

Aula 8: As diferenças de produtividade entre departamentos são estatísticamente significativas?

Formulação e Teste de Hipóteses (II)

Docente: Amílcar Moreira

Data & Hora: 17/11/2020, 20:30-22:30

Local: Edifício F2, Sala 111

Aula 8: Formulação e Teste de Hipóteses (II)

Na Aula Anterior

- Fizemos um breve introdução à Estatística Inferencial, por oposição à Estatística Descritiva;
- Discutimos as bases da inferência estatística (Teorema do Limite Central);
- Discutimos o Intervalo Confiança como ferramenta de inferência estatística

Objetivos da Aula

Parte Teórica

- Perceber o que são os Testes de Hipóteses e em que medida se distinguem dos Intervalos de Confiança enquanto ferramenta de inferência estatística;
- Saber Distinguir entre Hipótese Nula e Hipótese Alternativa;
- Saber identificar os critérios para a escolha do Teste de Hipótese adequado;
- Saber Distinguir entre Erros de Tipo I e Erros de Tipo II.

Parte Prática

• Saber aplicar Testes de Hipóteses para os casos mais comuns

Aula 8: Formulação e Teste de Hipóteses (II)

Estatística Descritiva

- Dá-nos as ferramentas para descrever dados de uma (ou mais variáveis) numa amostra
 - Medidas de tendência central (médias, modas, etc.)
 - Distribuição de frequências (proporções, percentagens, etc.)
 - Medidas de dispersão (variância, desvio padrão, etc.)

Estatística Inferencial

- Dá-nos as ferramentas para avaliarmos se a forma como os dados estão distribuídos na amostra pode ser inferida para a população
 - Intervalos de Confiança
 - Testes de Hipóteses

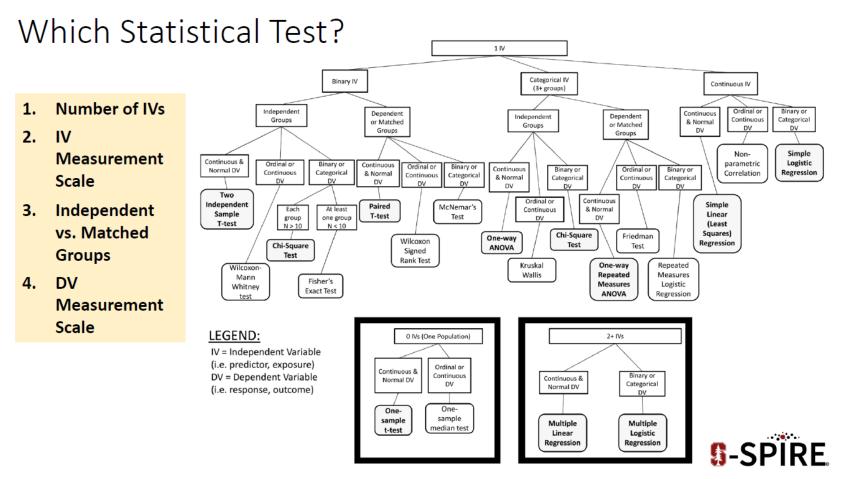
Aula 8: Formulação e Teste de Hipóteses (II)

- Teste de Hipóteses
 - Procedimento para testar uma afirmação sobre uma propriedade da população:
 - A distribuição da variável é normal?
 - As diferenças (médias, proporções, etc.) entre grupos são estatisticamente significativas?
 - A relação entre as variáveis (associação e correlação) é estatisticamente significativa?

Aula 8: Formulação e Teste de Hipóteses (II)

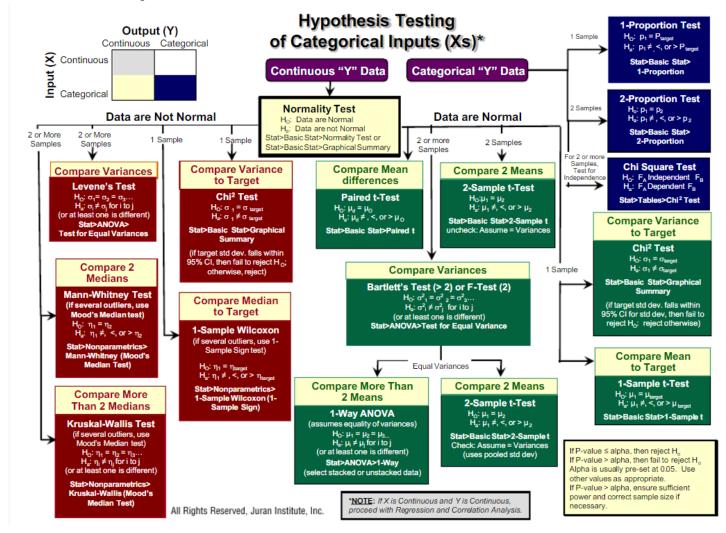
- Intervalo de Confiança
 - Fornece um conjunto de valores plausíveis da estimativa (ex. média) na população.

- Teste de Hipóteses
 - Implica a formulação de hipóteses formais
 - Força uma tomada de decisão relativa à significância estatística


Aula 8: Formulação e Teste de Hipóteses (II)

- Teste de Hipóteses
 - Envolve a formulação de duas hipóteses alternativas
 - Hipótese Nula (મુ)
 - Determina o valor do parâmetro da população que se pretende testar (ex. média, proporção, etc.)
 - Exprime-se sobre a forma de uma igualdade (=)
 - Hipótese Alternativa (Ң)
 - Determina que o valor do parâmetro é diferente do que o definido pela Hipótese Nula
 - Consequentemente pode exprimir-se de uma destas formas
 - ≠ H_o Parâmetro é diferente do que é definido pela Hipótese Nula
 - > H_o Parâmetro é maior do que é definido pela Hipótese Nula
 - < H_a Parâmetro é menor do que é definido pela Hipótese Nula

Aula 8: Formulação e Teste de Hipóteses (II)


Como escolher o teste de hipóteses mais adequado?

Aula 8: Formulação e Teste de Hipóteses (II)

Como escolher o teste de hipóteses mais adequado?

Aula 8: Formulação e Teste de Hipóteses (II)

• O que temos de ter em atenção na escolha do Teste de Hipóteses?

Qual é o objectivo?

A estatística amostral (ex: média) é representativa da população?

As diferenças entre grupos na amostra são representativas da população?

2 Grupos >2 Grupos

2 Amostras

+2 Amostras

Qual é a escala da variável?

Nominal (Proporções)

1 Amostra

Ordinal*

Contínua (Médias)

Aula 8: Formulação e Teste de Hipóteses (II)

• O que temos de ter em atenção na escolha do Teste de Significância?

Qual é o tipo de amostra?

Independente

Emparelhada

A amostra segue uma distribuição normal?

Sim (Teste Paramétrico)

Não (Teste Não-Paramétrico)

O que diz a Hipótese Alternativa?

$$H_1 < H_0$$

$$H_1 > H_0$$

(Teste Bilateral)

(Teste Unilateral à Esquerda)

(Teste Unilateral à Dt^a)

Aula 8: Formulação e Teste de Hipóteses (II)

Testes de Hipóteses

A variável segue uma distribuição normal? (Shapiro-Wilk)

A diferença entre médias (2 grupos) é significativa? (Teste de T)

A diferença entre médias (+2 grupos) é significativa? (ANOVA)*

Há uma relação sistemática entre as variáveis? (Qui-Quadrado)

A diferença entre proporções é significativa? (Teste de Z)

Aula 8: Formulação e Teste de Hipóteses (II)

Testes de Hipóteses

A variável segue uma distribuição normal? (Shapiro-Wilk)

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Shapiro-Wilk

- Objectivo:
 - Determinar se a distribuição dos salários na organização ('y_wage2') segue uma distribuição normal?

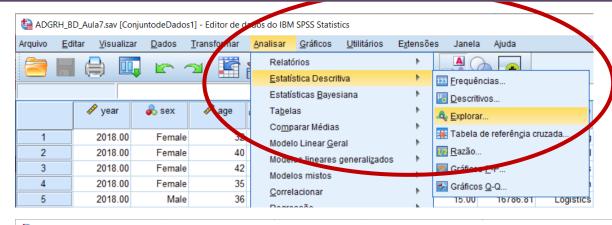
Hipótese Nula (H₀):

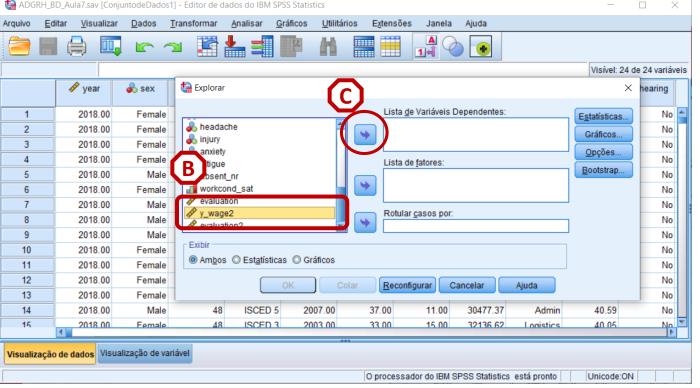
"A distribuição dos salários na organização segue uma distribuição normal"

Hipótese Alternativa (H_1):

"A distribuição dos salários na organização não segue uma distribuição normal"

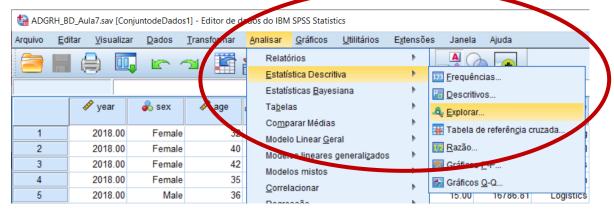
Aula 8: Formulação e Teste de Hipóteses (II)

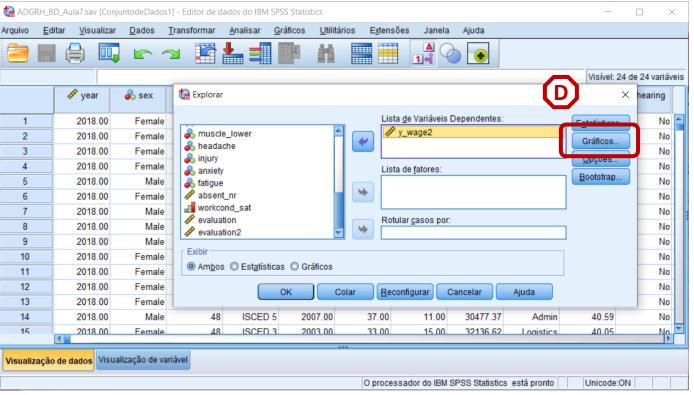

Teste de Shapiro-Wilk


- Selecionar 'Analisar' /
 'Estatisticas Descritivas' /
 'Explorar'
- Selecionar a variável 'y_wage2'
- Colocar na caixa 'Lista de Variáveis Dependentes'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Shapiro-Wilk


- Selecionar 'Analisar' /
 'Estatisticas Descritivas' /
 'Explorar'
- Selecionar a variável 'y_wage2'
- Colocar na caixa 'Lista de Variáveis Dependentes'
- Selecionar 'Gráficos'



Aula 8: Formulação e Teste de Hipóteses (II)

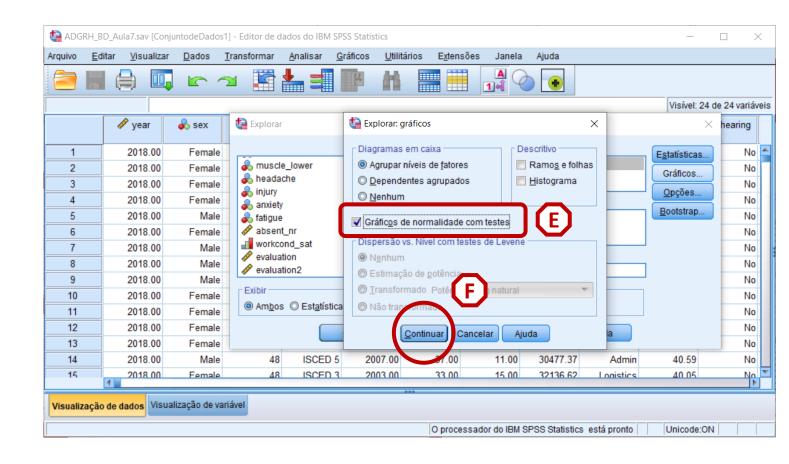
Teste de Shapiro-Wilk

Selecionar 'Analisar' /
 'Estatisticas Descritivas' /
 'Explorar'

A

- Selecionar a variável 'y_wage2'
- B

 Colocar na caixa 'Lista de Variáveis Dependentes' **©**

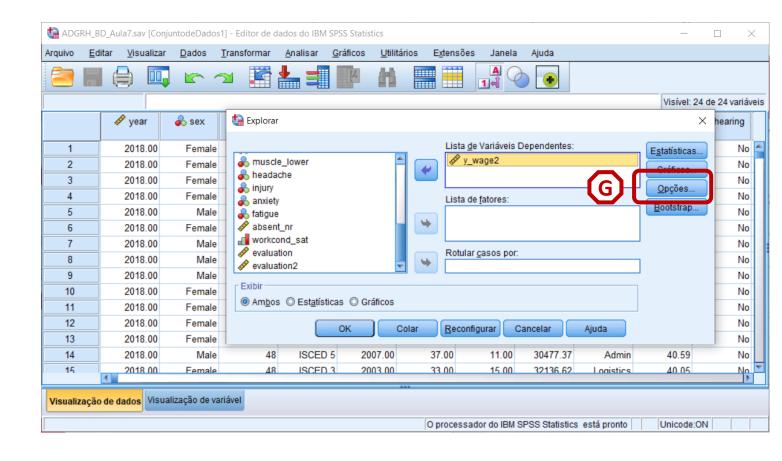

Selecionar 'Gráficos'

(D)

 Selecionar "Gráficos de normalidade com testes" **(E)**

Selecionar 'Continuar'

(F)



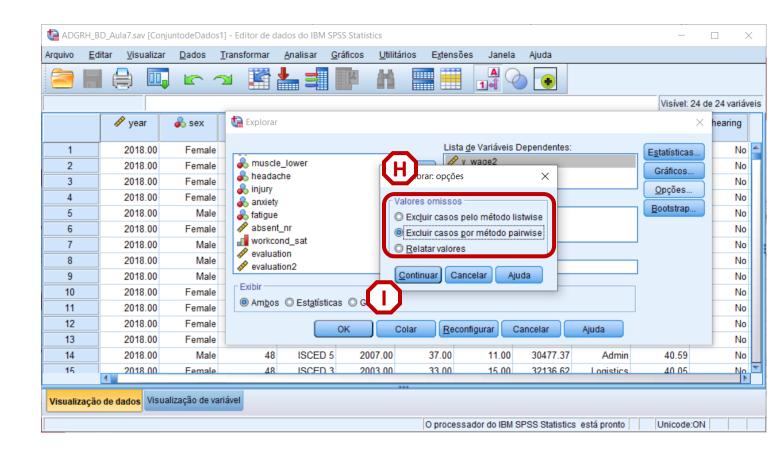
Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Shapiro-Wilk

Selecionar 'Opções'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Shapiro-Wilk


Selecionar 'Opções'

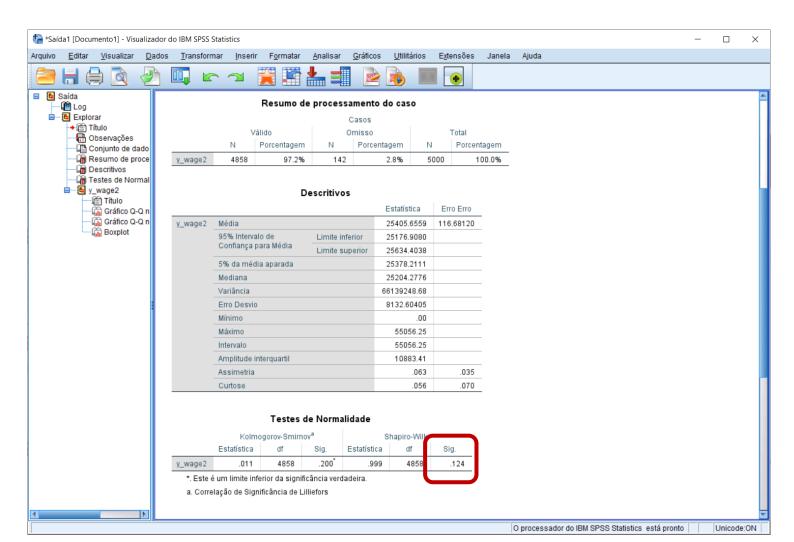
G

- Selecionar 'Excluir Casos por método pairwise'
- H

• Selecionar 'Continuar'/OK

①

Aula 8: Formulação e Teste de Hipóteses (II)

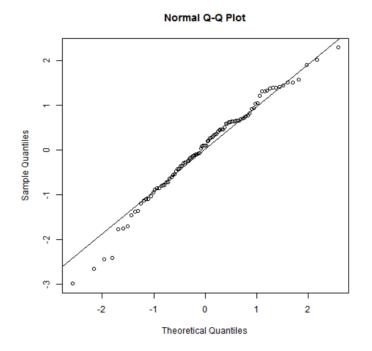

Teste de Shapiro-Wilk

 O resultado é publicado no 'Visualizador de Resultados'

INTERPRETAÇÃO:

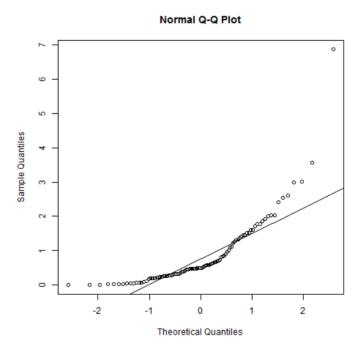
- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que a variável segue uma distribuição normal. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H_0) de que a variável segue uma distribuição normal.

A VARIÁVEL SALÁRIOS SEGUE UMA DISTRIBUIÇÃO NORMAL.


Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Shapiro-Wilk

 O SPSS também oferece uma forma de visualizar se a distribuição da variável 'Idade' segue uma distribuição normal:

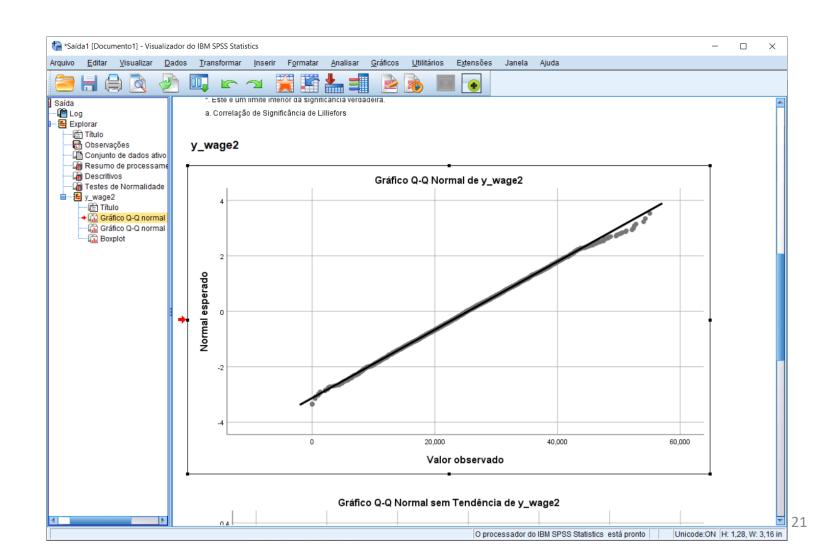

O gráfico Q-Q

Se os pontos se distribuem mais ou menos ao longo da linha...

... Podemos assumir que a variável <u>segue</u> uma distribuição normal.

Se os pontos seguem uma forma distinta da linha...

... Podemos assumir que a variável <u>não segue</u> uma distribuição normal.


Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Shapiro-Wilk

 O SPSS também oferece uma forma de visualizar se a distribuição da variável 'Idade' segue uma distribuição normal:

O gráfico Q-Q

 Neste caso, podemos assumir que a distribuição dos salários na empresa segue uma distribuição normal.

Aula 8: Formulação e Teste de Hipóteses (II)

Testes de Hipóteses

A diferença entre médias (2 grupos) é significativa? (Teste de T)

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de T (2 Amostras Indepts.)

- Objectivo:
 - Determinar se a diferença nas médias das avaliações de homens e mulheres é estatísticamente significativa

Hipótese Nula (
$$H_0$$
: $\bar{X}_m = \bar{X}_f$):

"A média da avaliação dos homens é igual à média da avaliação das mulheres"

Hipótese Alternativa (
$$H_1$$
: $\bar{X}_m \neq \bar{X}_f$):

"A média da avaliação dos homens é diferente à média da avaliação das mulheres"

Aula 8: Formulação e Teste de Hipóteses (II)

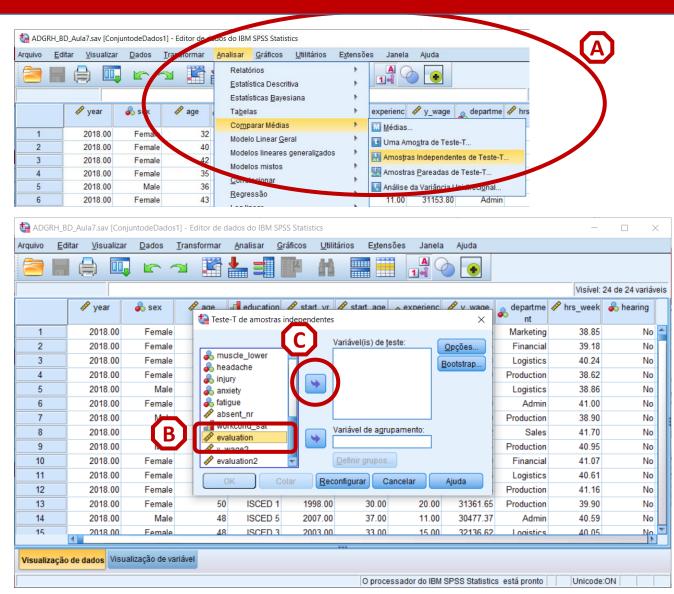
Teste de T (2 Amostras Indepts.)

- Este teste depende de um conjunto de pressupostos que convêm ser validados
 - A variável dependente é contínua;
 - A variável dependente segue uma distribuição aproximadamente normal;
 - Ausência de outliers na variável dependente
 - A variável independente é nominal, e tem apenas 2 categorias
 - As observações devem ser independentes (independência das observações)
 - Homogeneidade das variâncias (homocedasticidade)

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de T (2 Amostras Indepts.)

 Selecionar Selecionar 'Analisar / Comparar Médias' / 'Amostras independentes de Teste-T'



Selecionar a variável 'evaluation'

 Colocar na caixa 'Variável(is) de Teste'

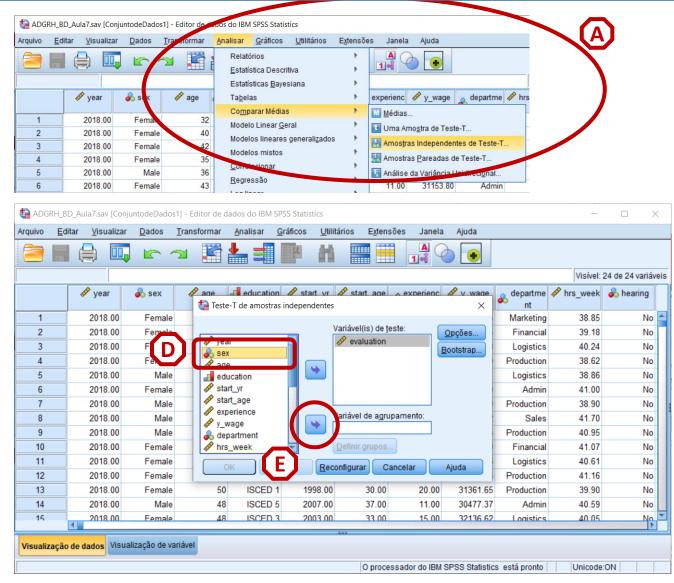
Aula 8: Formulação e Teste de Hipóteses (II)

Teste de T (2 Amostras Indepts.)

 Selecionar Selecionar 'Analisar / Comparar Médias' / 'Amostras independentes de Teste-T'

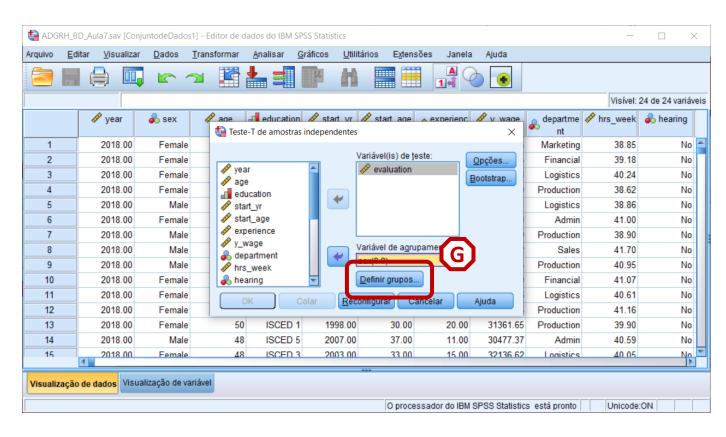
Selecionar a variável 'evaluation'

 Colocar na caixa 'Variável(is) de Teste'



Selecionar a variável 'sex'

Colocar na caixa 'Variável de agrupamento'

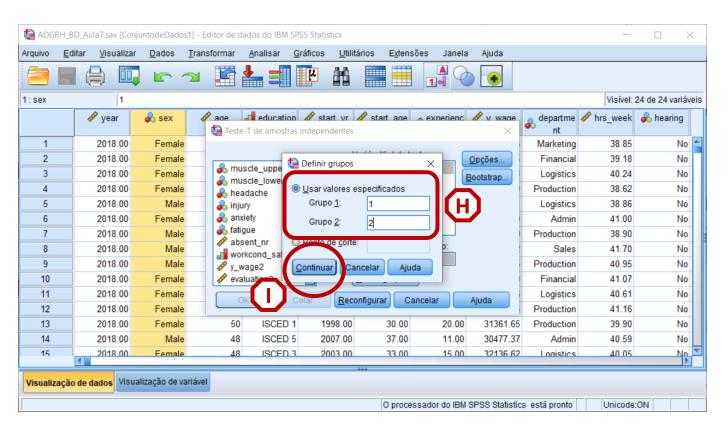


Aula 8: Formulação e Teste de Hipóteses (II)

Teste de T (2 Amostras Indepts.)

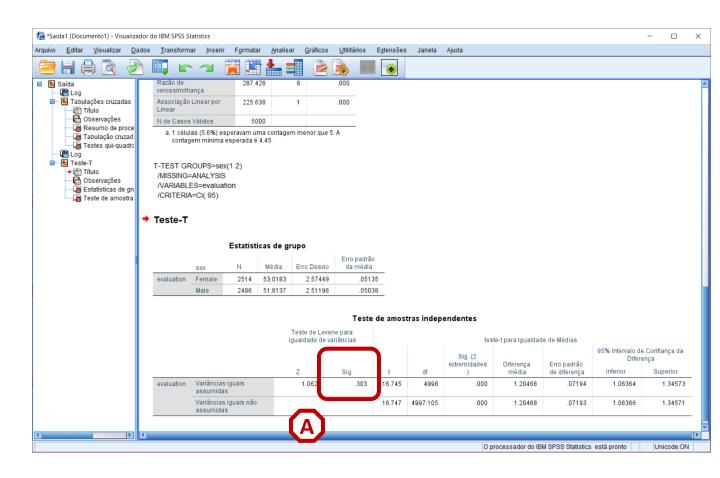
Selecionar 'Definir Grupos'

Aula 8: Formulação e Teste de Hipóteses (II)


Teste de T (2 Amostras Indepts.)

- Selecionar 'Definir Grupos'
- Por os valores da variável 'sex'
- Seleccionar 'Continuar' / 'OK'

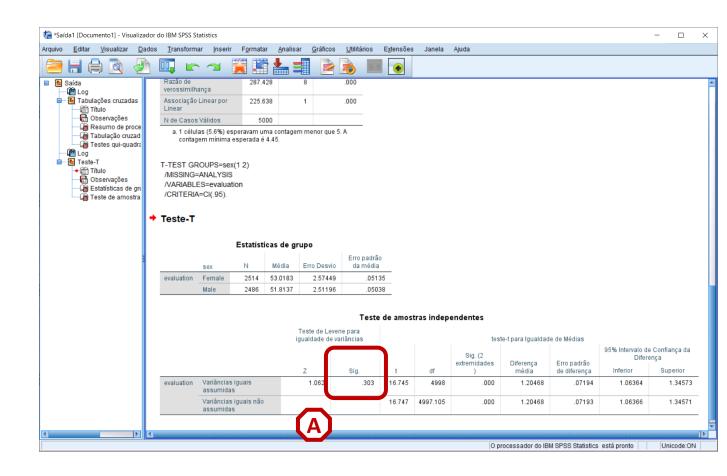
Aula 8: Formulação e Teste de Hipóteses (II)


Teste de T (2 Amostras Indepts.)

- O resultado é publicado no 'Visualizador de Resultados'
- O primeiro passo é testar se o pressuposto da Homogeneidade das Variâncias se aplica.
- Para isso temos de olhar para o resultado do Teste de Levene

INTERPRETAÇÃO:

- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que variável dependente tem a mesma variância em ambos os grupos. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H₀) de que variável dependente tem a mesma variância em ambos os grupos.



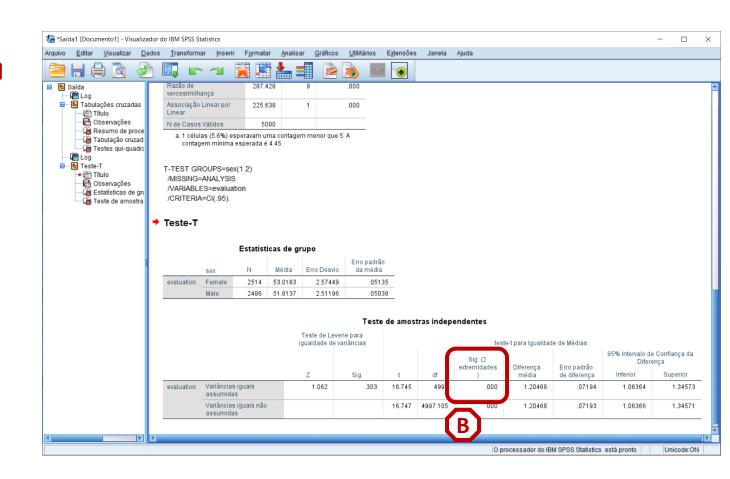
Aula 8: Formulação e Teste de Hipóteses (II)

Teste de T (2 Amostras Indepts.)

• CONFIRMA-SE QUE PODEMOS ACEITAR O PRESUPOSTO DA HOMOGENEIDADE DE VARIÂNCIAS.

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de T (2 Amostras Indepts.)


 Vamos então ver o que diz o resultado do Teste de T. *

INTERPRETAÇÃO:

- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que a média da avaliação dos homens é igual à média da avaliação das mulheres. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H_0) de que a média da avaliação dos homens é igual à média da avaliação das mulheres.

CONFIRMA-SE QUE A DIFERENÇA DAS MÉDIAS DAS AVALIAÇÕES DE HOMENS E MULHERES É ESTATÍSTICAMENTE SICGNIFICATIVA

Aula 8: Formulação e Teste de Hipóteses (II)

Testes de Hipóteses

Há uma relação sistemática entre as variáveis? (Qui-Quadrado)

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Independência Qui-Quadrado

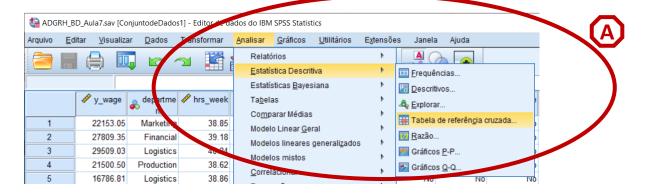
- Objectivo:
 - Determinar se há uma associação entre ter problemas de anxiedade e o tipo de departamento.

Hipótese Nula (H₀):

"Ter problemas de anxiedade é independente do tipo de departamento"

Hipótese Alternativa (H_1):

"Ter problemas de anxiedade não é independente do tipo de departamento"



Aula 8: Formulação e Teste de Hipóteses (II)

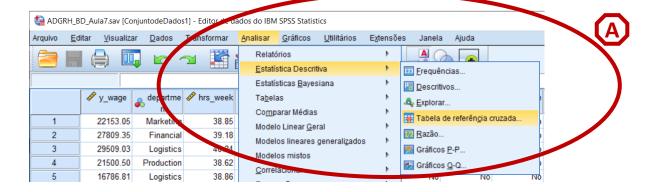
Teste de Independência Qui-Quadrado

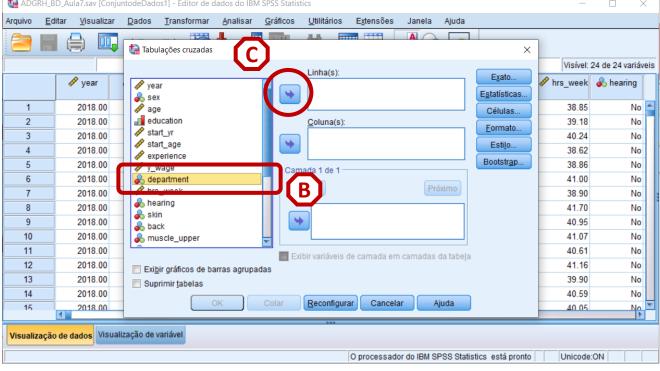
 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Independência Qui-Quadrado

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'


Selecionar a variável 'department'



Colocar na caixa 'Linha(s)'

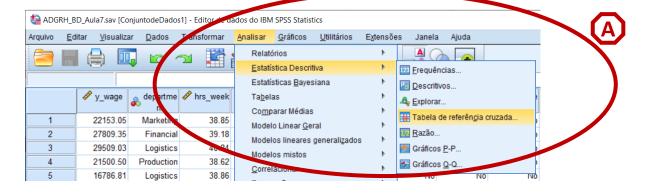
Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

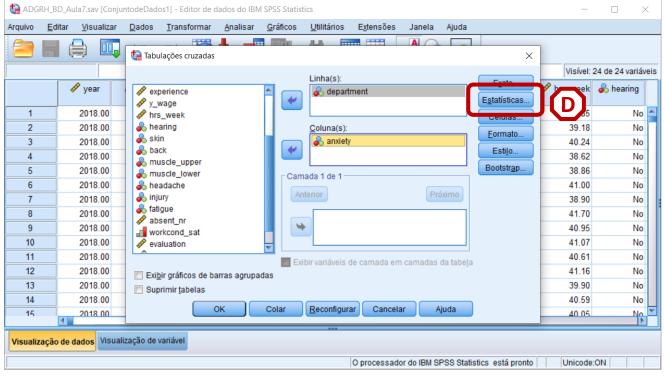
Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Independência Qui-Quadrado

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

Selecionar a variável 'department'


Colocar na caixa 'Linha(s)'



Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

Selecionar 'Estatísticas'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Independência Qui-Quadrado

- Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'
- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

- Selecionar 'Estatísticas'
- Selecionar 'Qui-Quadrado'
- Selecionar 'Continuar'

ADGRH_BD_Aula7.sav [ConjuntodeDados1] - Editor de dados do IBM SPSS Statistics

🏈 year

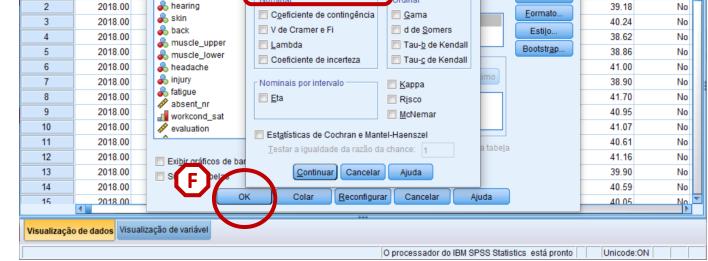
2018.00

1

Tabulações cruzadas

experience

y_wage


hrs week

Correlações

Tabulações cruzadas: estatísticas

Qui-quadrado

Visível: 24 de 24 variáveis

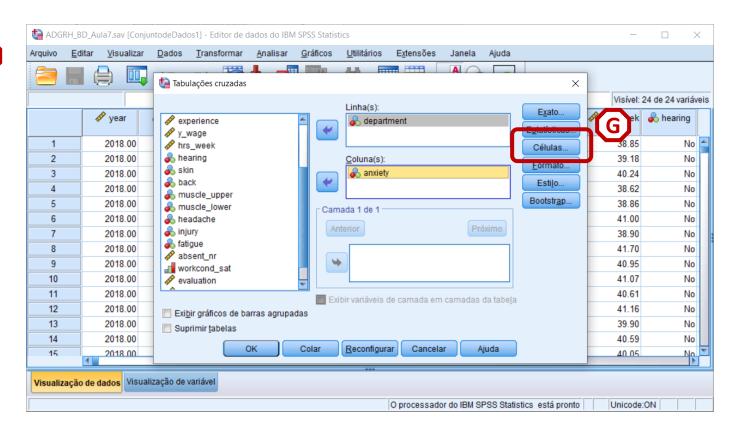
No

A hrs week A hearing

38.85

Estatísticas..

Células.



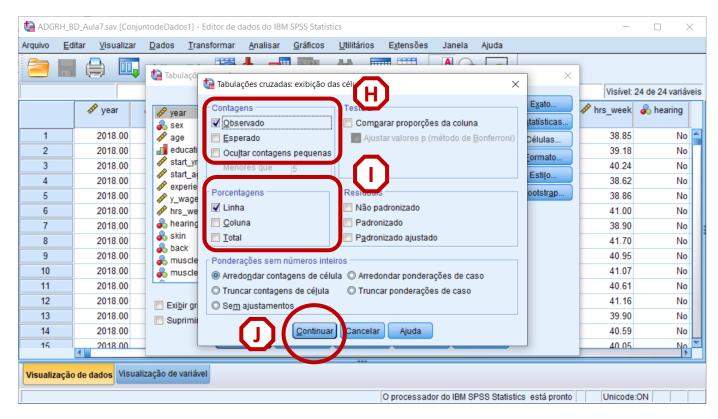
Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Independência Qui-Quadrado

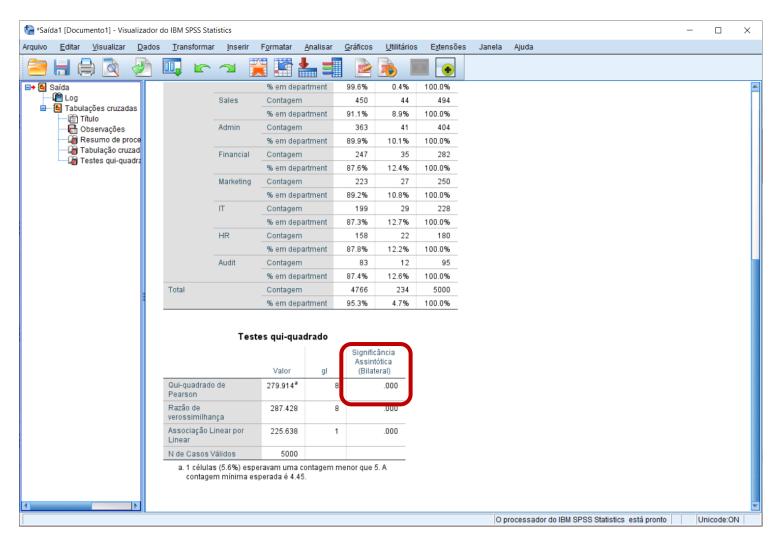
Selecionar 'Células'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Independência Qui-Quadrado


- Selecionar 'Células'
- Selecionar 'Contagens' / 'Observado'
- Selecionar 'Porcentagens' / 'Linha'
- Selecionar 'Continuar'

Aula 8: Formulação e Teste de Hipóteses (II)

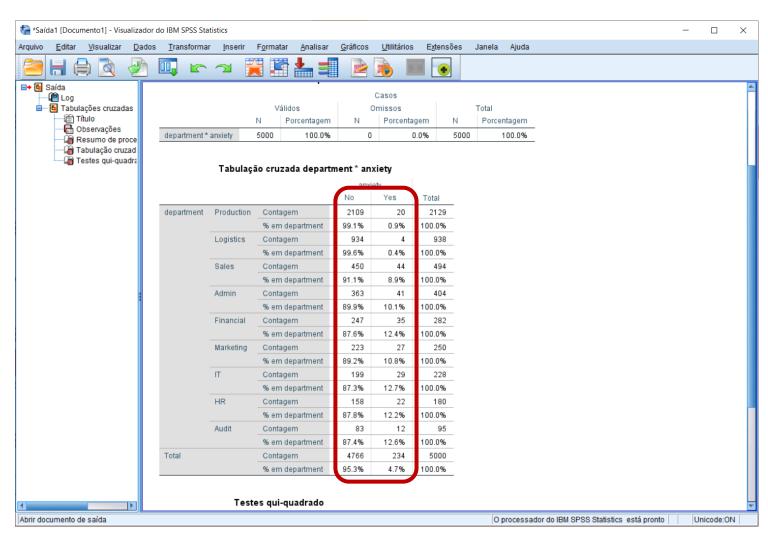

Teste de Independência Qui-Quadrado

 O resultado é publicado no 'Visualizador de Resultados'

INTERPRETAÇÃO:

- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que as variáveis são independentes. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H_o) de que variáveis são independentes.

TER PROBLEMAS DE ANXIEDADE NÃO É INDEPENDENTE DO TIPO DE DEPARTAMENTO



Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Independência Qui-Quadrado

 Podemos olhar para a Tabela de Frequências para melhor poder ilustrar o resultado do Teste de Independência Qui-Quadrado...

... Alguns departamentos (Sales, Financial, Marketing, IT, HR ou Audit) têm maior percentagem de trabalhadores com problemas de anxiedade que outros (production, Logistics)

Aula 8: Formulação e Teste de Hipóteses (II)

Testes de Hipóteses

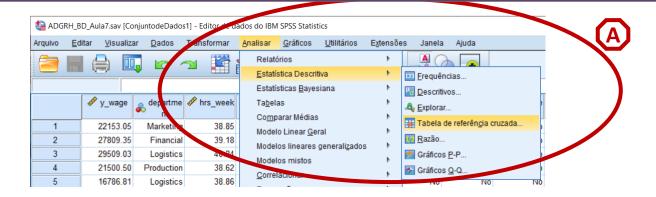
A diferença entre proporções é significativa? (Teste de Z)

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

Objectivo:

• Determinar se as diferenças na proporção de pessoas com problemas de anxiedade entre os vários departamentos são estatísticamente significativas.



Aula 8: Formulação e Teste de Hipóteses (II)

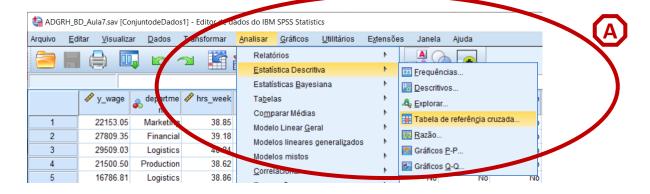
Teste de Proporções (Teste de Z)

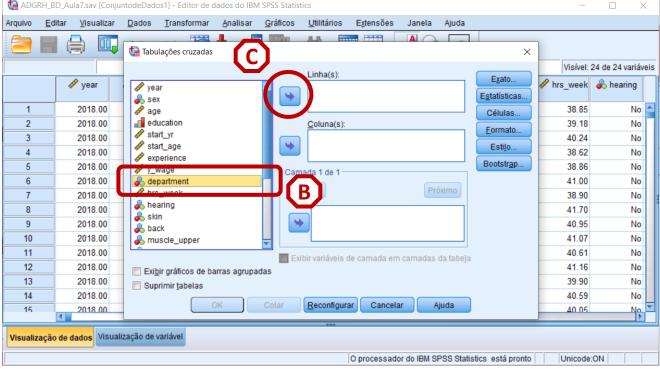
 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'


Selecionar a variável 'department'



Colocar na caixa 'Linha(s)'

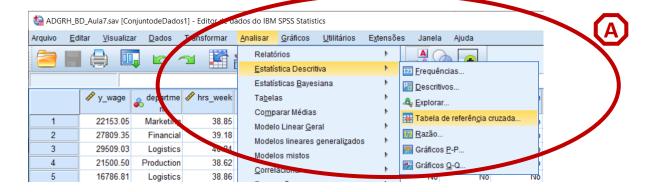
Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

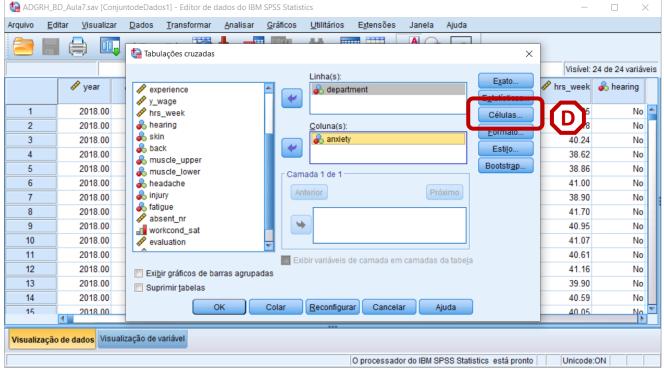
Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

- Selecionar a variável 'department'
- B


Colocar na caixa 'Linha(s)'



Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

Selecionar 'Células'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

- Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'
- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

- Selecionar 'Células'
- coluna' (e 'Ajustar valores...')
- Selecionar 'Comparar proporções da

ADGRH_BD_Aula7.sav [ConjuntodeDados1] - Editor de dados do IBM SPSS Statistics

Tabulaçõ

🚜 sex

🔗 year

2018.00

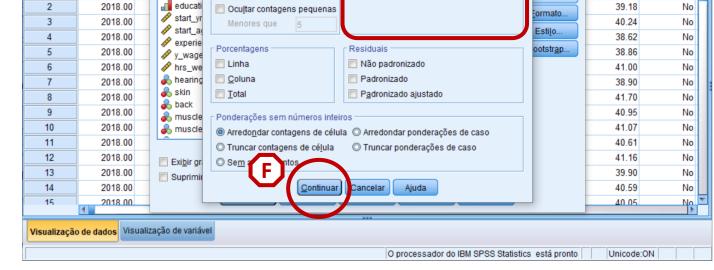
1

<u>D</u>ados <u>Transformar</u> <u>Analisar</u> <u>G</u>ráficos

Contagens

Observado

Esperado


ᄓ Tabulações cruzadas: exibição das células

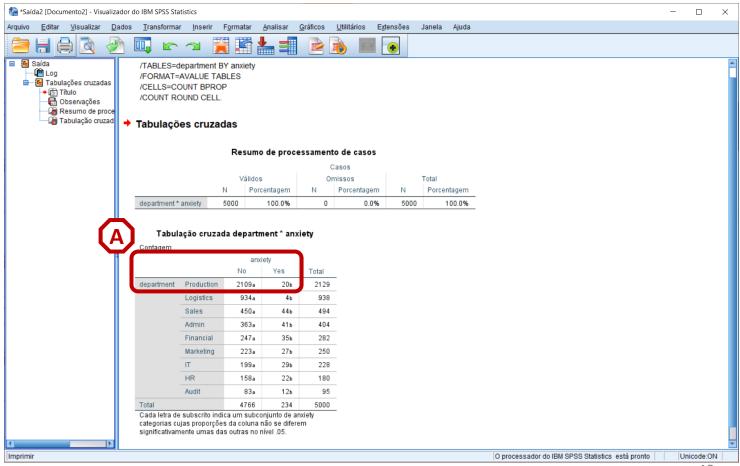
Comparar proporções da coluna

Aiustar valores p (método de Bonferroni)

Selecionar 'Continuar' / 'OK'

Visível: 24 de 24 variáveis

No


hrs week hearing

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

- O resultado é publicado no 'Visualizador de Resultados'
- O teste atribui uma letra subscrita às categorias da variável da coluna.
- Por exemplo, para o departamento 'Production', o valor na célula 'No' tem o subscrito a e o valor na célula 'Yes' tem o subscrito b.
- Se as colunas tiverem subscritos diferentes, isso significa que as proporções nessas células são significativamente diferentes.

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

Mas a implementação deste tipo de testes não é sempre assim tão clara...

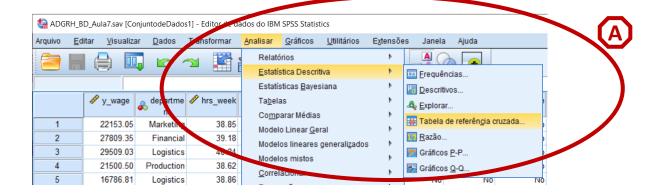
Vamos ver outro exemplo.

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

Objectivo:

• Determinar se as diferenças no grau de escolaridade dos trabalhadores entre os vários departamentos são estatísticamente significativas.



Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

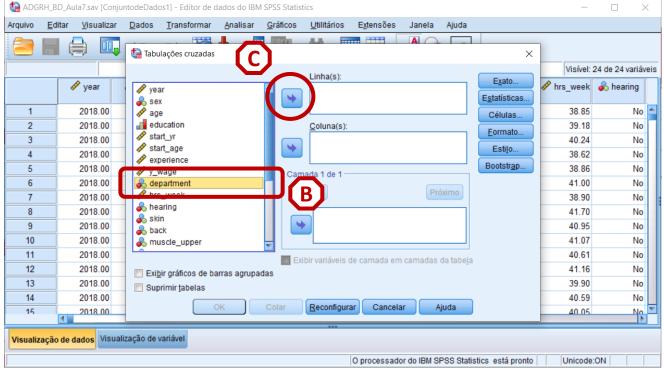
 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'


Selecionar a variável 'department'



Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'education' na caixa 'Coluna(s)'

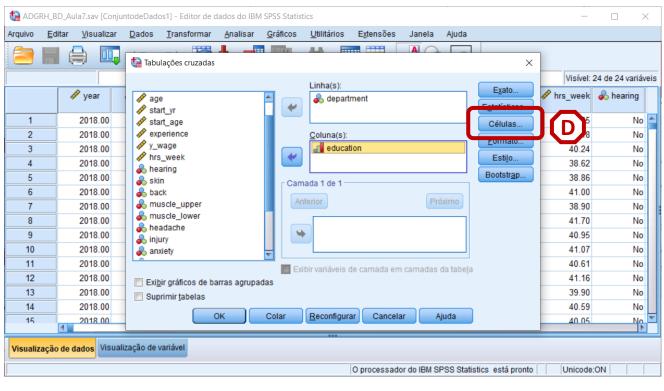
Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

- Selecionar a variável 'department'
 - Sciecional a variavel department
- Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'education' na caixa 'Coluna(s)'


Selecionar 'Células'

Aula 8: Formulação e Teste de Hipóteses (II)

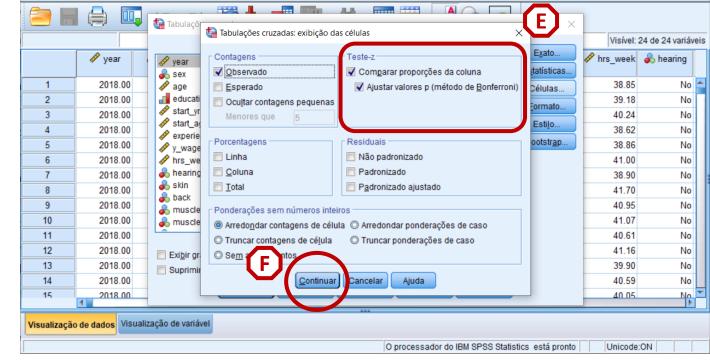
Teste de Proporções (Teste de Z)

- Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'
- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

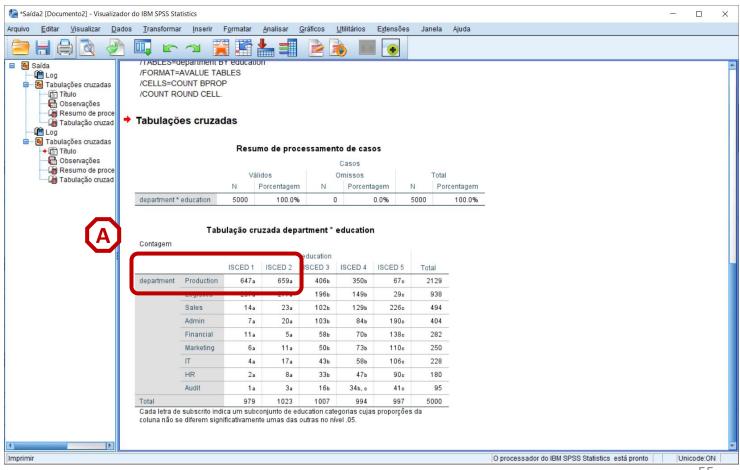
Exercício: Colocar a variável 'education' na caixa 'Coluna(s)'

- Selecionar 'Células'
- Selecionar 'Comparar proporções da coluna' (e 'Ajustar valores...')
- parar proporções da

ADGRH_BD_Aula7.sav [ConjuntodeDados1] - Editor de dados do IBM SPSS Statistics


<u>D</u>ados <u>Transformar</u> <u>Analisar</u> <u>G</u>ráficos

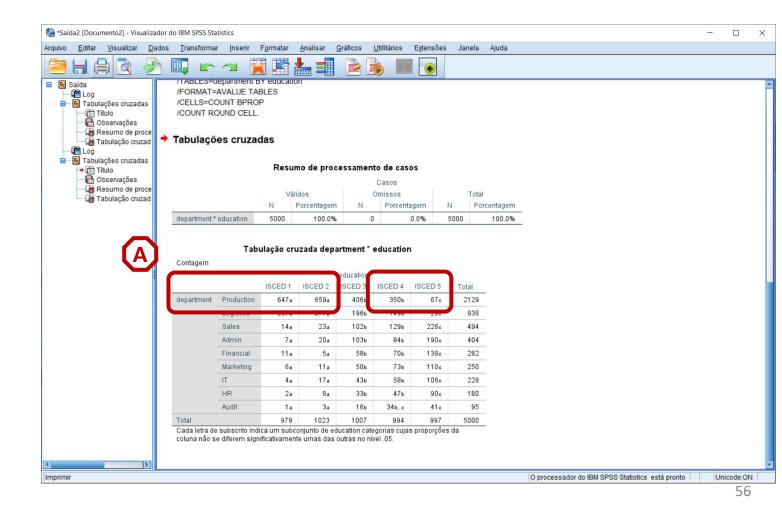
Selecionar 'Continuar' / 'OK'



Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

- O resultado é publicado no 'Visualizador de Resultados'
- Olhando para o departamento de 'Production'...
- ... os valores nas categorias 'ISCED1' e
 'ISCED2' têm o mesmo índice a, o que
 significa que não podem ser
 distinguidos uns dos outros.
- Por outro lado, os subscritos nas categorias 'ISCED4' e 'ISCED5' diferem uns dos outros.
- O que sugere que apenas as percentagens na categoria 'ISCED5' são significativamente diferentes (excepto no departamento de 'Audit').



Aula 8: Formulação e Teste de Hipóteses (II)

Teste de Proporções (Teste de Z)

- O resultado é publicado no 'Visualizador de Resultados'
- Olhando para o departamento de 'Production'...
- ... os valores nas categorias 'ISCED1' e 'ISCED2' têm o mesmo índice a, o que significa que não podem ser distinguidos uns dos outros.
- Por outro lado, os subscritos nas categorias 'ISCED4' e 'ISCED5' diferem uns dos outros.
- O que sugere que apenas as percentagens na categoria 'ISCED5' são significativamente diferentes de todas as outras (excepto no departamento de 'Audit').

Aula 8: Formulação e Teste de Hipóteses (II)

• Resultados possíveis de um teste de hipótese

	A HIPÓTESE NULA É VERDADEIRA	A HIPÓTESE NULA É FALSA
REJEITA-SE A HIPÓTESE NULA	Erro de Tipo I	Decisão Correta
NÃO SE REJEITA A HIPÓTESE NULA	Decisão Correta	Erro de Tipo II

Aula 8: Formulação e Teste de Hipóteses (II)

• Resultados possíveis de um teste de hipótese

	A HIPÓTESE NULA É VERDADEIRA	A HIPÓTESE NULA É FALSA
REJEITA-SE A HIPÓTESE NULA	Erro de Tipo I (α)	Decisão Correta
NÃO SE REJEITA A HIPÓTESE NULA	Decisão Correta	Erro de Tipo II

- Erro de Tipo 1
 - Representado pelo símbolo α (alpha)
 - É igual ao 'Nível de Significância' que atribuímos ao teste quando escolhemos o Grau de Confiança.

Level of Significance	Confidence Level (%)	
α=0.001	99.9	
α=0.01	99	
α=0.05	95	
α=0.1	90	

Aula 8: Formulação e Teste de Hipóteses (II)

• Resultados possíveis de um teste de hipótese

	A HIPÓTESE NULA É VERDADEIRA	A HIPÓTESE NULA É FALSA
REJEITA-SE A	Erro de Tipo I	Decisão
HIPÓTESE NULA	(α)	Correta
NÃO SE REJEITA A	Decisão	Erro de Tipo II
HIPÓTESE NULA	Correta	(β)

- Erro de Tipo II
 - Representado pelo símbolo β (Beta)
 - Ao determinarmos o valor de β , podemos calcular a 'Potência Estatística' do teste, que mede a probabilidade de rejeitar a hipótese nula quando a hipótese nula é falsa (= 1– β).

Aula 8: Formulação e Teste de Hipóteses (II)

Por hoje é tudo.

Até à próxima aula!