the lognormal distribution is given as  𝑓(𝑥) =  
1

𝜎√2𝜋

1

𝑥
𝑒

{−
1

2
(

log 𝑥− 𝜇

𝜎
)2}

, 𝑥 >

0, (𝜇, 𝜎2) 𝜎 > 0. Whereas the cdf is given by  𝛷(𝑧),  z = (
𝑙𝑜𝑔 𝑥−𝜇

𝜎
). 

2. Gamma distribution 

The gamma distribution pdf is given as 𝑓(𝑥) =  
𝜆𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝜆𝑥, 𝑥 > 0, 𝛼 > 0, 𝜆 > 0. The cdf 

is obtained when 2𝛼 is an integer, probabilities for the gamma distribution can be found using the 

relationship: 2𝜆𝑥 ~𝜒2𝛼
2 . 𝛼 represents the shape and 𝜆 is the rate. 

3. Exponential distribution 

The pdf of the exponential distribution is given as 𝑓(𝑥) =  𝜆𝑒−𝜆𝑥, 𝑥 > 0, 𝜆 > 0. The cdf is 

𝐹(𝑥) = 1 − 𝑒−𝜆𝑥. 𝜆 represents the rate. 

 

Table A.1 summarizes the estimated parameters, log-likelihood, and their respective information 

criteria values for the selected fitted probability distribution used for claims paid amount data. 

 

Table A.1 

This table shows the gamma and the exponential distribution as a better fit for the claims paid 

amount based on their likelihood. Since, the exponential is a particular case of the gamma 

distribution the gamma distribution is chosen among the selected distribution as the better fit than 

the exponential distribution. The AIC and BIC also show relatively equivalent results for  the 

gamma and the exponential distribution. AIC and BIC cannot determine how well a model 

explains data. It is only able to identify if the model balances complexity and predictive ability. 
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A.2 Basic R codes used for estimating the various statistics, getting the basic plots and the 

fitting of the probability distribution for the claims paid data. 

Table A.2 represents the descriptive statistics obtained using R. This table shows all the codes to 

derive the mean, standard deviation, and coefficient of variation. 

# Importing the dataset into R 

claims_d <= read.csv("Glm_loss_reserving_csv_20220815.txt", header = T) 

# Loading additional Libraries 

library(evd) 

library(evir) 

library(latticeExtra) 

library(actuar) 

library(TSA) 

library(fitdistrplus) 

# Getting the claims paid amount only 

claim_s <= claims_d$claims_paid_incremental 

# Removing zero and negative values* 

new_claim_s <= Claim_s 

New_Claim_s[New_Claim_s < 0] <= 0 

New_Claim_s<-New_Claim_s1 

New_Claim_s1[New_Claim_s1 == 0] <= NA 

# Calculating the various summary statistic 

(mean(New_Claim_s1)) 

(var(New_Claim_s1)) 

(sd(New_Claim_s1)) 

cov <= sd(New_Claim_s1)/mean(New_Claim_s1);cov 

Table A.2 

Table A.2.1 represents the codes used in plotting the scatter plot, histogram and Boxplot of both 

the original and log of the claims paid amount data.   

par(mfrow=c(1,2)) 

plot(x=New_claim_s1, xlab="Counts", ylab="Claim size", main="Scatter Plot of Claim size") 

plot(x=log(New_Claim_s1), xlab="Counts", ylab="Log Claim size", main="Scatter Plot of Log Claim 

size") 

hist(x=New_Claim_s1, xlab="Claim sizes", ylab="Counts", main="Histogram for Claim size") 

hist(x=log(New_Claim_s1), xlab=" logged Claim sizes", ylab="Counts", main="Histogram for logged of 

Claim size") 
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boxplot(x=New_Claim_s1, ylab="Claim size", main="Box Plot of Claim size") 

boxplot(x=log(New_Claim_s1), ylab="log(Claim size)", main="Box Plot of Logged Claim size") 

Table A.2.1 

Table A.2.2 represents the codes used in fitting  the probability distribution for the claims paid 

data. 

fw1<-fitdist(sort(New_Claim_s1), distr = "lnorm", method = c("mme"), discrete = F); plot(fw1) 

fw2<-fitdist(sort(New_Claim_s1), distr = "exp", method = c("mme"), discrete = F); plot(fw2) 

fw3<-fitdist(sort(New_Claim_s1), distr = "gamma", method = c("mme"), discrete = F); plot(fw3) 

Table A.2.2 

 

  


